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● Recall our discussion of symbolic execution from earlier in this 
class
○ effectively, it uses math to figure out which values of each 

variable will cause the program to take particular paths

■ goal: create test cases that definitely increase coverage

● At the time, we deferred the question of how we would solve 

path predicates automatically
○ recall that a path predicate is a formula over program 

variables that is true when a particular path is executed
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Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) {
  assert(b > 0);
  if(a + b == a * b) {
    return 1;
  }
  return 0;
}

suppose we want to cover 
this line (return 1)

what’s its path predicate?

b > 0 && a + b == a * b

Key question: are there a, b 
such that this is true?
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● As a human, it is relatively easy to solve the example on the 
previous slide
○ but real examples are many orders of magnitude larger!
○ we’d like to automate the task of checking if there’s a solution

● In our lecture on symbolic execution, I briefly mentioned that 
SMT solvers are the modern tool that we’d use to do so
○ let’s do it now: https://www.philipzucker.com/z3-rise4fun/

https://www.philipzucker.com/z3-rise4fun/
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Motivation: reasoning about formulas

● Reasoning about formulas is useful for more than symbolic 
execution

● Other applications include:
○ reasoning about program correctness (automating 

pen-and-paper proofs!)
○ reasoning about program equivalence (cf. equivalent mutant 

problem)
○ program synthesis
○ program repair
○ etc.
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What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that 
tries to automatically either produces a set of assignments to variables 
in a mathematical formula that makes it true, if such a solution exists; 
or, if no such solution exists, produces a proof of unsatisfiability.
● note “tries to”: boolean satisfiability is NP-complete
● “theories” refers to non-boolean parts of the formula

○ for example, a solver might support a theory of real numbers
● different solvers might support different theories

○ much of today’s reading was about various theories that Z3 
supports, such as Equality of Uninterpreted Functions (EUF) and 
the theory of Arrays
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● the key idea behind using an SMT solver in program analysis is to 
reduce a problem to the satisfiability of some formula
○ “reduce” here means “do a reduction”, like in your theory class

● for example, symbolic execution reduces covering a particular line 
of code to the problem of whether a path predicate is satisfiable
○ then uses the SMT solver as an oracle

● note that in the symbolic execution case, we’re interested in the 
satisfying assignment (it’s the test case)
○ in many other interesting cases, we want to check a formula’s 

validity: that is, whether it is true for all values of its inputs
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Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can 
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT 
solver)

● Two-step transformation:
○ ∀x. F(x) is true -> ¬∃x. F(x) is false
○ ¬∃x. F(x) is false -> ¬∃x. ¬F(x) is true

■ This is exactly equivalent to asking if ¬F(x) is satisfiable

This means that we can 
use an SMT solver to 
check either validity or 
satisfiability!
● useful for e.g. proving 

program equivalence
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Goals for today

● Goal #1: understand the basics of how an SMT solver works
○ I don’t expect you to be able to go out and build one right away
○ but to use a tool effectively, it’s important to understand the 

basic ideas that make it work
● Goal #2: understand how to use and apply an SMT solver to 

real-world program analysis problems
○ this is what the homework will ask you to do

■ and was also the main subject of today’s reading
○ hopefully you will also get a sense for when and when not to 

apply an SMT-based tool



Agenda: SMT solvers

● Motivation: reasoning about formulas
● SAT solving: DPLL
● SMT solving: Nelson-Oppen and DPLL(T)
● SMT in practice: brief intro to Z3 and SMT-LIB
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Review: basics of SAT

● You should have seen the boolean satisfiability problem (SAT 
problem) in your undergraduate theory of computation course
○ but just in case you did not…

Definition: a boolean formula is a set of boolean variables (i.e., symbols 
that can be either true or false) connected by the boolean operators 
(∧ for logical and, ∨ for logical or, and ¬ for logical negation)
● a boolean formula is satisfiable iff there exists an assignment of 

the variables to true and false that makes the formula as a whole 
evaluate to true

Example boolean formulas:
● a ∨ b ∧ ¬c
● (P ∧ Q) ∨ (Q ∧ ¬R)
● etc.
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SAT solving goal: find an assignment

● You can think of an assignment as a mapping from variables to 
values

● Examples:
○ is X ∨ Y satisfiable?

■ yes: X -> true, Y -> false is a satisfying assignment
○ is X ∧ ¬X satisfiable?

■ no: there is no choice of X that makes both X and ¬X true 
at the same time
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SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

○ This is the classic Cook-Levin theorem (proved in the 1970s)
■ boolean SAT is the “original” NP-complete problem!
■ in NP because you can verify that an assignment makes 

the formula true by just evaluating the formula
■ NP-hard by reduction to polynomial-time acceptance by 

a nondeterministic Turing machine 
● Naïve solution: try all possible assignments

○ Takes O(2n) time for a formula with n variables (slow!)
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SAT solving in practice

● I’ve mentioned before (during our symbolic execution lecture) 
that modern SMT solvers are fast
○ they can solve (some) formulas with millions or billions of 

clauses very quickly (under 30 seconds)
● So how do they manage to be so fast when the underlying 

problem is so hard?
○ We’ll discuss two core algorithms:

■ the DPLL algorithm for efficiently solving SAT
■ the Nelson-Oppen algorithm for efficiently solving SMT
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● the DPLL algorithm assumes that the input formula is in 
conjunctive normal form (CNF):
○ it is a set of clauses that are separated by conjunctions (∧)
○ each clause contains zero or more disjunctions (∨) of literals 

(which may or may not be negated)
● if the input formula is not in CNF, we can transform it into CNF 

automatically via DeMorgan’s laws, the double negative law, and 
the distributives laws over boolean operators
○ I’m not going to cover this, because you should have had a 

discrete math class before. If you can’t confidently do this 
now, you should practice before the exam.
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DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve 
algorithm

● that is, we guess
○ modern solvers use sophisticated heuristics to choose what 

variable to set in such a guess, but we’re going to skip over that
○ generally you can pick whatever variable you’d like if I ask you 

to do DPLL (e.g., on an exam) when you are stuck
● it is important to remember what you guessed

○ if you reach an unsatisfiable result, you need to backtrack to 
the point where you made the guess (and try the other option)



DPLL: algorithm
function DPLL(Φ)
    // unit propagation:
    while there is a unit clause {l} in Φ do
        Φ ← unit-propagate(l, Φ);
    // pure literal elimination:
    while there is a literal l that occurs pure in Φ do
        Φ ← pure-literal-assign(l, Φ);
    // stopping conditions:
    if Φ is empty then
        return true;
    if Φ contains an empty clause then
        return false;
    // DPLL procedure:
    l ← choose-literal(Φ);
    return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm


DPLL: algorithm
function DPLL(Φ)
    // unit propagation:
    while there is a unit clause {l} in Φ do
        Φ ← unit-propagate(l, Φ);
    // pure literal elimination:
    while there is a literal l that occurs pure in Φ do
        Φ ← pure-literal-assign(l, Φ);
    // stopping conditions:
    if Φ is empty then
        return true;
    if Φ contains an empty clause then
        return false;
    // DPLL procedure:
    l ← choose-literal(Φ);
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pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

Heuristic: try unit propagation 
first because it creates more 
units and pure literals.
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DPLL: algorithm
function DPLL(Φ)
    // unit propagation:
    while there is a unit clause {l} in Φ do
        Φ ← unit-propagate(l, Φ);
    // pure literal elimination:
    while there is a literal l that occurs pure in Φ do
        Φ ← pure-literal-assign(l, Φ);
    // stopping conditions:
    if Φ is empty then
        return true;
    if Φ contains an empty clause then
        return false;
    // DPLL procedure:
    l ← choose-literal(Φ);
    return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

Pure literal elimination is tried 
second because it only 
eliminates entire clauses (it can’t 
create new units or pure literals).
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DPLL: algorithm
function DPLL(Φ)
    // unit propagation:
    while there is a unit clause {l} in Φ do
        Φ ← unit-propagate(l, Φ);
    // pure literal elimination:
    while there is a literal l that occurs pure in Φ do
        Φ ← pure-literal-assign(l, Φ);
    // stopping conditions:
    if Φ is empty then
        return true;
    if Φ contains an empty clause then
        return false;
    // DPLL procedure:
    l ← choose-literal(Φ);
    return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

Fallback: try both assignments to 
a random literal. (Note the 
short-circuiting “or” operator.)

https://en.wikipedia.org/wiki/DPLL_algorithm


DPLL: putting it all together

Try to do DPLL in pairs on the following formula:

(a ∨ b) ∧ (a ∨ c) ∧ (¬a ∨ c) ∧ (a ∨ ¬c) ∧ (¬a ∨ ¬c) ∧ (¬d)
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● We’d like to solve formulas that contain more complex 
subcomponents than just booleans
○ e.g., involving linear arithmetic like x > 10

● For the moment, we will assume the existence of solvers for these 
theories (such as linear arithmetic)
○ but note that separate satisfying assignments for two theories 

might not be compatible!
● Core idea of SMT: solve theories separately, but use DPLL to 

combine them (called DPLL(T))
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● Provides a procedure for solving fragments of various theories in 
the same formula separately

● Requires some assumptions about the theories:
○ quantifier-free fragments (“conjunctive”)
○ equality is the only symbol in their intersection
○ both must be stably infinite (don’t worry about this)

● Key idea: replace expressions from each theory with variables
○ variables introduced by Nelson-Oppen can be shared between 

theories
○ solve the whole formula with a modified variant of DPLL, then 

ask the theory solvers if the satisfying assignment makes sense
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Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared 
variables for expressions:
● equality of uninterpreted functions (EUF): f(e1) = a, e2 = f(x), e3 = f(y), 

f(e4) = e5, x = y
● arithmetic: e1 = e2 - e3, e4 = 0, e5 = a + 2, x = y

At this point in class, I tried to solve 
this example on the board. I got it 
wrong; it is not satisfiable. See next 
week’s slides.



SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared 
variables for expressions:
● equality of uninterpreted functions (EUF): f(e1) = a, e2 = f(x), e3 = f(y), 

f(e4) = e5, x = y
● arithmetic: e1 = e2 - e3, e4 = 0, e5 = a + 2, x = y

Note how theories 
communicate using 
(only) equalities
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SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for 
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each 

fragment is in only one theory
○ Replace each theory fragment with a fresh boolean variable
○ Run normal DPLL (with one exception, which I’ll mention soon)
○ Assuming we get a satisfying assignment, ask theories if all of 

the assignments can be true at the same time
○ If not, add new clauses and re-run DPLL(T)
○ Continue until done



SMT: DPLL(T) example

Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

Conveniently all clauses 
are in linear arithmetic, so 
we can skip purification
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Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

    p1     ∧       p2       ∧ (   p3  ∨   p4  )

We now solve this with DPLL. We get a satisfying assignment (e.g., p1, 
p2, p4 all true). Then, we check this with our theory:
● can p1, p2, and p4 all be true at the same time?

○ no! theory of linear arithmetic says p1 and p2 imply not p4
○ add new clause (¬p1 ∨ ¬p2 ∨ ¬p4), try again
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SMT: DPLL(T) example

We now have:

p1 ∧ p2 ∧ ( p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p4)

Run DPLL again; one satisfying assignment is p1, p2, p3, ¬p4
● check these again against our theory. Can these all be true at the 

same time?
● yes!

○ So, we’re done.
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SMT: DPLL(T) vs DPLL

● DPLL(T) cannot use pure literal elimination
○ variables may not be independent when they represent a 

theory formula, so pure literal elimination can only be applied 
to plain SAT variables

○ for example, consider the formula:
(x > 10 ∨ x < 3) ∧ (x > 10 ∨ x < 9) ∧ (x < 7)

○ setting the variable for x > 10 to true will make x < 7 false!
● DPLL(T) must support adding clauses to the formula

○ to represent the knowledge gained from theories



Agenda: SMT solvers

● Motivation: reasoning about formulas
● SAT solving: DPLL
● SMT solving: Nelson-Oppen and DPLL(T)
● SMT in practice: brief intro to Z3 and SMT-LIB



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

What question does this code answer?



SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with 

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

What question does this code answer?
“Does an integer greater than 0 exist?”
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  if (a * b == c) return 3;
  return 4;
}
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SMT in practice: a more complex example

Consider this code:

int getNumber(int a, int b, int c) {
  if (c == 0) return 0;
  if (c == 4) return 0;
  if (a + b < c) return 1;
  if (a + b > c) return 2;
  if (a * b == c) return 3;
  return 4;
}

Suppose we want to know if 
the pink statement is ever 
executed. What constraints 
should we pass to the SMT 
solver to check?

 

All of the following 
must be true:
● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

Let’s turn this into code for the solver!

https://www.philipzucker.com/z3-rise4fun/
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SMT in practice: a more complex example

● What went wrong?
○ the solver didn’t terminate quickly on that example

■ search space is infinite!
● Z3 also supports reasoning about bit vectors of fixed size

○ let’s model Java ints (32 bits) and ask the same question…
■ it terminates quickly!
■ finite search space
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  return a * b;
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Another example: program equivalence

Consider these two programs:

int add1(int a, int b) {
  return a + b;
}

int add2(int a, int b) {
  return a * b;
}

are these two methods 
semantically equivalent?
(“semantically equivalent” methods have 
the same meaning)

answer from Z3: yes, for a = 0 and b = 0
● does this match our intuition?
● what have we actually proven?
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Proving universal claims

● When proving universal claims, we need to prove that there are 
not any counter-examples
○ universal claims are those that start with “for all…”

■ program equivalence is universal, because we can phrase it 
as “for all inputs, these programs have the same output”

○ “proving no counter-examples” via SMT solver means that 
we’re looking for unsat as an answer
■ need to phrase the question to the solver as “does there 

exist an input such that these programs differ”
● if it says “no” (=unsat), then the programs are the same!

Let’s try with Z3 again, this time 
changing our question to ask if 
there are counter-examples.
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Summary

● Solver-aided reasoning is used for testing and verification.
● SMT solvers:

○ Provide one solution, if one exists.
○ Are commonly used to find counter-examples (or prove unsat).
○ Support many theories that can model program semantics.
○ Usually support a standard language (SMT-lib).

● The challenge is to model a problem as a constraint system.
● Many higher-level DSLs and language bindings exist.

○ but in HW10 you’ll mostly use SMT-LIB directly



Course announcements

● Next week’s topic will be DevOps
○ I have already posted the required readings

● I will soon send out a survey about when you’d like to do a final 
exam review
○ reminder: the final exam is on May 9th at 6pm (here)


