Abstract Interpretation (1/2)

Martin Kellogg
Reading quiz: abstract interpretation
Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest for handling procedure calls in an abstract interpretation?
A. summarization
B. inlining
C. refinement
D. concretization

Q2: The reading uses _____________ to represent programs, where the condition of an if statement is always a variable and the right-hand side of an assignment is always an expression with only one operator.
Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest for handling procedure calls in an abstract interpretation?
A. summarization
B. inlining
C. refinement
D. concretization

Q2: The reading uses ______________ to represent programs, where the condition of an if statement is always a variable and the right-hand side of an assignment is always an expression with only one operator.
Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest for handling procedure calls in an abstract interpretation?
A. summarization
B. inlining
C. refinement
D. concretization

Q2: The reading uses 3-address code to represent programs, where the condition of an if statement is always a variable and the right-hand side of an assignment is always an expression with only one operator.
Agenda: abstract interpretation

- Today: definitions, examples, soundness (?)
- Next week: more theory and examples, practical demo
Agenda: abstract interpretation

- Today: definitions, examples, soundness
- Next week: more theory and examples, practical demo
What is an abstract interpretation (formally)?
What is an abstract interpretation (formally)?

An abstract interpretation formally has **two components**:
What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason
What is an abstract interpretation (formally)?

An abstract interpretation formally has **two components**:
- an **abstract domain** over which to reason
- a set of **transfer functions** that tell the abstract interpreter how to reason over that abstract domain
What is an abstract interpretation (formally)?

An abstract interpretation formally has **two components**:

- an **abstract domain** over which to reason
- a set of **transfer functions** that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g., CPython, Node.js) also has these two components:
What is an abstract interpretation (formally)?

An abstract interpretation formally has **two components**:
- an abstract domain over which to reason
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g., CPython, Node.js) also has these two components:
- the “domain” is the concrete values that the machine can represent, like “64-bit integers”
What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an **abstract domain** over which to reason
- a set of **transfer functions** that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g., CPython, Node.js) also has these two components:

- the “domain” is the concrete values that the machine can represent, like “64-bit integers”
- the “transfer functions” are the concrete semantics of the programming language, such as what “+” actually means ("dispatch the operators to the ALU")
What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g., CPython, Node.js) also has these two components:

- the “domain” is the concrete values that the machine can represent, like “64-bit integers”
- the “transfer functions” are the concrete semantics of the programming language, such as what “+” actually means ("dispatch the operators to the ALU")

When dealing with a concrete language, we don’t usually get to choose the domain or the semantics. But in abstract interpretation, we do!
Domains

Definition: a *domain* is a set of possible values
Domains

Definition: a domain is a set of possible values
 • e.g., you might have heard the terms “domain” and “range” applied to functions in your previous math classes
Domains

Definition: a *domain* is a set of possible values
- e.g., you might have heard the terms “domain” and “range” applied to functions in your previous math classes
- we are interested in two kinds of domains:
Domains

Definition: a *domain* is a set of possible values

- e.g., you might have heard the terms “domain” and “range” applied to functions in your previous math classes
- we are interested in two kinds of domains:
 - the *concrete domain* of a variable is the set of values that the variable might actually take on during execution
 - probably familiar to you already
 - this is what the computer computes
Domains

Definition: a domain is a set of possible values
● e.g., you might have heard the terms “domain” and “range” applied to functions in your previous math classes
● we are interested in two kinds of domains:
 ○ the concrete domain of a variable is the set of values that the variable might actually take on during execution
 ■ probably familiar to you already
 ■ this is what the computer computes
 ○ an abstract domain is a layer of indirection on top of the concrete domain that splits the concrete domain into a smaller number of sets
Domains: concrete vs abstract example
Domains: concrete vs abstract example

- concrete domain = natural numbers:
Domains: concrete vs abstract example

- concrete domain = natural numbers:
 - \{ 0, 1, 2, 3, 4, ... \}
Domains: concrete vs abstract example

- concrete domain = natural numbers:
 - \{ 0, 1, 2, 3, 4, ... \}
- abstract domains:
Domains: concrete vs abstract example

- **concrete domain** = natural numbers:
 - \{ 0, 1, 2, 3, 4, ... \}
- **abstract domains**:
 - even/odd
 - prime/composite
 - positive/nonnegative
 - many more!
Domains: concrete vs abstract example

- concrete domain = natural numbers:
 - \{ 0, 1, 2, 3, 4, ... \}
- abstract domains:
 - even/odd
 - prime/composite
 - positive/nonnegative
 - many more!

Important property of an abstract domain: it must completely cover the concrete domain.
Domains: concrete vs abstract

- More formally:
Domains: concrete vs abstract

- More formally:
 - let C be the concrete domain of interest (e.g., natural numbers)
Domains: concrete vs abstract

- More formally:
 - let C be the **concrete domain** of interest (e.g., natural numbers)
 - an **abstract domain** $A = \{A_1, A_2, \ldots, A_n\}$ is a set of subsets of C that fulfills the following properties:
Domains: concrete vs abstract

- More formally:
 - let C be the **concrete domain** of interest (e.g., natural numbers)
 - an **abstract domain** $A = \{A_1, A_2, ..., A_n\}$ is a set of subsets of C that fulfills the following properties:
 - $\forall A_i \in A, A_i \subseteq C$
Domains: concrete vs abstract

- More formally:
 - let C be the **concrete domain** of interest (e.g., natural numbers)
 - an **abstract domain** $A = \{A_1, A_2, ..., A_n\}$ is a set of subsets of C that fulfills the following properties:
 - $\forall A_i \in A, A_i \subseteq C$
 - $A_1 \cup A_2 \cup ... \cup A_n = C$
Domains: concrete vs abstract

- More formally:
 - let C be the **concrete domain** of interest (e.g., natural numbers)
 - an **abstract domain** $A = \{A_1, A_2, ..., A_n\}$ is a set of subsets of C that fulfills the following properties:
 - $\forall A_i \in A, A_i \subseteq C$
 - $A_1 \cup A_2 \cup ... \cup A_n = C$
 - each A_i represents an **abstract value**
Domains: concrete vs abstract

- More formally:
 - let C be the **concrete domain** of interest (e.g., natural numbers)
 - an **abstract domain** $A = \{A_1, A_2, ..., A_n\}$ is a set of subsets of C that fulfills the following properties:
 - $\forall A_i \in A, A_i \subseteq C$
 - $A_1 \cup A_2 \cup ... \cup A_n = C$
 - each A_i represents an **abstract value**
 - e.g., “odd integers”, “Strings that match my regular expression”, etc.
Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other
 - an abstract domain with an ordering is called a lattice
Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other
 - an abstract domain with an ordering is called a lattice
- There are two ways to express the ordering:
Domains: orderings and lattices

- An abstract domain is incomplete without an **ordering**: that is, a way to tell how the abstract values are related to each other
 - an abstract domain with an ordering is called a **lattice**
- There are two ways to express the ordering:
 - define a **less than relation** (usually denoted by \sqsubseteq), or
Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other.
 - an abstract domain with an ordering is called a lattice
- There are two ways to express the ordering:
 - define a less than relation (usually denoted by □), or
 - define a least upper bound operator (usually denoted by ⊔)
Domains: orderings and lattices

- An abstract domain is incomplete without an **ordering**: that is, a way to tell how the abstract values are related to each other
 - an abstract domain with an ordering is called a **lattice**
- There are two ways to express the ordering:
 - define a **less than relation** (usually denoted by \sqsubseteq), or
 - define a **least upper bound operator** (usually denoted by \sqcup)
- These two approaches are **equivalent**: you can derive the LUB from the less than relation and vice-versa
Domains: ordering: less than relation

- Review: informally, a relation on a set may, or may not, hold between two given members of the set
Domains: ordering: less than relation

- Review: informally, a *relation* on a set may, or may not, hold between two given members of the set
 - formally, we define a relation as a set of ordered pairs
Domains: ordering: less than relation

- Review: informally, a *relation* on a set may, or may not, hold between two given members of the set
 - formally, we define a relation as a set of ordered pairs
- If $x \sqsubseteq y$, then we say that x is lower or less, and that y is higher or greater
Domains: ordering: less than relation

- Review: informally, a relation on a set may, or may not, hold between two given members of the set
 - formally, we define a relation as a set of ordered pairs
- If $x \sqsubseteq y$, then we say that x is lower or less, and that y is higher or greater
- The less-than relation need not be total
 - for two points e_1 and e_2, it is possible that neither $e_1 \sqsubseteq e_2$ nor $e_2 \sqsubseteq e_1$ is true
While the less than relation is in some ways better for doing a proof, it can be unwieldy when thinking about programs.
Domains: ordering: least upper bound

- While the less than relation is in some ways better for doing a proof, it can be unwieldy when thinking about programs
- The least upper bound is often more useful, because it directly models the join operator
Domains: ordering: least upper bound

- While the less than relation is in some ways better for doing a proof, it can be unwieldy when thinking about programs.
- The least upper bound is often more useful, because it directly models the **join operator**
 - that is, it models what happens when two possible abstract values flow to the same location (e.g., the then and else branches of an if)
Least upper bound: relationship to types

- You are probably already intuitively familiar with the LUB operator from your experience with object-oriented programming.
Least upper bound: relationship to types

- You are probably already intuitively familiar with the LUB operator from your experience with object-oriented programming.

```
  Object
/\       |
|       |
Animal  Shape
/ \      |
|     |
Bird  Mammal  Circle  Rect
/ \     |
|     |
Dog  Cat  Square
```
Least upper bound: relationship to types

- You are probably already intuitively familiar with the LUB operator from your experience with object-oriented programming.
 - Any time that you’ve answered the question “what is the closest supertype that these two types share”, you’re doing a LUB.
Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
 - it must be **complete**: that is, \(\forall X, Y \in A . X \sqcup Y \) must be defined
Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
 - it must be **complete**: that is, \(\forall X, Y \in A \cdot X \sqcup Y \) must be defined
 - it must be **monotonic**: that is, it preserves the ordering relationship.
Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
 - it must be **complete**: that is, \(\forall X, Y \in A . X \sqcup Y \) must be defined
 - it must be **monotonic**: that is, it preserves the ordering relationship.

 LUB is a binary function; for a binary function \(f \), monotonicity is defined as

 - \(\forall a, b, c, d . a \sqsubseteq b \land c \sqsubseteq d \Rightarrow f(a, c) \sqsubseteq f(b, d) \)
There are two important requirements on the LUB operator:
○ it must be **complete**: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined
○ it must be **monotonic**: that is, it preserves the ordering relationship.

LUB is a binary function; for a binary function f, monotonicity is defined as
- $\forall a, b, c, d . a \sqsubseteq b \land c \sqsubseteq d \Rightarrow f(a, c) \sqsubseteq f(b, d)$

Note that this is not the same as:
- $\forall x, y . f(x, y) \sqsupseteq x \land f(x, y) \sqsubseteq y$!
- though this property is also true of the LUB operator
Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
 - it must be **complete**: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined
 - it must be **monotonic**: that is, it preserves the ordering relationship.

 - LUB is a binary function; for a binary function f, monotonicity is defined as
 - $\forall a, b, c, d . a \sqsubseteq b \land c \sqsubseteq d \Rightarrow f(a, c) \sqsubseteq f(b, d)$

 - Note that this is not the same as:
 - $\forall x, y . f(x, y) \sqsubseteq x \land f(x, y) \sqsubseteq y$
 - though this property is also true of the LUB operator

Hint: I like to ask exam questions like “why is this property required?” or “what would happen if it weren’t true?”
Domains: lattices = abstract domain + order

- A *lattice* formally has two components:
 - the abstract domain
 - the ordering relation
Domains: lattices = abstract domain + order

- A *lattice* formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a *partially-ordered* set
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a *partially-ordered* set

A set is *partially ordered* iff ∃ a binary relationship ≤ that is:

- **reflexive**: x ≤ x
- **anti-symmetric**: x ≤ y ∧ y ≤ x ⇒ x = y
- **transitive**: x ≤ y ∧ y ≤ z ⇒ x ≤ z
Domains: lattices = abstract domain + order

- A *lattice* formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a *partially-ordered* set
 - *join semilattices* and *meet semilattices* are special kinds of partially-ordered sets.
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation

- That is, a lattice is a *partially-ordered* set
 - *join semilattices* and *meet semilattices* are special kinds of partially-ordered sets
 - join semilattices have a unique top element
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a **partially-ordered set**
 - **join semilattices** and **meet semilattices** are special kinds of partially-ordered sets
 - join semilattices have a unique top element

```
      T
     / \  
    A   B
   /   / \
  C   |   D
```
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a *partially-ordered* set
 - *join semilattices* and *meet semilattices* are special kinds of partially-ordered sets
 - join semilattices have a unique top element
 - meet semilattices have a unique bottom element
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a **partially-ordered set**
 - **join semilattices** and **meet semilattices** are special kinds of partially-ordered sets
 - join semilattices have a unique top element
 - meet semilattices have a unique bottom element
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a **partially-ordered** set
 - **join semilattices** and **meet semilattices** are special kinds of partially-ordered sets
 - join semilattices have a unique top element
 - meet semilattices have a unique bottom element
 - a lattice formally is both a join and a meet semilattice
Domains: lattices = abstract domain + order

- A **lattice** formally has two components:
 - the abstract domain
 - the ordering relation
- That is, a lattice is a *partially-ordered* set
 - *join semilattices* and *meet semilattices* are special kinds of partially-ordered sets
 - join semilattices have a unique top element
 - meet semilattices have a unique bottom element
 - a lattice formally is both a join and a meet semilattice
- We saw some examples of lattices last week
 - e.g., the null pointer analysis example's lattice with T, c, and ⊥
AI = Lattice + Transfer functions
AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the *abstract semantics* of the operations in the programming language
AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the abstract semantics of the operations in the programming language
 - that is, the transfer function for an operation answers the question “what does this operation mean in the context of the abstract domain”?
AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the *abstract semantics* of the operations in the programming language
 - that is, the transfer function for an operation answers the question “what does this operation *mean* in the context of the abstract domain”?
- formally, an abstract interpretation requires a transfer function for each language construct
AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the abstract semantics of the operations in the programming language
 - that is, the transfer function for an operation answers the question “what does this operation mean in the context of the abstract domain”?
- formally, an abstract interpretation requires a transfer function for each language construct
 - in practice, though, we usually assume that most are obvious and focus on the ones that might be interesting, which is what I’ll do in the examples on the next few slides
Example AI: even/odd integers
Example AI: even/odd integers

Example lattice:
Example AI: even/odd integers

Example lattice:

\{ \text{even}, \text{odd} \} = \text{top}
\ /
/ \
/ \
\{\text{even}\} \quad \{\text{odd}\}
\ / \
\ /
\{\} = \text{bottom}
Example AI: even/odd integers

Example lattice:

\{ even, odd \} = top
/ \
\{even\} \{odd\}
\ /
\ /
\ = bottom

A note about top:
- top represents *no constraints* on the possible values
- equivalently, *every value* is a member of top
Example AI: even/odd integers

Example lattice:

\{ even, odd \} = top
\;
/ \ \n\{even\} \{odd\}
\\ / \n\{} = bottom

Similarly for bottom:
- bottom represents all possible constraints at once on values
- equivalently, no values are members of bottom
Example AI: even/odd integers

Example lattice:

\{\text{even, odd}\} = \text{top}
/ \quad \backslash
\{\text{even}\} \quad \{\text{odd}\}
\backslash \quad /
\{\}\ = \text{bottom}

Example transfer function:

<table>
<thead>
<tr>
<th>+</th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>\perp</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>even</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\perp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example AI: even/odd integers

Example lattice:

{ even, odd } = top
\ / \\
{even} {odd}
\ / \\
{} = bottom

Example transfer function:

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>even</td>
<td>odd</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>odd</td>
<td>even</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```
Example AI: even/odd integers

Let’s apply this AI to an example:

```c
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution:

- `{x=0; y=undef}`
- `{x=0; y=8}`
- `{x=9; y=8}`
- `{x=9; y=18}`
- `{x=16; y=18}`
- `{x=16; y=8}`
Example AI: even/odd integers

Let’s apply this AI to an example:

\[
\begin{align*}
x &= 0; \\
y &= \text{read_even()} \\
x &= y + 1; \\
y &= 2 \times x; \\
x &= y - 2; \\
y &= x / 2;
\end{align*}
\]

Concrete execution:
- \{x=0; y=\text{undef}\}
- \{x=0; y=8\}
- \{x=9; y=8\}
- \{x=9; y=18\}
- \{x=16; y=18\}
- \{x=16; y=8\}

Abstract interpr.:
- \{x=?; y=?\}
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

<table>
<thead>
<tr>
<th>Concrete execution</th>
<th>Abstract interpr.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{x=0; y=undefined}</code></td>
<td><code>{x=e; y=?}</code></td>
</tr>
<tr>
<td><code>{x=0; y=8}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=9; y=8}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=9; y=18}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=16; y=18}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=16; y=8}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
</tbody>
</table>
Abstraction function

- How did we know that 0 was even?
Abstraction function

- How did we know that 0 was even?
 - an *abstraction function* (typically denoted by α) tells us which abstract domain a particular concrete element belongs to
Abstraction function

- How did we know that 0 was even?
 - an *abstraction function* (typically denoted by α) tells us which abstract domain a particular concrete element belongs to
Abstraction function

- How did we know that 0 was even?
 - an *abstraction function* (typically denoted by α) tells us which abstract domain a particular concrete element belongs to.
Abstraction function

- How did we know that 0 was even?
 - an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to
Abstraction function

- How did we know that 0 was even?
 - an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to

$$\alpha(4) = \text{even}$$
$$\alpha(\{\}) = \text{bottom}$$
Concretization function

- What about going the other way?
Concretization function

- What about going the other way?
 - an *concretization function* (typically denoted by \(\gamma \)) tells us which concrete element are associated with an abstract value
Concretization function

- What about going the other way?
 - an **concretization function** (typically denoted by γ) tells us which concrete element are associated with an abstract value
Concretization function

- What about going the other way?
 - an *concretization function* (typically denoted by γ) tells us which concrete element are associated with an abstract value
Concretization function

- What about going the other way?
 - an *concretization function* (typically denoted by γ) tells us which concrete element are associated with an abstract value
Role of abstr., concr., and transfer fcns.

Concrete state
Role of abstr., concr., and transfer fcns.
Role of abstr., concr., and transfer fcns.

Concrete state \(\xrightarrow{\text{concrete execution}}\) Concrete state

Abstract state \(\xrightarrow{\text{abstraction function}}\) Concrete state
Role of abstr., concr., and transfer fcns.
Role of abstr., concr., and transfer fcns.
Example AI: even/odd integers

Let’s apply this AI to an example:

\[
\begin{align*}
 x &= 0; \\
 y &= \text{read_even}(); \\
 x &= y + 1; \\
 y &= 2 \times x; \\
 x &= y - 2; \\
 y &= x / 2;
\end{align*}
\]

Concrete execution

\[
\begin{align*}
 \{x=0; y=\text{undef}\} \\
 \{x=0; y=8\} \\
 \{x=9; y=8\} \\
 \{x=9; y=18\} \\
 \{x=16; y=18\} \\
 \{x=16; y=8\}
\end{align*}
\]

Abstract interpr.

\[
\begin{align*}
 \{x=\text{e}; y=?\} \\
 \{x=?; y=?\}
\end{align*}
\]
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution
- `{x=0; y=undef}`
- `{x=0; y=8}`
- `{x=9; y=8}`
- `{x=9; y=18}`
- `{x=16; y=18}`
- `{x=16; y=8}`

Abstract interpr.
- `{x=e; y=⊥}`
- `{x=?; y=?}`
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

<table>
<thead>
<tr>
<th>Concrete execution</th>
<th>Abstract interpr.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{x=0; y=undef}</code></td>
<td><code>{x=e; y=⊥}</code></td>
</tr>
<tr>
<td><code>{x=0; y=8}</code></td>
<td><code>{x=e; y=e}</code></td>
</tr>
<tr>
<td><code>{x=9; y=8}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=9; y=18}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=16; y=18}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
<tr>
<td><code>{x=16; y=8}</code></td>
<td><code>{x=?; y=?}</code></td>
</tr>
</tbody>
</table>
Example AI: even/odd integers

Let’s apply this AI to an example:

\[
\begin{align*}
x & = 0; \\
y & = \text{read_even()} \\
x & = y + 1; \\
y & = 2 \times x; \\
x & = y - 2; \\
y & = x / 2;
\end{align*}
\]

Concrete execution

\[
\begin{align*}
\{x=0; y=\text{undef}\} \\
\{x=0; y=8\} \\
\{x=9; y=8\} \\
\{x=9; y=18\} \\
\{x=16; y=18\} \\
\{x=16; y=8\}
\end{align*}
\]

Abstract interpr.

\[
\begin{align*}
\{x=\text{e}; y=\bot\} \\
\{x=\text{e}; y=\text{e}\} \\
\{x=\text{o}; y=\text{e}\} \\
\{x=?; y=?\} \\
\{x=?; y=?\} \\
\{x=?; y=?\}
\end{align*}
\]

transfer function for +!
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution
- `{x=0; y=undef}`
- `{x=0; y=8}`
- `{x=9; y=8}`
- `{x=9; y=18}`
- `{x=16; y=18}`
- `{x=16; y=8}`

Abstract interpr.
- `{x=e; y=⊥}`
- `{x=e; y=e}`
- `{x=o; y=e}`
- `{x=o; y=e}`
- `{x=?; y=?}`
- `{x=?; y=?}`
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution:
- `{x=0; y=undef}`
- `{x=0; y=8}`
- `{x=9; y=8}`
- `{x=9; y=18}`
- `{x=16; y=18}`
- `{x=16; y=8}`

Abstract interpr.:
- `{x=e; y=⊥}`
- `{x=e; y=e}`
- `{x=o; y=e}`
- `{x=o; y=e}`
- `{x=e; y=e}`
- `{x=?; y=?}`
Example AI: even/odd integers

Let’s apply this AI to an example:

```javascript
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution

1. `{x=0; y=undef}`
2. `{x=0; y=8}`
3. `{x=9; y=8}`
4. `{x=9; y=18}`
5. `{x=16; y=18}`
6. `{x=16; y=8}`

Abstract interpr.

1. `{x=e; y=⊥ }`
2. `{x=e; y=e }`
3. `{x=o; y=e }`
4. `{x=o; y=e }`
5. `{x=e; y=e }`
6. `{x=e; y=e ? }`
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution
- \{x=0; y=undef\}
- \{x=0; y=8\}
- \{x=9; y=8\}
- \{x=9; y=18\}
- \{x=16; y=18\}
- \{x=16; y=8\}

Abstract interpr.
- \{x=e; y=⊥\}
- \{x=e; y=e\}
- \{x=0; y=e\}
- \{x=0; y=e\}
- \{x=e; y=e\}
- \{x=e; y=e?\}
Example AI: even/odd integers

What’s the transfer function for division?

<table>
<thead>
<tr>
<th>↓/ →</th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>even</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>odd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⊥</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example AI: even/odd integers

What’s the transfer function for division?

<table>
<thead>
<tr>
<th>↓/ →</th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

Notes for online readers:

- even/even is top:
 - $6/2 = 3$
 - $8/2 = 4$
- odd/odd is top:
 - $5/5 = 1$
 - $11/5 = 2$

integer division!
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

<table>
<thead>
<tr>
<th>Concrete execution</th>
<th>Abstract interpr.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{x=0; y=undef}</code></td>
<td><code>{x=e; y=⊥ }</code></td>
</tr>
<tr>
<td><code>{x=0; y=8}</code></td>
<td><code>{x=e; y=e }</code></td>
</tr>
<tr>
<td><code>{x=9; y=8}</code></td>
<td><code>{x=0; y=e }</code></td>
</tr>
<tr>
<td><code>{x=9; y=18}</code></td>
<td><code>{x=0; y=e }</code></td>
</tr>
<tr>
<td><code>{x=16; y=18}</code></td>
<td><code>{x=e; y=e }</code></td>
</tr>
<tr>
<td><code>{x=16; y=8}</code></td>
<td><code>{x=e; y=T }</code></td>
</tr>
</tbody>
</table>
Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

<table>
<thead>
<tr>
<th>Concrete execution</th>
<th>Abstract interpr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>{x=0; y=undefined}</td>
<td>{x=e; y=⊥}</td>
</tr>
<tr>
<td>{x=0; y=8}</td>
<td>{x=e; y=e}</td>
</tr>
<tr>
<td>{x=9; y=8}</td>
<td>{x=o; y=e}</td>
</tr>
<tr>
<td>{x=9; y=18}</td>
<td>{x=o; y=e}</td>
</tr>
<tr>
<td>{x=16; y=18}</td>
<td>{x=e; y=e}</td>
</tr>
<tr>
<td>{x=16; y=8}</td>
<td>{x=e; y=T}</td>
</tr>
</tbody>
</table>

for x, our abstraction was precise
Example AI: even/odd integers

Let’s apply this AI to an example:

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Concrete execution

- `{x=0; y=undef}`
- `{x=0; y=8}`
- `{x=9; y=8}`
- `{x=9; y=18}`
- `{x=16; y=18}`
- `{x=16; y=8}`

Abstract interpr.

- `{x=e; y=⊥}`
- `{x=e; y=e}`
- `{x=o; y=e}`
- `{x=o; y=e}`
- `{x=e; y=e}`
- `{x=o; y=T}`

For `x`, our abstraction was precise but for `y`, it was not.
Approximation!

Concrete state -> Concrete state

Concrete state -> Abstract state

Abstract state -> Concrete state

Abstract state -> Abstract state

abstraction function

concretization function

concrete execution

transfer functions
Approximation!

Concrete state → Concrete state

Abstract state ← Abstract state

Concrete execution

abstraction function

transfer functions

concretization function
Approximation!
Approximation!

Do the **green** and **orange** paths always lead to the same abstract state?
Approximation!

Do the **green** and **orange** paths always lead to the same concrete state?
Approximation!

Do the **green** and **orange** paths always lead to the same concrete state?

We’ll come back to this question when we discuss **soundness**.
Alternative example AI: even/odd integers

Is there an alternative AI that we can use to conclude that y is even after we analyze the example?

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```
Alternative example AI: even/odd integers

Is there an alternative AI that we can use to conclude that y is even after we analyze the example?

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

In-class exercise: with a partner, design an alternative abstract interpretation that can conclude that y is even.
Alternative example AI: even/odd integers

Key property that we need to conclude is that \(x \div 2 \) is even.
Alternative example AI: even/odd integers

Key property that we need to conclude is that \(x \div 2 \) is even.
• ask yourself: “for what \(x \) is that true?”
Alternative example AI: even/odd integers

Key property that we need to conclude is that $x \div 2$ is even.
- ask yourself: “for what x is that true?”
 - simplest answer: $x \cdot x \% 4 = 0$ - that is, all xs such that x is divisible by 4
Alternative example AI: even/odd integers

Key property that we need to conclude is that $x \div 2$ is even.

- ask yourself: “for what x is that true?”
 - simplest answer: $x \cdot x \% 4 = 0$ - that is, all xs such that x is divisible by 4
 - alternative answer: abstract value tracks the number of 2s in the prime factorization
Alternative example AI: even/odd integers

Key property that we need to conclude is that $x \div 2$ is even.

- ask yourself: “for what x is that true?”
 - simplest answer: $x \cdot x \% 4 = 0$ - that is, all xs such that x is divisible by 4
 - alternative answer: abstract value tracks the number of 2s in the prime factorization

- cunning plan: add a “divisible by 4” abstract value ($\text{mod} 4$) to our lattice, then rebuild our transfer functions
Alternative example AI: even/odd integers

Next question: where does “divisible by 4” go in the lattice?

```
{ even, odd } = top
   /        \
  {even}     {odd}
 /          /\
{} = bottom
```
Alternative example AI: even/odd integers

Next question: where does “divisible by 4” go in the lattice?

\[
\begin{array}{c}
\{ \text{even, odd} \} = \text{top} \\
/ & \backslash \\
\{ \text{even} \} & \{ \text{odd} \} \\
/ \\
\{ \text{mod4} \} \\
/ \\
\{ \} = \text{bottom}
\end{array}
\]

all mod4 integers are also even!
Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):
Alternative example AI: even/odd integers

How to change our **transfer functions**? Let’s do two examples (+ and `/`):

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>even</td>
<td>odd</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>odd</td>
<td>even</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>mod4</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
<td></td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>even</td>
<td>odd</td>
<td>⊥</td>
<td></td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>odd</td>
<td>even</td>
<td>⊥</td>
<td></td>
</tr>
<tr>
<td>mod4</td>
<td></td>
<td></td>
<td></td>
<td>⊥</td>
<td></td>
</tr>
</tbody>
</table>
Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

<table>
<thead>
<tr>
<th>+</th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>mod4</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>even</td>
<td>odd</td>
<td>even</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>odd</td>
<td>even</td>
<td>odd</td>
<td>⊥</td>
</tr>
<tr>
<td>mod4</td>
<td>T</td>
<td>even</td>
<td>odd</td>
<td>mod4</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

recall our original transfer function for +:

we need to add a row and a column for mod4:
Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

<table>
<thead>
<tr>
<th>↓/→</th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>mod4</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>mod4</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

<table>
<thead>
<tr>
<th>↓/→</th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>mod4</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>even</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>

same thing for division:

oh no! why is mod4 divided by even top?

- 4/4 = 1 :(
- we need another lattice element to make this work!
Alternative example AI: even/odd integers

Another lattice element: “is2”
Alternative example AI: even/odd integers

Another lattice element: “is2”

- sibling of mod4 in the lattice
Alternative example AI: even/odd integers

Another lattice element: “is2”
- sibling of mod4 in the lattice

{ even, odd } = top
/ \
{even} {odd}
/ \\
{mod4} {is2} |
\\ | \\ |
{} = bottom
Alternative example AI: even/odd integers

Another lattice element: “is2”
- sibling of mod4 in the lattice
- its only purpose is to be treated specially in the division transfer function

```
{ even, odd } = top
    /     \
{even}  {odd}
    /     |
{mod4} {is2} |
    \     /  
{} = bottom
```
Alternative example AI: even/odd integers

Another lattice element: “is2”

- sibling of mod4 in the lattice
- its only purpose is to be treated specially in the division transfer function
 - in particular, we add the rule “mod4 / is2 -> even”
 - full transfer functions left as an exercise

\[
\begin{array}{c}
\{ \text{even, odd} \} = \text{top} \\
/ & \backslash \\
\{ \text{even} \} & \{ \text{odd} \} \\
/ & \backslash & | \\
\{ \text{mod4} \} & \{ \text{is2} \} & | \\
\backslash & | & / \\
\{ \} = \text{bottom} \\
\end{array}
\]
Alternative example AI: let’s try it

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Abstract interpr.:

```
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
```
Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
\{x=e; \quad y=\bot \}
\{x=?; \quad y=? \}
Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.

\{x=e; \quad y=\bot \} \\
\{x=e; \quad y=e \} \\
\{x=?; \quad y=? \}
Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥ }
{x=e; y=e }
{x= o; y=e }
{x= ?; y= ?}
{x= ?; y= ?}
{x= ?; y= ?}
Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.

\[
\begin{align*}
\{&x=\text{e}; \quad y=\bot \} \\
\{&x=\text{e}; \quad y=\text{e} \} \\
\{&x=\text{o}; \quad y=\text{e} \} \\
\{&x=\text{o}; \quad y=\text{e} \} \\
\{&x=?; \quad y=? \} \\
\{&x=?; \quad y=? \}
\end{align*}
\]
Alternative example AI: let’s try it

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Abstract interpr.

- `{x=e; y=⊥}`
- `{x=e; y=e}`
- `{x=0; y=e}`
- `{x=0; y=e}`
- `{x=?; y=?}`
- `{x=?; y=?}`

Question: What should the transfer function for `even - is2` be?
Alternative example AI: let’s try it

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Abstract interpr.

- `{x=e; y=⊥ }`
- `{x=e; y=e }`
- `{x=0; y=e }`
- `{x=0; y=e }`
- `{x=?; y=? }`
- `{x=?; y=? }`

what should the transfer function for `even - is2` be?
- even! why not mod4?
Alternative example AI: let’s try it

```c
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Abstract interpr.

- `{x=e; y=⊥}`
- `{x=e; y=e}`
- `{x=0; y=e}`
- `{x=0; y=e}`
- `{x=?; y=?}`
- `{x=?; y=?}`

what should the transfer function for even - is2 be?
- even! why not mod4? counterexample: 8 - 2 = 6
Alternative example AI: let’s try it

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Abstract interpr.

```plaintext
\{ x=e; \quad y=\bot \}
\{ x=e; \quad y=e \}
\{ x=\circ; \quad y=e \}
\{ x=\circ; \quad y=e \}
\{ x=e; \quad y=e \}
\{ x=?; \quad y=? \}
```
Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
\[
\begin{align*}
\{x=e; & \quad y=\bot \} \\
\{x=e; & \quad y=e \} \\
\{x=\circ; & \quad y=e \} \\
\{x=\circ; & \quad y=e \} \\
\{x=e; & \quad y=e \} \\
\{x=e; & \quad y=T \}
\end{align*}
\]
Alternative example AI: even/odd integers

- Why did adding \texttt{is2} and \texttt{mod4} fail to fix the approximation problem in the example?
Alternative example AI: even/odd integers

- Why did adding \texttt{is2} and \texttt{mod4} fail to fix the approximation problem in the example?
 - the example relies on the fact that for all X, $(X + 1) \times 2 - 2 = 2X$
 - and if X is initially even, then this means that the result is divisible by 4
Alternative example AI: even/odd integers

- Why did adding \texttt{is2} and \texttt{mod4} fail to fix the approximation problem in the example?
 - the example relies on the fact that for all X, \((X + 1) \times 2 - 2 = 2X\)
 - and if X is initially even, then this means that the result is divisible by 4
- \textbf{lesson from this example:} most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is \texttt{hard}! Keep this in mind on HW8.
Alternative example AI: even/odd integers

- Why did adding is_2 and mod_4 fail to fix the approximation problem in the example?
 - the example relies on the fact that for all X, $(X + 1) \times 2 - 2 = 2X$
 - and if X is initially even, then this means that the result is divisible by 4
- lesson from this example: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is hard! Keep this in mind on HW8.
- how could we get the right answer on this example?
Alternative example AI: even/odd integers

- Why did adding `is2` and `mod4` fail to fix the approximation problem in the example?
 - the example relies on the fact that for all X, \((X + 1) \cdot 2 - 2 = 2X\)
 - and if X is initially even, then this means that the result is divisible by 4
- **lesson from this example**: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is **hard**! Keep this in mind on HW8.
- how could we get the right answer on this example?
 - more complex abstract values, e.g., `oddTimes2`?
 - store the mathematical expression for each variable?
Alternative example AI: even/odd integers

• Why did adding \textbf{is2} and \textbf{mod4} fail to fix the approximation problem in the example?
 ○ the example relies on the fact that for all \(X\), \((X + 1) \times 2 - 2 = 2X\)
 □ and if \(X\) is initially even, then this means that the result is divisible by 4

• \textbf{lesson from this example}: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is \textbf{hard}! Keep this in mind on HW8.

• how could we get the right answer on this example? one more try...
 ○ more complex abstract values, e.g., \texttt{oddTimes2}?
 ○ store the mathematical expression for each variable?
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”

{ even, odd } = top
/ \
{even} {odd}
/ \ |
{mod4} {is2} |
\ | / |
{} = bottom
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”

● produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 → odd2)

{ even, odd } = top
/ \
{even} {odd}
/ \ |
{mod4} {is2} |
\ | /
{} = bottom
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice?

\[
\begin{align*}
\{\text{even, odd}\} &= \text{top} \\
\{\text{mod4}\} &\quad \{\text{is2}\} \\
\{\}\ &= \text{bottom}
\end{align*}
\]
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
● where does it go in the lattice?
 ○ a sibling of is2 and mod4?

{ even, odd } = top
/ \
{even} {odd}
/ \ /
{mod4} {is2} {odd2}
\ \ /
{} = bottom
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice?
 - a sibling of is2 and mod4?
 - between even and is2!

```
{ even, odd } = top
    /     \
{even}     {odd}
    /     \    |
{mod4}    {odd2}
    /     /
{is2}     /
    /     /
{} = bottom
```
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice?
 - a sibling of is2 and mod4?
 - between even and is2!
 - now we can add a new rule:

```
{ even, odd } = top
/    \
{even} {odd}
/    \
{mod4} {odd2}
|    /
|   / 
| {is2} /
\   / 
\ /  /
\|  /
\} = bottom
```
Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice?
 - a sibling of is2 and mod4?
 - between even and is2!
 - now we can add a new rule:
 - odd2 - is2 -> mod4

{ even, odd } = top
/ \
{even} {odd}
/ \ |
{mod4} {odd2} / \
| | \ |
| {is2} / |
| \ / |
\ { } = bottom
Alternative example AI: another attempt

\[
x = 0;
y = \text{read_even}();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
\]

Abstract interpr.
\[
\begin{align*}
\{x=?; & \quad y=? \} \\
\{x=?; & \quad y=? \}
\end{align*}
\]
Alternative example AI: another attempt

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

Abstract interpr.

- `{x=e; y=⊥ }`
- `{x=?; y=? }`
- `{x=?; y=? }`
- `{x=?; y=? }`
- `{x=?; y=? }
```
Alternative example AI: another attempt

```plaintext
x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```

**Abstract interpr.**

- `{x=e;    y=⊥ }
- `{x=e;    y=e }
- `{x=?;    y=?}
- `{x=?;    y=?}
- `{x=?;    y=?}
- `{x=?;    y=?}`
Alternative example AI: another attempt

x = 0;
y = \text{read_even}();
x = y + 1;
y = 2 \times x;
x = y - 2;
y = x / 2;

Abstract interpr.
\[
\begin{align*}
\{x=e; \quad y=\bot \} \\
\{x=e; \quad y=e \} \\
\{x=\text{o}; \quad y=e \} \\
\{x=?; \quad y=? \} \\
\{x=?; \quad y=? \} \\
\{x=?; \quad y=? \}
\end{align*}
\]
Alternative example AI: another attempt

\[
\begin{align*}
x &= 0; \\
y &= \text{read\_even}(); \\
x &= y + 1; \\
y &= 2 * x; \\
x &= y - 2; \\
y &= x / 2;
\end{align*}
\]

Abstract interpr.
\[
\begin{align*}
\{x=e; & \quad y=\bot \} \\
\{x=e; & \quad y=e \} \\
\{x=\circ; & \quad y=e \} \\
\{x=\circ; & \quad y=\text{odd2} \} \\
\{x=?; & \quad y=? \} \\
\{x=?; & \quad y=? \}
\end{align*}
\]
Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{ x=e; y=⊥ }  
{ x=e; y=e }  
{ x=0;  y=e  }  
{ x=0;  y=odd2  }  
{ x=mod4;  y=odd2  }  
{ x=?;  y=?  }
Alternative example AI: another attempt

\begin{align*}
x &= 0; \\
y &= \text{read\_even}(); \\
x &= y + 1; \\
y &= 2 \times x; \\
x &= y - 2; \\
y &= \frac{x}{2};
\end{align*}

Abstract interpr.
\begin{align*}
\{ &x=e; \quad y=\bot \} \\
\{ &x=e; \quad y=e \} \\
\{ &x=\text{o}; \quad y=e \} \\
\{ &x=\text{o}; \quad y=\text{odd2} \} \\
\{ &x=\text{mod4}; \quad y=\text{odd2} \} \\
\{ &x=\text{mod4}; \quad y=e \}
\end{align*}

Success!
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually $\bot$)
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually ⊥)
  3. put each program point in a worklist
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually ⊥)
  3. put each program point in a worklist
  4. until the worklist is empty, choose an item from the worklist and:
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually $\bot$)
  3. put each program point in a worklist
  4. until the worklist is empty, choose an item from the worklist and:
     a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually ⊥)
  3. put each program point in a worklist
  4. until the worklist is empty, choose an item from the worklist and:
     a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)
     b. if the item is a join point, use the LUB to combine its inputs
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually $\perp$)
  3. put each program point in a worklist
  4. until the worklist is empty, choose an item from the worklist and:
     a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)
     b. if the item is a join point, use the LUB to combine its inputs

Using LUB at join points models the fact that the program may take either branch of an if statement.
Formalizing the AI algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:
  1. convert the program to a CFG
  2. start with an initial estimate at every program point (usually ⊥)
  3. put each program point in a worklist
  4. until the worklist is empty, choose an item from the worklist and:
     a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)
     b. if the item is a join point, use the LUB to combine its inputs
     c. if either a. or b. caused a change, re-add dependent blocks to the worklist
What about loops?
What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
  - the lattice is of finite size
  - LUB is monotonic
What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
  - the lattice is of **finite size**
  - LUB is **monotonic**

You may be surprised that it is possible to build an abstract interpretation using (some) infinite-height lattices. Next week, we’ll discuss **widening**, which is the technique for this.
What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
  - the lattice is of **finite size**
  - LUB is **monotonic**
- that is, each loop will be analyzed at most \( k-1 \) times for each variable in the loop, where \( k \) is the height of the lattice
What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
  - the lattice is of finite size
  - LUB is monotonic
- that is, each loop will be analyzed at most $k-1$ times for each variable in the loop, where $k$ is the height of the lattice
- otherwise, loops are just a join point and a back-edge in the CFG
Why start with bottom?
Why start with bottom?

- the abstract interpretations we’ve considered so far are **optimistic**: they start with \( \bot \) and then go upwards in the lattice
Why start with bottom?

- the abstract interpretations we've considered so far are optimistic: they start with ⊥ and then go upwards in the lattice
  - these algorithms get the most precise answer
Why start with bottom?

- the abstract interpretations we’ve considered so far are optimistic: they start with \( \bot \) and then go upwards in the lattice
  - these algorithms get the most precise answer
  - but their downside is that they must run to fixpoint - they cannot be stopped early (the result might still be unsound)!
Why start with bottom?

- the abstract interpretations we’ve considered so far are optimistic: they start with ⊥ and then go upwards in the lattice
  - these algorithms get the most precise answer
  - but their downside is that they must run to fixpoint - they cannot be stopped early (the result might still be unsound)!
- pessimistic algorithms are also possible
Why start with bottom?

- the abstract interpretations we’ve considered so far are **optimistic**: they start with $\perp$ and then go upwards in the lattice
  - these algorithms get the most precise answer
  - but their downside is that they **must run to fixpoint** - they cannot be stopped early (the result might still be unsound)!
- **pessimistic** algorithms are also possible
  - start with T everywhere and move downwards in the lattice
Why start with bottom?

- the abstract interpretations we’ve considered so far are **optimistic**: they start with \( \bot \) and then go upwards in the lattice
  - these algorithms get the **most precise answer**
  - but their downside is that they **must run to fixpoint** - they cannot be stopped early (the result might still be unsound)!

- **pessimistic** algorithms are also possible
  - start with \( T \) everywhere and move downwards in the lattice
  - can be stopped at any time (e.g., when a budget is reached), but answer may not be precise
Another example
Another example

- Consider an abstract interpretation for constant propagation
Another example

- Consider an abstract interpretation for *constant propagation*
  - the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
Another example

- Consider an abstract interpretation for *constant propagation*
  - the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
  - constant propagation is a standard compiler optimization
Another example

- Consider an abstract interpretation for *constant propagation*
  - the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
  - constant propagation is a standard compiler optimization
  - lattice:
Another example

- Consider an abstract interpretation for *constant propagation*
  - the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
  - constant propagation is a standard compiler optimization
  - lattice:

```
 top
 / \\ / \ / \\ / \\ \\
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
<td></td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 bottom
```

Another example

Consider the following program:

```plaintext
w = 5
x = read()
if (x is even)
 y = 5
 w = w + y
else
 y = 10
 w = y
z = y + 1
x = 2 * w
```
Correctness of Abstract Interpretation
Correctness of Abstract Interpretation

- I’ve claimed several times that it is possible to use abstract interpretation to produce sound program analyses
Correctness of Abstract Interpretation

- I’ve claimed several times that it is possible to use abstract interpretation to produce **sound** program analyses
  - that is, analyses without false negatives
Correctness of Abstract Interpretation

- I’ve claimed several times that it is possible to use abstract interpretation to produce sound program analyses
  - that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the *galois connection* between a concrete value and the concretization of its abstraction function
Correctness of Abstract Interpretation

- I’ve claimed several times that it is possible to use abstract interpretation to produce **sound** program analyses
  - that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the **galois connection** between a concrete value and the concretization of its abstraction function
  - ideally, we’d like $\forall x, \gamma(\alpha(x)) = x$
Correctness of Abstract Interpretation

- I’ve claimed several times that it is possible to use abstract interpretation to produce sound program analyses
  ○ that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the *galois connection* between a concrete value and the concretization of its abstraction function
  ○ ideally, we’d like $\forall x, \gamma(\alpha(x)) = x$
  ○ but this is too strong: approximation may cause us to lose information! So, the standard formalism is:
    - $\forall x, x \in \gamma(\alpha(x))$
Correctness of Abstract Interpretation

- I’ve claimed several times that it is possible to use abstract interpretation to produce **sound** program analyses
  - that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the **galois connection** between a concrete value and the concretization of its abstraction function:
  - ideally, we’d like $\forall x, \gamma(\alpha(x)) = x$
  - but this is too strong: approximation may cause us to lose information! So, the standard formalism is:
    - $\forall x, x \in \gamma(\alpha(x))$
  - And, it’s also necessary to show that the Galois connection holds for the **transfer functions**!
Approximation!

Do the green and orange paths always lead to the same concrete state?

Remember this diagram from earlier?
Approximation!

What we need to show is that for all transfer functions, the green path is a subset of the orange path.

Do the green and orange paths always lead to the same concrete state?
Course announcements

- If you have not yet collected your exam, I have it at the front
- This week’s homework is **individual** (you may not work with a partner)
  - this is a difference from previous homeworks!
- Next week’s homework:
  - builds on this week’s - if you don’t do this week’s homework, you will not be able to do next week’s
  - is also individual
- This week’s homework involves designing an abstract interpretation. Keep in mind the pitfalls that we talked about today!