Abstract Interpretation (1/2)

Martin Kellogg

Reading quiz: abstract interpretation

Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest for handling procedure calls in an abstract interpretation?
A. summarization
B. inlining
C. refinement
D. concretization

Q2: The reading uses \qquad to represent programs, where the condition of an if statement is always a variable and the right-hand side of an assignment is always an expression with only one operator.

Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest for handling procedure calls in an abstract interpretation?
A. summarization
B. inlining
C. refinement
D. concretization

Q2: The reading uses \qquad to represent programs, where the condition of an if statement is always a variable and the right-hand side of an assignment is always an expression with only one operator.

Reading quiz: abstract interpretation

Q1: which two of the following approaches does the author suggest for handling procedure calls in an abstract interpretation?
A. summarization
B. inlining
C. refinement
D. concretization

Q2: The reading uses 3-address code to represent programs, where the condition of an if statement is always a variable and the right-hand side of an assignment is always an expression with only one operator.

Agenda: abstract interpretation

- Today: definitions, examples, soundness (?)
- Next week: more theory and examples, practical demo

Agenda: abstract interpretation

- Today: definitions, examples, soundness
- Next week: more theory and examples, practical demo

What is an abstract interpretation (formally)?

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g., CPython, Node.js) also has these two components:

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:

- the "domain" is the concrete values that the machine can represent, like "64-bit integers"

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to reason
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:

- the "domain" is the concrete values that the machine can represent, like "64-bit integers"
- the "transfer functions" are the concrete semantics of the programming language, such as what " + " actually means ("dispatch the operators to the ALU")

What is an abstract interpretation (formally)?

An abstract interpretation formally has two components:

- an abstract domain over which to re When dealing with a
- a set of transfer functions that tell to reason over that abstract domai

A concrete interpreter for a real progr CPython, Node.js) also has these two c
concrete language, we don't usually get to choose the domain or the semantics. But in abstract interpretation, we do!

- the "domain" is the concrete values that tne macnine can represent, like "64-bit integers"
- the "transfer functions" are the concrete semantics of the programming language, such as what " + " actually means ("dispatch the operators to the ALU")

Domains

Definition: a domain is a set of possible values

Domains

Definition: a domain is a set of possible values

- e.g., you might have heard the terms "domain" and "range" applied to functions in your previous math classes

Domains

Definition: a domain is a set of possible values

- e.g., you might have heard the terms "domain" and "range" applied to functions in your previous math classes
- we are interested in two kinds of domains:

Domains

Definition: a domain is a set of possible values

- e.g., you might have heard the terms "domain" and "range" applied to functions in your previous math classes
- we are interested in two kinds of domains:
- the concrete domain of a variable is the set of values that the variable might actually take on during execution
■ probably familiar to you already
- this is what the computer computes

Domains

Definition: a domain is a set of possible values

- e.g., you might have heard the terms "domain" and "range" applied to functions in your previous math classes
- we are interested in two kinds of domains:
- the concrete domain of a variable is the set of values that the variable might actually take on during execution
■ probably familiar to you already
- this is what the computer computes
- an abstract domain is a layer of indirection on top of the concrete domain that splits the concrete domain into a smaller number of sets

Domains: concrete vs abstract example

Domains: concrete vs abstract example

- concrete domain = natural numbers:

Domains: concrete vs abstract example

- concrete domain = natural numbers:
- $\{0,1,2,3,4, \ldots\}$

Domains: concrete vs abstract example

- concrete domain = natural numbers:
- $\{0,1,2,3,4, \ldots\}$
- abstract domains:

Domains: concrete vs abstract example

- concrete domain $=$ natural numbers:
- $\{0,1,2,3,4, \ldots\}$
- abstract domains:
- even/odd
- prime/composite
- positive/nonnegative
- many more!

Domains: concrete vs abstract example

- concrete domain = natural numbers:
- $\{0,1,2,3,4, \ldots\}$
- abstract domains:
- even/odd
- prime/composite
- positive/nonnegative
- many more!

Important property of an abstract domain: it must completely cover the concrete domain

Domains: concrete vs abstract

- More formally:

Domains: concrete vs abstract

- More formally:
- let C be the concrete domain of interest (e.g., natural numbers)

Domains: concrete vs abstract

- More formally:
- let C be the concrete domain of interest (e.g., natural numbers) - an abstract domain $\boldsymbol{A}=\left\{\boldsymbol{A}_{1}, A_{2}, \ldots, A_{n}\right\}$ is a set of subsets of C that fulfills the following properties:

Domains: concrete vs abstract

- More formally:
- let C be the concrete domain of interest (e.g., natural numbers) - an abstract domain $\boldsymbol{A}=\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{n}\right\}$ is a set of subsets of \boldsymbol{C} that fulfills the following properties:
- $\forall A_{i} \in A, A_{i} \subseteq C$

Domains: concrete vs abstract

- More formally:
- let C be the concrete domain of interest (e.g., natural numbers) - an abstract domain $\boldsymbol{A}=\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{n}\right\}$ is a set of subsets of \boldsymbol{C} that fulfills the following properties:
- $\forall A_{i} \in A, A_{i} \subseteq C$
- $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=C$

Domains: concrete vs abstract

- More formally:
- let C be the concrete domain of interest (e.g., natural numbers) - an abstract domain $\boldsymbol{A}=\left\{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A}_{n}\right\}$ is a set of subsets of \boldsymbol{C} that fulfills the following properties:
- $\forall A_{i} \in A, A_{i} \subseteq C$
- $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=C$
- each A_{i} represents an abstract value

Domains: concrete vs abstract

- More formally:
- let C be the concrete domain of interest (e.g., natural numbers)
- an abstract domain $\boldsymbol{A}=\left\{\boldsymbol{A}_{1}, A_{2}, \ldots, A_{n}\right\}$ is a set of subsets of C that fulfills the following properties:
- $\forall A_{i} \in A, A_{i} \subseteq C$
- $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=C$
- each A_{i} represents an abstract value

■ e.g., "odd integers", "Strings that match my regular expression", etc.

Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other - an abstract domain with an ordering is called a lattice

Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other - an abstract domain with an ordering is called a lattice
- There are two ways to express the ordering:

Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other - an abstract domain with an ordering is called a lattice
- There are two ways to express the ordering:
- define a less than relation (usually denoted by \sqsubset), or

Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other
- an abstract domain with an ordering is called a lattice
- There are two ways to express the ordering:
- define a less than relation (usually denoted by ᄃ), or
- define a least upper bound operator (usually denoted by \sqcup)

Domains: orderings and lattices

- An abstract domain is incomplete without an ordering: that is, a way to tell how the abstract values are related to each other
- an abstract domain with an ordering is called a lattice
- There are two ways to express the ordering:
- define a less than relation (usually denoted by ᄃ), or
- define a least upper bound operator (usually denoted by \sqcup)
- These two approaches are equivalent: you can derive the LUB from the less than relation and vice-versa

Domains: ordering: less than relation

- Review: informally, a relation on a set may, or may not, hold between two given members of the set

Domains: ordering: less than relation

- Review: informally, a relation on a set may, or may not, hold between two given members of the set
- formally, we define a relation as a set of ordered pairs

Domains: ordering: less than relation

- Review: informally, a relation on a set may, or may not, hold between two given members of the set
- formally, we define a relation as a set of ordered pairs
- If $x \sqsubset y$, then we say that x is lower or less, and that y is higher or greater

Domains: ordering: less than relation

- Review: informally, a relation on a set may, or may not, hold between two given members of the set
- formally, we define a relation as a set of ordered pairs
- If $x \sqsubset y$, then we say that x is lower or less, and that y is higher or greater
- The less-than relation need not be total
- for two points $e 1$ and $e 2$, it is possible that neither $e 1 \subset e 2$ nor $e 2$ ᄃe1 is true

Domains: ordering: least upper bound

- While the less than relation is in some ways better for doing a proof, it can be unwieldy when thinking about programs

Domains: ordering: least upper bound

- While the less than relation is in some ways better for doing a proof, it can be unwieldy when thinking about programs
- The least upper bound is often more useful, because it directly models the join operator

Domains: ordering: least upper bound

- While the less than relation is in some ways better for doing a proof, it can be unwieldy when thinking about programs
- The least upper bound is often more useful, because it directly models the join operator
- that is, it models what happens when two possible abstract values flow to the same location (e.g., the then and else branches of an if)

Least upper bound: relationship to types

- You are probably already intuitively familiar with the LUB operator from your experience with object-oriented programming

Least upper bound: relationship to types

- You are probably already intuitively familiar with the LUB operator from your experience with object-oriented programming

Least upper bound: relationship to types

- You are probably already intuitively familiar with the LUB operator from your experience with object-oriented programming
- any time that you've answered the question
"what is the closest
supertype that these two types share", you're doing a LUB

Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:

Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
- it must be complete: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined

Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
- it must be complete: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined
- it must be monotonic: that is, it preserves the ordering relationship.

Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
- it must be complete: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined
- it must be monotonic: that is, it preserves the ordering relationship.
- LUB is a binary function; for a binary function f, monotonicity is defined as
- $\forall a, b, c, d . a \sqsubseteq b \wedge c \sqsubseteq d \Rightarrow f(a, c) \sqsubseteq f(b, d)$

Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
- it must be complete: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined
- it must be monotonic: that is, it preserves the ordering relationship.
■ LUB is a binary function; for a binary function f, monotonicity is defined as
- $\forall a, b, c, d . a \sqsubseteq b \wedge c \sqsubseteq d \Rightarrow f(a, c) \sqsubseteq f(b, d)$
- Note that this is not the same as:
- $\forall x, y . f(x, y) \sqsupseteq x \wedge f(x, y) \sqsupseteq y!$
- though this property is also true of the LUB operator

Domains: ordering: least upper bound

- There are two important requirements on the LUB operator:
- it must be complete: that is, $\forall X, Y \in A . X \sqcup Y$ must be defined
- it must be monotonic: that is, it preserves the ordering relationship.
- LUB is a binary function; for a binary function f, monotonicity is defined as
- $\forall a, b, c, d . a \sqsubseteq b \wedge c \sqsubseteq d=$
- Note that this is not the same
- $\forall x, y . f(x, y) \sqsupseteq x \wedge f(x, y)=$ "what would happen if it
- though this property is als weren't true?"

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set

A set is partially ordered iff \exists a binary relationship \leq that is:

- reflexive: $\mathrm{x} \leq \mathrm{x}$
- anti-symmetric: $x \leq y \wedge y \leq x=>x=y$
- transitive: $x \leq y \wedge y \leq z=>x \leq z$

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set
- join semilattices and meet semilattices are special kinds of partially-ordered sets

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set
- join semilattices and meet semilattices are special kinds of partially-ordered sets
- join semilattices have a unique top element

Domains: lattices Join semilattice pain + order

- A lattice formally has
- the abstract dom
- the ordering relat
- That is, a lattice is a p
- join semilattices an partially-ordered Sd example:

- join semilattices have a unique top element

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set
- join semilattices and meet semilattices are special kinds of partially-ordered sets
- join semilattices have a unique top element
- meet semilattices have a unique bottom element

Domains: lattices Meet semilattice ain + order

- A lattice formally has
- the abstract dom
- the ordering relat
- That is, a lattice is a p
- join semilattices an example:
 partially-ordered sd
- join semilattices have a unique top element
- meet semilattices have a unique bottom element

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set
- join semilattices and meet semilattices are special kinds of partially-ordered sets
- join semilattices have a unique top element

■ meet semilattices have a unique bottom element

- a lattice formally is both a join and a meet semilattice

Domains: lattices = abstract domain + order

- A lattice formally has two components:
- the abstract domain
- the ordering relation
- That is, a lattice is a partially-ordered set
- join semilattices and meet semilattices are special kinds of partially-ordered sets
- join semilattices have a unique top element

■ meet semilattices have a unique bottom element

- a lattice formally is both a join and a meet semilattice
- We saw some examples of lattices last week
- e.g., the null pointer analysis example's lattice with T, c, and \perp

AI = Lattice + Transfer functions

AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the abstract semantics of the operations in the programming language

AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the abstract semantics of the operations in the programming language
- that is, the transfer function for an operation answers the question "what does this operation mean in the context of the abstract domain"?

AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the abstract semantics of the operations in the programming language
- that is, the transfer function for an operation answers the question "what does this operation mean in the context of the abstract domain"?
- formally, an abstract interpretation requires a transfer function for each language construct

AI = Lattice + Transfer functions

- the goal of the transfer functions are to encode the abstract semantics of the operations in the programming language
- that is, the transfer function for an operation answers the question "what does this operation mean in the context of the abstract domain"?
- formally, an abstract interpretation requires a transfer function for each language construct
- in practice, though, we usually assume that most are obvious and focus on the ones that might be interesting, which is what I'll do in the examples on the next few slides

Example AI: even/odd integers

Example AI: even/odd integers

Example lattice:

Example AI: even/odd integers

Example lattice:
\{even, odd $\}=$ top
$/ / \quad \backslash$
$\{$ even $\} \quad\{$ odd $\}$
\backslash
$\}=$ bottom

Example AI: even/odd integers

Example lattice:
\{even, odd \} = top

A note about top:

- top represents no constraints on the possible values
- equivalently, every value is a member of top

Example AI: even/odd integers

Example lattice:
$\{$ even, odd $\}=$ top

$/$	\backslash
\{even $\}$	\{odd\}
\backslash	$/$
$\}=$ bottom	

Similarly for bottom:

- bottom represents all possible constraints at once on values
- equivalently, no values are members of bottom

Example AI: even/odd integers

Example lattice:
$\{$ even, odd $\}=$ top

$/$	\backslash
\{even\}	$\{$ odd $\}$
\vdots	$/$
$\}=$ bottom	

Example transfer function:

+	T	even	odd	\perp
T				
even				
odd				
\perp				

Example AI: even/odd integers

Example lattice:
$\{$ even, odd $\}=$ top

Example transfer function:

+	T	even	odd	\perp
T	T	T	T	\perp
even	T	even	odd	\perp
odd	T	odd	even	\perp
\perp	\perp	\perp	\perp	\perp

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read even }() ; \\
& \mathrm{x}=\mathrm{y}+\overline{1 ;} \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even () } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

\[

\]

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution } \\
& \{x=0 ; \quad y=u n d e f\} \\
& \{x=0 ; \quad y=8\} \\
& \{x=9 ; \quad y=8\} \\
& \{x=9 ; \quad y=18\} \\
& \{x=16 ; \quad y=18\} \\
& \{x=16 ; \quad y=8\} \\
& \text { Abstract interpr. }
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstraction function

- How did we know that 0 was even?

Abstraction function

- How did we know that 0 was even?
- an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to

Abstraction function

- How did we know that 0 was even?
- an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to
concrete domain

Abstraction function

- How did we know that 0 was even?
- an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to
concrete domain

Abstraction function

- How did we know that 0 was even?
- an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to

Abstraction function

- How did we know that 0 was even?
- an abstraction function (typically denoted by α) tells us which abstract domain a particular concrete element belongs to

$$
\begin{aligned}
& \text { e.g.: } \\
& \alpha(4)=\text { even } \\
& \alpha(\})=\text { bottom }
\end{aligned}
$$

Concretization function

- What about going the other way?

Concretization function

- What about going the other way?
- an concretization function (typically denoted by γ) tells us which concrete element are associated with an abstract value

Concretization function

- What about going the other way?
- an concretization function (typically denoted by Y) tells us which concrete element are associated with an abstract value

Concretization function

- What about going the other way?
- an concretization function (typically denoted by Y) tells us which concrete element are associated with an abstract value

Concretization function

- What about going the other way?
- an concretization function (typically denoted by y) tells us which concrete element are associated with an abstract value

Role of abstr., concr., and transfer fcns.

Concrete state

Role of abstr., concr., and transfer fcns.

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution Abstract interpr. } \\
& \{x=0 ; \quad y=u n d e f\} \quad\{x=e ; \quad y=\perp\} \\
& \{x=0 ; \quad y=8\} \quad\{x=? ; \quad y=?\} \\
& \{x=9 ; \quad y=8\} \quad\{x=? ; \quad y=?\} \\
& \{x=9 ; \quad y=18\} \\
& \{x=16 ; \quad y=18\} \\
& \{x=16 ; \quad y=8\} \\
& \{x=? ; \quad y=?\} \\
& \{x=? ; \quad y=?\} \\
& \{x=? ; \quad y=?\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution Abstract interpr. } \\
& \{x=0 ; \quad y=u n d e f\} \quad\{x=e ; \quad y=\perp\} \\
& \{x=0 ; \quad y=8\} \quad\{x=e ; \quad y=e\} \\
& \{x=9 ; \quad y=8\} \quad\{x=? ; \quad y=?\} \\
& \{x=9 ; \quad y=18\} \\
& \{x=16 ; \quad y=18\} \\
& \{x=16 ; \quad y=8\} \\
& \{x=? ; \quad y=?\} \\
& \{x=? ; \quad y=?\} \\
& \{x=? ; \quad y=?\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example: transfer function for + !

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{Y}=2 \star \mathrm{x} ; \\
& \mathrm{X}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution Abstract interpr. } \\
& \begin{array}{ll}
\{x=0 ; & y=\text { undef }\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array} \\
& \{x=e ; \quad y=\perp\} \\
& \{x=e ; \quad y=e\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=? ; \quad y=?\} \\
& \{x=? ; \quad y=?\} \\
& \{x=? ; \quad y=?\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution Abstract interpr. } \\
& \{x=0 ; \quad y=u n d e f\} \quad\{x=e ; \quad y=\perp\} \\
& \{x=0 ; \quad y=8\} \quad\{x=e ; \quad y=e\} \\
& \{x=9 ; \quad y=8\} \quad\{x=0 ; \quad y=e\} \\
& \{x=9 ; \quad y=18\} \quad\{x=0 ; \quad y=e\} \\
& \{x=16 ; \quad y=18\} \quad\{x=? ; \quad y=?\} \\
& \{x=16 ; y=8\} \\
& \{x=? ; \quad y=?\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution Abstract interpr. } \\
& \begin{array}{ll}
\{x=0 ; & y=\text { undef }\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array} \\
& \{x=e ; \quad y=\perp\} \\
& \{x=e ; \quad y=e\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=e ; \quad y=e\} \\
& \{x=? ; \quad y=?\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution } \\
& \begin{array}{ll}
\{x=0 ; & y=\text { undef }\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array} \\
& \text { Abstract interpr. } \\
& \{x=e ; \quad y=\perp\} \\
& \{x=e ; \quad y=e\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=e ; \quad y=e\} \\
& \{x=e ; \quad y=e ?\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 \star \mathrm{X} ; \\
& \mathrm{X}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{array}{ll}
\hline \text { Concrete execution } \\
\begin{array}{ll}
\{x=0 ; & y=u n d e f\} \\
\{x=0 ; & y=8\} \\
\{x=9 ; & y=8\} \\
\{x=9 ; & y=18\} \\
\{x=16 ; & y=18\} \\
\{x=16 ; & y=8\}
\end{array}
\end{array}
$$

Abstract interpr.
$\{x=e ; \quad y=\perp\}$
$\{x=e ; \quad y=e\}$
$\{x=0 ; \quad y=e\}$
$\{x=0 ; \quad y=e\}$
$\{x=e$; $\{x=e ; y=e ?\}$

Example AI: even/odd integers

What's the transfer function for division?

\downarrow / \rightarrow	T	even	odd	\perp
T				
even				
odd				
\perp				

Example AI: even/odd integers

What's the transfer function for division?

\downarrow / \rightarrow	T	even	odd	\perp
T	T	T	T	\perp
even	T	T	T	\perp
odd	T	T	T	\perp
\perp	\perp	\perp	\perp	\perp

Notes for online readers:

- even/even is top:
- $6 / 2=3$
- $8 / 2=4$
- odd/odd is top:
- $5 / 5=1$
- $11 / 5=2$

■ integer division!

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Concrete execution Abstract interpr. } \\
& \{x=0 ; \quad y=u n d e f\} \quad\{x=e ; \quad y=\perp\} \\
& \{x=0 ; \quad y=8\} \quad\{x=e ; \quad y=e\} \\
& \{x=9 ; \quad y=8\} \quad\{x=0 ; \quad y=e\} \\
& \{x=9 ; \quad y=18\} \\
& \{x=16 ; \quad y=18\} \\
& \{x=16 ; \quad y=8\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=e ; \quad y=e\} \\
& \{x=e ; \quad y=T\}
\end{aligned}
$$

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

for x , our abstraction was precise

Example AI: even/odd integers

Let's apply this AI to an example:

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{Y}=\mathrm{x} / 2 ;
\end{aligned}
$$

for x , our abstraction was precise but for y , it was not

Approximation!

Approximation!

Approximation!

Approximation!

Do the green and orange paths always lead to the same abstract state?

Approximation!

Do the green and orange paths always lead to the same concrete state?

Approximation!

We'll come back to this question when we discuss soundness

Do the green and orange paths always lead to the same concrete state?

Alternative example AI: even/odd integers

Is there an alternative Al that we can use to conclude that y is even after we analyze the example?

```
x = 0;
y = read even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
```


Alternative example AI: even/odd integers

Is there an alternative Al that we can use to conclude that y is even after we analyze the example?

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

In-class exercise: with a partner, design an alternative abstract interpretation that can conclude that y is even.

Alternative example AI: even/odd integers

Key property that we need to conclude is that $\mathrm{x} / 2$ is even.

Alternative example AI: even/odd integers

Key property that we need to conclude is that $\mathrm{x} / 2$ is even.

- ask yourself: "for what x is that true?"

Alternative example AI: even/odd integers

Key property that we need to conclude is that $\mathrm{x} / 2$ is even.

- ask yourself: "for what x is that true?"
- simplest answer: $x . x \div 4=0$ - that is, all $x s$ such that x is divisible by 4

Alternative example AI: even/odd integers

Key property that we need to conclude is that $\mathrm{x} / 2$ is even.

- ask yourself: "for what x is that true?"
- simplest answer: $\mathrm{x} . \mathrm{x} \% 4=0$ - that is, all xs such that x is divisible by 4
- alternative answer: abstract value tracks the number of 2 s in the prime factorization

Alternative example AI: even/odd integers

Key property that we need to conclude is that $\mathrm{x} / 2$ is even.

- ask yourself: "for what x is that true?"
- simplest answer: $x . x \% 4=0$ - that is, all $x s$ such that x is divisible by 4
- alternative answer: abstract value tracks the number of 2 s in the prime factorization
- cunning plan: add a "divisible by 4" abstract value (mod4) to our lattice, then rebuild our transfer functions

Alternative example AI: even/odd integers

Next question: where does "divisible by 4" go in the lattice?

\{even, odd $\}=$ top	
$/$	\backslash
$\{$ even $\} \quad\{o d d\}$	
\backslash	$/$
$\}=$ bottom	

Alternative example AI: even/odd integers

Next question: where does "divisible by 4" go in the lattice?

Alternative example AI: even/odd integers

How to change our transfer functions? Let's do two examples (+ and /):

Alternative example AI: even/odd integers

How to change our transfer functions? Let's do two examples (+ and /):
recall our original transfer function for + :

+	T	even	odd	\perp
T	T	T	T	\perp
even	T	even	odd	\perp
odd	T	odd	even	\perp
\perp	\perp	\perp	\perp	\perp

Alternative example AI: even/odd integers

How to change our transfer functions? Let's do two examples (+ and //):
recall our original transfer function for + :
we need to add a row and a column for mod4:

+	T	even	odd	$\bmod 4$	\perp
T	T	T	T		\perp
even	T	even	odd		\perp
odd	T	odd	even		\perp
$\bmod 4$					
\perp	\perp	\perp	\perp		\perp

Alternative example AI: even/odd integers

How to change our transfer functions? Let's do two examples (+ and //):
recall our original transfer function for + :
we need to add a row and a column for mod4:

+	T	even	odd	$\bmod 4$	\perp
T	T	T	T	T	\perp
even	T	even	odd	even	\perp
odd	T	odd	even	odd	\perp
mod4	T	even	odd	$\bmod 4$	\perp
\perp	\perp	\perp	\perp	\perp	\perp

Alternative example AI: even/odd integers

How to change our transfer functions? Let's do two examples (+ and //):

same thing for division:	\downarrow / \rightarrow	T	even	odd	$\bmod 4$	\perp
	T	T	T	T		\perp
	even	T	T	T		\perp
	odd	T	T	T		\perp
	$\bmod 4$					
	\perp	\perp	\perp	\perp		\perp

Alternative example AI: even/odd integers

How to change our transfer functions? Let's do two examples (+ and /): same thing for division: oh no! why is mod4 divided by even top?

- 4/4 = 1 :
- we need another lattice element to make this work!

\downarrow / \rightarrow	T	even	odd	$\bmod 4$	\perp
T	T	T	T	T	\perp
even	T	T	T	T	\perp
odd	T	T	T	T	\perp
$\bmod 4$	T	T	T	T	\perp
\perp	\perp	\perp	\perp	\perp	\perp

Alternative example AI: even/odd integers

Another lattice element: "is2"

Alternative example AI: even/odd integers

Another lattice element: "is2"

- sibling of mod4 in the lattice

Alternative example AI: even/odd integers

Another lattice element: "is2"

- sibling of mod4 in the lattice

Alternative example AI: even/odd integers

Another lattice element: "is2"

- sibling of mod4 in the lattice
- its only purpose is to be treated specially in the division transfer function

Alternative example AI: even/odd integers

Another lattice element: "is2"

- sibling of mod4 in the lattice
- its only purpose is to be treated specially in the division transfer function
- in particular, we add the rule "mod4 / is2 -> even"
- full transfer functions left
 as an exercise

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=e ;$	$y=\perp\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=\mathbf{e} ;$	$y=\perp\}$
$\{x=\boldsymbol{e} ;$	$y=e\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=\mathbf{e} ;$	$y=\perp\}$
$\{x=\mathbf{e} ;$	$y=\mathbf{e}\}$
$\{x=0 ;$	$y=e\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=\mathbf{e} ;$	$y=\perp\}$
$\{x=\mathbf{e} ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=\boldsymbol{e} ;$	$y=\perp\}$
$\{x=\mathbf{e} ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

$$
\{x=e ; \quad y=\boldsymbol{\perp}\}
$$

$$
\{x=e ; \quad y=e\}
$$

$$
\{x=0 ; \quad y=e\}
$$

$$
\{x=0 ; \quad y=e\}
$$

$$
\{x=? ; \quad y=?\}
$$

$$
\{x=? ; \quad y=?\}
$$

what should the transfer function for even - is2 be?

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$$
\{x=\boldsymbol{e} ; \quad y=\perp\}
$$

$\{x=\boldsymbol{e} ;$	$y=\perp\}$
$\{x=\boldsymbol{e} ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

$$
\{x=e ; \quad y=e\}
$$

$$
\{x=0 ; \quad y=e\}
$$

$$
\{x=0 ; \quad y=e\}
$$

$$
\{x=? ; \quad y=?\}
$$

$$
\{x=? ; \quad y=?\}
$$

what should the transfer function for even - is2 be?

- even! why not mod4?

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$$
\begin{array}{ll}
\{x=\mathbf{x} ; & y=\perp\} \\
\{x=\mathbf{e} ; & y=\mathbf{e}\} \\
\{x=0 ; & y=e\} \\
\{x=0 ; & y=\mathbf{e}\} \\
\{x=? ; & y=?\} \\
\{x=? ; & y=?\} \\
\hline
\end{array}
$$

what should the transfer function for even - is 2 be?

- even! why not mod4? counterexample: 8-2 = 6

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read even }() ; \\
& \mathrm{x}=\mathrm{y}+\overline{1} ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=e ;$	$y=\perp\}$
$\{x=e ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=e ;$	$y=e\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: let's try it

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read even }() ; \\
& \mathrm{x}=\mathrm{y}+\overline{1 ;} \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=e ;$	$y=\perp\}$
$\{x=e ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=e ;$	$y=e\}$
$\{x=e ;$	$y=T\}$

Alternative example AI: even/odd integers

- Why did adding is2 and mod4 fail to fix the approximation problem in the example?

Alternative example AI: even/odd integers

- Why did adding is2 and mod4 fail to fix the approximation problem in the example?
- the example relies on the fact that for all $X,(X+1) * 2-2=2 X$
- and if X is initially even, then this means that the result is divisible by 4

Alternative example AI: even/odd integers

- Why did adding is 2 and mod4 fail to fix the approximation problem in the example?
- the example relies on the fact that for all $X,(X+1) * 2-2=2 X$
- and if X is initially even, then this means that the result is divisible by 4
- lesson from this example: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is hard! Keep this in mind on HW8.

Alternative example AI: even/odd integers

- Why did adding is 2 and mod4 fail to fix the approximation problem in the example?
- the example relies on the fact that for all $X,(X+1) * 2-2=2 X$
- and if X is initially even, then this means that the result is divisible by 4
- lesson from this example: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is hard! Keep this in mind on HW8.
- how could we get the right answer on this example?

Alternative example AI: even/odd integers

- Why did adding is2 and $\bmod 4$ fail to fix the approximation problem in the example?
- the example relies on the fact that for all $X,(X+1) * 2-2=2 X$

■ and if X is initially even, then this means that the result is divisible by 4

- lesson from this example: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is hard! Keep this in mind on HW8.
- how could we get the right answer on this example?
- more complex abstract values, e.g., oddTimes2?
- store the mathematical expression for each variable?

Alternative example AI: even/odd integers

- Why did adding is 2 and mod4 fail to fix the approximation problem in the example?
- the example relies on the fact that for all $X,(X+1) * 2-2=2 X$
- and if X is initially even, then this means that the result is divisible by 4
- lesson from this example: most programs rely on complex invariants, and designing an abstract domain that can capture those invariants is hard! Keep this in mind on HW8.
- how could we get the right answer on this example? one more
- more complex abstract values, e.g., oddTimes2?
- store the mathematical expression for each variable?

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice?

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice?
- a sibling of is 2 and $\bmod 4$?

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice? - a sibling of ist and mod4? - between even and is2!

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice? θ a sibling ofis2 and mod4?
- between even and is2!
- now we can add a new rule:

Alternative example AI: even/odd integers

Yet another lattice element: "odd2"

- produced by multiplying an odd number by 2 (i.e., transfer fcn for odd * is2 -> odd2)
- where does it go in the lattice? - a sibling of ist and mod4?
- between even and is2!
- now we can add a new rule:

■ odd2 - is2 -> mod4

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=e ;$	$y=\perp\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=e ;$	$y=\perp\}$
$\{x=e ;$	$y=e\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even (); } \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * x ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$\{x=\boldsymbol{e} ;$	$y=\perp\}$
$\{x=\boldsymbol{e} ;$	$y=e\}$
$\{x=0 ;$	$y=e\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$
$\{x=? ;$	$y=?\}$

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$$
\begin{array}{ll}
\{x=\mathbf{e} ; & y=\perp\} \\
\{x=\mathbf{e} ; & y=\mathbf{e}\} \\
\{x=0 ; & y=\mathbf{e}\} \\
\{x=0 ; & y=0 d d 2\} \\
\{x=? ; & y=?\} \\
\{x=? ; & y=?\} \\
\hline
\end{array}
$$

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 * \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

Abstract interpr.

$$
\begin{array}{ll}
\{\mathrm{x}=\mathbf{e} ; & \mathrm{y}=\boldsymbol{\perp}\} \\
\{\mathrm{x}=\mathbf{e} ; & \mathrm{y}=\mathbf{e}\} \\
\{\mathrm{x}=0 ; & \mathrm{y}=\mathbf{e}\} \\
\{\mathrm{x}=0 ; & \mathrm{y}=0 \mathrm{odd} 2\} \\
\{\mathrm{x}=\mathrm{mod} 4 ; & \mathrm{y}=0 \mathrm{dd} 2\} \\
\{\mathrm{x}=? ; & \mathrm{y}=?\} \\
\hline
\end{array}
$$

Alternative example AI: another attempt

$$
\begin{aligned}
& \mathrm{x}=0 ; \\
& \mathrm{y}=\text { read_even }() ; \\
& \mathrm{x}=\mathrm{y}+1 ; \\
& \mathrm{y}=2 \star \mathrm{x} ; \\
& \mathrm{x}=\mathrm{y}-2 ; \\
& \mathrm{y}=\mathrm{x} / 2 ;
\end{aligned}
$$

$$
\begin{aligned}
& \text { Abstract interpr. } \\
& \{x=e ; \quad y=\perp\} \\
& \{x=e ; \quad y=e\} \\
& \{x=0 ; \quad y=e\} \\
& \{x=0 ; \quad y=o d d 2\} \\
& \text { \{ } x=m o d 4 \text {; } y=o d d 2\} \\
& \{x=\bmod 4 ; \quad y=e\}
\end{aligned}
$$

Success!

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at every program point (usually \perp)

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at every program point (usually \perp)
3. put each program point in a worklist

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at every program point (usually \perp)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at every program point (usually \perp)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:
a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at every program point (usually \perp)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:
a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)
b. if the item is a join point, use the LUB to combine its inputs

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at
3. put each program point in a wo
4. until the worklist is empty, chod

Using LUB at join points models the fact that the program may take either branch of an if statement.
a. if the item is a basic block, a transfer functions (and abstraction function, if applicable)
b. if the item is a join point, use the LUB to combine its inputs

Formalizing the Al algorithm

- the core algorithm for abstract interpretation is the same one we saw last week for dataflow analysis:

1. convert the program to a CFG
2. start with an initial estimate at every program point (usually \perp)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:
a. if the item is a basic block, abstractly execute it using the transfer functions (and abstraction function, if applicable)
b. if the item is a join point, use the LUB to combine its inputs
c. if either a. or b. caused a change, re-add dependent blocks to the worklist

What about loops?

What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:

What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
- the lattice is of finite size
- LUB is monotonic

What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
- the lattice is of finite size
- LUB is monotonic

You may be surprised that it is possible to build an abstract interpretation using (some) infinite-height lattices. Next week, we'll discuss widening, which is the technique for this.

What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
- the lattice is of finite size
- LUB is monotonic
- that is, each loop will be analyzed at most k - 1 times for each variable in the loop, where k is the height of the lattice

What about loops?

- this algorithm terminates for the same reasons that any dataflow algorithm does:
- the lattice is of finite size
- LUB is monotonic
- that is, each loop will be analyzed at most k-1 times for each variable in the loop, where k is the height of the lattice
- otherwise, loops are just a join point and a back-edge in the CFG

Why start with bottom?

Why start with bottom?

- the abstract interpretations we've considered so far are optimistic: they start with \perp and then go upwards in the lattice

Why start with bottom?

- the abstract interpretations we've considered so far are optimistic: they start with \perp and then go upwards in the lattice - these algorithms get the most precise answer

Why start with bottom?

- the abstract interpretations we've considered so far are
optimistic: they start with \perp and then go upwards in the lattice
- these algorithms get the most precise answer
- but their downside is that they must run to fixpoint - they cannot be stopped early (the result might still be unsound)!

Why start with bottom?

- the abstract interpretations we've considered so far are optimistic: they start with \perp and then go upwards in the lattice - these algorithms get the most precise answer
- but their downside is that they must run to fixpoint - they cannot be stopped early (the result might still be unsound)!
- pessimistic algorithms are also possible

Why start with bottom?

- the abstract interpretations we've considered so far are
optimistic: they start with \perp and then go upwards in the lattice
- these algorithms get the most precise answer
- but their downside is that they must run to fixpoint - they cannot be stopped early (the result might still be unsound)!
- pessimistic algorithms are also possible
- start with T everywhere and move downwards in the lattice

Why start with bottom?

- the abstract interpretations we've considered so far are
optimistic: they start with \perp and then go upwards in the lattice
- these algorithms get the most precise answer
- but their downside is that they must run to fixpoint - they cannot be stopped early (the result might still be unsound)!
- pessimistic algorithms are also possible
- start with T everywhere and move downwards in the lattice
- can be stopped at any time (e.g., when a budget is reached), but answer may not be precise

Another example

Another example

- Consider an abstract interpretation for constant propagation

Another example

- Consider an abstract interpretation for constant propagation
- the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time

Another example

- Consider an abstract interpretation for constant propagation
- the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
- constant propagation is a standard compiler optimization

Another example

- Consider an abstract interpretation for constant propagation
- the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
- constant propagation is a standard compiler optimization
- lattice:

Another example

- Consider an abstract interpretation for constant propagation
- the goal of constant propagation is to determine whether, for each variable, its value can be known at compile time
- constant propagation is a standard compiler optimization
- lattice:

Another example

Consider the following program:

```
W}=
x = read()
if (x is even)
    y = 5
    W = W + Y
else
    y = 10
    W = Y
z = y + 1
x = 2 * W
```


Correctness of Abstract Interpretation

Correctness of Abstract Interpretation

- I've claimed several times that it is possible to use abstract interpretation to produce sound program analyses

Correctness of Abstract Interpretation

- I've claimed several times that it is possible to use abstract interpretation to produce sound program analyses
- that is, analyses without false negatives

Correctness of Abstract Interpretation

- I've claimed several times that it is possible to use abstract interpretation to produce sound program analyses
- that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the galois connection between a concrete value and the concretization of its abstraction function

Correctness of Abstract Interpretation

- I've claimed several times that it is possible to use abstract interpretation to produce sound program analyses
- that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the galois connection between a concrete value and the concretization of its abstraction function
- ideally, we'd like $\forall x, y(\alpha(x))=x$

Correctness of Abstract Interpretation

- I've claimed several times that it is possible to use abstract interpretation to produce sound program analyses
- that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the galois connection between a concrete value and the concretization of its abstraction function
- ideally, we'd like $\forall x, \gamma(\alpha(x))=x$
- but this is too strong: approximation may cause us to lose information! So, the standard formalism is:
- $\forall x, x \in \gamma(\alpha(x))$

Correctness of Abstract Interpretation

- I've claimed several times that it is possible to use abstract interpretation to produce sound program analyses
- that is, analyses without false negatives
- The key idea to demonstrate that an abstract interpretation is sound is the galois connection between a concrete value and the concretization of its abstraction
- ideally, we'd like $\forall x, \gamma(\alpha(x))$
- but this is too strong: appro

And, it's also necessary to show that the Galois connection holds information! So, the standa

- $\forall x, x \in y(\alpha(x))$

Approximation!

Remember this
 diagram from earlier?

Do the green and orange paths always lead to the same concrete state?

What we need to show is that for all transfer functions, the green

Approximation!

Do the green and orange paths always lead to the same concrete state?

Course announcements

- If you have not yet collected your exam, I have it at the front
- This week's homework is individual (you may not work with a partner)
- this is a difference from previous homeworks!
- Next week's homework:
- builds on this week's - if you don't do this week's homework, you will not be able to do next week's
- is also individual
- This week's homework involves designing an abstract interpretation. Keep in mind the pitfalls that we talked about today!

