Abstract Interpretation (2/2)

Martin Kellogg
Reading quiz: abstract interpretation
Reading quiz: abstract interpretation

- today’s quiz is on paper, and also covers the topics of last week’s class
- you have 15 minutes to complete it. When you’re finished, bring it to Kazi in the back.
- you may use any hand-written notes that you took during last class
 - this includes notes on a tablet or similar, if you wrote them with a stylus
 - but I will be looking over your shoulder if you do :)

Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein’s algorithm example
- analysis implementation demo
Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein’s algorithm example
- analysis implementation demo
Review: definitions
Review: definitions

An abstract interpretation formally has **two components**:
An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
An abstract interpretation formally has two components:

- an abstract domain over which to reason, which is composed of:
 - a set of abstract values
An abstract interpretation formally has **two components**:
- an **abstract domain** over which to reason, which is composed of:
 - a set of **abstract values**
 - an **ordering operation** (e.g., LUB)
Review: definitions

An abstract interpretation formally has **two components**:

- an **abstract domain** over which to reason, which is composed of:
 - a set of **abstract values**
 - an **ordering operation** (e.g., LUB)
 - together these form a **lattice**
Review: definitions

An abstract interpretation formally has two components:

- an **abstract domain** over which to reason, which is composed of:
 - a set of **abstract values**
 - an **ordering operation** (e.g., LUB)
 - together these form a **lattice**
- a set of **transfer functions** that tell the abstract interpreter how to reason over that abstract domain
An abstract interpretation formally has two components:
- an abstract domain over which to reason, which is composed of:
 - a set of abstract values
 - an ordering operation (e.g., LUB)
 - together these form a lattice
- a set of transfer functions that tell the abstract interpreter how to reason over that abstract domain
 - one for each kind of operation in the underlying programming language (e.g., one for +, one for -, etc.)
An abstract interpretation formally has two components:

- an **abstract domain** over which to reason, which is composed of:
 - a set of **abstract values**
 - an **ordering operation** (e.g., LUB)
 - together these form a **lattice**

- a set of **transfer functions** that tell the abstract interpreter how to reason over that abstract domain
 - one for each kind of operation in the underlying programming language (e.g., one for +, one for -, etc.)
 - usually represented as tables
Concrete vs abstract domains
Concrete vs abstract domains

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution.
Concrete vs abstract domains

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution

concrete domain

{..., 4, 6, 8, ...}

{1} {4} {8}

{ }
Concrete vs abstract domains

- the **concrete domain** of a variable is the set of values that the variable might actually take on during execution
- an **abstract domain** is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets
Concrete vs abstract domains

- the **concrete domain** of a variable is the set of values that the variable might actually take on during execution.
- an **abstract domain** is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets.
Concrete vs abstract domains

- the *concrete domain* of a variable is the set of values that the variable might actually take on during execution.
- an *abstract domain* is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets.
Concrete vs abstract domains

- the **concrete domain** of a variable is the set of values that the variable might actually take on during execution.
- an **abstract domain** is a layer of indirection on top of the concrete domain that splits it into a smaller number of sets.
Review: abstract vs concrete interpretation

Concrete state \[\rightarrow\] concrete execution \[\rightarrow\] Concrete state
Review: abstract vs concrete interpretation

Concrete state → Concrete state

Concrete execution

abstraction function (α)

Abstract state
Review: abstract vs concrete interpretation

Concrete state \rightarrow \text{concrete execution} \rightarrow \text{Concrete state}

Abstract state \arrow{abstraction \ function \ (\alpha)} \rightarrow \text{transfer functions} \rightarrow \text{Abstract state}
Review: abstract vs concrete interpretation

Concrete state → concrete execution → Concrete state

Abstract state → transfer functions → Abstract state

abstraction function \(\alpha \)
concretization function \(\gamma \)
Review: abstract vs concrete interpretation

Concrete state \rightarrow abstract state \rightarrow concrete state

concretization function \gamma \downarrow \text{transfer functions} \downarrow \text{concrete execution} \uparrow \text{concretization function} \gamma

Abstract state \uparrow \text{abstraction function} \alpha \downarrow \text{concretization function} \gamma

soundness means that the green path is a subset of the orange path
Review: clarifications
Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
 - however, that was just an example!
 - an abstract interpretation is applicable to any program
Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
 - however, that was just an example!
 - an abstract interpretation is applicable to any program
 - one of the key challenges in abstract interpretation design is figuring out the right set of examples to handle precisely
Review: clarifications

- last week, I went through an extended example of how to get a parity analysis to work on one program
 - however, that was just an example!
 - an abstract interpretation is applicable to any program
 - one of the key challenges in abstract interpretation design is figuring out the right set of examples to handle precisely
 - when you’re implementing your divide-by-zero analysis, I strongly recommend that you write out some examples as test cases!
 - you can just add them to the existing test
Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein’s algorithm example
- analysis implementation demo
More on soundness: using a Galois connection

soundness means that the green path is a subset of the orange path
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
More on soundness: using a Galois connection

● how would we actually show that a particular abstract interpretation is sound?
● here’s an algorithm for doing so:
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here’s an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
More on soundness: using a Galois connection

● how would we actually show that a particular abstract interpretation is sound?
● here’s an algorithm for doing so:
 ○ for each transfer function T_{op} for some operation op:
 ■ prove that for all concrete states c:
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here’s an algorithm for doing so:
 ○ for each transfer function T_{op} for some operation op:
 ■ prove that for all concrete states c:

\[
op(c) \subseteq \gamma(T_{op}(\alpha(c)))\]
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is **sound**?
- here’s an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:
 \[op(c) \subseteq \gamma(T_{op}(\alpha(c))) \]
More on soundness: using a Galois connection

● how would we actually show that a particular abstract interpretation is **sound**?
● here’s an algorithm for doing so:
 ○ for each transfer function T_{op} for some operation op:
 ■ prove that for all concrete states c:

\[
 op(c) \subseteq y(T_{op}(\alpha(c)))
\]

concretization
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is **sound**?
- here’s an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:
 $$\text{op}(c) \subseteq \gamma(T_{op}(\alpha(c)))$$
 concretization of the result of applying the transfer function
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here’s an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:

\[
 op(c) \subseteq \gamma(T_{op}(\alpha(c)))
\]

- **concretization** of the result of applying the transfer function to the abstraction of the original concrete state
More on soundness: using a Galois connection

- how would we actually show that a particular abstract interpretation is sound?
- here's an algorithm for doing so:
 - for each transfer function T_{op} for some operation op:
 - prove that for all concrete states c:
 \[
 op(c) \subseteq \gamma(T_{op}(\alpha(c)))
 \]
 concretization of the result of applying the transfer function to the abstraction of the original concrete state (orange line)
More on soundness: example proof

- let’s carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis
More on soundness: example proof

- let’s carry out an example proof using this technique ourselves on the **plus transfer function** from our simple parity analysis

\[\text{op}(c) \subseteq \gamma(T_{\text{op}}(\alpha(c))) \]
More on soundness: example proof

- let’s carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis

\[
op(c) \subseteq \gamma(T_{op}(\alpha(c)))\]

\[
\{\text{even, odd}\} = \text{top} \\
/ \quad \backslash \\
\{\text{even}\} \quad \{\text{odd}\} \\
\backslash \quad / \\
\{\} = \text{bottom}
\]
More on soundness: example proof

- let’s carry out an example proof using this technique ourselves on the plus transfer function from our simple parity analysis

\[
\begin{array}{c|cccc}
+ & T & \text{even} & \text{odd} & \bot \\
\hline
T & T & T & T & \bot \\
\hline
\text{even} & T & \text{even} & \text{odd} & \bot \\
\hline
\text{odd} & T & \text{odd} & \text{even} & \bot \\
\hline
\bot & \bot & \bot & \bot & \bot \\
\end{array}
\]

\[\text{op}(c) \subseteq \gamma(T_{op}(\alpha_{(c)}))\]
More on soundness: example proof

- Let’s first dispense with the easy cases:

\[\text{op}(c) \subseteq \gamma(T_{op}(\alpha_{(c)})) \]
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is top, then it’s easy:
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is top, then it’s easy:
 - $\forall \ c. \ op(c) \subseteq \{ \text{all integers} \}$ is trivially true!
More on soundness: example proof

Let's first dispense with the easy cases:

- if the transfer function entry is `top`, then it's easy:

 \[\forall c. \text{op}(c) \subseteq \{ \text{all integers} \} \text{ is trivially true!} \]
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is top, then it’s easy:
 $$\forall \ c. \ op(c) \subseteq \{ \text{all integers} \} \text{ is trivially true!}$$

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>even</th>
<th>odd</th>
<th>⊥</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>⊤</td>
<td>⊤</td>
<td>⊤</td>
<td>⊥</td>
</tr>
<tr>
<td>even</td>
<td>⊤</td>
<td>even</td>
<td>odd</td>
<td>⊥</td>
</tr>
<tr>
<td>odd</td>
<td>⊤</td>
<td>odd</td>
<td>even</td>
<td>⊥</td>
</tr>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
</tbody>
</table>
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is **top**, then it’s easy:
 - $\forall \ c. \ op(c) \subseteq \{\text{all integers}\}$ is trivially true!
 - if the transfer function entry is **bottom**, it’s still pretty easy:
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is **top**, then it’s easy:
 - ∀ c. \(\text{op}(c) \subseteq \{\text{all integers}\} \) is trivially true!
 - if the transfer function entry is **bottom**, it’s still pretty easy:
 - for every entry in our transfer function that’s bottom, one of the inputs is also **bottom**
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is **top**, then it’s easy:
 - $\forall c. \text{op}(c) \subseteq \{\text{all integers}\}$ is trivially true!
 - if the transfer function entry is **bottom**, it’s still pretty easy:
 - for every entry in our transfer function that’s bottom, one of the inputs is also **bottom**
 - $\text{op}({})$ is always the empty set (it can’t be executed)

\[
\text{op}(c) \subseteq \gamma(T_{op}(\alpha(c)))
\]
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is \(\text{top} \), then it’s easy:
 - \(\forall c. \text{op}(c) \subseteq \{ \text{all integers} \} \) is trivially true!
 - if the transfer function entry is \(\text{bottom} \), it’s still pretty easy:
 - for every entry in our transfer function that’s bottom, one of the inputs is \(\text{also bottom} \)
 - \(\text{op}(\{\}) \) is always the empty set (it can’t be executed)
 - \(\{\} \subseteq \{\} \)
More on soundness: example proof

- Let’s first dispense with the easy cases:
 - if the transfer function entry is top, then it’s easy:
 - $\forall c. \text{op}(c) \subseteq \{ \text{all integers} \}$ is trivially true!
 - if the transfer function entry is bottom, it’s still pretty easy:
 - for every entry in our transfer function that’s bottom, one of the inputs is also bottom
 - $\text{op}(\{\})$ is always the empty set (it can’t be executed)
 - $\{\} \subseteq \{\}$
 - QED
More on soundness: example proof

Let’s first dispense with the easy cases:

- if the transfer function entry is `top`, then it’s easy:
 - \(\forall c. \text{op}(c) \subseteq \{ \text{all integers} \} \) is trivially true!

- if the transfer function entry is `bottom`, it’s still pretty easy:
 - for every entry in our transfer function that’s bottom, one of the inputs is also bottom
 - \(\text{op}(\{\}) \) is always the empty set (it can’t be executed)
 - \(\{\} \subseteq \{\} \)
 - QED
More on soundness: example proof

- Let's first dispense with the easy cases:
 - if the transfer function entry is \top, then it's easy:
 $\forall c. \text{op}(c) \subseteq \{\text{all integers}\}$ is trivially true!
 - if the transfer function entry is \bot, it's still pretty easy:
 - for every entry in our transfer function that's bottom, one of the inputs is also bottom
 - $\text{op}(\{\})$ is always the empty set (it can't be executed)
 - $\{\} \subseteq \{\}$
 - QED

\[
\begin{array}{c|cccc|c}
+ & \top & \text{even} & \text{odd} & \bot \\
\hline
\top & \top & \top & \top & \bot \\
\text{even} & \top & \text{even} & \text{odd} & \bot \\
\text{odd} & \top & \text{odd} & \text{even} & \bot \\
\bot & \bot & \bot & \bot & \bot \\
\end{array}
\]
More on soundness: example proof

- Now we need to handle the more complex cases in the middle
More on soundness: example proof

- Now we need to handle the more complex cases in the middle
 - we could do them one-by-one...
More on soundness: example proof

- Now we need to handle the more complex cases in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don’t need to worry about order

\[\text{op}(c) \subseteq \gamma(T_{op}(\alpha(c))) \]
More on soundness: example proof

Now we need to handle the more complex cases in the middle.

- We could do them one-by-one...
- But we can skip some because addition is commutative, so we don't need to worry about order.

\[
\begin{array}{c|cccc}
+ & T & \text{even} & \text{odd} & \bot \\
\hline
T & \top & \top & \top & \bot \\
\text{even} & \top & \text{even} & \text{odd} & \bot \\
\text{odd} & \top & \text{odd} & \text{even} & \bot \\
\bot & \bot & \bot & \bot & \bot \\
\end{array}
\]

In other words, the two orange cases are the same!
More on soundness: example proof

- Now we need to handle the more complex cases in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don’t need to worry about order
- So, we have three cases to deal with:
More on soundness: example proof

● Now we need to handle the more complex cases in the middle
 ○ we could do them one-by-one...
 ○ but we can skip some because addition is commutative
 ■ so we don’t need to worry about order
● So, we have three cases to deal with:
 1. even integer + even integer is an even integer
 2. odd integer + odd integer is an even integer
 3. odd integer + even integer is an odd integer
More on soundness: example proof

- Now we need to handle the more complex cases in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don’t need to worry about order
- So, we have three cases to deal with:
 1. even integer + even integer is an even integer
 2. odd integer + odd integer is an even integer
 3. odd integer + even integer is an odd integer
- we dispatch these three by considering each case individually
 - they’re all basically the same, so we’re only going to do one
More on soundness: example proof

- Now we need to handle the more complex cases in the middle
 - we could do them one-by-one...
 - but we can skip some because addition is commutative
 - so we don’t need to worry about order
- So, we have three cases to deal with:
 1. even integer + even integer is an even integer
 2. odd integer + odd integer is an even integer
 3. odd integer + even integer is an odd integer
- we dispatch these three by considering each case individually
 - they’re all basically the same, so we’re only going to do one
More on soundness: example proof

- c is some addition statement $x + y$
More on soundness: example proof

- \(c\) is some addition statement \(x + y\)
 - we know that concretely \(x\) is odd and \(y\) is even (why?)
 - formally, we would state this as \(x \% 2 = 1\) and \(y \% 2 = 0\)
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $\text{op}(c)$?

\[
\text{op}(c) \subseteq \gamma(T_{\text{op}}(\alpha(c)))
\]
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $op(c)$?
 - represent x as $2a + 1$ and y as $2b$ for some a, b (how?)

$$op(c) \subseteq \gamma(T_{op}(\alpha(c)))$$
More on soundness: example proof

- c is some addition statement \(x + y\)
 - we know that concretely \(x\) is odd and \(y\) is even (why?)
 - formally, we would state this as \(x \% 2 = 1\) and \(y \% 2 = 0\)
- what is \(op(c)\)?
 - represent \(x\) as \(2a + 1\) and \(y\) as \(2b\) for some \(a, b\) (how?)
 - \(2a + 1 + 2b = 2(a+b) + 1\), which we can easily prove is the set of all odd integers

\[op(c) \subseteq \gamma(T_{op}(\alpha_{(c)})) \]
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $\text{op}(c)$?
 - represent x as $2a + 1$ and y as $2b$ for some a, b (how?)
 - $2a + 1 + 2b = 2(a+b) + 1$, which we can easily prove is the set of all odd integers
- what’s $\alpha(c)$?
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $op(c)$?
 - represent x as $2a + 1$ and y as $2b$ for some a, b (how?)
 - $2a + 1 + 2b = 2(a+b) + 1$, which we can easily prove is the set of all odd integers
- what’s $\alpha(c)$?
 - $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $\text{op}(c)$?
 - represent x as $2a + 1$ and y as $2b$ for some a, b (how?)
 - $2a + 1 + 2b = 2(a+b) + 1$, which we can easily prove is the set of all odd integers
- what’s $\alpha(c)$?
 - $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
- $T_+(\alpha(c))$ is just applying our transfer function: result is the odd AV
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $\text{op}(c)$?
 - represent x as $2a + 1$ and y as $2b$ for some a, b (how?)
 - $2a + 1 + 2b = 2(a+b) + 1$, which we can easily prove is the set of all odd integers
- what’s $\alpha(c)$?
 - $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
- $T_+(\alpha(c))$ is just applying our transfer function: result is the odd AV
- $\gamma(\text{odd})$ is the set of all odd integers, which does contain itself
More on soundness: example proof

- c is some addition statement $x + y$
 - we know that concretely x is odd and y is even (why?)
 - formally, we would state this as $x \% 2 = 1$ and $y \% 2 = 0$
- what is $op(c)$?
 - represent x as $2a + 1$ and y as $2b$ for some a, b (how?)
 - $2a + 1 + 2b = 2(a+b) + 1$, which we can easily prove is the set of all odd integers
- what’s $\alpha(c)$?
 - $\alpha(x)$ is odd (the abstract value), and $\alpha(y)$ is even (the AV)
- $T_+(\alpha(c))$ is just applying our transfer function: result is the odd AV
- $\gamma(\text{odd})$ is the set of all odd integers, which does contain itself
Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein’s algorithm example
- analysis implementation demo
Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```
Refinement

Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```

What value is printed?
Refinement

Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```

What value is printed? How do you know?
Consider the following program:

```
x = 0
while (x < 3):
    x = x + 1
print x
```

What value is printed? How do you know?

Insight: *anything* you can figure out by reasoning through the program by hand, an abstract interpretation can do too!
Consider the following program:

\[
\begin{align*}
x &= 0 \\
&\text{while } (x < 3): \\
&\quad x = x + 1 \\
&\text{print } x
\end{align*}
\]
Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```

```
-2 -1 0 1 2 ...
```

not enough! need sets
Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```
Refinement

Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```

(Actually need to extend this to 4 layers, but there's not room on the slide)
Refinement

Consider the following program:

\[
x = 0 \\
\text{while } (x < 3): \\
\quad x = x + 1 \\
\text{print } x
\]

Does this permit us to prove the value of \(x \) at the end?

Draw in the correct lattice here:

(Actually need to extend this to 4 layers, but there's not room on the slide)
Refinement

Consider the following program:

\[x = 0 \]

while \((x < 3) \):
 \[x = x + 1 \]

print \(x \)

Does this permit us to prove the value of \(x \) at the end?

\textbf{NO} (need transfer function)
Refinement

- We need a transfer function for branching
Refinement

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
Refinement

- We need a transfer function for branching
 - when we exit the while loop, we know the loop guard is false
- These transfer functions are called refinements because they typically involve a greatest lower bound
Refinement

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called **refinements** because they typically involve a greatest lower bound
 - a refinement **rules out** some possible states
Refinement

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called **refinements** because they typically involve a greatest lower bound
 - a refinement **rules out** some possible states
- Refinements are defined over the **boolean operators** of the language
Refinement

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called **refinements** because they typically involve a greatest lower bound
 - a refinement **rules out** some possible states
- Refinements are defined over the **boolean operators** of the language
 - for our example, we need a refinement for >=
Refinement

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called **refinements** because they typically involve a greatest lower bound
 - a refinement **rules out** some possible states
- Refinements are defined over the **boolean operators** of the language
 - for our example, we need a refinement for **>=**
 - why **>=** and not **<** ?
Refinement

- We need a transfer function for **branching**
 - when we exit the while loop, we know the loop guard is **false**
- These transfer functions are called **refinements** because they typically involve a greatest lower bound
 - a refinement **rules out** some possible states
- Refinements are defined over the **boolean operators** of the language
 - for our example, we need a refinement for \geq
 - why \geq and not $<$?
 - loop guard is false, so we invert the operator
Consider the following program:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)
Widening

- What if we want to build a **bigger** constant propagation lattice?
Widening

- What if we want to build a bigger constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
Widening

- What if we want to build a \textcolor{red}{bigger} constant propagation lattice?
 - the previous example only worked because we knew that we only needed \textcolor{blue}{at most 4 values} at a time
 - in the real world, we don’t know \textcolor{green}{how many values} we’ll need for any given program!
Widening

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed **at most 4 values** at a time
 - in the real world, we don’t know **how many values** we’ll need for any given program!
 - it would be nice if we could have sets of **arbitrary size**
Widening

- What if we want to build a bigger constant propagation lattice?
 - the previous example only worked because we knew that we only needed at most 4 values at a time
 - in the real world, we don’t know how many values we’ll need for any given program!
 - it would be nice if we could have sets of arbitrary size
 - and we shouldn’t need to reimplement our analysis each time we need to reason about differently-sized sets
Widening

- What if we want to build a **bigger** constant propagation lattice?
 - the previous example only worked because we knew that we only needed **at most 4 values** at a time
 - in the real world, we don’t know **how many values** we’ll need for any given program!
 - it would be nice if we could have sets of **arbitrary size**
 - and we shouldn’t need to **reimplement** our analysis each time we need to reason about differently-sized sets
 - do you think that’s possible?
Widening

● What if we want to build a **bigger** constant propagation lattice?
 ○ the previous example only worked because we knew that we only needed **at most 4 values** at a time
 ○ in the real world, we don’t know **how many values** we’ll need for any given program!
 ○ it would be nice if we could have sets of **arbitrary size**
 ■ and we shouldn’t need to **reimplement** our analysis each time we need to reason about differently-sized sets
 ○ do you think that’s possible?
 ■ We can use **widening operators** to allow this (sort of)
Widening

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times.
Widening

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by **bounding** the number of times that a particular value can change, even if the lattice is of infinite size
Widening

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by *bounding* the number of times that a particular value can change, even if the lattice is of infinite size
- this is safe because the analysis isn’t required to take the least upper bound so long as it chooses an upper bound
Widening

Definition: a *widening operator* is a predefined policy to take a particular upper bound if the abstract value at a particular location has changed too many times

- effectively, this guarantees termination by bounding the number of times that a particular value can change, even if the lattice is of infinite size
- this is safe because the analysis isn’t required to take the least upper bound so long as it chooses an upper bound
- example widening operator for constant propagation:
 - if an abstract value has changed at least five times, go to top
Widening

Let’s return to the previous example:

```python
x = 0
while (x < 3):
    x = x + 1
print x
```
Widening

Let’s return to the previous example:

```python
x = 0
while (x < 310):
    x = x + 1
print x
```
Widening

- The main advantage of widening is that it permits lattices with infinite height.
Widening

- The main advantage of widening is that it permits lattices with infinite height.
- The downside is that it introduces additional imprecision:
 - but abstract interpretation was always imprecise, so that’s okay.
Widening

- The main advantage of widening is that it permits lattices with infinite height.
- The downside is that it introduces additional imprecision.
 - but abstract interpretation was always imprecise, so that’s okay.
- A nice fact about implementing an abstract interpretation is that it is always safe to apply a widening operator.
Widening

- The main advantage of widening is that it permits lattices with infinite height
- The downside is that it introduces additional imprecision
 - but abstract interpretation was always imprecise, so that’s okay
- A nice fact about implementing an abstract interpretation is that it is always safe to apply a widening operator
 - this means it’s easy to support complex language features: just immediately widen any values that they impact
 - “go to top” is a sound policy in all situations
Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein's algorithm example
- analysis implementation demo
Another example: Stein’s algorithm

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```
Another example: Stein’s algorithm

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

First question: does this program ever divide by zero? Take a moment and discuss.
Another example: Stein’s algorithm

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a % 2 == 0 and b % 2 == 0:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a % 2 == 0:
            a = a / 2
        elif b % 2 == 0:
            b = b / 2
        elif a > b:
            a = (a - b) / 2
        else:
            b = (b - a) / 2
    return a * 2^expt
```

First question: does this program ever divide by zero? Take a moment and discuss.

Answer: definitely not!
Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this program ever divide by zero? Take a moment and discuss.

Answer: definitely not!
- all divisions are by 2
 - 2 != 0
Another example: Stein’s algorithm

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

First question: does this program ever **divide by zero**? Take a moment and discuss.

Answer: **definitely not**!
- all divisions are by 2
 - 2 != 0
- “constant propagation” can prove no divisions by zero!
Another example: Stein’s algorithm

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)
Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

To prove termination, we need to show that both while loop guards are eventually false.
Another example: Stein’s algorithm

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

To prove termination, we need to show that both while loop guards are eventually false.
- 1st: a is odd or b is odd
def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Next question: does this program terminate on all inputs? Take a moment and discuss. (Hint: draw a CFG.)

To prove termination, we need to show that both while loop guards are eventually false.

- 1st: a is odd or b is odd
- 2nd: a eventually equals b
Another example: Stein’s algorithm: parity

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let’s use it (on the board; requires a CFG).
Another example: Stein’s algorithm: parity

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let’s use it (on the board; requires a CFG).

- we ran into a problem: we can’t prove that a and b are eventually odd!
 - the transfer function for even / is2 returns T
Another example: Stein’s algorithm: parity

```python
def gcd(int a, int b):
    if a == 0 or b == 0:
        return 0
    int expt = 0
    while a is even and b is even:
        a = a / 2
        b = b / 2
        expt = expt + 1
    while a != b:
        if a is even: a = a / 2
        elif b is even: b = b / 2
        elif a > b: a = (a - b) / 2
        else: b = (b - a) / 2
    return a * 2^expt
```

Fortunately, we already know an analysis for parity. Let’s use it (on the board; requires a CFG).

- we ran into a problem: we can’t prove that a and b are eventually odd!
 - the transfer function for even / is2 returns T
- in this case, that’s actually correct!
 - the program does not terminate on all inputs
 - -1, 1 is a counterexample
Agenda: abstract interpretation, part 2

- review and clarifications from last week
- more on soundness
- refinement and branching
- widening
- Stein’s algorithm example
- analysis implementation demo
Course announcements

- This week’s homework is **individual** (you may not work with a partner)
 - this is a difference from previous homeworks!
- early next week I will send out a survey (via Discord) about what topic we should cover in the last week of class (April 25)
 - please give this some serious thought!
 - the survey will be open until next week’s class, and I will announce the result during class