Abstract Interpretation (2/2)

Martin Kellogg

Reading quiz: abstract interpretation

Reading quiz: abstract interpretation

- today's quiz is on paper, and also covers the topics of last week's class
- you have 15 minutes to complete it. When you're finished, bring it to Kazi in the back.
- you may use any hand-written notes that you took during last class
- this includes notes on a tablet or similar, if you wrote them with a stylus
■ but I will be looking over your shoulder if you do :)

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Review: definitions

Review: definitions

An abstract interpretation formally has two components:

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of: - a set of abstract values

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
- a set of abstract values
- an ordering operation (e.g., LUB)

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
- a set of abstract values
- an ordering operation (e.g., LUB)
- together these form a lattice

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
- a set of abstract values
- an ordering operation (e.g., LUB)
- together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
- a set of abstract values
- an ordering operation (e.g., LUB)
- together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain
- one for each kind of operation in the underlying programming language (e.g., one for + , one for -, etc.)

Review: definitions

An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
- a set of abstract values
- an ordering operation (e.g., LUB)
- together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain
- one for each kind of operation in the underlying programming language (e.g., one for + , one for -, etc.)
- usually represented as tables

Concrete vs abstract domains

Concrete vs abstract domains

- the concrete domain of a variable is the set of values that the variable might actually take on during execution

Concrete vs abstract domains

- the concrete domain of a variable is the set of values that the variable might actually take on during execution

Concrete vs abstract domains

- the concrete domain of a variable is the set of values that the variable might actually take on during execution
- an abstract domain is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets
concrete domain

Concrete vs abstract domains

- the concrete domain of a variable is the set of values that the variable might actually take on during execution
- an abstract domain is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

Concrete vs abstract domains

- the concrete domain of a variable is the set of values that the variable might actually take on during execution
- an abstract domain is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

Concrete vs abstract domains

- the concrete domain of a variable is the set of values that the variable might actually take on during execution
- an abstract domain is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets

Review: abstract vs concrete interpretation

Review: abstract vs concrete interpretation

soundness means that the green path is a subset of the orange path

Review: clarifications

Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program

Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
- however, that was just an example!

■ an abstract interpretation is applicable to any program

Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
- however, that was just an example!
- an abstract interpretation is applicable to any program
- one of the key challenges in abstract interpretation design is figuring out the right set of examples to handle precisely

Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
- however, that was just an example!
- an abstract interpretation is applicable to any program
- one of the key challenges in abstract interpretation design is figuring out the right set of examples to handle precisely
■ when you're implementing your divide-by-zero analysis, I strongly recommend that you write out some examples as test cases!
- you can just add them to the existing test

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

More on soundness: using a Galois connection

soundness means that the green path is a subset of the orange path

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:
- prove that for all concrete states c :

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

■ prove that for all concrete states c :

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha(c))\right)
$$

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

■ prove that for all concrete states c :

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha(c))\right)
$$

possible results of concrete execution (green line)

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

■ prove that for all concrete states c :

$$
o p(c) \subseteq \underbrace{\gamma\left(T_{o p}(\alpha(c))\right)}_{\text {concretization }}
$$

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

■ prove that for all concrete states c :

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha(c))\right)
$$

concretization of the result of applying the transfer function

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

■ prove that for all concrete states c :

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha(c))\right)
$$

concretization of the result of applying the transfer function to the abstraction of the original concrete state

More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
- for each transfer function $T_{o p}$ for some operation op:

■ prove that for all concrete states c :

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha(c))\right)
$$

concretization of the result of applying the transfer function to the abstraction of the original concrete state (orange line)

More on soundness: example proof

- let's carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis

More on soundness: example proof

- let's carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis

More on soundness: example proof

- let's carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis
$\{$ even, odd $\}=$ top

$/$	\backslash
\{even $\}$	$\{$ odd $\}$
\backslash	$/$
$\}=$ bottom	

More on soundness: example proof

- let's carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis

\{ even, odd \} = top	+	T	even	odd	」
	T	T	T	T	\perp
	even	T	even	odd	\perp
	odd	T	odd	even	\perp
	\perp	\perp	\perp	\perp	\perp

More on soundness: example proof

 $o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.$- Let's first dispense with the easy cases:

More on soundness: example proof

$$
\frac{\text { op(c) }}{(c) \mid}
$$

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.
$$

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:

More on soundness: example proof

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:
- $\forall c$. op $(c) \subseteq\{$ all integers $\}$ is trivially true!

More on soundness: example proof

- Let's first ${ }^{-1}$

\circ if the ${ }^{+}$
\quad - $\quad \nabla^{+}$

even	T	even	odd	\perp
odd	T	odd	even	\perp
\perp	\perp	\perp	\perp	\perp

More on soundness: example proof

- Let's first ${ }^{-1}$

\circ if the ${ }^{+}$
\quad - \forall

even	\mp	even	odd	\perp
odd	\mp	odd	even	\perp
\perp	\perp	\perp	\perp	\perp

More on soundness: example proof

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:
- $\forall c . o p(c) \subseteq\{$ all integers $\}$ is trivially true!
- if the transfer function entry is bottom, it's still pretty easy:

More on soundness: example proof

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:
- $\forall c . o p(c) \subseteq\{$ all integers $\}$ is trivially true!
- if the transfer function entry is bottom, it's still pretty easy:
- for every entry in our transfer function that's bottom, one of the inputs is also bottom

More on soundness: example proof

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:
- $\forall c$. op $(c) \subseteq\{$ all integers $\}$ is trivially true!
- if the transfer function entry is bottom, it's still pretty easy:
- for every entry in our transfer function that's bottom, one of the inputs is also bottom
- op(\{\}) is always the empty set (it can't be executed)

More on soundness: example proof

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:
- $\forall c . o p(c) \subseteq\{$ all integers $\}$ is trivially true!
- if the transfer function entry is bottom, it's still pretty easy:
- for every entry in our transfer function that's bottom, one of the inputs is also bottom
- op(\{\}) is always the empty set (it can't be executed)
- $\} \subseteq\}$

More on soundness: example proof

- Let's first dispense with the easy cases:
- if the transfer function entry is top, then it's easy:
- $\forall c . o p(c) \subseteq\{$ all integers $\}$ is trivially true!
- if the transfer function entry is bottom, it's still pretty easy:
- for every entry in our transfer function that's bottom, one of the inputs is also bottom
■ op(\{\}) is always the empty set (it can't be executed)
- $\} \subseteq\}$
- QED

More on soundness: example proof $\frac{o p(c) \leq \gamma\left(T_{o \sim}(a)\right.}{(c) \mid)^{\prime}}$

- Let's first

More on soundness: example proof $\frac{o p(c) \leq \gamma\left(T_{o \sim}(a)\right.}{(c) \mid)^{\prime}}$

- Let's first

- fo even \mp even odd \pm ion that's bottom, one
- op odd \mp odd even \pm it be executed)

■ $\}$	\perp	\pm	\pm	\pm	\pm

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.
$$

More on soundness: example proof

$$
(c) \|
$$

- Now we need to handle the more complex cases in the middle

More on soundness: example proof

 $\frac{o p(c)}{(c) 1)}$- Now we need to handle the more complex cases in the middle - we could do them one-by-one...

More on soundness: example proof

- Now we need to handle the more complex cases in the middle
- we could do them one-by-one...
- but we can skip some because addition is commutative
- so we don't need to worry about order

More on soundness: example proof

\circ	waco $^{+}$	T even odd	\perp

- but w | | T | \mp | \mp | \mp | \pm |
| :--- | :--- | :--- | :--- | :--- | :--- | is commutative

■ so

even	\mp	even	odd	\pm
odd	\mp	odd	even	\pm
\perp	\pm	\pm	\pm	\pm

in other words, the two orange cases are the same!

More on soundness: example proof $\frac{\mid o p(c) \leq y T_{o_{o}}(\alpha)}{(c \mid)^{\prime}}$

- Now we need to handle the more complex cases in the middle
- we could do them one-by-one...
- but we can skip some because addition is commutative

■ so we don't need to worry about order

- So, we have three cases to deal with:

More on soundness: example proof $\frac{\mid o p(c) \leq \gamma T_{o_{o}}(\alpha}{T(c) \mid}$

- Now we need to handle the more complex cases in the middle
- we could do them one-by-one...
- but we can skip some because addition is commutative

■ so we don't need to worry about order

- So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

More on soundness: example proof

- Now we need to handle the more complex cases in the middle
- we could do them one-by-one...
- but we can skip some because addition is commutative
- so we don't need to worry about order
- So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

- we dispatch these three by considering each case individually
- they're all basically the same, so we're only going to do one

More on soundness: example proof

$$
\frac{o p(c) \subseteq v\left(T_{o p}(\alpha\right.}{|c|)}
$$

- Now we need to handle the more complex cases in the middle
- we could do them one-by-one...
- but we can skip some because addition is commutative
- so we don't need to worry about order
- So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

- we dispatch these three by considering each case individually
- they're all basically the same, so we're only going to do one

More on soundness: example proof

 $o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.$ (c))- c is some addition statement $x+y$

More on soundness: example proof

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$

More on soundness: example proof

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?

More on soundness: example proof

$$
o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.
$$

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)

More on soundness: example proof

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)
- $2 a+1+2 b=2(a+b)+1$, which we can easily prove is the set of all odd integers

More on soundness: example proof

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)
- $2 a+1+2 b=2(a+b)+1$, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?

More on soundness: example proof

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)

■ formally, we would state this as $x \% 2=1$ and $y \% 2=0$

- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)
- $2 a+1+2 b=2(a+b)+1$, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
- $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)

More on soundness: example proof

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)
- $2 a+1+2 b=2(a+b)+1$, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
- $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
- $T_{+}(\alpha(c))$ is just applying our transfer function: result is the odd AV

More on soundness: example proof

$$
\frac{o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.}{|c|))}
$$

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)
- $2 a+1+2 b=2(a+b)+1$, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
- $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
- $T_{+}(\alpha(c))$ is just applying our transfer function: result is the odd AV
- γ (odd) is the set of all odd integers, which does contain itself

More on soundness: example proof

$$
\frac{o p(c) \subseteq \gamma\left(T_{o p}(\alpha\right.}{\mid c) \mid)}
$$

- c is some addition statement $x+y$
- we know that concretely x is odd and y is even (why?)
- formally, we would state this as $x \% 2=1$ and $y \% 2=0$
- what is op(c)?
- represent x as $2 a+1$ and y as $2 b$ for some a, b (how?)
- $2 a+1+2 b=2(a+b)+1$, which we can easily prove is the set of all odd integers
- what's $\alpha(c)$?
- $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
- $T_{+}(\alpha(c))$ is just applying our transfer function: result is the odd AV
- $\quad \gamma($ odd $)$ is the set of all odd integers, which does contain itself \square

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Refinement

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

Refinement

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

What value is printed?

Refinement

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

What value is printed? How do you know?

Refinement

Consider the following program:

```
x = 0
while (x < 3):
        x = x + 1
print x
```

What value is printed? How do you know?

Insight: anything you can figure out by reasoning through the program by hand, an abstract interpretation can do too!

Refinement

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

Refinement

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

not enough! need sets

Refinement

draw in the correct lattice here:

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

Refinement

draw in the correct lattice here:

Consider the following program:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

(actually need to extend this to 4 layers, but there's not room on the slide)
draw in the correct

Refinement

Consider the following program:

```
x = 0
while (x < 3):
    x = x + 1
print x
```

Does this permit us to prove the value of x at the end?
lattice here:

(actually need to extend this to 4 layers, but there's not room on the slide)
draw in the correct

Refinement

Consider the following program:

```
x = 0
while (x < 3):
    x = x + 1
print x
```

Does this permit us to prove the value of x at the end? NO (need transfer function)
lattice here:

(actually need to extend this to 4 layers, but there's not room on the slide)

Refinement

- We need a transfer function for branching

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound
- a refinement rules out some possible states

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound
- a refinement rules out some possible states
- Refinements are defined over the boolean operators of the language

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound
- a refinement rules out some possible states
- Refinements are defined over the boolean operators of the language
- for our example, we need a refinement for >=

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound
- a refinement rules out some possible states
- Refinements are defined over the boolean operators of the language
- for our example, we need a refinement for >=
- why >= and not < ?

Refinement

- We need a transfer function for branching
- when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound
- a refinement rules out some possible states
- Refinements are defined over the boolean operators of the language
- for our example, we need a refinement for >=
- why >= and not < ?

■ loop guard is false, so we invert the operator

Refinement

Consider the following program:

```
x = 0
while (x < 3):
    x = x + 1
print x
```


Widening

- What if we want to build a bigger constant propagation lattice?

Widening

- What if we want to build a bigger constant propagation lattice?
- the previous example only worked because we knew that we only needed at most 4 values at a time

Widening

- What if we want to build a bigger constant propagation lattice?
- the previous example only worked because we knew that we only needed at most 4 values at a time
- in the real world, we don't know how many values we'll need for any given program!

Widening

- What if we want to build a bigger constant propagation lattice?
- the previous example only worked because we knew that we only needed at most 4 values at a time
- in the real world, we don't know how many values we'll need for any given program!
- it would be nice if we could have sets of arbitrary size

Widening

- What if we want to build a bigger constant propagation lattice?
- the previous example only worked because we knew that we only needed at most 4 values at a time
- in the real world, we don't know how many values we'll need for any given program!
- it would be nice if we could have sets of arbitrary size

■ and we shouldn't need to reimplement our analysis each time we need to reason about differently-sized sets

Widening

- What if we want to build a bigger constant propagation lattice?
- the previous example only worked because we knew that we only needed at most 4 values at a time
- in the real world, we don't know how many values we'll need for any given program!
- it would be nice if we could have sets of arbitrary size
- and we shouldn't need to reimplement our analysis each time we need to reason about differently-sized sets
- do you think that's possible?

Widening

- What if we want to build a bigger constant propagation lattice?
- the previous example only worked because we knew that we only needed at most 4 values at a time
- in the real world, we don't know how many values we'll need for any given program!
- it would be nice if we could have sets of arbitrary size
- and we shouldn't need to reimplement our analysis each time we need to reason about differently-sized sets
- do you think that's possible?

■ We can use widening operators to allow this (sort of)

Widening

Definition: a widening operator is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

Widening

Definition: a widening operator is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by bounding the number of times that a particular value can change, even if the lattice is of infinite size

Widening

Definition: a widening operator is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by bounding the number of times that a particular value can change, even if the lattice is of infinite size
- this is safe because the analysis isn't required to take the least upper bound so long as it chooses an upper bound

Widening

Definition: a widening operator is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by bounding the number of times that a particular value can change, even if the lattice is of infinite size
- this is safe because the analysis isn't required to take the least upper bound so long as it chooses an upper bound
- example widening operator for constant propagation:
- if an abstract value has changed at least five times, go to top

Widening

Let's return to the previous example:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<3): \\
& x=x+1 \\
& \text { print } x
\end{aligned}
$$

Widening

Let's return to the previous example:

$$
\begin{aligned}
& x=0 \\
& \text { while }(x<z 10): \\
& \quad x=x+1 \\
& \text { print } x
\end{aligned}
$$

Widening

- The main advantage of widening is that it permits lattices with infinite height

Widening

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision - but abstract interpretation was always imprecise, so that's okay

Widening

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision
- but abstract interpretation was always imprecise, so that's okay
- A nice fact about implementing an abstract interpretation is that it is always safe to apply a widening operator

Widening

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision
- but abstract interpretation was always imprecise, so that's okay
- A nice fact about implementing an abstract interpretation is that it is always safe to apply a widening operator
- this means it's easy to support complex language features: just immediately widen any values that they impact
■ "go to top" is a sound policy in all situations

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a =a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```


Another example: Stein's algorithm

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a =a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

 First question: does this
 program ever divide by zero?
Take a moment and discuss.

First question: does this program ever divide by zero?
Take a moment and discuss.

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if }a==0\mathrm{ or }b==0
        return 0
    int expt = 0
    while a is even and b is even:
        a=a/2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

First question: does this program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if }a==0\mathrm{ or }b==0
        return 0
    int expt = 0
    while a is even and b is even:
        a =a/2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a)/2
    return a * 2^expt
```

First question: does this program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!

- all divisions are by 2
- $2!=0$

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a=a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a)/ 2
    return a * 2^expt
```

First question: does this program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!

- all divisions are by 2
- $2!=0$
- "constant propagation" can prove no divisions by zero!

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a =a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if }a==0\mathrm{ or }b==0
        return 0
    int expt = 0
    while a is even and b is even:
        a=a/2
        b b b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Next question: does this program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)
To prove termination, we need to show that both while loop guards are eventually false.

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a=a/2
        b b b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Next question: does this program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)
To prove termination, we need to show that both while loop guards are eventually false.

- 1st: a is odd or b is odd

Another example: Stein's algorithm

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a=a/2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Next question: does this program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)
To prove termination, we need to show that both while loop guards are eventually false.

- 1st: a is odd or b is odd
- 2nd: a eventually equals b

Another example: Stein's algorithm: parity

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a =a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let's use it (on the board; requires a CFG).

Another example: Stein's algorithm: parity

```
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a=a/2
        b b b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let's use it (on the board; requires a CFG).

- we ran into a problem: we can't prove that a and b are eventually odd!
- the transfer function for even / is2 returns T

Another example: Stein's algorithm: parity

```
```

def gcd(int a, int b):

```
```

def gcd(int a, int b):
if a == 0 or b == 0:
if a == 0 or b == 0:
return 0
return 0
int expt = 0
int expt = 0
while a is even and b is even:
while a is even and b is even:
a=a/2
a=a/2
b = b / 2
b = b / 2
expt = expt + 1
expt = expt + 1
while a != b:
while a != b:
if a is even: a = a / 2
if a is even: a = a / 2
elif b is even: b = b / 2
elif b is even: b = b / 2
elif a > b: a = (a - b) / 2
elif a > b: a = (a - b) / 2
else: b = (b - a) / 2
else: b = (b - a) / 2
return a * 2^expt

```
```

 return a * 2^expt
    ```
```

Fortunately, we already know an analysis for parity. Let's use it (on the board; requires a CFG).

- we ran into a problem: we can't prove that a and b are eventually odd!
- the transfer function for even / is2 returns T
- in this case, that's actually correct!
- the program does not terminate on all inputs
- $-1,1$ is a counterexample

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo

Course announcements

- This week's homework is individual (you may not work with a partner)
- this is a difference from previous homeworks!
- early next week I will send out a survey (via Discord) about what topic we should cover in the last week of class (April 25)
- please give this some serious thought!
- the survey will be open until next week's class, and I will announce the result during class

