
Static Analysis
Martin Kellogg



Agenda: static analysis

● high-level idea of static analysis
● example static analysis: code review
● duality of static and dynamic analysis
● exam review (you ask questions)
● @7:30pm: exam



Motivation: many defects are hard to test for



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties
○ Without actually running the program! 



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties
○ Without actually running the program! 
○ Bonus: we don't need test cases!



Motivation: many defects are hard to test for

● Many interesting defects are on uncommon or 
difficult-to-exercise execution paths
○ So it’s hard to find them via testing

● Executing or dynamically analyzing all paths concretely to find 
such defects is not feasible (cf. exhaustive testing is infeasible)

● We want to learn about “all possible runs” of the program for 
particular properties
○ Without actually running the program! 
○ Bonus: we don't need test cases!

This is especially true for certain 
kinds of hard-to-test-for defects 
that might not be apparent even 
if you do exercise them, such as 
resource leaks



What does static analysis do well?



What does static analysis do well?

● Defects that result from inconsistently following simple, 
mechanical design rules



What does static analysis do well?

● Defects that result from inconsistently following simple, 
mechanical design rules
○ Security: buffer overruns, input validation 
○ Memory safety: null pointers, initialized data 
○ Resource leaks: memory, OS resources 
○ API Protocols: device drivers, GUI frameworks 
○ Exceptions: arithmetic, library, user-defined 
○ Encapsulation: internal data, private functions 
○ Data races: two threads, one variable



What does static analysis do well?

● Defects that result from inconsistently following simple, 
mechanical design rules
○ Security: buffer overruns, input validation 
○ Memory safety: null pointers, initialized data 
○ Resource leaks: memory, OS resources 
○ API Protocols: device drivers, GUI frameworks 
○ Exceptions: arithmetic, library, user-defined 
○ Encapsulation: internal data, private functions 
○ Data races: two threads, one variable

There are rules for 
doing each of these 
things correctly, and a 
static analysis can 
automate those rules.



What is a static analysis?



What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space



What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program



What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program



What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program
● an abstraction, in this context, is a selective representation of the 

program that is simpler to analyze



What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program
● an abstraction, in this context, is a selective representation of the 

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!



What is a static analysis?

Definition: static analysis is the systematic examination of an 
abstraction of program state space

● static analysis does not execute the program
○ in contrast to a dynamic analysis, such as testing, which does 

execute the program
● an abstraction, in this context, is a selective representation of the 

program that is simpler to analyze
○ key idea: the abstraction will have fewer states to explore

■ hopefully, many fewer!

This definition is most useful 
when thinking about automated 
static analyses. But whenever 
you reason through what a 
program does, you’re doing static 
analysis by hand!



Static analysis by hand: code review



Static analysis by hand: code review

Definition: In a code review, another developer examines your 
proposed change and explanation, offers feedback, and decides 
whether to accept it.



Static analysis by hand: code review

Definition: In a code review, another developer examines your 
proposed change and explanation, offers feedback, and decides 
whether to accept it.

● There is significant tool support for “modern” code review



Analogy: writing

Compare the effectiveness of:

● spell checking your own writing
● reading and editing your own writing
● having your writing be edited by someone else



Analogy: writing

Compare the effectiveness of:

● spell checking your own writing
● reading and editing your own writing
● having your writing be edited by someone else

Professional writers have editors; professional 
software engineers have code reviewers



What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code 
inspection or holistic code review. 



What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code 
inspection or holistic code review. 

Definition: a holistic code review is a code review of an entire 
component of a software system as a whole.



What is(n’t) “modern” code review?

● Historically, “code review” used to refer to what we now call code 
inspection or holistic code review. 

Definition: a holistic code review is a code review of an entire 
component of a software system as a whole.

● Typically, “code inspection” suggests that a team of reviewers 
is involved, while “holistic code review” suggests a single 
reviewer (but these are connotations, not rules)



So then what is modern code review?



So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews 
are performed at the changeset granularity



So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews 
are performed at the changeset granularity

Definition: a modern code review is a review of a set of proposed 
changes to a codebase, typically performed by another developer 
who is already familiar with the code being changed



So then what is modern code review?

● Unlike code inspections or holistic reviews, modern code reviews 
are performed at the changeset granularity

Definition: a modern code review is a review of a set of proposed 
changes to a codebase, typically performed by another developer 
who is already familiar with the code being changed

● Inductive argument for code quality:
○ if v(n) is good, and the diff between v(n) and v(n+1) is 

good, then v(n+1) is good



Aside: proof by induction

(on the whiteboard)



Modern code review: intuition

● “Given enough eyeballs, all bugs are shallow.” – Linus's Law



Modern code review: intuition

● “Given enough eyeballs, all bugs are shallow.” – Linus's Law
● Reviewer has:

○ different background, different experience 
○ no preconceived idea of correctness 
○ no bias because of “what was intended” 



Modern code review: intuition

“Breadth of experience in an individual is essential to creativity and 
hence to good engineering. … Collective diversity, or diversity of the 
group - the kind of diversity that people usually talk about - is just as 
essential to good engineering as individual diversity. … Those 
differences in experience are the "gene pool" from which creativity 
springs.” 

– Bill Wulf, National Academy of Engineering President



Modern code review: the most common analysis

● Modern code review is considered a best practice almost 
everywhere in industry



Modern code review: the most common analysis

"All code that gets submitted needs to be reviewed by at least one 
other person, and either the code writer or the reviewer needs to 
have readability in that language. Most people use Mondrian to do 
code reviews, and obviously, we spend a good chunk of our time 
reviewing code." 

- Amanda Camp, Software Engineer, Google



Modern code review: the most common analysis

“At Yelp we use review-board. An engineer works on a branch and 
commits the code to their own branch. The reviewer then goes 
through the diff, adds inline comments on review board and sends 
them back. The reviews are meant to be a dialogue, so typically 
comment threads result from the feedback. Once the reviewer's 
questions and concerns are all addressed they'll click "Ship It!" and 
the author will merge it with the main branch for deployment the 
same day.” 

- Alan Fineberg, Software Engineer, Yelp



Modern code review: the most common analysis

“At Wizards we use Perforce for SCM. I work with stuff that manages 
rules and content, so we try to commit changes at the granularity of 
one bug at a time or one card at a time. Our team is small enough that 
you can designate one other person on team as a code reviewer. 
Usually you look at code sometime that week, but it depends on 
priority. It’s impossible to write sufficient test harnesses for the 
bulk of our game code, so code reviews are absolutely critical.” 

- Jake Englund, Software Engineer, MtGO



Modern code review: the most common analysis

"At Facebook, we have an internally-developed web-based tool to aid the code review process. 
Once an engineer has prepared a change, she submits it to this tool, which will notify the 
person or people she has asked to review the change, along with others that may be interested 
in the change – such as people who have worked on a function that got changed. At this point, 
the reviewers can make comments, ask questions, request changes, or accept the changes. If 
changes are requested, the submitter must submit a new version of the change to be reviewed. 
All versions submitted are retained, so reviewers can compare the change to the original, or 
just changes from the last version they reviewed. Once a change has been submitted, the 
engineer can merge her change into the main source tree for deployment to the site during the 
next weekly push, or earlier if the change warrants quicker release." 

 Ryan McElroy, Software Engineer, Facebook



Modern code review: the most common analysis

● Modern code review is considered a best practice almost 
everywhere in industry

● While each place has their own way of doing reviews, the broad 
strokes are common between companies



Modern code review: benefits



Modern code review: benefits

● > 1 person has seen every piece of code 
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)



Modern code review: benefits

● > 1 person has seen every piece of code 
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

● Forcing function for documentation and code improvements
○ Authors must articulate their decisions 
○ Prospect of a review raises your quality threshold



Modern code review: benefits

● > 1 person has seen every piece of code 
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

● Forcing function for documentation and code improvements
○ Authors must articulate their decisions 
○ Prospect of a review raises your quality threshold

● Inexperienced personnel get experience without hurting quality 
○ Pairing them up with experienced developers 
○ Can learn by being a reviewer as well



● > 1 person has seen every piece of code 
○ Insurance against author’s disappearance (recall: bus factor)
○ Accountability (both author and reviewers are accountable)

● Forcing function for documentation and code improvements
○ Authors must articulate their decisions 
○ Prospect of a review raises your quality threshold

● Inexperienced personnel get experience without hurting quality 
○ Pairing them up with experienced developers 
○ Can learn by being a reviewer as well

Modern code review: benefits

Non-goal: assessing whether 
the author is good at their job
● managers/HR shouldn’t be 

involved in code review



Modern code review: benefits by the numbers



Modern code review: benefits by the numbers

● Average defect detection rates higher than testing
● 11 programs developed by the same group of people

○ First 5 without reviews: average 4.5 errors / 100 LoC 
○ Remaining 6 with reviews: average 0.82 errors / 100 LoC
○ Errors reduced by > 80%. 

● IBM's Orbit project: 500,000 lines, 11 levels of inspections. 
Delivered early with 1% of the predicted errors. 

● After AT&T introduced reviews, 14% increase in productivity and 
a 90% decrease in defects.

(From Steve McConnell’s Code Complete)

http://www.amazon.com/exec/obidos/ASIN/0735619670/codinghorror-20


Code review: summary

● Modern code review is performed by almost all real software 
engineering teams (be worried if it’s not!)

● Code review is the single most common static analysis
○ but it is not automated, so it’s very expensive

● Code review is very effective
○ in some ways, even more effective than testing!



Agenda: static analysis

● high-level idea of static analysis
● example static analysis: code review
● duality of static and dynamic analysis
● exam review (you ask questions)
● @7:30pm: exam



Exam review: dynamic analysis



Exam review: dynamic analysis

● Execute program (over some inputs)
○ The compiler provides the semantics 



Exam review: dynamic analysis

● Execute program (over some inputs)
○ The compiler provides the semantics 

● Observe executions
○ Requires instrumentation infrastructure



Exam review: dynamic analysis

● Execute program (over some inputs)
○ The compiler provides the semantics 

● Observe executions
○ Requires instrumentation infrastructure

● Analyze results



Exam review: dynamic analysis

● Execute program (over some inputs)
○ The compiler provides the semantics 

● Observe executions
○ Requires instrumentation infrastructure

● Analyze results

These are the analyses that we’ve been studying this semester so far!



Exam review: dynamic analysis

● Execute program (over some inputs)
○ The compiler provides the semantics 

● Observe executions
○ Requires instrumentation infrastructure

● Analyze results

These are the analyses that we’ve been studying this semester so far!

This means that we don’t 
need an external model of 
what the computer does!



Exam review: dynamic analysis properties



Exam review: dynamic analysis properties

● Can be as fast as execution (over a test suite, and allowing for 
data collection)
○ Example: aliasing 



Exam review: dynamic analysis properties

● Can be as fast as execution (over a test suite, and allowing for 
data collection)
○ Example: aliasing 

● Precise: no abstraction or approximation



Exam review: dynamic analysis properties

● Can be as fast as execution (over a test suite, and allowing for 
data collection)
○ Example: aliasing 

● Precise: no abstraction or approximation
● Unsound: results may not generalize to future executions

○ Describes execution environment or test suite



Static analysis properties



Static analysis properties

● Slow to analyze large models of state, so use abstraction



Static analysis properties

● Slow to analyze large models of state, so use abstraction
● Conservative: account for abstracted-away state 



Static analysis properties

● Slow to analyze large models of state, so use abstraction
● Conservative: account for abstracted-away state 
● Sound: (weak) properties are guaranteed to be true

○ Some static analyses are not sound, but static analyses can be 
made sound



Static vs dynamic analyses

Dynamic analyses: Static analyses:



Static vs dynamic analyses

Dynamic analyses:

● Concrete execution 
○ slow if exhaustive 

Static analyses:

● Abstract domain 
○ slow if precise 



Static vs dynamic analyses

Dynamic analyses:

● Concrete execution 
○ slow if exhaustive 

● Precise 
○ no approximation 

Static analyses:

● Abstract domain 
○ slow if precise 

● Conservative 
○ due to abstraction 



Static vs dynamic analyses

Dynamic analyses:

● Concrete execution 
○ slow if exhaustive 

● Precise 
○ no approximation 

● Unsound 
○ does not generalize

Static analyses:

● Abstract domain 
○ slow if precise 

● Conservative 
○ due to abstraction 

● Sound 
○ due to conservatism



Analogous analyses

● Any analysis problem can be solved with either a static or a 
dynamic analysis



Analogous analyses

● Any analysis problem can be solved with either a static or a 
dynamic analysis
○ e.g., consider type safety: no memory corruption or 

operations on wrong types of values



Analogous analyses

● Any analysis problem can be solved with either a static or a 
dynamic analysis
○ e.g., consider type safety: no memory corruption or 

operations on wrong types of values
■ Static type-checking (e.g., Java)
■ Dynamic type-checking (e.g., Python)

Aside: can you think of a 
language that doesn’t have an 
analysis for type safety?



Static vs dynamic analyses

Dynamic analyses:

● Concrete execution 
○ slow if exhaustive 

● Precise 
○ no approximation 

● Unsound 
○ does not generalize

Static analyses:

● Abstract domain 
○ slow if precise 

● Conservative 
○ due to abstraction 

● Sound 
○ due to conservatism



Sound dynamic analysis?



Sound dynamic analysis?

● Observe every possible execution! 



Sound dynamic analysis?

● Observe every possible execution! 
● Problem: infinite number of executions 



Sound dynamic analysis?

● Observe every possible execution! 
● Problem: infinite number of executions 
● Solution: test case selection and generation

○ Efficiency tweaks to an algorithm that works perfectly in 
theory but exhausts resources in practice



Precise static analysis?



Precise static analysis?

● Reason over full program state!



Precise static analysis?

● Reason over full program state!
● Problem: infinite number of executions



Precise static analysis?

● Reason over full program state!
● Problem: infinite number of executions
● Solution: data or execution abstraction

○ Efficiency tweaks to an algorithm that works perfectly in 
theory but exhausts resources in practice



Different subsets

● Dynamic analysis focuses on a subset of executions



Different subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.



Different subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free



Different subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures



Different subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

○ more precise for data or control described by the abstraction



Different subsets

● Dynamic analysis focuses on a subset of executions
○ i.e., the executions in the test suite, the executions that 

random input produces, etc.
○ typically optimistic about other executions

■ i.e., assume that they will be bug-free
● Static analysis focuses on a subset of data structures

○ more precise for data or control described by the abstraction
○ typically conservative / pessimistic elsewhere

■ i.e., assume that unmodeled state is unsafe



Agenda: static analysis

● high-level idea of static analysis
● example static analysis: code review
● duality of static and dynamic analysis
● exam review (you ask questions)
● @7:30pm: exam


