Abstract Interpretation (2/2)

Martin Kellogg

Reading quiz: abstract interpretation

Reading quiz: abstract interpretation

- today's quiz is on paper, and also covers the topics of last week's class
- you have 15 minutes to complete it. When you're finished, bring it to Kazi in the back.
- you may use any **hand-written** notes that you took during last class
 - this includes notes on a tablet or similar, if you wrote them with a stylus
 - but I will be looking over your shoulder if you do :)

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

An abstract interpretation formally has **two components**:

• an **abstract domain** over which to reason, which is composed of:

An abstract interpretation formally has **two components**:

an abstract domain over which to reason, which is composed of:
a set of abstract values

- an **abstract domain** over which to reason, which is composed of:
 - a set of abstract values
 - an ordering operation (e.g., LUB)

- an **abstract domain** over which to reason, which is composed of:
 - a set of abstract values
 - an ordering operation (e.g., LUB)
 - together these form a lattice

- an **abstract domain** over which to reason, which is composed of:
 - a set of abstract values
 - an ordering operation (e.g., LUB)
 - together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

- an **abstract domain** over which to reason, which is composed of:
 - a set of abstract values
 - an ordering operation (e.g., LUB)
 - together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain
 - one for each kind of operation in the underlying programming language (e.g., one for +, one for -, etc.)

- an **abstract domain** over which to reason, which is composed of:
 - a set of abstract values
 - an ordering operation (e.g., LUB)
 - together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain
 - one for each kind of operation in the underlying programming language (e.g., one for +, one for -, etc.)
 - \circ usually represented as tables

• the *concrete domain* of a variable is the set of values that the variable might actually take on during execution

• the *concrete domain* of a variable is the set of values that the variable might actually take on during execution

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution
- an *abstract domain* is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution
- an *abstract domain* is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution
- an *abstract domain* is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution
- an *abstract domain* is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

soundness means that the green path is a subset of the orange path

• last week, I went through an extended example of how to get a parity analysis to work on **one program**

- last week, I went through an extended example of how to get a parity analysis to work on **one program**
 - however, that was just an example!
 - an abstract interpretation is applicable to any program

- last week, I went through an extended example of how to get a parity analysis to work on **one program**
 - however, that was just an example!
 - an abstract interpretation is applicable to any program
 - one of the key challenges in abstract interpretation design is figuring out the right set of examples to handle precisely

- last week, I went through an extended example of how to get a parity analysis to work on one program
 - however, that was just an example!
 - an abstract interpretation is applicable to any program
 - one of the key challenges in abstract interpretation design is figuring out the right set of examples to handle precisely
 - when you're implementing your divide-by-zero analysis, I strongly recommend that you write out some examples as test cases!
 - you can just add them to the existing test

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

soundness means that the green path is a subset of the orange path

• how would we actually show that a particular abstract interpretation is **sound**?

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:

 $op(c) \subseteq \gamma(T_{op}(\alpha(c)))$

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states *c*:

 $op(c) \subseteq \gamma(T_{op}(\alpha(c)))$ possible results of concrete execution (green line)

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states *c*:

$$op(c) \subseteq \mathbf{y}(T_{op}(\alpha(c)))$$

concretization

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:

 $op(c) \subseteq \gamma(T_{op}(\alpha(c)))$ **concretization** of the result of applying the **transfer function**

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states *c*:

 $op(c) \subseteq \gamma(T_{op}(\alpha(c)))$ **concretization** of the result of applying the **transfer function** to the **abstraction** of the original concrete state

- how would we actually show that a particular abstract interpretation is **sound**?
- here's an algorithm for doing so:

 $op(c) \subseteq \gamma(T_{op}(\alpha(c)))$

- for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:

concretization of the result of applying the **transfer function** to the **abstraction** of the original concrete state (**orange line**)

• let's carry out an example proof using this technique ourselves on the **plus transfer function** from our simple parity analysis

• let's carry out an example proof using this technique ourselves on the **plus transfer function** from our simple parity analysis

More on soundness: example proof

• let's carry out an example proof using this technique ourselves on the **plus transfer function** from our simple parity analysis

More on soundness: example proof

 let's carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis

		• •	/	/
+	Т	even	odd	\bot
Т	Т	Т	Т	T
even	Т	even	odd	T
odd	Т	odd	even	T
Т	T		Ţ	Ť

• Let's first dispense with the easy cases:

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:
 - \forall c. op(c) \subseteq { all integers } is trivially true!

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:
 - \forall c. op(c) \subseteq { all integers } is trivially true!
 - if the transfer function entry is **bottom**, it's still pretty easy:

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:
 - \forall c. op(c) \subseteq { all integers } is trivially true!
 - if the transfer function entry is **bottom**, it's still pretty easy:
 - for every entry in our transfer function that's bottom, one of the inputs is also bottom

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:
 - \forall c. op(c) \subseteq { all integers } is trivially true!
 - if the transfer function entry is **bottom**, it's still pretty easy:
 - for every entry in our transfer function that's bottom, one of the inputs is also bottom
 - *op({})* is always the empty set (it can't be executed)

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:
 - \forall c. op(c) \subseteq { all integers } is trivially true!
 - if the transfer function entry is **bottom**, it's still pretty easy:
 - for every entry in our transfer function that's bottom, one of the inputs is also bottom
 - *op*({}) is always the empty set (it can't be executed)
 - {} ⊆ {}

- Let's first dispense with the easy cases:
 - if the transfer function entry is **top**, then it's easy:
 - \forall c. op(c) \subseteq { all integers } is trivially true!
 - if the transfer function entry is **bottom**, it's still pretty easy:
 - for every entry in our transfer function that's bottom, one of the inputs is also bottom
 - *op*({}) is always the empty set (it can't be executed)
 - {} ⊆ {}
 - QED

• Now we need to handle the more **complex cases** in the middle

Now we need to handle the more complex cases in the middle
 we could do them one-by-one...

- Now we need to handle the more **complex cases** in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don't need to worry about order

- Now we need to handle the more **complex cases** in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don't need to worry about order
- So, we have three cases to deal with:

- Now we need to handle the more **complex cases** in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 so we don't need to worry about order
- So, we have three cases to deal with:
 - 1. even integer + even integer is an even integer
 - 2. odd integer + odd integer is an even integer
 - 3. odd integer + even integer is an odd integer

- Now we need to handle the more **complex cases** in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don't need to worry about order
- So, we have three cases to deal with:
 - 1. even integer + even integer is an even integer
 - 2. odd integer + odd integer is an even integer
 - 3. odd integer + even integer is an odd integer
- we dispatch these three by considering each case individually
 - they're all basically the same, so we're only going to do one

- Now we need to handle the more **complex cases** in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don't need to worry about order
- So, we have three cases to deal with:
 - 1. even integer + even integer is an even integer
 - 2. odd integer + odd integer is an even integer
 - 3. odd integer + even integer is an odd integer
- we dispatch these three by considering each case individually
 - they're all basically the same, so we're only going to do one

• *c* is some addition statement *x* + *y*

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)
 - 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of all odd integers
- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)
 - 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)
 - 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
 - $\alpha(x)$ is **odd** (the abstract value), and $\alpha(y)$ is **even** (the AV)

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)
 - 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
 - $\alpha(x)$ is **odd** (the abstract value), and $\alpha(y)$ is **even** (the AV)
- $T_{+}(\alpha(c))$ is just applying our transfer function: result is the **odd** AV

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)
 - 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
 - $\alpha(x)$ is **odd** (the abstract value), and $\alpha(y)$ is **even** (the AV)
- $T_{+}(\alpha(c))$ is just applying our transfer function: result is the **odd** AV
- $\gamma(\mathbf{odd})$ is the set of all odd integers, which does contain itself

- *c* is some addition statement *x* + *y*
 - we know that concretely *x* is odd and *y* is even (why?)
 - formally, we would state this as x % 2 = 1 and y % 2 = 0
- what is op(c)?
 - represent x as 2a + 1 and y as 2b for some a, b (how?)
 - 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
 - $\alpha(x)$ is **odd** (the abstract value), and $\alpha(y)$ is **even** (the AV)
- $T_{+}(\alpha(c))$ is just applying our transfer function: result is the **odd** AV
- $\gamma(\mathbf{odd})$ is the set of all odd integers, which does contain itself

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

What value is printed?

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

What value is printed? How do you know?

Consider the following program:

What value is printed? How do you know?

Insight: *anything* you can figure out by reasoning through the program by hand, an abstract interpretation can do too!

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

not enough! need sets

draw in the correct lattice here:

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

draw in the correct lattice here:

(actually need to extend this to 4 layers, but there's not room on the slide)

Consider the following program:

Does this permit us to prove the value of x at the end? draw in the correct lattice here:

(actually need to extend this to 4 layers, but there's not room on the slide)

Consider the following program:

Does this permit us to prove the value of x at the end? NO (need transfer function) draw in the correct lattice here:

(actually need to extend this to 4 layers, but there's not room on the slide)

• We need a transfer function for **branching**

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is false

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is false
- These transfer functions are called *refinements* because they typically involve a greatest lower bound

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is false
- These transfer functions are called *refinements* because they typically involve a greatest lower bound
 - a refinement rules out some possible states

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called *refinements* because they typically involve a greatest lower bound
 - a refinement rules out some possible states
- Refinements are defined over the **boolean operators** of the language

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called *refinements* because they typically involve a greatest lower bound
 - a refinement rules out some possible states
- Refinements are defined over the **boolean operators** of the language
 - for our example, we need a refinement for >=

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is false
- These transfer functions are called *refinements* because they typically involve a greatest lower bound
 - a refinement rules out some possible states
- Refinements are defined over the **boolean operators** of the language
 - for our example, we need a refinement for >=
 - o why >= and not < ?</pre>

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is false
- These transfer functions are called *refinements* because they typically involve a greatest lower bound
 - a refinement rules out some possible states
- Refinements are defined over the **boolean operators** of the language
 - for our example, we need a refinement for >=
 - why >= and not < ?
 - loop guard is false, so we invert the operator

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x</pre>

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don't erase it.)

• What if we want to build a **bigger** constant propagation lattice?

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
 - in the real world, we don't know how many values we'll need for any given program!

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
 - in the real world, we don't know how many values we'll need for any given program!
 - it would be nice if we could have sets of arbitrary size

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
 - in the real world, we don't know how many values we'll need for any given program!
 - it would be nice if we could have sets of arbitrary size
 - and we shouldn't need to reimplement our analysis each time we need to reason about differently-sized sets

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
 - in the real world, we don't know how many values we'll need for any given program!
 - it would be nice if we could have sets of arbitrary size
 - and we shouldn't need to reimplement our analysis each time we need to reason about differently-sized sets
 - do you think that's possible?

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
 - in the real world, we don't know how many values we'll need for any given program!
 - it would be nice if we could have sets of arbitrary size
 - and we shouldn't need to reimplement our analysis each time we need to reason about differently-sized sets
 - do you think that's possible?
 - We can use *widening operators* to allow this (sort of)

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

• effectively, this guarantees termination by **bounding** the number of times that a particular value can change, even if the lattice is of infinite size

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by **bounding** the number of times that a particular value can change, even if the lattice is of infinite size
- this is safe because the analysis isn't required to take the least upper bound so long as it chooses an upper bound

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by **bounding** the number of times that a particular value can change, even if the lattice is of infinite size
- this is safe because the analysis isn't required to take **the least** upper bound so long as it chooses **an** upper bound
- example widening operator for constant propagation:
 - if an abstract value has changed at least five times, go to top
Let's return to the previous example:

```
x = 0
while (x < 3):
    x = x + 1
print x</pre>
```

Let's return to the previous example:

```
x = 0
while (x < <del>3</del> 10):
    x = x + 1
print x
```

• The main advantage of widening is that it permits lattices with infinite height

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision
 - but abstract interpretation was always imprecise, so that's okay

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision
 - but abstract interpretation was always imprecise, so that's okay
- A nice fact about implementing an abstract interpretation is that it is always safe to apply a widening operator

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision
 - but abstract interpretation was always imprecise, so that's okay
- A nice fact about implementing an abstract interpretation is that it is always safe to apply a widening operator
 - this means it's easy to support complex language features: just immediately widen any values that they impact
 - "go to top" is a sound policy in all situations

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

```
def gcd(int a, int b):
  if a == 0 or b == 0:
   return 0
  int expt = 0
  while a is even and b is even:
   a = a / 2
   b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

First question: does this program ever **divide by zero**? Take a moment and discuss.

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

First question: does this program ever **divide by zero**? Take a moment and discuss.

Answer: definitely not!

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

First question: does this program ever **divide by zero**? Take a moment and discuss.

Answer: definitely not!

all divisions are by 2
 2!=0

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

First question: does this program ever **divide by zero**? Take a moment and discuss.

Answer: definitely not!

- all divisions are by 2
 2!=0
- "constant propagation" can prove no divisions by zero!

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

To prove termination, we need to show that both while loop guards are **eventually false**.

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

To prove termination, we need to show that both while loop guards are eventually false.
1st: a is odd or b is odd

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

To prove termination, we need to show that both while loop guards are **eventually false**.

- 1st: a is odd or b is odd
- 2nd: a eventually equals b

Another example: Stein's algorithm: parity

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
   a = a / 2
   b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let's use it (on the board; requires a CFG).

Another example: Stein's algorithm: parity

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
   b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let's use it (on the board; requires a CFG).

- we ran into a problem: we can't prove that a and b are eventually odd!
 - the transfer function for even / is2 returns T

Another example: Stein's algorithm: parity

```
def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
   b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let's use it (on the board; requires a CFG).

- we ran into a problem: we can't prove that a and b are eventually odd!
 - the transfer function for even / is2 returns T
- in this case, that's actually correct!
 - the program does not terminate on all inputs
 - -1, 1 is a counterexample

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Course announcements

- This week's homework is **individual** (you may not work with a partner)
 - this is a difference from previous homeworks!
- early next week I will send out a survey (via Discord) about what topic we should cover in the last week of class (April 25)
 - please give this some serious thought!
 - the survey will be open until next week's class, and I will announce the result during class