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Abstract—Mutation Testing is a fault-based software testing technique that has been widely studied for over three decades. The

literature on Mutation Testing has contributed a set of approaches, tools, developments, and empirical results. This paper provides a

comprehensive analysis and survey of Mutation Testing. The paper also presents the results of several development trend analyses.

These analyses provide evidence that Mutation Testing techniques and tools are reaching a state of maturity and applicability, while

the topic of Mutation Testing itself is the subject of increasing interest.

Index Terms—Mutation testing, survey.

Ç

1 INTRODUCTION

MUTATION Testing is a fault-based testing technique
which provides a testing criterion called the “muta-

tion adequacy score.” The mutation adequacy score can be
used to measure the effectiveness of a test set in terms of its
ability to detect faults.

The general principle underlying Mutation Testing work
is that the faults used by Mutation Testing represent the
mistakes that programmers often make. By carefully
choosing the location and type of mutant, we can also
simulate any test adequacy criteria. Such faults are
deliberately seeded into the original program by simple
syntactic changes to create a set of faulty programs called
mutants, each containing a different syntactic change. To
assess the quality of a given test set, these mutants are
executed against the input test set. If the result of running a
mutant is different from the result of running the original
program for any test cases in the input test set, the seeded
fault denoted by the mutant is detected. One outcome of the
Mutation Testing process is the mutation score, which
indicates the quality of the input test set. The mutation score
is the ratio of the number of detected faults over the total
number of the seeded faults.

The history of Mutation Testing can be traced back to
1971 in a student paper by Lipton [144]. The birth of the
field can also be identified in papers published in the late
1970s by DeMillo et al. [66] and Hamlet [107].

Mutation Testing can be used for testing software at the
unit level, the integration level, and the specification level. It
has been applied to many programming languages as a
white box unit test technique, for example, Fortran programs
[3], [36], [40], [131], [145], [181], Ada programs [29], [192],
C programs [6], [56], [97], [213], [214], [237], [239], Java

programs [44], [45], [127], [128], [129], [130], [150], [151],
C# programs [69], [70], [71], [72], [73], SQL code [43], [212],
[233], [234], and AspectJ programs [12], [13], [17], [90].
Mutation Testing has also been used for integration testing
[54], [55], [56], [58]. Besides using Mutation Testing at the
software implementation level, it has also been applied at the
design level to test the specifications or models of a program.
For example, at the design level, Mutation Testing has been
applied to Finite State Machines [20], [28], [88], [111],
Statecharts [95], [231], [260], Estelle Specifications [222],
[223], Petri Nets [86], Network protocols [124], [202], [216],
[238], Security Policies [139], [154], [165], [166], [201], and
Web Services [140], [142], [143], [193], [245], [259].

Mutation Testing has been increasingly and widely
studied since it was first proposed in the 1970s. There has
been much research work on the various kinds of techniques
seeking to turn Mutation Testing into a practical testing
approach. However, there is little survey work in the
literature on Mutation Testing. The first survey work was
conducted by DeMillo [62] in 1989. This work summarized
the background and research achievements of Mutation
Testing at this early stage of development of the field. A
survey review of the (very specific) subarea of Strong, Weak,
and Firm mutation techniques was presented by Woodward
[253], [256]. An introductory chapter on Mutation Testing
can be found in the book by Mathur [155] and also in the
book by Ammann and Offutt [11]. The most recent survey
work was conducted by Offutt and Untch [191] in 2000. They
summarized the history of Mutation Testing and provide an
overview of the existing optimization techniques for Muta-
tion Testing. However, since then, there have been more
than 230 new publications on Mutation Testing.

In order to provide a complete survey covering all the
publications related to Mutation Testing since the 1970s, we
constructed a Mutation Testing publication repository,
which includes more than 390 papers from 1977 to 2009
[121]. We also searched for master’s and PhD theses that
have made a significant contribution to the development of
Mutation Testing. These are listed in Table 1. We took four
steps to build this repository. First, we searched the online
repositories of the main technical publishers, including
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IEEE XPlore, ACM Portal, Springer Online Library, Wiley
InterScience, and Elsevier Online Library, collecting papers
which have either “mutation testing,” “mutation analysis,”
“mutants + testing,” “mutation operator + testing,” “fault
injection,” and “fault-based testing” keywords in their title
or abstract. Then, we went through the references for each
paper in our repository to find missing papers using the
same keyword rules. In this way, we performed a
“transitive closure” on the literature. Mutation Testing
work which was not concerned with software, for example,
hardware, was removed and we also filtered out papers not
written in English. Finally, we sent a draft of this paper to
all cited authors asking them to check our citations. We
have made the repository publicly available at http://
www.dcs.kcl.ac.uk/pg/jiayue/repository/ [121]. Overall
growth trend of all papers in Mutation Testing can be
found in Fig. 1.

The rest of the paper is organized as follows: Section 2
introduces the fundamental theory of Mutation Testing,
including the hypotheses, the process, and the problems of
Mutation Testing. Section 3 explains the techniques for the
reduction of the computational cost. Section 4 introduces
the techniques for detecting equivalent mutants. The
applications of Mutation Testing are introduced in Section 5.
Section 6 summarizes the empirical experiments of the
research work on Mutation Testing. Section 7 describes the

development work on mutation tools. Section 8 discusses
the evidences for the increasing importance of Mutation
Testing. Section 9 discusses the unresolved problems,
barriers, and the areas of success in Mutation Testing. The
paper concludes in Section 10.

2 THE THEORY OF MUTATION TESTING

This section will first introduce the two fundamental
hypotheses of Mutation Testing. It then discusses the
general process of Mutation Testing and the problems from
which it suffers.

2.1 Fundamental Hypotheses

Mutation Testing promises to be effective in identifying
adequate test data which can be used to find real faults [96].
However, the number of such potential faults for a given
program is enormous; it is impossible to generate mutants
representing all of them. Therefore, traditional Mutation
Testing targets only a subset of these faults, those which are
close to the correct version of the program, with the hope
that these will be sufficient to simulate all faults. This theory
is based on two hypotheses: the Competent Programmer
Hypothesis (CPH) [3], [66] and the Coupling Effect [66].

The CPH was first introduced by DeMillo et al. in 1978
[66]. It states that programmers are competent, which
implies that they tend to develop programs close to the
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correct version. As a result, although there may be faults in
the program delivered by a competent programmer, we
assume that these faults are merely a few simple faults
which can be corrected by a few small syntactical changes.
Therefore, in Mutation Testing, only faults constructed from
several simple syntactical changes are applied, which
represent the faults that are made by “competent program-
mers.” An example of the CPH can be found in Acree et al.’s
work [3]. A theoretical discussion using the concept of
program neighborhoods can also be found in Budd et al.’s
work [37].

The Coupling Effect was also proposed by DeMillo et al.
in 1978 [66]. Unlike the CPH concerning a programmer’s
behavior, the Coupling Effect concerns the type of faults
used in mutation analysis. It states that “Test data that
distinguishes all programs differing from a correct one by
only simple errors is so sensitive that it also implicitly
distinguishes more complex errors.” Offutt [174], [175]
extended this into the Coupling Effect Hypothesis and the
Mutation Coupling Effect Hypothesis with a precise
definition of simple and complex faults (errors). In his
definition, a simple fault is represented by a simple mutant
which is created by making a single syntactical change,
while a complex fault is represented as a complex mutant
which is created by making more than one change.

According to Offutt, the Coupling Effect Hypothesis is
that “complex faults are coupled to simple faults in such a
way that a test data set that detects all simple faults in a
program will detect a high percentage of the complex
faults” [175]. The Mutation Coupling Effect Hypothesis
now becomes “Complex mutants are coupled to simple
mutants in such a way that a test data set that detects all
simple mutants in a program will also detect a large
percentage of the complex mutants” [175]. As a result, the
mutants used in traditional Mutation Testing are limited to
simple mutants only.

There has been much research work on the validation of
the coupling effect hypothesis [145], [164], [174], [175].
Lipton and Sayward [145] conducted an empirical study
using a small program, FIND. In their experiment, a small

sample of second order, third order, and fourth order
mutants is investigated. The results suggested that an
adequate test set generated from first order mutants was
also adequate for the samples of kth order mutants
(k ¼ 2; . . . ; 4). Offutt [174], [175] extended this experiment
using all possible second order mutants with two more
programs, MID and TRITYP. The results suggested that test
data developed to kill first order mutants killed over
99 percent second order and third order mutants. This
study implied that the mutation coupling effect hypothesis
does indeed manifest itself in practice. Similar results were
found in the empirical study by Morell [164].

The validity of the mutation coupling effect has also been
considered in the theoretical studies of Wah [242], [243],
[244] and Kapoor [125]. In Wah’s work [243], [244], a simple
theoretical model, the q function model, was proposed
which considers a program to be a set of finite functions.
Wah applied test sets to the first order and the second order
model. Empirical results indicated that the average survival
ratio of first order mutants and second order mutants is 1=n
and 1=n2, respectively, where n is the order of the domain
[243]. This result is also similar to the estimated results of
the empirical studies mentioned above. A formal proof of
the coupling effect on the boolean logic faults can be also
found in Kapoor’s work [125].

2.2 The Process of Mutation Analysis

The traditional process of mutation analysis is illustrated in
Fig. 2. In mutation analysis, from a program p, a set of faulty
programs p0, called mutants, is generated by a few single
syntactic changes to the original program p. As an
illustration, Table 2 shows the mutant p0, generated by
changing the and operator (&&) of the original program p,
into the or operator (k), thereby producing the mutant p0.

A transformation rule that generates a mutant from the
original program is known as a mutation operator.1 Table 2
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known as mutant operators, mutagenic operators, mutagens, and mutation
rules [191].

Fig. 1. Mutation testing publications from 1978-2009 (* indicates years in which a mutation workshop was held).
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contains only one example of a mutation operator; there are
many others. Typical mutation operators are designed to
modify variables and expressions by replacement, insertion,
or deletion operators. Table 3 lists the first set of formalized
mutation operators for the Fortran programming language.
These typical mutation operators were implemented in the
Mothra mutation system [131].

To increase the flexibility of Mutation Testing in practical
applications, Jia and Harman introduced a scripting lan-
guage, the Mutation Operator Constraint Script (MOCS)
[123]. The MOCS provides two types of constraint: Direct
Substitution Constraint and Environmental Condition Con-
straint. The Direct Substitution Constraint allows users to
select a specific transformation rule that performs a simple
change while the Environmental Condition Constraint is
used to specify the domain for applying mutation operators.
Simao et al. [217] also proposed a transformation language,
MUDEL, used to specify the description of mutation
operators. Besides modifying program source, mutation
operators can also be defined as rules to modify the grammar
used to capture the syntax of a software artifact. A much
more detailed account of these grammar-based mutation
operators can be found in the work of Offutt et al. [177].

In the next step, a test set T is supplied to the system.
Before starting the mutation analysis, this test set needs to
be successfully executed against the original program p to
check its correctness for the test case. If p is incorrect, it has
to be fixed before running other mutants; otherwise, each
mutant p0 will then be run against this test set T . If the result
of running p0 is different from the result of running p for any
test case in T , then the mutant p0 is said to be “killed”;
otherwise, it is said to have “survived.”

After all test cases have been executed, there may still be
a few “surviving” mutants. To improve the test set T , the

program tester can provide additional test inputs to kill
these surviving mutants. However, there are some mutants
that can never be killed because they always produce the
same output as the original program. These mutants are
called Equivalent Mutants. They are syntactically different
but functionally equivalent to the original program. Auto-
matically detecting all equivalent mutants is impossible
[35], [187] because program equivalence is undecidable. The
equivalent mutant problem has been a barrier that prevents
Mutation Testing from being more widely used. Several
proposed solutions to the equivalent mutant problem are
discussed in Section 4.

Mutation Testing concludes with an adequacy score,
known as the Mutation Score, which indicates the quality of
the input test set. The mutation score (MS) is the ratio of the
number of killed mutants over the total number of none-
quivalent mutants. The goal of mutation analysis is to raise
the mutation score to 1, indicating the test set T is sufficient
to detect all the faults denoted by the mutants.

2.3 The Problems of Mutation Analysis

Although Mutation Testing is able to effectively assess the
quality of a test set, it still suffers from a number of
problems. One problem that prevents Mutation Testing
from becoming a practical testing technique is the high
computational cost of executing the enormous number of
mutants against a test set. The other problems are related to
the amount of human effort involved in using Mutation
Testing, for example, the human oracle problem [247] and
the equivalent mutant problem [35].

The human oracle problem refers to the process of
checking the original program’s output with each test case.
Strictly speaking, this is not a problem unique to Mutation
Testing. In all forms of testing, once a set of inputs has been
arrived at, there remains the problem of checking output
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TABLE 2
An Example of Mutation Operation

TABLE 3
The First Set of Mutation Operators: The 22 “Mothra” Fortran

Mutation Operators (Adapted from [131])
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[247]. However, mutating testing is effective precisely
because it is demanding and this can lead to an increase
in the number of test cases, thereby increasing oracle cost.
This oracle cost is often the most expensive part of the
overall test activity. Also, because of the undecidability of
mutant equivalence, the detection of equivalent mutants
typically involves additional human effort.

Although it is impossible to completely solve these
problems, with existing advances in Mutation Testing the
process of Mutation Testing can be automated and the
runtime can allow for reasonable scalability, as this survey
will show. A lot of previous work has focused on techniques
to reduce computational cost, a topic to which we now turn.

3 COST REDUCTION TECHNIQUES

Mutation Testing is widely believed to be a computationally
expensive testing technique. However, this belief is partly
based on the outdated assumption that all mutants in the
traditional Mothra set need to be considered. In order to
turn Mutation Testing into a practical testing technique,
many cost reduction techniques have been proposed. In the
survey work of Offutt and Untch [191], cost reduction
techniques are divided into three types: “do fewer,” “do
faster,” and “do smarter.” In this paper, these techniques
are classified into two types, reduction of the generated
mutants (which corresponds to “do fewer”) and reduction
of the execution cost (which combines do faster and do
smarter). Fig. 3 provides an overview of the chronological
development of published ideas for cost reduction.

To take a closer look at the cost reduction research
work, we counted the number of publications for each
technique (see Fig. 4). From this figure, it is clear that
Selective Mutation and Weak Mutation are the most

widely studied cost reduction techniques. Each of the
other techniques is studied in no more than five papers to
date. The rest of the section will introduce each cost
reduction technique in detail. Section 3.1 will present work
on mutant reduction techniques, while Section 3.2 will
cover execution reduction techniques.

3.1 Mutant Reduction Techniques

One of the major sources of computational cost in Mutation
Testing is the inherent running cost in executing the large
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Fig. 3. Overview of the chronological development of mutant reduction techniques.

Fig. 4. Percentage of publications using each mutant reduction
technique.
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number of mutants against the test set. As a result, reducing
the number of generated mutants without significant loss of
test effectiveness has become a popular research problem.
For a given set of mutants M and a set of test data T ,
MST ðMÞ denotes the mutation score of the test set T
applied to mutants M. The mutant reduction problem can
be defined as the problem of finding a subset of mutants M 0

from M, where MST ðM 0Þ �MST ðMÞ. This section will
introduce four techniques used to reduce the number of
mutants: Mutant Sampling, Mutant Clustering, Selective
Mutation, and Higher Order Mutation.

3.1.1 Mutant Sampling

Mutant Sampling is a simple approach that randomly
chooses a small subset of mutants from the entire set. This
idea was first proposed by Acree [2] and Budd [34]. In this
approach, all possible mutants are generated first as in
traditional Mutation Testing. x percent of these mutants are
then selected randomly for mutation analysis and the
remaining mutants are discarded. There were many
empirical studies of this approach. The primary focus was
on the choice of the random selection rate (x). In Wong and
Mathur’s studies [159], [248], the authors conducted an
experiment using a random selection rate x percent from 10
to 40 percent in steps of 5 percent. The results suggested
that random selection of 10 percent of mutants is only
16 percent less effective than a full set of mutants in terms of
mutation score. This study implied that Mutant Sampling is
valid with a x percent value higher than 10 percent. This
finding also agreed with the empirical studies by DeMillo
et al. [64] and King and Offutt [131]. Instead of fixing the
sample rate, Sahinoglu and Spafford [207] proposed an
alternative sampling approach based on the Bayesian
sequential probability ratio test (SPRT). In their approach,
the mutants are randomly selected until a statistically
appropriate sample size has been reached. The result
suggested that their model is more sensitive than the
random selection because it is self-adjusting based on the
available test set.

3.1.2 Mutant Clustering

The idea of Mutant Clustering was first proposed in
Hussain’s master’s thesis [116]. Instead of selecting
mutants randomly, Mutant Clustering chooses a subset of
mutants using clustering algorithms. The process of
Mutation Clustering starts from generating all first order
mutants. A clustering algorithm is then applied to classify
the first order mutants into different clusters based on the
killable test cases. Each mutant in the same cluster is
guaranteed to be killed by a similar set of test cases. Only a
small number of mutants are selected from each cluster to
be used in Mutation Testing; the remaining mutants are
discarded. In Hussain’s experiment, two clustering algo-
rithms, K-means and Agglomerative clustering, were
applied and the result was compared with random and
greedy selection strategies. Empirical results suggest that
Mutant Clustering is able to select fewer mutants but still
maintain the mutation score. A development of the Mutant
Clustering approach can be found in the work of Ji et al.
[120]. Ji et al. use a domain reduction technique to avoid
the need to execute all mutants.

3.1.3 Selective Mutation

A reduction in the number of mutants can also be achieved
by reducing the number of mutation operators applied.
This is the basic idea, underpinning Selective Mutation,
which seeks to find a small set of mutation operators that
generate a subset of all possible mutants without sig-
nificant loss of test effectiveness. This idea was first
suggested as “constrained mutation” by Mathur [156].
Offutt et al. [190] subsequently extended this idea, calling it
Selective Mutation.

Mutation operators generate different numbers of mu-
tants and some mutation operators generate far more
mutants than others, many of which may turn out to be
redundant. For example, two mutation operators of the
22 Mothra operators, ASR and SVR, were reported to
generate approximately 30 to 40 percent of all mutants
[131]. To effectively reduce the generated mutants, Mathur
[156] suggested omitting two mutation operators ASR and
SVR which generated most of the mutants. This idea was
implemented as “2-selective mutation” by Offutt et al. [190].

Offutt et al. [190] have also extended Mathur and Wong’s
work by omitting four mutation operators (4-selective
mutation) and omitting six mutation operators (6-selective
mutation). In their studies, they reported that 2-selective
mutation achieved a mean mutation score of 99.99 percent
with a 24 percent reduction in the number of mutants
reduced. 4-selective mutation achieved a mean mutation
score of 99.84 percent with a 41 percent reduction in the
number of mutants. 6-selective mutation achieved a mean
mutation score of 88.71 percent with a 60 percent reduction
in the number of mutants.

Wong and Mathur adopted another type of selection
strategy, selection based on test effectiveness [248], [252],
known as constraint mutation. Wong and Mathur sug-
gested using only two mutation operators: ABS and RAR.
The motivation for the ABS operator is that killing the
mutants generated from ABS requires test cases from
different parts of the input domain. The motivation for
the ROR operator is that killing the mutants generated from
ROR requires test cases which “examine” the mutated
predicate [248], [252]. Empirical results suggest that these
two mutation operators achieve an 80 percent reduction in
the number of mutants and only 5 percent reduction in the
mutation score in practice.

Offutt et al. [182] extended their six-selective mutation
further using a similar selection strategy. Based on the type
of the Mothra mutation operators, they divided them into
three categories: statements, operands, and expressions.
They tried to omit operators from each class in turn. They
discovered that five operators from the operands and
expressions class became the key operators. These five
operators are ABS, UOI, LCR, AOR, and ROR. These key
operators achieved 99.5 percent mutation score.

Mresa and Bottaci [167] proposed a different type of
selective mutation. Instead of trying to achieve a small loss
of test effectiveness, they also took the cost of detecting
equivalent mutants into consideration. In their work, each
mutation operator is assigned a score which is computed by
its value and cost. Their results indicated that it was
possible to reduce the number of equivalent mutants while
maintaining effectiveness.
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Based on previous experience, Barbosa et al. [19] defined
a guideline for selecting a sufficient set of mutation
operators from all possible mutation operators. They
applied this guideline to Proteum’s 77 C mutation operators
[6] and obtained a set of 10 selected mutation operators,
which achieved a mean mutation score of 99.6 percent with
a 65.02 percent reduction in the number of mutants. They
also compared their operators with Wong’s and Offutt
et al.’s set. The results showed their operator set achieved
the highest mutation score.

The most recent research work on selective mutation was
conducted by Namin and Andrews [168], [169], [170]. They
formulated the selective mutation problem as a statistical
problem: the variable selection or reduction problem. They
applied linear statistical approaches to identify a subset of
28 mutation operators from 108 C mutation operators. The
results suggested that these 28 operators are sufficient to
predict the effectiveness of a test suite and it reduced
92 percent of all generated mutants. According to their
results, this approach achieved the highest rate of reduction
compared with other approaches.

3.1.4 Higher Order Mutation

Higher Order Mutation is a comparatively new form of
Mutation Testing introduced by Jia and Harman [122]. The
underlying motivation was to find those rare but valuable
higher order mutants that denote subtle faults. In tradi-
tional Mutation Testing, mutants can be classified into first
order mutants (FOMs) and higher order mutants (HOMs).
FOMs are created by applying a mutation operator only
once. HOMs are generated by applying mutation operators
more than once.

In their work, Jia and Harman introduced the concept
of subsuming HOMs. A subsuming HOM is harder to kill
than the FOMs from which it is constructed. As a result,
it may be preferable to replace FOMs with the single
HOM to reduce the number of the mutants. In particular,
they also introduced the concept of a strongly subsuming
HOM (SSHOM) which is only killed by a subset of the
intersection of test cases that kill each FOM from which it
is constructed.

This idea has been partly proved by Polo et al.’s work
[199]. In their experiment, they focused on a specific order
of HOMs, the second order mutants. They proposed
different algorithms to combine first order mutants to
generate the second order ones. Empirical results suggest
that applying second order mutants reduced test effort by
approximately 50 percent, without much loss of test
effectiveness. More recently, Langdon et al. have applied
multi-object genetic programming to the generation of
higher order mutants [136], [137]. In their experiment, they
have found realistic higher order mutants that are harder to
kill than any first order mutant.

3.2 Execution Cost Reduction Techniques

In addition to reducing the number of generated mutants, the
computational cost can also be reduced by optimizing
the mutant execution process. This section will introduce
the three types of techniques used to optimize the execution
process that have been considered in the literature.

3.2.1 Strong, Weak, and Firm Mutation

Based on the way in which we decide whether to analyze if
a mutant is killed during the execution process, Mutation
Testing techniques can be classified into three types: Strong
Mutation, Weak Mutation, and Firm Mutation.

Strong Mutation is often referred to as traditional
Mutation Testing. That is, it is the formulation originally
proposed by DeMillo et al. [66]. In Strong Mutation, for a
given program p, a mutant m of program p is said to be
killed only if mutant m gives a different output from the
original program p.

To optimize the execution of the Strong Mutation,
Howden [115] proposed Weak Mutation. In Weak Muta-
tion, a program p is assumed to be constructed from a set of
components C ¼ fc1; . . . ; cng. Suppose mutant m is made by
changing component cm; mutant m is said to be killed if any
execution of component cm is different from mutant m. As a
result, in Weak Mutation, instead of checking mutants after
the execution of the entire program, the mutants need only
to be checked immediately after the execution point of the
mutant or mutated component.

In Howden’s work [115], the component C referred to
one of the following five types: variable reference, variable
assignment, arithmetic expression, relational expression,
and boolean expression. This definition of components was
later refined by Offutt and Lee [183], [184]. Offutt and Lee
defined four types of execution: evaluation after the first
execution of an expression (Ex-Weak/1), the first execution
of a statement (St-Weak/1), the first execution of a basic
block (BB-Weak/1), and after N iterations of a basic block in
a loop (BB-Weak=N).

The advantage of weak mutation is that each mutant
does not require a complete execution process; once the
mutated component is executed we can check for survival.
Moreover, it might not even be necessary to generate each
mutant, as the constraints for the test data can sometimes be
determined in advance [253]. However, as different
components of the original program may give different
outputs from the original execution, weak mutation test sets
can be less effective than strong mutation test sets. In this
way, weak mutation sacrifices test effectiveness for im-
provements in test effort. This raises the question as to what
kind of trade-off can be achieved.

There were many empirical studies on the Weak
Mutation trade-off. Girgis and Woodward [103] implemen-
ted a weak mutation system for Fortran 77 programs. Their
system is an analytical type of weak mutation system in
which the mutants are killed by examining the program’s
internal state. In their experiment, four of Howden’s five
program components were considered. The results sug-
gested that weak mutation is less computationally expen-
sive than strong mutation. Marick [153] drew similar
conclusions from his experiments.

A theoretical proof of Weak Mutation by Horgan and
Mathur [113] showed that under certain conditions, test sets
generated by weak mutation can also be expected to be as
effective as strong mutation. Offutt and Lee [183], [184]
presented a comprehensive empirical study using a weak
mutation system named Leonardo. In their experiment,
they used the 22 Mothra mutation operators as fault models
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instead of Howden’s five component set. The results from
their experiments indicated that Weak Mutation is an
alternative to Strong Mutation in most common cases,
agreeing with the probabilistic results of Horgan and
Mathur [113] and experimental results of Girgis and
Woodward [103] and Marick [153].

Firm Mutation was first proposed by Woodward and
Halewood [257]. The idea of Firm Mutation is to overcome
the disadvantages of both weak and strong mutations by
providing a continuum of intermediate possibilities. That is,
the “compare state” of Firm Mutation lies between the
intermediate states after execution (Weak Mutation) and the
final output (Strong Mutation). In 2001, Jackson and
Woodward [119] proposed a parallel Firm Mutation
approach for Java programs. Unfortunately, to date there
is no publicly available firm mutation tool.

3.2.2 Runtime Optimization Techniques

The Interpreter-Based Technique is one of the optimization
techniques used in the first generation of Mutation Testing
tools [131], [181]. In traditional Interpreter-Based Techni-
ques, the result of a mutant is interpreted from its source
code directly. The main cost of this technique is deter-
mined by the cost of interpretation. To optimize the
traditional Interpreter-Based approach, Offutt and King
[131], [181] translated the original program into an
intermediate form. Mutation and interpretation are per-
formed at this intermediate code level. Interpreter-Based
tools provide additional flexibility and are sufficiently
efficient for mutating small programs. However, due to the
nature of interpretation, it becomes slower as the scale of
programs under test increases.

The Compiler-Based Technique is the most common
approach to achieve program mutation [52], [53]. In a
Compiler-Based Technique, each mutant is first compiled
into an executable program; the compiled mutant is then
executed by a number of test cases. Compared to source
code interpretation techniques, this approach is much faster
because execution of compiled binary code takes less time
than interpretation. However, there is also a speed limita-
tion, known as compilation bottleneck, due to the high
compilation cost for programs whose runtime is much
longer than the compilation/link time. [47].

DeMillo et al. proposed the Compiler-Integrated Techni-
que [65] to optimize the performance of the traditional
Compiler-Based Techniques. Because there is only a minor
syntactic difference between each mutant and the original
program, compiling each mutant separately in the Compiler-
Based technique will result in redundant compilation cost.
In the Compiler-Integrated technique, an instrumented
compiler is designed to generate and compile mutants.

The instrumented compiler generates two outputs from
the original program: an executable object code for the
original program and a set of patches for mutants. Each
patch contains instructions which can be applied to convert
the original executable object code image directly to
executable code for a mutant. As a result, this technique
can effectively reduce the redundant cost from individual
compilation. A much more detailed account can be found in
the Krauser’s PhD thesis [132].

The Mutant Schema Generation approach is also de-
signed to reduce the overhead cost of the traditional
interpreter-based techniques [235], [236], [237]. Instead of
compiling each mutant separately, the mutant schema
technique generates a metaprogram. Just like a “super-
mutant,” this metaprogram can be used to represent all
possible mutants. Therefore, to run each mutant against the
test set, only this metaprogram need be compiled. The cost
of this technique is composed of a one-time compilation
cost and the overall runtime cost. As this metaprogram is a
compiled program, its running speed is faster than the
interpreter-based technique. The results from Untch et al.’s
work [237] suggest that the mutant schema prototype tool,
TUMS, is significantly faster than Mothra using interpreter
techniques. Much more extensive results are reported in
detail in Untch’s PhD dissertation [236]. A similar idea of
the Mutant Schemata technique, named the Mutant Con-
tainer, was proposed by Mathur independently. The details
can be found in a software engineering course “handout”
by Mathur [157].

The most recent work on reduction of the compilation
cost is the Bytecode Translation Technique. This technique
was first proposed by Ma et al. [151], [185]. In Bytecode
Translation, mutants are generated from the compiled
object code of the original program, instead of the source
code. As a result, the generated “bytecode mutants” can be
executed directly without compilation. As well as saving
compilation cost, Bytecode Translation can also handle off-
the-shelf programs which do not have available source
code. This technique has been adopted in the Java
programming language [151], [152], [185], [208]. However,
not all programming languages provide an easy way to
manipulate intermediate object code. There are also some
limitations for the application of Bytecode Translation in
Java, such as not all of the mutation operators can be
represented at the Bytecode level [208].

Bogacki and Walter introduced an alternative approach to
reduce compilation cost, called Aspect-Oriented Mutation
[26], [27]. In their approach, an aspect patch is generated to
capture the output of a method on the fly. Each aspect patch
will run programs twice. The first execution obtains the
results and context of the original program and mutants are
generated and executed in the second execution. As a result,
there is no need to compile each mutant. Empirical
evaluation between a prototype tool and Jester can be found
in the work of Bogacki and Walter [26].

3.2.3 Advanced Platforms Support for Mutation Testing

Mutation Testing has also been applied to many advanced
computer architectures to distribute the overall computa-
tional cost among many processors. In 1988, Mathur and
Krauser [158] were the first to perform Mutation Testing on
a vector processor system. Krauser et al. [133], [134]
proposed an approach for concurrent execution mutants
under SIMD machines. Fleyshgakker and Weiss [92], [246]
proposed an algorithm that significantly improved techni-
ques for parallel Mutation Testing. Choi and Mathur [47]
and Offutt et al. [189] have distributed the execution cost of
Mutation Testing through MIMD machines. Zapf [261]
extended this idea in a network environment, where each
mutant is executed independently.
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4 EQUIVALENT MUTANT DETECTION TECHNIQUES

To detect if a program and one of its mutants programs are
equivalent is undecidable, as proved in the work of Budd
and Angluin [35]. As a result, the detection of equivalent
mutants alternatively may have to be carried out by
humans. This has been a source of much theoretical interest.
For a given program p, m denotes a mutant of program p.
Recall that m is an equivalent mutant if m is syntactically
different from p, but has the same behavior as p. Table 4
shows an example of equivalent mutant generated by
changing the operator < of the original program into the
operator ! ¼ . If the statements within the loop do not
change the value of i, program p and mutant m will
produce identical output.

An equivalent mutant is created when a mutation leads
to no possible observable change in behavior; the mutant is
syntactically different but semantically identical to the
original program from which it is created. Grün et al.
[106] manually investigated eight equivalent mutants
generated from the JAXEN XPATH query engine program.
They pointed out four common equivalent mutant situa-
tions: The mutant is generated from dead code, the mutant
improves speed, the mutant only alters the internal states
and the mutant cannot be triggered (i.e., no input test data
can change the program’s behavior at the mutation point). It
is worth noticing that these four are not the only situations
that lead to equivalent mutants. For example, none of it
applies to the example in Table 4.

As the mutation score is counted based on nonequivalent
mutants without a complete detection of all equivalent
mutants, the mutant score can never be 100 percent, which
means the programmer will not have complete confidence
in the adequacy of a potentially perfectly adequate test set.
Empirical results indicate that there are 10 to 40 percent of
mutants which are equivalent [178], [187]. Fortunately,
there has been much research work on the detection of the
equivalent mutants.

Baldwin and Sayward [18] proposed an approach that
used compiler optimization techniques to detect equivalent
mutants. This approach is based on the idea that the
optimization procedure of source code will produce an
equivalent program, so a mutant might be detected as
equivalent mutants by either “optimization” or a “deopti-
mization process.” Baldwin and Sayward [18] proposed six
types of compiler optimization rules that can be used for the
detection of equivalent mutants. These six were implemen-
ted and empirically studied by Offutt and Craft [178]. The
empirical results showed that, generally, 10 percent of all
mutants were equivalent mutants for 15 subject programs.

Based on the work of constraint test data generation,
Offutt and Pan [186], [187], [197] introduced a new
equivalent mutant detection approach using constraint
solving. In their approach, the equivalent mutant problem
is formulated as a constraint satisfaction problem by
analyzing the path condition of a mutant. A mutant is
equivalent if and only if the input constraint is unsatisfiable.
Empirical evaluation of a prototype has shown that this
technique is able to detect a significant percentage of
equivalent mutants (47.63 percent among 11 subject
programs) for most of the programs. Their results suggest
that the constraint satisfaction formulation is more power-
ful than the compiler optimization technique [178].

The program slicing technique has also been proposed to
assist in the detection of equivalent mutants [109], [110],
[241]. Voas and McGraw [241] were the first to suggest the
application of program slicing to Mutation Testing. Hierons
et al. [110] demonstrated an approach using slicing to assist
the human analysis of equivalent mutants. This is achieved
by the generation of a sliced program that denotes the
answer to an equivalent mutant. This work was later
extended by Harman et al. [109] using dependence analysis.

Adamopoulos et al. [5] proposed a co-evolutionary
approach to detect possible equivalent mutants. In their
work, a fitness function was designed to set a poor fitness
value to an equivalent mutant. Using this fitness function,
equivalent mutants are wiped out during the coevolution
process and only mutants that are hard to kill and test cases
that are good at detecting mutants are selected.

Ellims et al. [83] reported that mutants with syntactic
difference and the same output can be also semantically
different in terms of running profile. These mutants often
have the same output as the original programs but have
different execution time or memory usage. Ellims et al.
suggested that “resource-aware” might be used to kill the
potential mutants.

The most recent work on the equivalent mutants was
conducted by Grün et al. [106], who investigated the impact
of mutants. The impact of a mutant was defined as the
different program behavior between the original program
and the mutant and it was measured through the code
coverage in their experiment. The empirical results sug-
gested that there was a strong correlation between mutant
“killability” and its impact on execution, which indicates that
if a mutant has higher impact, it is less likely to be equivalent.

5 THE APPLICATION OF MUTATION TESTING

Since Mutation Testing was proposed in the 1970s, it has
been applied to test both program source code (Program
Mutation) [60] and program specification (Specification
Mutation) [105]. Program Mutation belongs to the category
of white-box-based testing, in which faults are seeded into
source code, while Specification Mutation belongs to black-
box-based testing, where faults are seeded into program
specifications, but in which the source code may be
unavailable during testing.

Fig. 5 shows the chronological development of research
work on Program Mutation and Specification Mutation.
Fig. 6 shows the percentage of the publications addressing
each language to which Mutation Testing has been applied.
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As Fig. 5 shows, there has been more work on Program

Mutation than Specification Mutation. Notably more than

50 percent of the work has been applied to Java, Fortran, and

C. Fortran features highly because a lot of the earlier work on

Mutation Testing was carried out on Fortran programs. In

the following section, the applications of Program Mutation

and Specification Mutation are summarized by the program-

ming language targeted.

5.1 Program Mutation

Program Mutation has been applied to both the unit level
[66] and the integration level [55] of testing. For unit-level
Program Mutation, mutants are generated to represent the
faults that programmers might have made within a
software unit, while for the integration-level Program
Mutation, mutants are designed to represent the integration
faults caused by the connection or interaction between
software units [240]. Applying Program Mutation at the
integration level is also known as Interface Mutation, which
was first introduced by Delamaro et al. [55] in 1996.
Interface Mutation has been applied to C programs by
Delamaro and Maldonado [54], Delamaro et al. [55], [56]
and also to CORBA programs by Ghosh [98], Ghosh et al.
[100], Ghosh and Mathur [101], [102]. Empirical evaluations
of Interface Mutation can be found in Vincenzei et al.’s
work [240] and Delamaro et al.’s work [57], [58].

5.1.1 Mutation Testing for Fortran

In the earliest days of Mutation Testing, most of the
experiments on Mutation Testing targeted Fortran. Budd
et al. [36], [40] were the first to design mutation operators
for Fortran IV in 1977. Based on these studies, a Mutation
Testing tool named PIMS was developed for testing
Fortran IV programs [3], [36], [145]. However, there were
no formal definitions of mutation operators for Fortran until
1987. In 1987, Offutt and King [131], [181] summarized the
results from previous work and proposed 22 mutation
operators for Fortran 77. This set of mutation operators
became the first set of formalized mutation operators and
consequently had greater influence on later definitions of
mutation operators for applying Mutation Testing to the
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other programming languages. These mutation operators
are divided into three groups; the Statement analysis group,
the Predicate analysis group, and the Coincidental correct-
ness group.

5.1.2 Mutation Testing for Ada

Ada mutation operators were first proposed by Bowser
[29] in 1988. In 1997, based on previous work of Bowser’s
Ada mutation operators [29], Agrawal et al.’s C mutation
operators [6], and the design of Fortran 77 mutation
operators for MOTHRA [131], Offutt et al. [192] redesigned
mutation operators for Ada programs to produce a
proposed set of 65 Ada mutation operators. According
to the semantics of Ada, this set of Ada mutation
operators is divided into five groups: the Operand
Replacement Operators group, Statement Operators
group, Expression Operators group, Coverage Operators
group, and Tasking Operators group.

5.1.3 Mutation Testing for C

In 1989, Agrawal et al. [6] proposed a comprehensive set of
mutation operators for the ANSI C programming language.
There were 77 mutation operators defined in this set, which
was designed to follow the C language specification. These
operators are classified into variable mutation, operator
mutation, constant mutation, and statement mutation.
Delamaro and Maldonado [54], Delamaro et al. [55], [56],
[58] investigated the application of Mutation Testing at the
integration level. They selected 10 mutation operators from
Agrawal et al.’s 77 mutation operators to test interfaces of
C programs. These mutation operators focus on injecting
faults into the signature of public functions. More recently,
Higher Order Mutation Testing has also been applied to
C programs by Jia and Harman [122].

There are also mutation operators that target specific C
program defects or vulnerabilities. Shahriar and Zulk-
ernine [214] proposed 8 mutation operators to generate
mutants that represent Format String Bugs (FSBs). Vilela
et al. [239] proposed 2 mutation operators representing
faults associated with static and dynamic memory alloca-
tions, which were used to detect Buffer Overflows (BOFs).
This work was subsequently extended by Shahriar and
Zulkernine [213], who proposed 12 comprehensive muta-
tion operators to support the testing of all BOF vulner-
abilities, targeting vulnerable library functions, program
statements, and buffer size. Ghosh et al. [97] have applied
Mutation Testing to an Adaptive Vulnerability Analysis
(AVA) to detect BOFs.

5.1.4 Mutation Testing for Java

Traditional mutation operators are not sufficient for
testing Object-Oriented (OO) programming languages like
Java [130], [151]. This is mainly because the faults
represented by the traditional mutation operators are
different to those in the OO environment due to OO’s
different programming structure. Moreover, there are new
faults introduced by OO-specific features, such as inheri-
tance and polymorphism.

As a result, the design of Java mutation operators was
not strongly influenced by previous work. Kim et al. [128]
were the first to design mutation operators for the Java
programming language. They proposed 20 mutation

operators for Java using Hazard and Operability Studies
(HAZOP). HAZOP is a safety technique which investi-
gates and records the result of system deviations. In Kim
et al.’s work, HAZOP was applied to the Java syntax
definition to identify the plausible faults of the Java
programming language. Based on these plausible faults,
20 Java mutation operators were designed, falling into six
groups: Types/Variables, Names, Classes/interface de-
clarations, Blocks, Expressions, and others.

Based on their previous work on Java mutation operators,
Kim et al. [127] introduced Class Mutation, which applies
mutation to OO (Java) programs targeting faults related to
OO-specific features. In Class Mutation, 3 mutation operators
representing Java OO-features were selected from the 20 Java
mutation operators. In 2000, Kim et al. [129] added another
10 mutation operators for Class Mutation. Finally, in 2001, the
number of the Class mutation operators was extended to 15
and these mutation operators were classified into four types:
polymorphic types, method overloading types, information
hiding, and exception handling types [130]. A similar
approach was also adopted by Chevalley and Thevenod-
Fosse in their work [44], [45].

Ma et al. [150], [151] pointed out that the design of
mutation operators should not start with the selected
approach (Kim et al.’s approach [127]). They suggested
that the selected mutation operators should be obtained
from empirical results of the effectiveness of all mutation
operators. Therefore, instead of continuing Kim et al.’s
work [129], Ma et al. [150] proposed 24 comprehensive Java
mutation operators based on previous studies of OO Fault
models. These are classified into six groups: the Information
Hiding group, Inheritance group, Polymorphism group,
Overloading group, Java Specific Features group, and
Common Programming Mistakes group. Ma et al. con-
ducted an experiment to evaluate the usefulness of the
proposed class mutation operators [149]. The results
suggested that some class mutation model faults can
be detected by traditional Mutation Testing. However, the
mutants generated by the EOA class mutation (Reference
assignment and content assignment replacement) and
the EOC class mutation (reference comparison and content
comparison replacement) cannot be killed by a traditional
mutation adequate test set.

There are also alternative approaches to the definition of
the mutation operators for Java. For example, instead
of applying mutation operators to the program source,
Alexander et al. [9], [24] designed a set of mutation operators
to inject faults into Java utility libraries, such as the Java
container library and the iterator library. Based on work on
traditional mutation operators, Bradbury et al. [31] intro-
duced an extension to the concurrent Java environment.

5.1.5 Mutation Testing for C#

Based on previous proposed Java mutation operators,
Derezi�nska introduced an extension to a set of C#
specialized mutation operators [70], [71] and implemented
them in a C# mutation tool named CREAM [72]. Empirical
results for this set of C# mutation operators using CREAM
were reported by Derezi�nska [71], [73].

5.1.6 Mutation Testing for SQL

Mutation Testing has also been applied to SQL code to
detect faults in database applications. The first attempt to
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design mutation operators for SQL was done by Chan et al.
[43] in 2005. They proposed 7 SQL mutation operators based
on the enhanced entity-relationship model. Tuya et al. [234]
proposed another set of mutant operators for SQL query
statements. This set of mutation operators is organized into
four categories, including mutation of SQL clauses, muta-
tion of operators in conditions and expressions, mutation
handling NULL values, and mutation of identifiers. They
also developed a tool named SQLMutation that implements
this set of SQL mutation operators and an empirical
evaluation concerning results using SQLMutation [233]. A
development of this work targeting Java database applica-
tions can be found in the work of Zhou and Frankl [264].
Shahriar and Zulkernine [212] have also proposed a set of
mutation operators to handle the full set of SQL statements
from connection to manipulation of the database. They
introduced 9 mutation operators and implemented them in
an SQL mutation tool called MUSIC.

5.1.7 Mutation Testing for Aspect-Oriented

Programming

Aspect-Oriented Programming (AOP) is a programming
paradigm that aids programmers in separation of cross-
cutting concerns. Ferrari et al. [90] proposed 26 mutation
operators based on a generalization of faults for general
Aspect-Oriented programs. These mutation operators are
divided into three groups: pointcut expressions, aspect
declarations, and advice definitions and implementation.
Empirical results from evaluation of this work using real-
world applications can also be found in their work [90]. A
recent work from Delamare et al. introduced an approach to
detect equivalent mutants in AOP programs using static
analysis of aspects and base code [51].

AspectJ is a widely studied aspect-oriented extension of
the Java language, which provides many special constructs
such as aspects, advice, join points, and pointcuts [13].
Baekken and Alexander [17] summarized previous research
work on the fault model associated with AspectJ pointcuts.
They proposed a complete AspectJ fault model based on the
incorrect pointcut pattern, which was used as a set of
mutation operators for AspectJ programs. Based on this
work, Anbalagan and Xie [12], [13] proposed a framework
to generate mutants for pointcuts and to detect equivalent
mutants. To reduce the total number of mutants, a
classification and ranking approach based on the strength
of the pointcuts was also introduced in their framework.

5.1.8 Other Program Mutation Applications

Besides these programming languages, Mutation Testing
has also been applied to Lustre programs [80], [81], PHP
programs [215], Cobol programs [108], Matlab/Simulink
[262], and spreadsheets [1]. There is also research work
investigating the design of mutation operators for real-time
systems [96], [171], [172], [227] and concurrent programs [8],
[31], [41], [99], [147].

5.2 Specification Mutation

Although Mutation Testing was originally proposed as a
white box testing technique at the implementation level, it
has also been applied at the software design level. Mutation
Testing at design level is often referred to as “Specification

Mutation,” which was first introduced by Gopal and Budd
in 1983 [38], [105]. In Specification Mutation, faults are
typically seeded into a state machine or logic expressions to
generate “specification mutants.” A specification mutant is
said to be killed if its output condition is falsified.
Specification Mutation can be used to find faults related
to missing functions in the implementation or specification
misinterpretation [195].

5.2.1 Mutation Testing for Formal Specifications

The formal specifications can be presented in many forms,
for example, calculus expressions, Finite State Machines
(FSMs), Petri Nets, and Statecharts. The earlier research
work on Specification Mutation considered specifications of
simple logical expressions. Gopal and Budd [38], [105]
considered specifications in predicate calculus targeting the
predicate structure of the program under test. A similar
work applied to the refinement calculus specification can be
found in the work of Aichernig [7]. Woodward [254], [257]
investigated mutation operators for algebraic specifications.
In their experiment, they applied an optimization approach
to compile a specification mutant into executable code and
evaluated the approach to provide empirical results [255].

More recently, many formal techniques have been
proposed to specify the dynamic aspects of a software
system, for example, FSMs, Petri Nets, and Statecharts.
Fabbri et al. [88] applied Specification Mutation to validate
specifications presented as FSMs. They proposed 9 mutation
operators, representing faults related to the states, events,
and outputs of an FSM. This set of mutation operators was
later implemented as an extension of the C mutation tool
Proteum [85]. An empirical evaluation of these mutation
operators was reported by them [85]. Hierons and Merayo
[111], [112] investigated the application of Mutation Testing
to Probabilistic Finite State Machines (PFSMs). They defined
7 mutation operators and provided an approach to avoid
equivalent mutants. Other work on EFSM mutation can also
be found in the work of Batth et al. [20], Bombieri et al. [28]
and Belli et al. [23].

Statecharts are widely used for the formal specification
of complex reactive systems. Statecharts can be considered
as an extension of FSMs, so the first set of mutation
operators for Statecharts was also proposed by Fabbri et al.
[87], based on their previous work on FSM mutation
operators. Using Fabbri et al.’s Statecharts mutation
operators, Yoon et al. [260] introduced a new test criterion,
the State-based Mutation Test Criterion (SMTC). In the
work of Trakhtenbrot [231], the author proposed new
mutations to assess the quality of tests for statecharts at the
implementation level as well as the model level. Other work
on Statechart mutation can be found in the work of Fraser
and Wotawa [95].

Besides FSMs and Statecharts, Specification Mutation
has been also applied to a variety of specification
languages. For example, Souza et al. [222], [223] investi-
gated the application of Mutation Testing to the Estelle
Specification language. Fabbri et al. [86] proposed muta-
tion operators for Petri Nets. Srivatanakul et al. [225]
performed an empirical study using Specification Mutation
to CSP Specifications. Olsson and Runeson [196] and
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Sugeta et al. [226] proposed mutation operators for SDL.
Definitions of mutation operators for formal specification
language can be found in the work of Black et al. [25] and
the work of Okun [195].

5.2.2 Mutation Testing for Running Environment

During the process of implementing specifications, bugs
might be introduced by programmers due to insufficient
knowledge of the final target environment. These bugs are
called “environment bugs” and they can be hard to detect.
Examples are the bugs caused by memory limitations,
numeric limitations, value initialization, constant value
interpretation, exception handling, and system errors
[224]. Mutation Testing was first applied to the detection
of such bugs by Spafford [224] in 1990. In his work,
environment mutants were generated to detect integer
arithmetic environmental bugs.

The idea of environment bugs was extended in the 1990s
by Du and Mathur, as many empirical studies suggested
that “the environment plays a significant role in triggering
security flaws that lead to security violations” [78]. As a
result, Mutation Testing was also applied to the validation
of security vulnerabilities. Du and Mathur [78] defined an
EAI fault mode for software vulnerability, and this model
was applied to generate environmental mutants. Empirical
results from the evaluation of their experiments are
reported in [79].

5.2.3 Mutation Testing for Web Services

Lee and Offutt [142] were the first to apply Mutation
Testing to Web Services. In 2001, they introduced an
Interaction Specification Model to formalize the interactions
between web components [142]. Based on this specification
model, a set of generic mutation operators was proposed to
mutate the XML data model. This work was later extended
by Offutt and Xu [193] and Xu et al. [259] targeting the
mutation of XML data and they renamed it XML
perturbation. Instead of mutating XML data directly, they
perturbed XML schemas to create invalid XML data using
seven XML schema mutation operators. A constraint-based
test case generation approach was also proposed and the
results of empirical studies were reported [259]. Another
set of XML schema mutation operators was proposed by Li
and Miller [143].

There is also Web Service mutation work targeting
specific XML-based language features, for example, the
OWL-S specification language [140], [245] and WS-BPEL
specification language [84]. Unlike the traditional XML
specification language, OWL-S introduces semantics to
workflow specification using an ontology specification
language. In the work of Lee et al. [140], the authors
propose mutation operators for detection of semantic errors
caused by the misuse of the ontology classes.

5.2.4 Mutation Testing for Networks

Protocol robustness is an important aspect of any network
system. Sidhu and Leung [216] investigated fault coverage
of network protocols. Based on this work, Probert and Guo
proposed a set of mutation operators to test network
protocols [202]. Vigna et al. [238] applied Mutation Testing
to network-based intrusion detection signatures, which are

used to identify malicious traffic. Jing et al. [124] built an
NFSM model for protocol messages and applied Mutation
Testing to this model using the TTCN-3 specification
language. Other work on the application of Mutation
Testing to State-based protocols can be found in the work
of Zhang et al. [263].

5.2.5 Mutation Testing for Security Policy

Mutation Testing has also been applied to security policies
[139], [154], [165], [166], [201]. Much of this research work
sought to design mutation operators that inject common
flaws into different types of security policies. For example,
Martin and Xie [154] applied mutation analysis to test
XACML, an Oasis standard XML syntax for defining
security policies. A similar approach has also been applied
by Mouelhi et al. [166]. Le Traon et al. [139] introduced eight
mutation operators for the Organization-Based Access
Control OrBAC policy. Mouelhi et al. [165] proposed a
generic metamodel for security policy formalisms. Based on
this formalism, a set of mutation operators was introduced
to apply to all rule-based formalisms. Hwang et al.
proposed an approach that applies Mutation Testing to test
firewall policies [117].

5.3 Other Testing Application

In addition to assessing the quality of test sets, Mutation
Testing has also been used to support other testing
activities, for example, test data generation and regression
testing, including test data prioritization and test data
minimization. In this section, we summarize the main work
on mutation as support to these testing activities.

5.3.1 Test Data Generation

The main idea of mutation-based test data generation is to
generate test data that can effectively kill mutants.
Constraint-based test data generation (CBT) is one of the
automatic test data generation techniques using Mutation
Testing. It was first proposed in Offutt’s PhD work [194].
Offutt suggested that there are three conditions for a test
case to kill a mutant: reachability, necessity, and sufficiency.
In CBT, each condition for a mutant is turned into
constraint. Test data that guarantee to kill this mutant can
be generated by finding input values that satisfy these
constraints.

Godzilla is a test data generator that uses the CBT
technique. It was implemented by DeMillo and Offutt [67]
under the Mothra system. Godzilla applied control-flow
analysis, symbolic evaluation, and a constraint satisfaction
technique to generate and solve constraints for each mutant.
Empirical results suggest that 90 percent of mutants can be
killed using the CBT technique for most programs [68].
However, the CBT technique also suffers from some of the
drawbacks associated with symbolic evaluation. Offutt et al.
[179], [180] addressed these problems by proposing the
Dynamic Domain Reduction technique.

Baudry et al. proposed an approach to automatically
generate test data for components implemented by contract
[22]. In this research work, a testing-for-trust methodology
was introduced to keep the consistency of the three
component artifacts: specification, implementation, and test
data. Baudry et al. applied a genetic algorithm to generate
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test data. The generated test datum is then considered as a
predator which is used to validate the program and the
contract at the same time. Experimental results showed that
75 percent of mutants can be killed using this test data
generation technique.

Besides generating test data directly, Mutation Testing
has also been applied to improve the quality of test data.
Baudry et al. [21] proposed an approach to improve the
quality of test data using Mutation Testing with a
Bacteriological Algorithm. Smith and Williams applied
Mutation Testing as guidance to test data augmentation
[219]. Le Traon et al. [138] use mutation analysis to
improve component contract. Xie et al. [258] applied
Mutation Testing to assist programmers in writing para-
meterized unit tests.

5.3.2 Regression Testing

Test case prioritization techniques are one way to assist
regression testing. Mutation Testing has been applied as a
test case prioritization technique by Do and Rothermel [75],
[76]. Do and Rothermel measured how quickly a test suite
detects the mutant in the testing process. Testing sequences
are rescheduled based on the rate of mutant killing.
Empirical studies suggested that this automated test case
prioritization can effectively improve the rate of fault
detection of test suites [76].

Mutation Testing has also been used to assist the test
case minimization process. Test case minimization techni-
ques aim to reduce the size of a test set without losing
much test effectiveness. Offutt et al. [173] proposed an
approach named Ping-Pong. The main idea is to generate
mutants targeting a test criterion. A subset of test data
with the highest mutation score is then selected. Empirical
studies show that Ping-Pong can reduce a mutation
adequacy test set by a mean of 33 percent without loss
of test effectiveness.

In addition to the previously mentioned applications,
mutation analysis has also been applied to other application
domains. For example, Serrestou et al. proposed an
approach to evaluate and improve the functional validation
quality of RTL in a hardware environment [210], [211].

Mutation analysis has also been used to assist the
evaluation of software clone detection tools [204], [205].

6 EMPIRICAL EVALUATION

Empirical study is an important aspect in the evaluation
and dissemination of any technique. In the following
sections, the subject programs used in empirical studies
are first summarized. Empirical results on the evaluation of
Mutation Testing are then reported in detail.

6.1 Subject Programs

In order to investigate the empirical studies on Mutation
Testing, we have collected all the subject programs for each
empirical experiment work from our repository, as shown in
Table 9 (Table 9 is located in the end of the paper). Table 9
shows the name, size, description, the year when the subject
program was first applied, and the overall number of
research papers that report results for this subject program.
The table entry for some sizes and descriptions of the subject
programs are shown as “not reported.” This occurs where
the information is unavailable in the literature. Table 9 is
sorted by the number of papers that use the subject program,
so the first 10 programs are the most studied subject
programs in the literature on Mutation Testing. These wildly
studied programs are all laboratory programs under 50 LoC,
but we also noticed that the 11th program is SPACE, a
nontrivial real program.

To provide an overview of the trend of empirical studies
on Mutation Testing to attack more challenging programs,
we calculated the size of the largest subject program for
each year. For each year on the horizontal axis, the data
point in Fig. 7 shows the size of the largest program
considered in a mutation study up to that point in time.
Clearly, the definition of “program size” can be proble-
matic, so the figure is merely intended to be used as a rough
indicator. There is evidence to indicate that the size of the
subject programs that can be handled by Mutation Testing
is increasing. However, caution is required. We found that
although some empirical experiments were reported to
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handle large programs, some studies applied only a few
mutation operators. We also counted the number of newly
introduced subject programs for each year. The results are
shown in Fig. 8. The dashed line in the figure is the
cumulative view of the results. The number of newly used
subject programs is gradually increasing, which suggests a
growth in practical work.

In the empirical studies, it may be more indicative to use a
real-world program rather than laboratory program. To
understand the relationship between the use of laboratory
programs and real-world programs in mutation experi-
ments, we have counted each type by year. The results are
shown in Fig. 9. In this study, we consider a real-world
program to be either an open source or an industry program.
In Fig. 9, the cumulative view shows that the number of real-
world programs started increasing in 1992, while the number

of laboratory programs had already started increasing by

1988. Fig. 9 also shows the number of laboratory and real

programs introduced into studies each year as bars. This

clearly indicates that, while there are correctly more

laboratory programs overall, since 2002 far more new real

programs than laboratory programs have been introduced.

This finding provides some evidence to support the claim

that the development of Mutation Testing is maturing.
In our study, we found that for each research area of

Mutation Testing, there is a different set of subject programs

used as benchmarks. In Table 5, we have summarized these

benchmark programs. We chose five active research areas

based on our studies: Coupling effect, Selective Mutation,

Weak, Strong, and Firm Mutation, Equivalent Mutant

Detection, and experiments supporting testing, including
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the use of mutation analysis to select, minimize, prioritize,
and generate test data.

6.2 Empirical Results

Many researchers have conducted experiments to evaluate
the effectiveness of Mutation Testing [14], [50], [61], [93],
[94], [160], [188], [248]. These experiments can be divided
into two types: comparing mutation criteria with data-flow
criteria such as “all-use” and comparing mutants with real
faults. Table 6 summarizes the evaluation type and the
subject programs used in each of these experiments.

Mathur and Wong have conducted experiments to
compare the “all-use” criterion with mutation criteria
[160], [248], [251]. In their experiment, Mathur and Wong
manually generated 30 sets of test cases satisfying each
criterion for each subject program. Empirical results
suggested that mutation adequate test sets more easily
satisfy the “all-use” criteria than all-use test sets satisfy

mutation criteria. This result indicates mutation criteria

“probsubsumes”2 the “all-use” criteria in general.
Offutt et al. conduced a similar experiment using

10 different programs [188]. The “cross scoring” result also
provides evidence for Mathur and Wong’s probsubsumes

relationship [160], [248]. In addition to comparing the two
criteria with each other, Offutt et al. also compared the two
criteria in terms of the fault detection rate. This result

showed that 16 percent more faults can be detected using
mutation adequate test sets than “all-use” test sets,
indicating that mutation criteria is “probbetter”3 than the

“all-use” data flow. This conclusion also agreed with the
results of the experiment of Frankl et al. [93], [94].
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2. If a test criterion C1 probsumes a test criterion C2, a test set which is
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3. If a test criterion C1 probbetter than a test criterion C2, then a
randomly selected test set which satisfies C1 is more likely to detect a fault
than a randomly selected test set which satisfies C2 [188].
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In addition to comparing mutation analysis with other
testing criteria, there have also been empirical studies
comparing real faults and mutants. In the work of Daran
and Thévenod-Fosse [50], the authors conducted an experi-
ment comparing real software errors with first order
mutants. The experiment used a safety-critical program
from the civil nuclear field as the subject program with
12 real faults and 24 generated mutants. Empirical results
suggested that 85 percent of the errors caused by mutants
were also produced by real faults, thereby providing
evidence for the Mutation Coupling Effect Hypothesis. This
result also agreed with DeMillo and Mathur’s experiment
[61]. DeMillo and Mathur carried out an extensive study of
the errors in TeX reported by Knuth [61] and they
demonstrated how simple mutants could detect real
complex errors from TeX.

Andrews et al. [14] conducted an experiment comparing
manually instrumented faults generated by experienced
developers with mutants automatically generated by four
carefully selected mutation operators. In the experiment,
the Siemens suite (Printtokens, Printtokens2, Replace,
Schedule, Schedule2, Tcas, and Totinfo) and the Space
program were used as subjects. Empirical results suggested
that, after filtering out equivalent mutants, the remaining
nonequivalent mutants generated from the selected muta-
tion operators were a good indication of the fault detection
ability of a test suite. The results also suggested that the
human-generated faults are different from the mutants;
both human and autogenerated faults are needed for the
detection of real faults.

Do and Rothermel [75], [76] studied the effect of both
hand seeded faults and machine generated mutants on fault
detection ability and the test prioritization order. In the test
data prioritization study, Do and Rothermel considered
several prioritization techniques to improve the fault
detection rate. Their analysis showed that for noncontrol
test case prioritization, the use of mutation can improve
fault detection rates. However, the results are affected by
the number of mutation faults applied. In the fault
detection ability studies, Do and Rothermel followed
Andrews et al.’s experimental procedure [14]. Results from
four out of the six subject programs revealed a similar data
spread to the work of Andrews et al. The effect of test set
minimization using mutation can be found in the work of
Wong et al. [249].

Despite evaluating Mutation Testing against other
testing approaches, there are also experiments that use
mutation analysis to evaluate different testing approaches.
For example, Andrews et al. [15] conducted an experiment
to compare test data generation using control flow and data
flow. Thevenod-Fosse et al. [229] applied mutation analysis
to compare random and deterministic input generation
techniques. Bradbury et al. [32] used mutation analysis to
evaluate traditional testing and model checking approaches
on concurrent programs.

7 TOOLS FOR MUTATION TESTING

The development of Mutation Testing tools is an important
enabler for the transformation of Mutation Testing from the
laboratory into a practical and widely used testing technique.
Without a fully automated mutation tool, Mutation Testing is

unlikely to be accepted by industry. In this section, we
summarize development work on Mutation Testing tools.

Since the idea of Mutation Testing was first proposed in
the 1970s, many mutation tools have been built to support
automated mutation analysis. In our study, we have
collected information concerning 36 implemented mutation
tools, including the academic tools reported in our
repository as well as the tools from the open source and
the industrial domains. Table 7 summarizes the application,
publication time, and any notable characteristics for each
tool. The detailed description of the tools can be found in
the references cited in the final column of the table.

Fig. 10 shows the growth in the number of tools
introduced. In Fig. 10, the development work can be
classified into three stages. The first stage was from 1977
to 1981. In this early stage, in which the idea of Mutation
Testing was first proposed, four prototype experimental
mutation tools were built and used to support the establish-
ment of the fundamental theory of mutation analysis, such
as the Competent Programmer Hypothesis [3] and the
Coupling Effect Hypothesis [66]. The second stage was from
1982 to 1999. There were four tools built in this period, three
academic tools, MOTHRA for Fortran [63], [64], PROTEUM,
TUMS for C [52], [53], [236], and one industry tool called
INSURE++. Engineering effort had been put into MOTHRA

and PROTEUM so that they were able to handle small real
programs not just laboratory programs. As a result, these
two academic tools were widely used. Most of the advanced
mutation techniques were experimented on using these two
tools, for example, Weak Mutation [183], [184], Selective
Mutation [182], [190], Mutant Sampling [159], [248], and
Interface Mutation [54], [55]. The third stage of Mutation
Testing development appears to have started from the turn
of the new millennium, when the first mutation workshop
was held. There have been 28 tools implemented since this
time. In Fig. 10, the dashed line shows a cumulative view of
this development work. We can see that the tool develop-
ment trend is rapidly increasing since year 2000, indicating
that research work on Mutation Testing remains active and
increasingly practical.

In order to explore the impact of Mutation Testing within
the open source and industrial domains, we have classified
tools into three classes: academic, open sources, and
industrial. Table 8 shows the number of each class over
two periods; one is before the year 2000, the other is from
the year 2000 to the present. As can be seen, there are more
open source and industrial tools implemented recently,
indicating that Mutation Testing has gradually become a
practical testing technique, embraced by both the open
source and industrial communities.

8 EVIDENCE FOR THE INCREASING IMPORTANCE OF

MUTATION TESTING

To understand the general trend for the Mutation Testing
research area, we analyzed the number of publications by
year from 1977 to 2009. Consider again the results in Fig. 1;
there are five apparent outliers in years 1994, 2001, 2006,
2007, and 2009. The reason for the last four years, is that
there were four Mutation Testing workshops held in 2000
(with proceedings published in 2001), 2006, 2007, and 2009.
However, there is no direct evidence to explain the spike in
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year 2004; this just appears to be an anomalous productive
year for Mutation Testing. The reader will also notice that
1986 is unique as no publications were found. An
interesting explanation was provided by Offutt [176]:
“1986 was when we were maximally devoted to program-
ming Mothra.”

We performed a regression analysis on these data and
found there is a strong positive correlation between year
and the number of publications (r ¼ 0:7858). In order to
predict the trend of publications in the future, we have tried
to find a trend line for these data using several common
regression models: Linear, Logarithmic, Polynomial, Power,
Exponential, and Moving average. The dashed line in Fig. 1
is the best fit line we found. It uses a quadratic model,
which achieves the highest coefficient of determination
(R2 ¼ 0:7747). To put the Mutation Testing growth trend
into a wider context, we also collected and plotted the
publication data from DBLP for the subject of computer

science as a whole [232]. According to DBLP, the general
growth in computer science is also exponential. From this
analysis it is clear that Mutation Testing remains at least as
healthy as computer science itself.

In order to take a closer look at the growing trend of the
research work on Mutation Testing, we have classified this
work into theoretical work and practical work. The
theoretical category includes the publications concerning
the hypotheses supporting Mutation Testing, optimization
techniques, techniques for reducing computational cost,
and techniques for the detection of equivalent mutants and
surveys. The practical category includes publications on
applications of Mutation Testing, development work on
Mutation Testing tools, and related empirical studies.

The goal of this separation of papers into theoretical and
practical work is to allow us to analyze the temporal
relationship between the development of theoretical and
practical research effort by the community. Fig. 11 shows
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the overall cumulative result. It is clear that both theoretical
and practical work is increasing. In 2006, for the first time,
the total number of practical publications surpasses the
number of theoretical publications. To take a closer look at
this relationship, Fig. 12 shows the number of publications
per year. From 1977 to 2000, there were fewer practical
publications than theoretical. From 2000 to 2009, most of the
research work appears to shift to the application area. This
provides some evidence to suggest that the field is starting
to move from foundational theory to practical application,
possibly a sign of increasing maturity.

In the Redwine-Riddle maturation model [203], there is a
trend that indicates that a technology takes about 15 to
20 years to reach a level of maturity at which time industrial
uptake takes place. Suppose we cast our attention back by
15 years to the mid 1990s. We reach a point where only
approximately 25 percent of the current volume of output
had then been published in the literature. (see Fig. 12). The
ideas found in this early Mutation Testing literature have
now been implemented in practical commercial Mutation
Testing tools, as shown in Table 7. This observation
suggests that the development of Mutation Testing is in
line with Redwine and Riddle’s findings.

Furthermore, the set of Mutation Testing systems
developed in the laboratory now provides tooling for a
great many different programming language paradigms (as
shown in Table 7). This provides further evidence of
maturity and offers hope that, as these tools mature,
following the Redwine and Riddle model, we can expect a

future state-of-practice in which a wide coverage of popular
programming paradigms will be covered by real-world
Mutation Testing tools.

Finally, an increasing level of maturity can also be seen
in the development of the empirical studies reported on
Mutation Testing. For example, there is a noticeable trend
for empirical studies to involve more programs and to also
involve bigger and more realistic programs, as can be seen
in the chronological data on empirical studies presented in
Figs. 7 and 8. However, it should also be noted that more
work is required on real-world programs and that many of
our empirical evidence still rests on studies of what would
now be regarded as “toy programs.” There also appears to
be an increasing degree of corroboration and replication of
the results reported (see Table 6).

9 DISCUSSION OF UNRESOLVED PROBLEMS,
BARRIERS, AND AREAS OF SUCCESS

This section discusses some of the findings and conclusions
that can be drawn from this survey of the literature
concerning the current state of Mutation Testing. Naturally,
this account is, to some extent, influenced by the authors’
own position on Mutation Testing. However, we have
attempted to take a step back and to summarize unresolved
problems, barriers, and areas of success in an objective
manner, based on the available literature and the trends we
have found within it.

9.1 Unresolved Problems

One barrier to wider application of Mutation Testing
centers on the problems associated with Equivalent
Mutants. As the survey shows, there has been a sustained
interest in techniques for reducing the impact of equivalent
mutants. This remains an unresolved problem. We see
several possible developments along this line. Past work
has concentrated on techniques to detect equivalent
mutants once they have been produced. In the future,
Mutation Testing approaches may seek to avoid their initial
creation or to reduce their likelihood. Mutation Testing may
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be applied to languages that do not have equivalent
mutants. Where equivalent mutants are a possibility, there
will be a focus on designing operators and analyzing code
so that their likelihood is reduced. Of course, we should be
careful not to “throw the baby out with the bath water”; we
seek to retain the highly valuable, so-called stubborn
mutants, while filtering out those that are equivalent.
However, behaviorally these two classes of mutants are
highly similar.

Most work on Mutation Testing has been concerned with
the generation of mutants. Comparatively, less work has
concentrated on the generation of test cases to kill mutants.
Though there are existing tools for mutant generation that are
mature enough for commercial application, there is currently
no tool that offers test cases generation to kill mutants at a
similar level of maturity. The state of the art is therefore one in

which Mutation Testing has provided a way to assess the
quality of test suites, but there has been comparatively little
work on improving the test suites, based on the associated
mutation analysis. We expect that, in future, there will be
much more work that seeks to use high-quality mutants as a
basis for generating high-quality test data. However, at
present, practical software test data generation for mutation
test adequacy remains an unresolved problem.

9.2 Barriers to be Overcome

There remains a perception—perhaps misplaced, but none-
theless widely held—that Mutation Testing is costly and
impractical. This remains a barrier to wider academic interest
in the subject and also to a wider uptake within industry. We
hope that this survey will go some way toward addressing
the remaining doubts of academics. There is plenty of
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evidence in this survey to show that Mutation Testing is on
the cusp of a rising trend of maturity and that it is making a
transition from academic to industrial application.

The barriers to industrial uptake are more significant and
will take longer to fully overcome. The primary barriers
appear to be those that apply to many other emergent
software technologies as they make their transition from
laboratory to wider practical application. That is, a need for
reliable tooling and compelling evidence to motivate the
necessary investment of time and money in such tooling.

As the survey shows, there is an increasingly practical
trend in empirical work. That is, as shown in Section 6,
empirical studies are increasingly focussing on nontrivial
industrial subjects, rather than laboratory programs. In
order to provide a compelling body of evidence, sufficient
to overcome remaining practitioner doubts, this trend will
need to continue. There is also evidence that Mutation
Testing tools are starting to emerge as practical commercial
products (see Section 7). However, more tooling is required
to ensure widespread industrial uptake. Furthermore, there
is a pressing need to address the, currently unresolved,
problem of test case generation. An automated practical tool
that offered test case generation would be a compelling
facilitator for industrial uptake of Mutation Testing. No
such tool currently exists for test data generation, but recent
developments in dynamic symbolic execution [104], [209],
[230] and search-based test data generation [10], [135], [162]
indicates that such a tool cannot be far off. The Mutation
Testing community will need to ensure that it does not lag
behind in this trend.

9.3 Areas of Success

As this paper has shown (see Figs. 1, 3, 11, and 12 and
Tables 7 and 8), work on Mutation Testing is growing at a
rapid rate and tools and techniques are reaching a level of
maturity not previously witnessed in this field. There has
also been a great deal of work to extend Mutation Testing to
new languages, paradigms and to find new domains of
application (see Figs. 5, 7, 8, and 9 and Tables 5 and 9).
Based on this existing success, we can expect that the future
will bring many more applications. There may shortly be
few widely used programming languages to which Muta-
tion Testing has yet to be applied.

In all aspects of testing, there is a trade-off to be arrived
at that balances the cost of test effort and the value of fault
finding ability; a classic tension between effort and
effectiveness. Traditionally, Mutation Testing has been seen
to be a rather expensive technique that offers high value.
However, more recently, authors have started to develop
techniques that reduce costs, without overcompromising on
quality. This has led to successful techniques for reducing

mutation effort without significant reduction in test effec-
tiveness (as described in Section 3).

10 CONCLUSION AND FUTURE WORK

This paper has provided a detailed survey and analysis of
trends and results on Mutation Testing. The paper covers
theories, optimization techniques, equivalent mutant detec-
tion, applications, empirical studies, and mutation tools.
There has been much optimization to reduce the cost of the
Mutation Testing process. From the data we collected from
and about the Mutation Testing literature, our analysis
reveals an increasingly practical trend in the subject.

We also found evidence that there is an increasing
number of new applications. There are more, larger and
more realistic programs that can be handled by Mutation
Testing. Recent trends also include the provision of new
open source and industrial tools. These findings provide
evidence to support the claim that the field of Mutation
Testing is now reaching a mature state.

Recent work has tended to focus on more elaborate forms
of mutation than on the relatively simple faults that have
been previously considered. There is interest in the semantic
effects of mutation, rather than the syntactic achievement of
a mutation. This migration from the syntactic achievement of
mutation to the desired semantic effect has raised interest in
higher order mutation to generate subtle faults and to find
those mutations that denote real faults. We hope the future
will see a further coming of age, with the generation of more
realistic mutants and the test cases to kill them and with
the provision of practical tooling to support both.
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[22] B. Baudry, V. Le Hanh, J.-M. Jézéquel, and Y. Le Traon, “Trustable
Components: Yet Another Mutation-Based Approach,” Proc. First
Workshop Mutation Analysis, pp. 47-54, Oct. 2000.

[23] F. Belli, C.J. Budnik, and W.E. Wong, “Basic Operations for
Generating Behavioral Mutants,” Proc. Second Workshop Mutation
Analysis, p. 9, 2006.

[24] J. Bieman, S. Ghosh, and R.T. Alexander, “A Technique for
Mutation of Java Objects,” Proc. 16th IEEE Int’l Conf. Automated
Software Eng., p. 337, Nov. 2001.

[25] P.E. Black, V. Okun, and Y. Yesha, “Mutation of Model Checker
Specifications for Test Generation and Evaluation,” Proc. First
Workshop Mutation Analysis, pp.14-20, Oct. 2000.

[26] B. Bogacki and B. Walter, “Evaluation of Test Code Quality with
Aspect-Oriented Mutations,” Proc. Seventh Int’l Conf. eXtreme
Programming and Agile Processes in Software Eng., pp. 202-204, June
2006.

[27] B. Bogacki and B. Walter, “Aspect-Oriented Response Injection:
An Alternative to Classical Mutation Testing,” Software Eng.
Techniques: Design for Quality, pp. 273-282, Springer, 2007.

[28] N. Bombieri, F. Fummi, and G. Pravadelli, “A Mutation Model for
the SystemC TLM2.0 Communication Interfaces,” Proc. Conf.
Design, Automation and Test in Europe, pp. 396-401, Mar. 2008.

[29] J.H. Bowser, “Reference Manual for Ada Mutant Operators,”
Technical Report GIT-SERC-88/02, Georgia Inst. of Technology,
1988.

[30] J.S. Bradbury, J.R. Cordy, and J. Dingel, “ExMAn: A Generic and
Customizable Framework for Experimental Mutation Analysis,”
Proc. Second Workshop Mutation Analysis, pp. 57-62, Nov. 2006.

[31] J.S. Bradbury, J.R. Cordy, and J. Dingel, “Mutation Operators for
Concurrent Java (J2SE 5.0),” Proc. Second Workshop Mutation
Analysis, pp. 83-92, Nov. 2006.

[32] J.S. Bradbury, J.R. Cordy, and J. Dingel, “Comparative Assessment
of Testing and Model Checking Using Program Mutation,” Proc.
Third Workshop Mutation Analysis, published with Proc. Second
Testing: Academic and Industrial Conf. Practice and Research
Techniques, pp. 210-222, 2007.

[33] P. Brady, “MutateMe,” http://github.com/padraic/mutateme/
tree/master, 2007.

[34] T.A. Budd, “Mutation Analysis of Program Test Data,” PhD
thesis, Yale Univ., 1980.

[35] T.A. Budd and D. Angluin, “Two Notions of Correctness and
Their Relation to Testing,” Acta Informatica, vol. 18, no. 1, pp. 31-
45, Mar. 1982.

[36] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “The
Design of a Prototype Mutation System for Program Testing,”
Proc. Am. Fed. of Information Processing Soc. Nat’l Computer Conf.,
vol. 74, pp. 623-627, June 1978.

[37] T.A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward,
“Theoretical and Empirical Studies on Using Program Mutation
to Test the Functional Correctness of Programs,” Proc. Seventh
ACM SIGPLAN-SIGACT Symp. Principles of Programming Lan-
guages, pp. 220-233, Jan. 1980.

[38] T.A. Budd and A.S. Gopal, “Program Testing by Specification
Mutation,” Computer Languages, vol. 10, no. 1, pp. 63-73, 1985.

[39] T.A. Budd, R. Hess, and F.G. Sayward, “EXPER Implementor’s
Guide,” technical report, Yale Univ., 1980.

[40] T.A. Budd and F.G. Sayward, “Users Guide to the Pilot Mutation
System,” Technical Report 114, Yale Univ., 1977.

[41] R.H. Carver, “Mutation-Based Testing of Concurrent Programs,”
Proc. IEEE Int’l Test Conf. Designing, Testing, and Diagnostics,
pp. 845-853, Oct. 1993.

[42] Cetress, “Certitude,” http://www.certess.com/product/, 2006.
[43] W.K. Chan, S.C. Cheung, and T.H. Tse, “Fault-Based Testing of

Database Application Programs with Conceptual Data Model,”
Proc. Fifth Int’l Conf. Quality Software, pp. 187-196, Sept. 2005.

[44] P. Chevalley, “Applying Mutation Analysis for Object-Oriented
Programs Using a Reflective Approach,” Proc. Eighth Asia-Pacific
Software Eng. Conf., p. 267, Dec. 2001.
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