
Using SMT Solvers (to
reason about programs)

Martin Kellogg

Reading quiz: SMT solvers

Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?
A. polygons
B. equality of uninterpreted functions
C. linear real arithmetic
D. arrays

Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?
A. polygons
B. equality of uninterpreted functions
C. linear real arithmetic
D. arrays

Reading quiz: SMT solvers

Q1: TRUE or FALSE: Z3 supports finding an “optimal” satisfying
assignment that maximizes or minimizes some objective function

Q2: Which of these theories was NOT mentioned as one of the
theories supported by Z3 in the reading?
A. polygons
B. equality of uninterpreted functions
C. linear real arithmetic
D. arrays

Agenda: SMT solvers

● Motivation: reasoning about formulas
● SAT solving: DPLL
● SMT solving: Nelson-Oppen and DPLL(T)
● SMT in practice: brief intro to Z3 and SMT-LIB

Motivation: reasoning about formulas

● Recall our discussion of symbolic execution from earlier in this
class

Motivation: reasoning about formulas

● Recall our discussion of symbolic execution from earlier in this
class
○ effectively, it uses math to figure out which values of each

variable will cause the program to take particular paths

Motivation: reasoning about formulas

● Recall our discussion of symbolic execution from earlier in this
class
○ effectively, it uses math to figure out which values of each

variable will cause the program to take particular paths

■ goal: create test cases that definitely increase coverage

Motivation: reasoning about formulas

● Recall our discussion of symbolic execution from earlier in this
class
○ effectively, it uses math to figure out which values of each

variable will cause the program to take particular paths

■ goal: create test cases that definitely increase coverage

● At the time, we deferred the question of how we would solve

path predicates automatically

Motivation: reasoning about formulas

● Recall our discussion of symbolic execution from earlier in this
class
○ effectively, it uses math to figure out which values of each

variable will cause the program to take particular paths

■ goal: create test cases that definitely increase coverage

● At the time, we deferred the question of how we would solve

path predicates automatically
○ recall that a path predicate is a formula over program

variables that is true when a particular path is executed

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) {
 assert(b > 0);
 if(a + b == a * b) {
 return 1;
 }
 return 0;
}

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) {
 assert(b > 0);
 if(a + b == a * b) {
 return 1;
 }
 return 0;
}

suppose we want to cover
this line (return 1)

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) {
 assert(b > 0);
 if(a + b == a * b) {
 return 1;
 }
 return 0;
}

suppose we want to cover
this line (return 1)

what’s its path predicate?

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) {
 assert(b > 0);
 if(a + b == a * b) {
 return 1;
 }
 return 0;
}

suppose we want to cover
this line (return 1)

what’s its path predicate?

b > 0 && a + b == a * b

Motivation: reasoning about formulas

For example, consider this program:

int simpleMath(int a, int b) {
 assert(b > 0);
 if(a + b == a * b) {
 return 1;
 }
 return 0;
}

suppose we want to cover
this line (return 1)

what’s its path predicate?

b > 0 && a + b == a * b

Key question: are there a, b
such that this is true?

Motivation: reasoning about formulas

● As a human, it is relatively easy to solve the example on the
previous slide

Motivation: reasoning about formulas

● As a human, it is relatively easy to solve the example on the
previous slide
○ but real examples are many orders of magnitude larger!

Motivation: reasoning about formulas

● As a human, it is relatively easy to solve the example on the
previous slide
○ but real examples are many orders of magnitude larger!
○ we’d like to automate the task of checking if there’s a solution

Motivation: reasoning about formulas

● As a human, it is relatively easy to solve the example on the
previous slide
○ but real examples are many orders of magnitude larger!
○ we’d like to automate the task of checking if there’s a solution

● In our lecture on symbolic execution, I briefly mentioned that
SMT solvers are the modern tool that we’d use to do so

Motivation: reasoning about formulas

● As a human, it is relatively easy to solve the example on the
previous slide
○ but real examples are many orders of magnitude larger!
○ we’d like to automate the task of checking if there’s a solution

● In our lecture on symbolic execution, I briefly mentioned that
SMT solvers are the modern tool that we’d use to do so
○ let’s do it now: https://www.philipzucker.com/z3-rise4fun/

https://www.philipzucker.com/z3-rise4fun/

Motivation: reasoning about formulas

● Reasoning about formulas is useful for more than symbolic
execution

Motivation: reasoning about formulas

● Reasoning about formulas is useful for more than symbolic
execution

● Other applications include:

Motivation: reasoning about formulas

● Reasoning about formulas is useful for more than symbolic
execution

● Other applications include:
○ reasoning about program correctness (automating

pen-and-paper proofs!)
○ reasoning about program equivalence (cf. equivalent mutant

problem)
○ program synthesis
○ program repair
○ etc.

What is an SMT solver, exactly?

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
● note “tries to”: boolean satisfiability is NP-complete

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
● note “tries to”: boolean satisfiability is NP-complete
● “theories” refers to non-boolean parts of the formula

○ for example, a solver might support a theory of real numbers

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
● note “tries to”: boolean satisfiability is NP-complete
● “theories” refers to non-boolean parts of the formula

○ for example, a solver might support a theory of real numbers
● different solvers might support different theories

What is an SMT solver, exactly?

Definition: a satisfiability-modulo-theories (SMT) solver is a tool that
tries to automatically either produces a set of assignments to variables
in a mathematical formula that makes it true, if such a solution exists;
or, if no such solution exists, produces a proof of unsatisfiability.
● note “tries to”: boolean satisfiability is NP-complete
● “theories” refers to non-boolean parts of the formula

○ for example, a solver might support a theory of real numbers
● different solvers might support different theories

○ much of today’s reading was about various theories that Z3
supports, such as Equality of Uninterpreted Functions (EUF) and
the theory of Arrays

How SMT solvers are used

How SMT solvers are used

● the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
○ “reduce” here means “do a reduction”, like in your theory class

How SMT solvers are used

● the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
○ “reduce” here means “do a reduction”, like in your theory class

● for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
○ then uses the SMT solver as an oracle

How SMT solvers are used

● the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
○ “reduce” here means “do a reduction”, like in your theory class

● for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
○ then uses the SMT solver as an oracle

● note that in the symbolic execution case, we’re interested in the
satisfying assignment (it’s the test case)

How SMT solvers are used

● the key idea behind using an SMT solver in program analysis is to
reduce a problem to the satisfiability of some formula
○ “reduce” here means “do a reduction”, like in your theory class

● for example, symbolic execution reduces covering a particular line
of code to the problem of whether a path predicate is satisfiable
○ then uses the SMT solver as an oracle

● note that in the symbolic execution case, we’re interested in the
satisfying assignment (it’s the test case)
○ in many other interesting cases, we want to check a formula’s

validity: that is, whether it is true for all values of its inputs

Validity vs satisfiability

● Suppose we have some formula F

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT
solver)

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT
solver)

● Two-step transformation:
○ ∀x. F(x) is true ->

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT
solver)

● Two-step transformation:
○ ∀x. F(x) is true -> ¬∃x. F(x) is false

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT
solver)

● Two-step transformation:
○ ∀x. F(x) is true -> ¬∃x. F(x) is false
○ ¬∃x. F(x) is false -> ¬∃x. ¬F(x) is true

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT
solver)

● Two-step transformation:
○ ∀x. F(x) is true -> ¬∃x. F(x) is false
○ ¬∃x. F(x) is false -> ¬∃x. ¬F(x) is true

■ This is exactly equivalent to asking if ¬F(x) is satisfiable

Validity vs satisfiability

● Suppose we have some formula F
○ we want to prove ∀x. F(x) is true

■ (x here stands for the free variables of F, which you can
think of as the inputs)

○ we have an oracle for finding satisfying assignments (the SMT
solver)

● Two-step transformation:
○ ∀x. F(x) is true -> ¬∃x. F(x) is false
○ ¬∃x. F(x) is false -> ¬∃x. ¬F(x) is true

■ This is exactly equivalent to asking if ¬F(x) is satisfiable

This means that we can
use an SMT solver to
check either validity or
satisfiability!
● useful for e.g. proving

program equivalence

Goals for today

Goals for today

● Goal #1: understand the basics of how an SMT solver works

Goals for today

● Goal #1: understand the basics of how an SMT solver works
○ I don’t expect you to be able to go out and build one right away

Goals for today

● Goal #1: understand the basics of how an SMT solver works
○ I don’t expect you to be able to go out and build one right away
○ but to use a tool effectively, it’s important to understand the

basic ideas that make it work

Goals for today

● Goal #1: understand the basics of how an SMT solver works
○ I don’t expect you to be able to go out and build one right away
○ but to use a tool effectively, it’s important to understand the

basic ideas that make it work
● Goal #2: understand how to use and apply an SMT solver to

real-world program analysis problems

Goals for today

● Goal #1: understand the basics of how an SMT solver works
○ I don’t expect you to be able to go out and build one right away
○ but to use a tool effectively, it’s important to understand the

basic ideas that make it work
● Goal #2: understand how to use and apply an SMT solver to

real-world program analysis problems
○ this is what the homework will ask you to do

■ and was also the main subject of today’s reading

Goals for today

● Goal #1: understand the basics of how an SMT solver works
○ I don’t expect you to be able to go out and build one right away
○ but to use a tool effectively, it’s important to understand the

basic ideas that make it work
● Goal #2: understand how to use and apply an SMT solver to

real-world program analysis problems
○ this is what the homework will ask you to do

■ and was also the main subject of today’s reading
○ hopefully you will also get a sense for when and when not to

apply an SMT-based tool

Agenda: SMT solvers

● Motivation: reasoning about formulas
● SAT solving: DPLL
● SMT solving: Nelson-Oppen and DPLL(T)
● SMT in practice: brief intro to Z3 and SMT-LIB

Review: basics of SAT

Review: basics of SAT

● You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
○ but just in case you did not…

Review: basics of SAT

● You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
○ but just in case you did not…

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false)

Review: basics of SAT

● You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
○ but just in case you did not…

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false) connected by the boolean operators
(∧ for logical and, ∨ for logical or, and ¬ for logical negation)

Review: basics of SAT

● You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
○ but just in case you did not…

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false) connected by the boolean operators
(∧ for logical and, ∨ for logical or, and ¬ for logical negation)
● a boolean formula is satisfiable iff there exists an assignment of

the variables to true and false that makes the formula as a whole
evaluate to true

Review: basics of SAT

● You should have seen the boolean satisfiability problem (SAT
problem) in your undergraduate theory of computation course
○ but just in case you did not…

Definition: a boolean formula is a set of boolean variables (i.e., symbols
that can be either true or false) connected by the boolean operators
(∧ for logical and, ∨ for logical or, and ¬ for logical negation)
● a boolean formula is satisfiable iff there exists an assignment of

the variables to true and false that makes the formula as a whole
evaluate to true

Example boolean formulas:
● a ∨ b ∧ ¬c
● (P ∧ Q) ∨ (Q ∧ ¬R)
● etc.

SAT solving goal: find an assignment

● You can think of an assignment as a mapping from variables to
values

SAT solving goal: find an assignment

● You can think of an assignment as a mapping from variables to
values

● Examples:
○ is X ∨ Y satisfiable?

SAT solving goal: find an assignment

● You can think of an assignment as a mapping from variables to
values

● Examples:
○ is X ∨ Y satisfiable?

■ yes: X -> true, Y -> false is a satisfying assignment

SAT solving goal: find an assignment

● You can think of an assignment as a mapping from variables to
values

● Examples:
○ is X ∨ Y satisfiable?

■ yes: X -> true, Y -> false is a satisfying assignment
○ is X ∧ ¬X satisfiable?

SAT solving goal: find an assignment

● You can think of an assignment as a mapping from variables to
values

● Examples:
○ is X ∨ Y satisfiable?

■ yes: X -> true, Y -> false is a satisfying assignment
○ is X ∧ ¬X satisfiable?

■ no: there is no choice of X that makes both X and ¬X true
at the same time

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

○ This is the classic Cook-Levin theorem (proved in the 1970s)
■ boolean SAT is the “original” NP-complete problem!

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

○ This is the classic Cook-Levin theorem (proved in the 1970s)
■ boolean SAT is the “original” NP-complete problem!
■ in NP because you can verify that an assignment makes

the formula true by just evaluating the formula

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

○ This is the classic Cook-Levin theorem (proved in the 1970s)
■ boolean SAT is the “original” NP-complete problem!
■ in NP because you can verify that an assignment makes

the formula true by just evaluating the formula
■ NP-hard by reduction to polynomial-time acceptance by

a nondeterministic Turing machine

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

○ This is the classic Cook-Levin theorem (proved in the 1970s)
■ boolean SAT is the “original” NP-complete problem!
■ in NP because you can verify that an assignment makes

the formula true by just evaluating the formula
■ NP-hard by reduction to polynomial-time acceptance by

a nondeterministic Turing machine
● Naïve solution: try all possible assignments

SAT solving: how hard is it?

● If I’m asking, it’s probably difficult. But how hard?
● Answer: NP-Complete

○ This is the classic Cook-Levin theorem (proved in the 1970s)
■ boolean SAT is the “original” NP-complete problem!
■ in NP because you can verify that an assignment makes

the formula true by just evaluating the formula
■ NP-hard by reduction to polynomial-time acceptance by

a nondeterministic Turing machine
● Naïve solution: try all possible assignments

○ Takes O(2n) time for a formula with n variables (slow!)

SAT solving in practice

● I’ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast

SAT solving in practice

● I’ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
○ they can solve (some) formulas with millions or billions of

clauses very quickly (under 30 seconds)

SAT solving in practice

● I’ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
○ they can solve (some) formulas with millions or billions of

clauses very quickly (under 30 seconds)
● So how do they manage to be so fast when the underlying

problem is so hard?

SAT solving in practice

● I’ve mentioned before (during our symbolic execution lecture)
that modern SMT solvers are fast
○ they can solve (some) formulas with millions or billions of

clauses very quickly (under 30 seconds)
● So how do they manage to be so fast when the underlying

problem is so hard?
○ We’ll discuss two core algorithms:

■ the DPLL algorithm for efficiently solving SAT
■ the Nelson-Oppen algorithm for efficiently solving SMT

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

● Input must be in conjunctive normal form

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

● Input must be in conjunctive normal form
● Two key innovations/heuristics:

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

● Input must be in conjunctive normal form
● Two key innovations/heuristics:

○ unit propagation

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

● Input must be in conjunctive normal form
● Two key innovations/heuristics:

○ unit propagation
○ pure literal elimination

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

● Input must be in conjunctive normal form
● Two key innovations/heuristics:

○ unit propagation
○ pure literal elimination

● If those don’t apply, default to the naïve algorithm

DPLL: overview

● DPLL is a SAT-solving algorithm developed by Davis, Putnam,
Logemann, and Loveland (hence the name) in 1961

● Algorithm is still exponential in the worst case, but on many
problems is much faster than the naïve algorithm

● Input must be in conjunctive normal form
● Two key innovations/heuristics:

○ unit propagation
○ pure literal elimination

● If those don’t apply, default to the naïve algorithm

DPLL: input

● the DPLL algorithm assumes that the input formula is in
conjunctive normal form (CNF):

DPLL: input

● the DPLL algorithm assumes that the input formula is in
conjunctive normal form (CNF):
○ it is a set of clauses that are separated by conjunctions (∧)

DPLL: input

● the DPLL algorithm assumes that the input formula is in
conjunctive normal form (CNF):
○ it is a set of clauses that are separated by conjunctions (∧)
○ each clause contains zero or more disjunctions (∨) of literals

(which may or may not be negated)

DPLL: input

● the DPLL algorithm assumes that the input formula is in
conjunctive normal form (CNF):
○ it is a set of clauses that are separated by conjunctions (∧)
○ each clause contains zero or more disjunctions (∨) of literals

(which may or may not be negated)

Example CNF formulas:
● (a ∨ b) ∧ (¬c)
● (a ∨ ¬b) ∧ (¬a ∨ c) ∧ (b ∨ c)

DPLL: input

● the DPLL algorithm assumes that the input formula is in
conjunctive normal form (CNF):
○ it is a set of clauses that are separated by conjunctions (∧)
○ each clause contains zero or more disjunctions (∨) of literals

(which may or may not be negated)
● if the input formula is not in CNF, we can transform it into CNF

automatically via DeMorgan’s laws, the double negative law, and
the distributives laws over boolean operators

DPLL: input

● the DPLL algorithm assumes that the input formula is in
conjunctive normal form (CNF):
○ it is a set of clauses that are separated by conjunctions (∧)
○ each clause contains zero or more disjunctions (∨) of literals

(which may or may not be negated)
● if the input formula is not in CNF, we can transform it into CNF

automatically via DeMorgan’s laws, the double negative law, and
the distributives laws over boolean operators
○ I’m not going to cover this, because you should have had a

discrete math class before. If you can’t confidently do this
now, you should practice before the exam.

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
○ literal here refers to a variable or its negation

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
○ literal here refers to a variable or its negation

● intuition: since the formula is in CNF, for the formula to be
satisfiable then each clause must be true

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
○ literal here refers to a variable or its negation

● intuition: since the formula is in CNF, for the formula to be
satisfiable then each clause must be true
○ for a one-literal clause to be true, that literal must be true!

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
○ literal here refers to a variable or its negation

● intuition: since the formula is in CNF, for the formula to be
satisfiable then each clause must be true
○ for a one-literal clause to be true, that literal must be true!Consider this CNF formula:

(a ∨ b) ∧ (¬c) ∧ (¬a ∨ c) ∧ (b ∨ c)

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
○ literal here refers to a variable or its negation

● intuition: since the formula is in CNF, for the formula to be
satisfiable then each clause must be true
○ for a one-literal clause to be true, that literal must be true!Consider this CNF formula:

(a ∨ b) ∧ (¬c) ∧ (¬a ∨ c) ∧ (b ∨ c)

● ¬c appears alone, so c must be false

DPLL: unit propagation

● the first DPLL heuristic is unit propagation: if a literal is the only
disjunct in a particular clause, it must be true
○ literal here refers to a variable or its negation

● intuition: since the formula is in CNF, for the formula to be
satisfiable then each clause must be true
○ for a one-literal clause to be true, that literal must be true!Consider this CNF formula:

(a ∨ b) ∧ (¬c) ∧ (¬a ∨ c) ∧ (b ∨ c)

● ¬c appears alone, so c must be false

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:
○ if a variable is never negated, set it to true

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:
○ if a variable is never negated, set it to true
○ if a variable is always negated, set it to false

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:
○ if a variable is never negated, set it to true
○ if a variable is always negated, set it to false

● intuition: a variable that only appears positively can only help us
satisfy the formula by being true, not by being false

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:
○ if a variable is never negated, set it to true
○ if a variable is always negated, set it to false

● intuition: a variable that only appears positively can only help us
satisfy the formula by being true, not by being falseContinuing the example:

(a ∨ b) ∧ (¬c) ∧ (¬a ∨ c) ∧ (b ∨ c)

● b only appears positively, so we can set it
to true

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:
○ if a variable is never negated, set it to true
○ if a variable is always negated, set it to false

● intuition: a variable that only appears positively can only help us
satisfy the formula by being true, not by being falseContinuing the example:

(a ∨ b) ∧ (¬c) ∧ (¬a ∨ c) ∧ (b ∨ c)

● b only appears positively, so we can set it
to true

DPLL: pure literal elimination

● the second DPLL heuristic is pure literal elimination:
○ if a variable is never negated, set it to true
○ if a variable is always negated, set it to false

● intuition: a variable that only appears positively can only help us
satisfy the formula by being true, not by being falseContinuing the example:

(a ∨ b) ∧ (¬c) ∧ (¬a ∨ c) ∧ (b ∨ c)

● b only appears positively, so we can set it
to true

DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve
algorithm

DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve
algorithm

● that is, we guess

DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve
algorithm

● that is, we guess
○ modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we’re going to skip over that

DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve
algorithm

● that is, we guess
○ modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we’re going to skip over that
○ generally you can pick whatever variable you’d like if I ask you

to do DPLL (e.g., on an exam) when you are stuck

DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve
algorithm

● that is, we guess
○ modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we’re going to skip over that
○ generally you can pick whatever variable you’d like if I ask you

to do DPLL (e.g., on an exam) when you are stuck
● it is important to remember what you guessed

DPLL: fallback

● if neither DPLL heuristic applies, then we fallback to the naïve
algorithm

● that is, we guess
○ modern solvers use sophisticated heuristics to choose what

variable to set in such a guess, but we’re going to skip over that
○ generally you can pick whatever variable you’d like if I ask you

to do DPLL (e.g., on an exam) when you are stuck
● it is important to remember what you guessed

○ if you reach an unsatisfiable result, you need to backtrack to
the point where you made the guess (and try the other option)

DPLL: algorithm
function DPLL(Φ)
 // unit propagation:
 while there is a unit clause {l} in Φ do
 Φ ← unit-propagate(l, Φ);
 // pure literal elimination:
 while there is a literal l that occurs pure in Φ do
 Φ ← pure-literal-assign(l, Φ);
 // stopping conditions:
 if Φ is empty then
 return true;
 if Φ contains an empty clause then
 return false;
 // DPLL procedure:
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: algorithm
function DPLL(Φ)
 // unit propagation:
 while there is a unit clause {l} in Φ do
 Φ ← unit-propagate(l, Φ);
 // pure literal elimination:
 while there is a literal l that occurs pure in Φ do
 Φ ← pure-literal-assign(l, Φ);
 // stopping conditions:
 if Φ is empty then
 return true;
 if Φ contains an empty clause then
 return false;
 // DPLL procedure:
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

Heuristic: try unit propagation
first because it creates more
units and pure literals.

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: algorithm
function DPLL(Φ)
 // unit propagation:
 while there is a unit clause {l} in Φ do
 Φ ← unit-propagate(l, Φ);
 // pure literal elimination:
 while there is a literal l that occurs pure in Φ do
 Φ ← pure-literal-assign(l, Φ);
 // stopping conditions:
 if Φ is empty then
 return true;
 if Φ contains an empty clause then
 return false;
 // DPLL procedure:
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

Pure literal elimination is tried
second because it only
eliminates entire clauses (it can’t
create new units or pure literals).

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: algorithm
function DPLL(Φ)
 // unit propagation:
 while there is a unit clause {l} in Φ do
 Φ ← unit-propagate(l, Φ);
 // pure literal elimination:
 while there is a literal l that occurs pure in Φ do
 Φ ← pure-literal-assign(l, Φ);
 // stopping conditions:
 if Φ is empty then
 return true;
 if Φ contains an empty clause then
 return false;
 // DPLL procedure:
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ {l}) or DPLL(Φ ∧ {¬l})

pseudo-code from https://en.wikipedia.org/wiki/DPLL_algorithm

Fallback: try both assignments to
a random literal. (Note the
short-circuiting “or” operator.)

https://en.wikipedia.org/wiki/DPLL_algorithm

DPLL: putting it all together

Try to do DPLL in pairs on the following formula:

(a ∨ b) ∧ (a ∨ c) ∧ (¬a ∨ c) ∧ (a ∨ ¬c) ∧ (¬a ∨ ¬c) ∧ (¬d)

From SAT to SMT

From SAT to SMT

● We’d like to solve formulas that contain more complex
subcomponents than just booleans
○ e.g., involving linear arithmetic like x > 10

From SAT to SMT

● We’d like to solve formulas that contain more complex
subcomponents than just booleans
○ e.g., involving linear arithmetic like x > 10

● For the moment, we will assume the existence of solvers for these
theories (such as linear arithmetic)

From SAT to SMT

● We’d like to solve formulas that contain more complex
subcomponents than just booleans
○ e.g., involving linear arithmetic like x > 10

● For the moment, we will assume the existence of solvers for these
theories (such as linear arithmetic)
○ but note that separate satisfying assignments for two theories

might not be compatible!

From SAT to SMT

● We’d like to solve formulas that contain more complex
subcomponents than just booleans
○ e.g., involving linear arithmetic like x > 10

● For the moment, we will assume the existence of solvers for these
theories (such as linear arithmetic)
○ but note that separate satisfying assignments for two theories

might not be compatible!
● Core idea of SMT: solve theories separately, but use DPLL to

combine them (called DPLL(T))

SMT: Nelson-Oppen

SMT: Nelson-Oppen

● Provides a procedure for solving fragments of various theories in
the same formula separately

SMT: Nelson-Oppen

● Provides a procedure for solving fragments of various theories in
the same formula separately

● Requires some assumptions about the theories:

SMT: Nelson-Oppen

● Provides a procedure for solving fragments of various theories in
the same formula separately

● Requires some assumptions about the theories:
○ quantifier-free fragments (“conjunctive”)
○ equality is the only symbol in their intersection
○ both must be stably infinite (don’t worry about this)

SMT: Nelson-Oppen

● Provides a procedure for solving fragments of various theories in
the same formula separately

● Requires some assumptions about the theories:
○ quantifier-free fragments (“conjunctive”)
○ equality is the only symbol in their intersection
○ both must be stably infinite (don’t worry about this)

● Key idea: replace expressions from each theory with variables

SMT: Nelson-Oppen

● Provides a procedure for solving fragments of various theories in
the same formula separately

● Requires some assumptions about the theories:
○ quantifier-free fragments (“conjunctive”)
○ equality is the only symbol in their intersection
○ both must be stably infinite (don’t worry about this)

● Key idea: replace expressions from each theory with variables
○ variables introduced by Nelson-Oppen can be shared between

theories

SMT: Nelson-Oppen

● Provides a procedure for solving fragments of various theories in
the same formula separately

● Requires some assumptions about the theories:
○ quantifier-free fragments (“conjunctive”)
○ equality is the only symbol in their intersection
○ both must be stably infinite (don’t worry about this)

● Key idea: replace expressions from each theory with variables
○ variables introduced by Nelson-Oppen can be shared between

theories
○ solve the whole formula with a modified variant of DPLL, then

ask the theory solvers if the satisfying assignment makes sense

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared
variables for expressions:

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared
variables for expressions:
● equality of uninterpreted functions (EUF):

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared
variables for expressions:
● equality of uninterpreted functions (EUF): f(e1) = a, e2 = f(x), e3 = f(y),

f(e4) = e5, x = y

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared
variables for expressions:
● equality of uninterpreted functions (EUF): f(e1) = a, e2 = f(x), e3 = f(y),

f(e4) = e5, x = y
● arithmetic:

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared
variables for expressions:
● equality of uninterpreted functions (EUF): f(e1) = a, e2 = f(x), e3 = f(y),

f(e4) = e5, x = y
● arithmetic: e1 = e2 - e3, e4 = 0, e5 = a + 2, x = y

At this point in class, I tried to solve
this example on the board. I got it
wrong; it is not satisfiable. See next
week’s slides.

SMT: Nelson-Oppen

Let’s use the following formula as an example:

f(f(x) - f(y)) = a ∧ f(0) = a + 2 ∧ x = y

This formula has literals in two theories. Replace them with shared
variables for expressions:
● equality of uninterpreted functions (EUF): f(e1) = a, e2 = f(x), e3 = f(y),

f(e4) = e5, x = y
● arithmetic: e1 = e2 - e3, e4 = 0, e5 = a + 2, x = y

Note how theories
communicate using
(only) equalities

SMT: DPLL(T) algorithm intuition

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory
○ Replace each theory fragment with a fresh boolean variable

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory
○ Replace each theory fragment with a fresh boolean variable
○ Run normal DPLL (with one exception, which I’ll mention soon)

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory
○ Replace each theory fragment with a fresh boolean variable
○ Run normal DPLL (with one exception, which I’ll mention soon)
○ Assuming we get a satisfying assignment, ask theories if all of

the assignments can be true at the same time

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory
○ Replace each theory fragment with a fresh boolean variable
○ Run normal DPLL (with one exception, which I’ll mention soon)
○ Assuming we get a satisfying assignment, ask theories if all of

the assignments can be true at the same time
○ If not, add new clauses and re-run DPLL(T)

SMT: DPLL(T) algorithm intuition

● DPLL(T) is a variant of DPLL for use with theories (T stands for
“theory” in DPLL(T))
○ Use Nelson-Oppen to purify the input formula so that each

fragment is in only one theory
○ Replace each theory fragment with a fresh boolean variable
○ Run normal DPLL (with one exception, which I’ll mention soon)
○ Assuming we get a satisfying assignment, ask theories if all of

the assignments can be true at the same time
○ If not, add new clauses and re-run DPLL(T)
○ Continue until done

SMT: DPLL(T) example

Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

Conveniently all clauses
are in linear arithmetic, so
we can skip purification

SMT: DPLL(T) example

Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

 p1 ∧ p2 ∧ (p3 ∨ p4)

SMT: DPLL(T) example

Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

 p1 ∧ p2 ∧ (p3 ∨ p4)

We now solve this with DPLL. We get a satisfying assignment (e.g., p1,
p2, p4 all true). Then, we check this with our theory:
● can p1, p2, and p4 all be true at the same time?

SMT: DPLL(T) example

Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

 p1 ∧ p2 ∧ (p3 ∨ p4)

We now solve this with DPLL. We get a satisfying assignment (e.g., p1,
p2, p4 all true). Then, we check this with our theory:
● can p1, p2, and p4 all be true at the same time?

○ no! theory of linear arithmetic says p1 and p2 imply not p4

SMT: DPLL(T) example

Consider this formula as an example:

x >= 0 ∧ y = x + 1 ∧ (y > 2 ∨ y < 1)

 p1 ∧ p2 ∧ (p3 ∨ p4)

We now solve this with DPLL. We get a satisfying assignment (e.g., p1,
p2, p4 all true). Then, we check this with our theory:
● can p1, p2, and p4 all be true at the same time?

○ no! theory of linear arithmetic says p1 and p2 imply not p4
○ add new clause (¬p1 ∨ ¬p2 ∨ ¬p4), try again

SMT: DPLL(T) example

We now have:

p1 ∧ p2 ∧ (p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p4)

SMT: DPLL(T) example

We now have:

p1 ∧ p2 ∧ (p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p4)

Run DPLL again; one satisfying assignment is p1, p2, p3, ¬p4

SMT: DPLL(T) example

We now have:

p1 ∧ p2 ∧ (p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p4)

Run DPLL again; one satisfying assignment is p1, p2, p3, ¬p4
● check these again against our theory. Can these all be true at the

same time?

SMT: DPLL(T) example

We now have:

p1 ∧ p2 ∧ (p3 ∨ p4) ∧ (¬p1 ∨ ¬p2 ∨ ¬p4)

Run DPLL again; one satisfying assignment is p1, p2, p3, ¬p4
● check these again against our theory. Can these all be true at the

same time?
● yes!

○ So, we’re done.

SMT: DPLL(T) vs DPLL

SMT: DPLL(T) vs DPLL

● DPLL(T) cannot use pure literal elimination

SMT: DPLL(T) vs DPLL

● DPLL(T) cannot use pure literal elimination
○ variables may not be independent when they represent a

theory formula, so pure literal elimination can only be applied
to plain SAT variables

SMT: DPLL(T) vs DPLL

● DPLL(T) cannot use pure literal elimination
○ variables may not be independent when they represent a

theory formula, so pure literal elimination can only be applied
to plain SAT variables

○ for example, consider the formula:
(x > 10 ∨ x < 3) ∧ (x > 10 ∨ x < 9) ∧ (x < 7)

SMT: DPLL(T) vs DPLL

● DPLL(T) cannot use pure literal elimination
○ variables may not be independent when they represent a

theory formula, so pure literal elimination can only be applied
to plain SAT variables

○ for example, consider the formula:
(x > 10 ∨ x < 3) ∧ (x > 10 ∨ x < 9) ∧ (x < 7)

○ setting the variable for x > 10 to true will make x < 7 false!

SMT: DPLL(T) vs DPLL

● DPLL(T) cannot use pure literal elimination
○ variables may not be independent when they represent a

theory formula, so pure literal elimination can only be applied
to plain SAT variables

○ for example, consider the formula:
(x > 10 ∨ x < 3) ∧ (x > 10 ∨ x < 9) ∧ (x < 7)

○ setting the variable for x > 10 to true will make x < 7 false!
● DPLL(T) must support adding clauses to the formula

○ to represent the knowledge gained from theories

Agenda: SMT solvers

● Motivation: reasoning about formulas
● SAT solving: DPLL
● SMT solving: Nelson-Oppen and DPLL(T)
● SMT in practice: brief intro to Z3 and SMT-LIB

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

What question does this code answer?

SMT in practice: Z3 and SMT-LIB

● Z3 is an SMT solver from Microsoft Research
● Uses a standard input language (SMT-LIB) that is shared with

other modern SMT solvers
● SMT-LIB permits:

○ printing to the screen
○ declaring variables/functions
○ defining constraints
○ checking satisfiability
○ obtaining a model if so

(echo “Running Z3”)
(declare-const a Int)
(assert (> a 0))
(check-sat)
(get-model)

What question does this code answer?
“Does an integer greater than 0 exist?”

SMT in practice: a more complex example

Consider this code:

int getNumber(int a, int b, int c) {
 if (c == 0) return 0;
 if (c == 4) return 0;
 if (a + b < c) return 1;
 if (a + b > c) return 2;
 if (a * b == c) return 3;
 return 4;
}

SMT in practice: a more complex example

Consider this code:

int getNumber(int a, int b, int c) {
 if (c == 0) return 0;
 if (c == 4) return 0;
 if (a + b < c) return 1;
 if (a + b > c) return 2;
 if (a * b == c) return 3;
 return 4;
}

Suppose we want to know if
the pink statement is ever
executed. What constraints
should we pass to the SMT
solver to check?

SMT in practice: a more complex example

Consider this code:

int getNumber(int a, int b, int c) {
 if (c == 0) return 0;
 if (c == 4) return 0;
 if (a + b < c) return 1;
 if (a + b > c) return 2;
 if (a * b == c) return 3;
 return 4;
}

Suppose we want to know if
the pink statement is ever
executed. What constraints
should we pass to the SMT
solver to check?

All of the following
must be true:
● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

SMT in practice: a more complex example

Consider this code:

int getNumber(int a, int b, int c) {
 if (c == 0) return 0;
 if (c == 4) return 0;
 if (a + b < c) return 1;
 if (a + b > c) return 2;
 if (a * b == c) return 3;
 return 4;
}

Suppose we want to know if
the pink statement is ever
executed. What constraints
should we pass to the SMT
solver to check?

All of the following
must be true:
● !(c == 0)
● !(c == 4)
● !(a + b < c)
● !(a + b > c)
● a * b == c

Let’s turn this into code for the solver!

https://www.philipzucker.com/z3-rise4fun/

SMT in practice: a more complex example

● What went wrong?

SMT in practice: a more complex example

● What went wrong?
○ the solver didn’t terminate quickly on that example

■ search space is infinite!

SMT in practice: a more complex example

● What went wrong?
○ the solver didn’t terminate quickly on that example

■ search space is infinite!
● Z3 also supports reasoning about bit vectors of fixed size

SMT in practice: a more complex example

● What went wrong?
○ the solver didn’t terminate quickly on that example

■ search space is infinite!
● Z3 also supports reasoning about bit vectors of fixed size

○ let’s model Java ints (32 bits) and ask the same question...

SMT in practice: a more complex example

● What went wrong?
○ the solver didn’t terminate quickly on that example

■ search space is infinite!
● Z3 also supports reasoning about bit vectors of fixed size

○ let’s model Java ints (32 bits) and ask the same question…
■ it terminates quickly!
■ finite search space

Another example: program equivalence

Consider these two programs:

int add1(int a, int b) {
 return a + b;
}

int add2(int a, int b) {
 return a * b;
}

Another example: program equivalence

Consider these two programs:

int add1(int a, int b) {
 return a + b;
}

int add2(int a, int b) {
 return a * b;
}

are these two methods
semantically equivalent?
(“semantically equivalent” methods have
the same meaning)

Another example: program equivalence

Consider these two programs:

int add1(int a, int b) {
 return a + b;
}

int add2(int a, int b) {
 return a * b;
}

are these two methods
semantically equivalent?
(“semantically equivalent” methods have
the same meaning)

answer from Z3: yes, for a = 0 and b = 0

Another example: program equivalence

Consider these two programs:

int add1(int a, int b) {
 return a + b;
}

int add2(int a, int b) {
 return a * b;
}

are these two methods
semantically equivalent?
(“semantically equivalent” methods have
the same meaning)

answer from Z3: yes, for a = 0 and b = 0
● does this match our intuition?

Another example: program equivalence

Consider these two programs:

int add1(int a, int b) {
 return a + b;
}

int add2(int a, int b) {
 return a * b;
}

are these two methods
semantically equivalent?
(“semantically equivalent” methods have
the same meaning)

answer from Z3: yes, for a = 0 and b = 0
● does this match our intuition?
● what have we actually proven?

Proving universal claims

● When proving universal claims, we need to prove that there are
not any counter-examples
○ universal claims are those that start with “for all…”

Proving universal claims

● When proving universal claims, we need to prove that there are
not any counter-examples
○ universal claims are those that start with “for all…”

■ program equivalence is universal, because we can phrase it
as “for all inputs, these programs have the same output”

Proving universal claims

● When proving universal claims, we need to prove that there are
not any counter-examples
○ universal claims are those that start with “for all…”

■ program equivalence is universal, because we can phrase it
as “for all inputs, these programs have the same output”

○ “proving no counter-examples” via SMT solver means that
we’re looking for unsat as an answer

Proving universal claims

● When proving universal claims, we need to prove that there are
not any counter-examples
○ universal claims are those that start with “for all…”

■ program equivalence is universal, because we can phrase it
as “for all inputs, these programs have the same output”

○ “proving no counter-examples” via SMT solver means that
we’re looking for unsat as an answer
■ need to phrase the question to the solver as “does there

exist an input such that these programs differ”
● if it says “no” (=unsat), then the programs are the same!

Let’s try with Z3 again, this time
changing our question to ask if
there are counter-examples.

Summary

● Solver-aided reasoning is used for testing and verification.

Summary

● Solver-aided reasoning is used for testing and verification.
● SMT solvers:

○ Provide one solution, if one exists.
○ Are commonly used to find counter-examples (or prove unsat).
○ Support many theories that can model program semantics.
○ Usually support a standard language (SMT-lib).

Summary

● Solver-aided reasoning is used for testing and verification.
● SMT solvers:

○ Provide one solution, if one exists.
○ Are commonly used to find counter-examples (or prove unsat).
○ Support many theories that can model program semantics.
○ Usually support a standard language (SMT-lib).

● The challenge is to model a problem as a constraint system.

Summary

● Solver-aided reasoning is used for testing and verification.
● SMT solvers:

○ Provide one solution, if one exists.
○ Are commonly used to find counter-examples (or prove unsat).
○ Support many theories that can model program semantics.
○ Usually support a standard language (SMT-lib).

● The challenge is to model a problem as a constraint system.
● Many higher-level DSLs and language bindings exist.

○ but in HW10 you’ll mostly use SMT-LIB directly

Course announcements

● Next week’s topic will be DevOps
○ I have already posted the required readings

● I will soon send out a survey about when you’d like to do a final
exam review
○ reminder: the final exam is on May 9th at 6pm (here)

