
Abstract Interpretation (2/2)
Martin Kellogg

Reading quiz: abstract interpretation

Reading quiz: abstract interpretation

● today’s quiz is on paper, and also covers the topics of last week’s
class

● you have 15 minutes to complete it. When you’re finished, bring
it to Kazi in the back.

● you may use any hand-written notes that you took during last
class
○ this includes notes on a tablet or similar, if you wrote them

with a stylus
■ but I will be looking over your shoulder if you do :)

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo

Review: definitions

Review: definitions

An abstract interpretation formally has two components:

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how
to reason over that abstract domain

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how
to reason over that abstract domain
○ one for each kind of operation in the underlying

programming language (e.g., one for +, one for -, etc.)

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how
to reason over that abstract domain
○ one for each kind of operation in the underlying

programming language (e.g., one for +, one for -, etc.)
○ usually represented as tables

Concrete vs abstract domains

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

concrete
domain

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

abstract
domain

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

abstract
domain

α

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

abstract
domainγ

α

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state

abstraction
function (α)

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

transfer
functions

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

soundness means that the green path is a subset of the orange path

Review: clarifications

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program
○ one of the key challenges in abstract interpretation design is

figuring out the right set of examples to handle precisely

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program
○ one of the key challenges in abstract interpretation design is

figuring out the right set of examples to handle precisely
■ when you’re implementing your divide-by-zero analysis, I

strongly recommend that you write out some examples
as test cases!
● you can just add them to the existing test

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo

More on soundness: using a Galois connection

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

soundness means that the green path is a subset of the orange path

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

possible results of concrete
execution (green line)

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying
the transfer function

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying
the transfer function to the abstraction of
the original concrete state

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying
the transfer function to the abstraction of
the original concrete state (orange line)

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}
■ QED

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}
■ QED

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}
■ QED

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Now we need to handle the more complex cases in the middle

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

in other words, the
two orange cases
are the same!

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

● we dispatch these three by considering each case individually
○ they’re all basically the same, so we’re only going to do one

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

● we dispatch these three by considering each case individually
○ they’re all basically the same, so we’re only going to do one

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)
● T+(α(c)) is just applying our transfer function: result is the odd AV

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)
● T+(α(c)) is just applying our transfer function: result is the odd AV
● γ(odd) is the set of all odd integers, which does contain itself

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)
● T+(α(c)) is just applying our transfer function: result is the odd AV
● γ(odd) is the set of all odd integers, which does contain itself

op(c) ⊆ γ(Top(α
(c)))

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

What value is printed?

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

What value is printed?
How do you know?

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

What value is printed?
How do you know?

Insight: anything you can figure
out by reasoning through the
program by hand, an abstract
interpretation can do too!

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

 top

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

 top

… -2 -1 0 1 2 …

 bottom

not enough! need sets

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

draw in the correct
lattice here:

 top

 … {-1, 0} {0, 1} …

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(actually need to extend this to 4 layers,
but there’s not room on the slide)

draw in the correct
lattice here:

 top

 … {-1, 0} {0, 1} …

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(actually need to extend this to 4 layers,
but there’s not room on the slide)

draw in the correct
lattice here:

Does this permit us to prove
the value of x at the end?

 top

 … {-1, 0} {0, 1} …

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(actually need to extend this to 4 layers,
but there’s not room on the slide)

draw in the correct
lattice here:

Does this permit us to prove
the value of x at the end?
NO (need transfer function)

Refinement

● We need a transfer function for branching

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language
○ for our example, we need a refinement for >=

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language
○ for our example, we need a refinement for >=
○ why >= and not < ?

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language
○ for our example, we need a refinement for >=
○ why >= and not < ?

■ loop guard is false, so we invert the operator

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)

Widening

● What if we want to build a bigger constant propagation lattice?

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

○ do you think that’s possible?

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

○ do you think that’s possible?
■ We can use widening operators to allow this (sort of)

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times
● effectively, this guarantees termination by bounding the number

of times that a particular value can change, even if the lattice is of
infinite size

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times
● effectively, this guarantees termination by bounding the number

of times that a particular value can change, even if the lattice is of
infinite size

● this is safe because the analysis isn’t required to take the least
upper bound so long as it chooses an upper bound

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times
● effectively, this guarantees termination by bounding the number

of times that a particular value can change, even if the lattice is of
infinite size

● this is safe because the analysis isn’t required to take the least
upper bound so long as it chooses an upper bound

● example widening operator for constant propagation:
○ if an abstract value has changed at least five times, go to top

Widening

Let’s return to the previous example:

x = 0
while (x < 3):
 x = x + 1
print x

Widening

Let’s return to the previous example:

x = 0
while (x < 3 10):
 x = x + 1
print x

Widening

● The main advantage of widening is that it permits lattices with
infinite height

Widening

● The main advantage of widening is that it permits lattices with
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s

okay

Widening

● The main advantage of widening is that it permits lattices with
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s

okay
● A nice fact about implementing an abstract interpretation is that

it is always safe to apply a widening operator

Widening

● The main advantage of widening is that it permits lattices with
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s

okay
● A nice fact about implementing an abstract interpretation is that

it is always safe to apply a widening operator
○ this means it’s easy to support complex language features: just

immediately widen any values that they impact
■ “go to top” is a sound policy in all situations

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!
● all divisions are by 2

○ 2 != 0

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!
● all divisions are by 2

○ 2 != 0
● “constant propagation”

can prove no divisions by
zero!

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

To prove termination, we need
to show that both while loop
guards are eventually false.

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

To prove termination, we need
to show that both while loop
guards are eventually false.
● 1st: a is odd or b is odd

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

To prove termination, we need
to show that both while loop
guards are eventually false.
● 1st: a is odd or b is odd
● 2nd: a eventually equals b

Another example: Stein’s algorithm: parity

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).

Another example: Stein’s algorithm: parity

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).
● we ran into a problem: we

can’t prove that a and b are
eventually odd!
○ the transfer function for

even / is2 returns T

Another example: Stein’s algorithm: parity

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).
● we ran into a problem: we

can’t prove that a and b are
eventually odd!
○ the transfer function for

even / is2 returns T
● in this case, that’s actually

correct!
○ the program does not

terminate on all inputs
○ -1, 1 is a counterexample

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● more on soundness
● refinement and branching
● widening
● Stein’s algorithm example
● analysis implementation demo

Course announcements

● This week’s homework is individual (you may not work with a
partner)
○ this is a difference from previous homeworks!

● early next week I will send out a survey (via Discord) about what
topic we should cover in the last week of class (April 25)
○ please give this some serious thought!
○ the survey will be open until next week’s class, and I will

announce the result during class

