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Efficient Approximations for Stationary Single-
Channel Ca2D Nanodomains across Length Scales
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ABSTRACT We consider the stationary solution for the Ca2þ concentration near a point Ca2þ source describing a single-chan-
nel Ca2þ nanodomain in the presence of a single mobile Ca2þ buffer with 1:1 Ca2þ binding. We present computationally efficient
approximants that estimate stationary single-channel Ca2þ nanodomains with great accuracy in broad regions of parameter
space. The presented approximants have a functional form that combines rational and exponential functions, which is similar
to that of the well-known excess buffer approximation and the linear approximation but with parameters estimated using two
novel, to our knowledge, methods. One of the methods involves interpolation between the short-range Taylor series of the
free buffer concentration and its long-range asymptotic series in inverse powers of distance from the channel. Although this
method has already been used to find Pad�e (rational-function) approximants to single-channel Ca2þ and buffer concentrations,
extending this method to interpolants combining exponential and rational functions improves accuracy in a significant fraction of
the relevant parameter space. A second method is based on the variational approach and involves a global minimization of an
appropriate functional with respect to parameters of the chosen approximations. An extensive parameter-sensitivity analysis is
presented, comparing these two methods with previously developed approximants. Apart from increased accuracy, the strength
of these approximants is that they can be extended to more realistic buffers with multiple binding sites characterized by coop-
erative Ca2þ binding, such as calmodulin and calretinin.
SIGNIFICANCE Mathematical and computational modeling plays an important role in the study of local Ca2þ signals
underlying vesicle exocytosis, muscle contraction, and other fundamental physiological processes. Closed-form
approximations describing steady-state distribution of Ca2þ in the vicinity of an open Ca2þ channel have proven particularly
useful for the qualitative modeling of local Ca2þ signals. We present simple and efficient approximants for the Ca2þ

concentration in the presence of a mobile Ca2þ buffer that achieve great accuracy over a wide range of model parameters.
Such approximations provide an efficient method for estimating Ca2þ and buffer concentrations without resorting to
numerical simulations and allow us to study the qualitative dependence of nanodomain Ca2þ distribution on the buffer’s
Ca2þ binding properties and its diffusivity.
INTRODUCTION

Some of the most fundamental physiological cell processes
such as synaptic neurotransmitter release, endocrine hor-
mone release, muscle contraction, and cytotoxic immune
cell response are directly and quickly triggered by the
Ca2þ influx into the cytoplasm (1–4). Because of the diver-
sity of Ca2þ-controlled cellular processes, intracellular
Ca2þ signals are localized in time and space to allow selec-
tive activation of specific reactions (2–5). This localization
is maintained in part by intracellular Ca2þ buffers, which
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absorb most of the Ca2þ influx soon upon its entry into
the cell (6,7). In the context of secretory vesicle exocytosis,
elevations of local Ca2þ concentration ([Ca2þ]) around indi-
vidual Ca2þ channels or clusters of channels are termed
Ca2þ nano- or microdomains (4,8). Although [Ca2þ] can
be measured experimentally using Ca2þ-sensitive dyes,
inherent physical limitations pose challenges for optical
Ca2þ imaging on small temporal and spatial scales relevant
for vesicle exocytosis and other processes controlled by
local Ca2þ elevations. Therefore, mathematical and compu-
tational modeling has played an important role in the study
of vesicle exocytosis and other cell processes activated by
localized Ca2þ signals (8–15). In particular, these computa-
tional studies were instrumental in showing that local Ca2þ

elevations form and collapse very rapidly in response to
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channel gating. This suggests that quasistationary solutions
of the reaction-diffusion equations describing Ca2þ influx,
diffusion, and binding to intracellular Ca2þ buffers may
achieve sufficient accuracy in estimating [Ca2þ] in the vi-
cinity of a Ca2þ channel, obviating computationally expen-
sive solutions of partial differential equations describing
buffered Ca2þ diffusion (16,17). Several of such stationary
approximations have been introduced in the early works
of Neher, Stern, Keizer, Smith, and others (14,18–28),
most notably the excess buffer approximation (EBA), the
rapid buffering approximation (RBA), and the linear
approximation (LIN) (see Table 1). These approximations
proved quite useful in understanding the properties of
Ca2þ nanodomains and their dependence on the properties
of cell Ca2þ buffers and are widely used in modeling studies
(9,14,21,29–32). However, most of the previously devel-
oped approximations have two limitations: 1) their accuracy
is restricted to specific regions in buffering parameter space,
and 2) they have been developed for simple, 1:1 Ca2þ-buffer
binding and are hard to extend to more realistic buffers that
have multiple Ca2þ binding sites (33).

Here, we present several improved approaches allowing
us to better approximate single-channel Ca2þ nanodomains
with more accuracy and for a wider range of model param-
eters. One of these approximation methods is based on
matching the coefficients of short-range Taylor series and
long-range asymptotic series of the nanodomain Ca2þ dis-
tance dependence using simple ans€atze. Although this
method has already been used to obtain Pad�e (rational-func-
tion) nanodomain approximations (34), we show that signif-
icant improvement can be achieved in some parameter
regimes using alternative interpolants that are similar in
their functional form to EBA and LIN approximants.
Similar ans€atze can also be extended to buffers with multi-
ple binding sites (data not shown). Apart from the local-se-
ries interpolation approach, we also present a different class
of methods based on global optimization of a relevant func-
tional with respect to parameters of the same ans€atze that we
TABLE 1 Previously Established Single-Channel Equilibrium Ca2D

Method Free Buffer Concentration, b(r)
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RBA2 bRBAðrÞ þ 2lh½ð1þ r=qÞ2 � 4n r��2

Pad�e 1� q½r þ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðqþ 8lÞp þ qÞ=2��1

Pad�e2 r2 þ A1ðl; n; hÞr þ A2ðl; n; hÞ
r2 þ B1ðl; n; hÞr þ B2ðl; n; hÞ

For each method, only the free buffer concentration expression is shown because

and EBA become identical in the limit n >> 1. RBA approximations valid up to

tively. The two lowest orders of the Pad�e method are denoted Pad�e and Pad�e2

Appendix C. The second-order EBA for [Ca2þ] is derived in (19) and is not sh
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use with the series interpolation method, which have supe-
rior accuracy in certain parameter regimes, as demonstrated
below.
METHODS

Following prior work, we will consider a Ca2þ buffer whose molecules

possess a single active site that binds a Ca2þ ion according to the reaction

Bþ Ca2þ #
kþ

k�
B�; (1)

where B and B* are the free buffer and Ca2þ-bound buffer, respectively, and
kþ and k� are the Ca2þ-buffer binding and unbinding rates. We consider a

semi-infinite diffusion domain bounded by a flat plane containing point

Ca2þ channel sources. Following previous modeling studies (18,19,27),

we will assume Dirichlet boundary conditions on the outer boundary repre-

senting the background concentrations for Ca2þ and buffer in the bulk of the

cell cytoplasm, and zero flux boundary condition on the flat boundary rep-

resenting the cell membrane. Although this neglects Ca2þ pumps and ex-

changers along the flat boundary, numerical simulations show that

qualitative agreement with more accurate models is retained under this

assumption. The reflection symmetry along the flat boundary allows us to

extend the domain to the whole space while doubling the source strength.

Assuming mass-action kinetics, this yields the following reaction-diffusion

system in R3 (18,19):

vtC ¼ DCV
2C� kþB C þ k� B� þ 2

XNCa

k¼ 1

sk dðr� rkÞ;

vtB ¼ DB V
2B � kþB C þ k� B�; (2)
vtB
� ¼ D� V2B� þ kþB C � k� B�
B

Here, C ¼ [Ca2þ], B, and B* represent concentrations of Ca2þ, free buffer,
and Ca2þ-bound buffer, respectively, with diffusivities DC, DB, and D�

B. In

the source term, NCa denotes the number of Ca2þ channels, and the source

strengths are given by sk ¼ ICa,k/(z F), where ICa,k are the amplitudes of in-

dividual open Ca2þ channels located at positions rk , F is the Faraday con-

stant, and z ¼ 2 is the valence of the Ca2þ ion. We note that the point-like

channel assumption introduces inaccuracy at small spatial scales
Nanodomain Approximations

Conditions References

Linearization about b ¼ 1 (14,19,22–26)

l >> 1, n >> 1, l/n ¼ O(1) (14,19,28)

l << 1, n << 1, l/n ¼ O(1) (19)

l << 1, n ¼ O(1) (14,18–21,29)

l << 1, n ¼ O(1) (19)

Series interpolation (34)

Series interpolation (34)

[Ca2þ] can be found from the Ca2þ conservation law (Eq. 15). Note that LIN

orders O(1) and O(l) are denoted as RBA (or bRBA(r)) and RBA2, respec-

. For Pad�e2, the parameter-dependent constants A1,2 and B1,2 are given in

own.
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commensurate with the channel pore width of several nanometers. The

impact of finite channel diameter and volumetric Ca2þ clearance was

considered in a different type of single-channel stationary solution derived

for the endoplasmic reticulum Ca2þ channel in (16).

The two linear combinations of Eq. 2 that cancel the reaction terms yield

the conservation laws for the total Ca2þ and total buffer concentrations:

vtðCþB�Þ ¼ V2
�
DCCþD�

BB
��þ 2

XNCa

k¼ 1

sk dðr� rkÞ (3)

and

vtðBþB�Þ ¼ V2
�
DBBþD�

BB
�� (4)

We now consider the steady state of this system, in which the conserva-

tion laws for Ca2þ and buffer reduce to (19–21,27,35,36)

DBBþD�
BB

� ¼ DBBN þ D�
BB

�
N ¼ const (5)

and

V2
�
DC CþD�

BB
�� ¼ � 2

XNCa

k¼ 1

sk dðr� rkÞ (6)

Our approach is somewhat more general than prior modeling work in that

we do not assume that buffer mobility is unaffected by Ca2þ binding. Given

our simplifying assumptions on the domain geometry and boundary condi-

tions, Eq. 6 has an exact solution:

DCCþD�
BB

� ¼ 1

2p

XNCa

k¼ 1

sk

jr� rk j þ DCCN þ D�
BB

�
N; (7)

where CN and BN are the background values of C and B infinitely far from

the channel, which are in equilibrium with each other:

BNCN ¼ K B�
N (8)

Here, K ¼ k�/kþ is the buffer affinity, equal to [Ca2þ] at which half the

buffer is bound at steady state. Conservation laws allow us to eliminate

two variables, and we choose to retain the equilibrium free (unbound) buffer

concentration as the remaining unknown:

DB V
2B ¼ kþB C � k�B� (9)

We will now nondimensionalize these equations following (19) and (34),

rescaling Ca2þ by the buffer affinity: c ¼ C/K, cN ¼ CN/K. However,

we normalize buffer concentration by its background value BN instead of

total concentration. This will simplify our results, with many expressions

formally unchanged whether or not cN ¼ 0 (see Table 1). Also note that

in this case, a very simple relationship holds between background concen-

trations of Ca2þ and bound buffer: Eq. 8 yields cN ¼ b�N. We will consider

the case of a single channel at the origin and rescale the spatial coordinate

(r/L / r) using the scale parameter that depends on the strength of the

Ca2þ current, which simplifies the source term in Eq. 7 (19):

L ¼ s=ð2pDCKÞ (10)

Recalling that cN ¼ b�N, we obtain the following nondimensional form of

free buffer dynamics given by Eq. 9 and the conservation laws, Eqs. 5 and 7:
8<:
l V2 b ¼ b c� b�;

bþ d�B b
� ¼ 1þ d�B cN;

cþ n d�B b
� ¼ cN þ n d�B cN þ 1

	jrj ;

(11)

where the four nondimensional model parameters are (with L given by

Eq. 10)

l ¼ DB

L2 k�
; n ¼ BN DB

K DC

; d�B ¼ D�
B

DB

; cN ¼ CN

K
(12)

Here, l is the dimensionless buffer diffusion coefficient (denoted as εb in

(19)), which quantifies the diffusion rate relative to the rate of Ca2þ binding

and influx, and n (denoted as 1/m in (19)) represents the overall buffering

strength at rest, given by the product of the resting buffering capacity

(BN/K) and the relative buffer mobility (DB/DC). In this nondimensionali-

zation, unbuffered Ca2þ solution corresponds to n ¼ 0 and has a simple

form c ¼ 1/jrj þ cN. To simplify our results, we also introduce the

following auxiliary parameters:

q ¼ 1=ðhþ nÞ; h ¼ cN þ 1
	
d�B (13)

This allows us to specify the problem using only three parameters, either {l,

n, h} or {l, q, h}. In the special case of binding-independent buffer mobility

(d�B ¼ 1), h equals rescaled total buffer concentration: (BN þ B�
N)/BN ¼

1 þ cN ¼ h.

Eliminating bound buffer and [Ca2þ] using the two conservation laws in

Eq. 11, the free buffer equation takes on a simple form:

l V2 b ¼ ðb� 1Þðnbþ hÞ þ b=jr j (14)

[Ca2þ] can be obtained from the solution of Eq. 14 using the Ca2þ conser-

vation law in Eq. 11, which can be simplified to the following intuitive

form:

c ¼ nðb� 1Þ þ cN þ 1=jr j (15)

For b < 1, [Ca2þ] is reduced in proportion to the buffering strength n, as

expected. The conservation laws in Eq. 11 along with the physical con-

straints c R 0, b* R 0, cN R 0 imply a priori bounds

b�ðrÞ%bðrÞ%bþðrÞ;
b�ðrÞ ¼ max

�
0; 1� n�1ðcN þ 1 = jr j Þ�;

bþðrÞ ¼ 1þ d�BcN:

(16)

Solutions satisfy the following boundary conditions (here and below, we

denote r ¼ jrj): (
lim
r/0

bðrÞ ¼ b0 ¼ const;

lim
r/þN

bðrÞ ¼ 1;
(17)

where the value of buffer at the source location, b0, is unknown a priori. As

is rigorously proved in Appendix D, Eq. 14 has a unique bounded solution

satisfying these boundary conditions, and this solution is spherically sym-

metric. Therefore, Eq. 14 may be reduced to

E½b�h � l

r2
d

dr



r2
db

dr

�
þ ðb� 1Þðnbþ hÞ þ b

r
¼ 0

(18)
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Although Eq. 18 superficially resembles the Lane and Emden-Fowler equa-

tions (37), it has no local Lie symmetries allowing analytical solution.

Further, it is not of the Painlev�e type (38) despite its simple algebraic

form. We carried out the numerical solution of Eq. 18 using the relaxation

method and the shooting method, cross-validating the results of these two

methods. For certain extreme values of model parameters, accurate numer-

ical solution is computationally intensive.

We note that the chosen nondimensionalization is identical to the one in

(19,34) in the case of binding-invariant buffer mobility (d�B ¼ 1) and zero

background [Ca2þ] (cN ¼ 0). More generally, there is a simple equivalence

with the nondimensionalization in (19,34); indicating variables in the latter

work with the hat symbol, this equivalence reads

bn ¼ n h; bb ¼ b=h; bbN ¼ 1=h (19)

For the sake of simplicity, most numerical results shown below focus on

the special case cN ¼ 0, d�B ¼ 1, corresponding to h ¼ 1 (Figs. 1, 2, 3, 4,

5, and 6). However, all results were verified for a wide range of h-

values. In particular, results for h ¼ 10 are shown in the results sum-

mary, Fig. 7.

One of the contributions of early modeling efforts was the develop-

ment of accurate analytical approximations of the solution of Eq. 18.

They allow avoiding computationally expensive integration of reac-

tion-diffusion equations while retaining considerable accuracy (19,34).

These approximations are summarized in Table 1, and apart from the

Pad�e and LIN approximants, their regimes of applicability can be ex-

plained in intuitive physical terms. Namely, the EBA is applicable

when buffer concentration is so large that it is practically unsaturable

by the given Ca2þ current, leading to an additional exponential decay

factor for [Ca2þ] with increasing distance from the channel

(14,19,28,39). The RBA corresponds to the parameter regime in which

the buffering rate is much faster relative to the diffusion rate, and at

lowest order represents the condition for instantaneous equilibrium of

the Ca2þ buffering reaction (14,18–21,29). The nearly immobile buffer

approximation (IBA) is applicable in the case of small buffer mobility,

implying in turn weak buffering strength (19). Finally, the LIN repre-

sents an ad hoc linearization around the free unbuffered point-source so-

lution, b ¼ 1, c ¼ 1/r þ cN, but as Table 1 shows, LIN could also be

viewed as an improved modification of the EBA. A more precise mean-

ing of these approximants was given in Smith et al. (19). The latter work

showed that EBA, RBA, and IBA represent asymptotic expansions in
A B

FIGURE 1 Comparison of equilibrium free buffer approximants obtained usi

dashed green), Exp-Ser (black), Exp-Pad�e, (dashed black), and DblExp-Ser (da

LIN (C, dotted black). All panels show dimensionless buffer concentration as a fu

parameters l and n, with h ¼ 1. Gray curves show the accurate numerical solutio

numerical solution at this resolution. Note that Exp-Pad�e does not yield a solutio

Eq. 26. To see this figure in color, go online.
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either l or m ¼ 1/n and provided such expansions up to second order

with respect to these parameters. Both LIN and RBA can be extended

to multiple buffers and channels (21,24,33). In contrast, the Pad�e approx-

imation (34) is based on a series matching method explained in detail

below. We note that only second-order RBA and Pad�e approximations

are comparable in accuracy to the approximants presented in this work

in large regions of parameter space. Because [Ca2þ] is uniquely deter-

mined by the free buffer through the conservation law (Eq. 15),

[Ca2þ] estimation accuracy is only shown in the final comparison of

all approximations (see Figs. 5, 6, and 7). We note that accurate

estimation of buffer concentration can be as important as the

knowledge of the corresponding [Ca2þ] because it helps in the under-

standing of cell Ca2þ homeostasis and in interpreting the results of

Ca2þ imaging, which requires quantifying Ca2þ binding to exogenously

applied fluorescent Ca2þ buffers. Finally, we note recent work on time-

dependent EBA (39).
RESULTS

Local properties of a stationary nanodomain

We start by generalizing some of the results previously
presented in (34), without the restriction of binding-inde-
pendent buffer mobility. We seek a solution to Eq. 18
that is bounded and analytic and therefore can be
expanded in a Taylor series in r using a Frobenius-like
method:

bðrÞ ¼ bo þ bor

2l
þ ðb0 � 1Þðn bo þ hÞ þ bo=ð2lÞ

6l
r2 þ O

�
r3
�

(20)

The usefulness of this series by itself is limited because the
value of buffer at the channel location, bo, is a priori un-
known, as mentioned above. Further, the convergence radius
is finite because of the movable nonpole singularities of the
solution in the complex r plane. However, the relationship
C

ng series interpolation: first-order Pad�e (green), second-order Pad�e (Pad�e2,

shed magenta). Also shown for comparison are RBA2 (A, dashed red) and

nction of distance from the Ca2þ channel for three distinct choices of model

n. In (A), DblExp-Ser, Pad�e2, and Exp-Pad�e are indistinguishable from the

n for n > h ¼ 1 (B and C). In (A), DblExp-Ser curve shows the real part of



FIGURE 2 Accuracy comparison of equilibrium free buffer approximations obtained by series interpolation: Exp-Ser (solid black), Exp-Pad�e (dashed

black), DblExp-Ser (dashed magenta), and Pad�e2 (dashed green). Also shown for comparison are RBA2 (A, dashed red) and LIN (dotted black). All curves

represent the log10 of error norm given by Eq. 29 as a function of n ranging from 10�3 to 102 for three distinct choices of l: l¼ 0.02 (A), l¼ 2 (B), and l¼ 20

(C), with h ¼ 1. Because Exp-Pad�e only yields a solution for n < h ¼ 1, the corresponding curves terminate at n ¼ 1. The magenta circle in (A) indicates the

value of n below which the exponent parameter a of DblExp-Ser becomes imaginary (see Fig. 6). For smaller values of n, the magenta curve in (A) corre-

sponds to the real part of Eq. 26. To see this figure in color, go online.
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between Taylor coefficients in this expansion can be used to
constrain parameters of an appropriately chosen approxima-
tion. Further, by making a coordinate mapping x h 1/r, we
transform our original Eq. 18 to the form

l x4bxx ¼ ðb� 1Þðn bþ hÞ þ bx (21)

This reveals an essential singularity at x¼ 0. In fact, numer-
ical study shows that the analytic extension of b(x) to the
complex-x plane has a branch cut across x ¼ 0, jumping
from the physical value b ¼ 1 at x ¼ 0þ (r / þN) to
the unphysical value b ¼ �h/n at x ¼ 0� (r / �N) (see
Fig. 7 in (34)). Among the approximants listed in Table 1,
only RBA correctly captures this branch cut.

Given that the boundary condition infinitely far from the
channel is known, b(x ¼ 0þ) ¼ 1, one can readily find the
A B

FIGURE 3 Comparison of equilibrium free buffer approximants obtained us

(dashed blue curves), DblExp-Var (dotted magenta curves), Exp-Global (blue cu

parison (dashed green curves). All panels show the free dimensionless buffer con

choices of model parameters l and n, with h¼ 1. Gray curves show the accurate n

shown. In (B) and (C), the curves for Exp-Global and DblExp-Global overlap t
coefficients of a unique asymptotic power series expansion
near x ¼ 0þ:

bðxÞ ¼ 1� qx þ h q3x2 þ hð1� 2qhÞq4x3
þh

�
2lþ 5h q2ðh q� 1Þ�q4x4 þ O

�
x5
�
:

(22)

Here, we used parameter q ¼ 1/(h þ n) to simplify the co-
efficients (cf. Eqs. 16 and 34 in (34)). Note that terms of
this long-range expansion agree up to order O(x3) with
RBA and up to order O(x5) with RBA2 (Table 1), indicating
that the reaction is approximately at equilibrium far from
channel.

The Pad�e method introduced in (34) and shown in Table 1
simultaneously matches leading terms of the two expansions
given by Eq. 20 (containing unknown b0 as a free parameter)
and Eq. 22, using a simple rational-function interpolant,
C

ing the variational and the modified variational (global) methods: Exp-Var

rves), and DblExp-Global (magenta curves). Pad�e2 is also shown for com-

centration as a function of distance from the Ca2þ channel for three distinct

umerical solution. In (A), the real part of DblExp-Var and DblExp-Global is

he numerical solution. To see this figure in color, go online.
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FIGURE 4 Accuracy comparison of equilibrium free buffer approximations obtained by the variational and modified variational (global) methods: Exp-

Var (dashed blue), DblExp-Var (dotted magenta), Exp-Global (blue), and DblExp-Global (magenta). For comparison, also shown is the error of DblExp-Ser

(dashed magenta), and (A) shows the errors of RBA2 (dashed red) and Pad�e2 (dashed green). All panels show log10 of the average error of free buffer approx-

imation (Eq. 29) as a function of buffer strength n ranging from 10�3 to 102 for three distinct choices of l: l¼ 0.02 (A), l¼ 2 (B), and l¼ 20 (C), with h¼ 1.

Magenta circles in (A) mark values of n below which parameter a becomes imaginary for the corresponding DblExp method. For these smaller values of n, the

magenta curves in (A) correspond to the real part of Eq. 26. To see this figure in color, go online.
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with coefficients found as functions of l, n (or q), and h. The
simplest Pad�e interpolant of order 1 is

b rð Þ ¼ 1� q

r þ b
; b ¼ 1

2
qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q qþ 8lð Þ

ph i
: (23)

This simple function satisfies Eqs. 20 and 22 to first order in
r and x, respectively. The corresponding estimate of free
buffer at the channel location is b0 ¼ 1 � q/b.

The Pad�e approximation was considered in (34) because
of its algebraic simplicity and its straightforward expansion
A B

FIGURE 5 Accuracy comparison of equilibrium nanodomain [Ca2þ] estimat

(dashed green), Exp-Pad�e (dot-dashed black), Exp-Global (blue), DblExp-Glob

average absolute deviation of free dimensionless [Ca2þ] (Eq. 36) as a function

of diffusivity parameter l: l ¼ 0.02 (A), l ¼ 2 (B), and l ¼ 20 (C), with h ¼ 1

figure in color, go online.
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in power series in both r and x¼ 1/r. Therefore, it represents
an ad hoc ansatz, and it is not necessarily the most natural
nor the most accurate interpolant between the short-range
and long-range power series given by Eqs. 20 and 22.
Further, although it does converge to the true solution
with increasing order, closed-form expressions for its coef-
ficients can only be obtained for the two lowest orders in
Table 1. However, we observe that all approximants in Table
1 can be viewed as interpolants between the Taylor series in
r and asymptotic power series in x ¼ 1/r, and therefore, the
series interpolation method introduced in (34) should be
C

ion by select approximants with smallest error: RBA2 (dashed red), Pad�e2

al (magenta), and DblExp-Var (dotted magenta). All panels show log10 of

of buffering strength n ranging from 10�2 to 102 for three distinct choices

. Curves for Exp-Pad�e (dashed black) terminate at n ¼ h ¼ 1. To see this



A1 B1

A2 B2

FIGURE 6 Parameter regions where a given ap-

proximant outperforms the rest in estimating (A1)

free buffer and (B1) [Ca2þ] in the (n, l) plane, accord-
ing to the error measures given by Eqs. 28 and 36.

In all panels, h ¼ 1. Colors indicate parameter region

of best performance for each approximant: Pad�e2

(green), RBA2 (maroon), Exp-Pad�e (gray), DblExp-

Var (magenta), DblExp-Global (pink), and Exp-Global

(blue). Solid circles correspond to parameters in Figs.

1 and 3, and dashed lines corresponds to the parameter

sweeps shown in Figs. 2, 4, and 5. Thin light semicir-

cular curves indicate the boundaries inside of which

the exponent parameters a in the DblExp-Var and

DblExp-Global methods becomes imaginary (a is al-

ways real outside of the region marked by these curves

for n > 1 and l > 1.8). (A2 and B2) The smallest error

in estimating free buffer and [Ca2þ], respectively,

achieved using the optimal approximants shown in

(A1) and (B1). The grayscale in (A2) and (B2) indi-

cates the log10 of error values given by Eqs. 28 and

36, respectively. Darker shade represents better accu-

racy. To see this figure in color, go online.
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applied to the corresponding functional forms as well.
Particularly promising in this respect are the simple expo-
nential forms of the EBA and LIN, which are close to
each other when n >> 1 and match in this limit the first
two terms in the asymptotic expansion in Eq. 22, b(x) ¼
1 � qx þ O(x2). In fact, standard analysis by substitution
b(x) ¼ 1 � qx þ hq3x2 þ eS(x) reveals that in the limit
x ¼ 1/r/ 0þ, the general solution to Eq. 21 is described by

bðxÞ ¼ 1� qx þ :::þ CðxÞx1þ
ffiffi
q
l

p
ðq� 1

2Þe
� 1

x
ffiffiffiffi
ql

p
; (24)

where C(x) is bounded at x ¼ 0. Apart from the fractional
power of x, this expression has a similar form to EBA and

LIN, suggesting that the corresponding functional form is
a natural ansatz for describing long-range behavior of the
solution.
Functional form of approximants

Given the above analysis, we introduce approximants that
have a simple functional form inspired by EBA and LIN
and that match the long-range asymptotic behavior of the so-
lution, as given by Eqs. 22 and 24. Namely, we consider ap-
proximations in one of the following three parametric forms:

bðrÞ ¼ 1þ q
e�a r � 1

r
; (25)

bðrÞ ¼ 1þ q
e�a r � 1� q3h

e�a rð1þ arÞ � 1
; (26)
r r2
e�a r � 1 3 1

bðrÞ ¼ 1þ q

r
þ q h

bþ r2
(27)
exponential (DblExp), and exponential-Pad�e (Exp-Pad�e),
respectively. In the limit r / þN (x ¼ 1/r / 0þ), they
We refer to these approximants as exponential (Exp), double

explicitly satisfy Eq. 22 to either first or second order in x
and are analytic at r¼ 0. The Exp and DblExp approximants
depend on a single parameter a, whereas Exp-Pad�e contains
an additional parameter b. Note that Eq. 25 reduces to LIN
or EBAwhen a equals (ql)�1/2 or (ml)�1/2, respectively (see
Table 1). The novelty of our approach is that we constrain
the values of a and b using one of the following methods,
described in detail further below:

1) Series interpolation: in this case, approximants in Eqs.
25 and 26 are referred to as Exp-Ser and DblExp-Ser,
respectively.

2) Variational approach: Eqs. 25 and 26 in this case are
referred to as Exp-Var and DblExp-Var.

3) Global (modified variational) approach: Eqs. 25 and 26
in this case are referred to as Exp-Global and DblExp-
Global.

The value of parameter a is given by the solution of a
quadratic equation for the exponential ansatz and a cubic
equation for the double-exponential ansatz, as described in
Tables 2 and 3. Parameters of the Exp-Pad�e approximant
are defined by a fourth-order polynomial equation and are
explicitly shown in Appendix B.
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FIGURE 7 Simplified algorithm for choosing an optimal approximant, for two values of h: h ¼ 1 (A1–A3) and h ¼ 10 (B1–B3). (A1) and (B1):

method choice as a function of n and l, according to the algorithm described in the text. Colors indicate optimal parameter region for each

approximant: Pad�e2 (green), RBA2 (maroon), and DblExp-Global (pink). Solid circles in (A1)–(A3) correspond to parameters in Figs. 1 and 3, and

dashed lines correspond to the parameter sweeps shown in Figs. 2, 4, and 5. Thin light semicircular curves mark boundaries inside of which the expo-

nent a of the DblExp-Global approximant becomes imaginary. (A2) and (B2) and (B3) and (A3) show the smallest error in estimating free buffer

and [Ca2þ], respectively, achieved using the approximants chosen as indicated in (A1) and (B1). The grayscale in (A2) and (B2) indicates log10 of

error values in Eqs. 28 and 36, respectively. The same grayscale is used for h ¼ 1 and h ¼ 10 for ease of comparison. To see this figure in color,

go online.
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Series interpolation approach results

For the simple exponential ansatz, Eq. 25, the relationship
between the first two coefficients in the Taylor series in Eq.
20, b1 ¼ b0/2l, is satisfied for a unique value of exponent
factor a given by a root of a quadratic equation, shown

in Table 2: a ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l=q

p � 1Þ/(2l). The corresponding
approximant will be referred to as Exp-Ser. Note that
for l/q >> 1, this reduces to LIN, given by a ¼(ql)�1/2

(cf. Table 1).
A slightly more complex expression in terms of two ex-

ponentials, Eq. 26, allows us to match Eq. 22 to second
order in x, 1 � qx þ hq3 x2 þ O(x3). The relationship be-
TABLE 2 Equations for the Exponential Ansatz Parameter a

Exponent Parameter

a in Eq. 25 LIN Exp-Ser Exp-Var Exp-Global

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
S2þl=q

p
�S

l
S ¼ 0 S ¼ 1

2
S ¼ 1þ2qh

3
S ¼ ln 3

2
þ qhln 4

3

All monoexponential approximants described by Eq. 25 depend on a single

parameter a that in turn depends on model parameters l, q, and h through

the same quadratic root formula, but with different values of constant S, as

shown here.
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tween the first two coefficients in the Taylor series in Eq.
20, b1 ¼ b0/2l, holds when the value of exponent factor a
satisfies a cubic equation given in Table 3 and Eq. 37.
This cubic has at most one real positive root for all values
of parameters {l, q, h}, which has an explicit solution
shown in Appendix A. The corresponding approximant
will be referred to as DblExp-Ser. We note that a becomes
imaginary for sufficiently small l and n inside the param-
eter region marked by thin lines in Fig. 6, A1 and A2; in
that case, the real part of Eq. 26 will be used to compare it
with other methods.

Finally, the ansatz given by Eq. 27 has an exponential
term with parameter a and a rational term with parameter
b. Two parameters allow us to match two relationships be-
tween the first three Taylor coefficients in the short-range
series expansion, Eq. 20. This results in a polynomial sys-
tem of order 4, with the level of complexity similar to
that of Pad�e2 (34). This polynomial system and the
explicit expression for its roots are provided in Appendix
B. We note that the real positive solution for a and b is
only possible when n < h (equivalently, 2h q > 1). In
the limit n / h�, b diverges, and Exp-Pad�e approaches
Exp-Ser.



TABLE 3 Equations for the Double-Exponential Ansatz Parameter a

Equation for Parameter a in Eq. 26: h q2Pa3 � Qa2 � Ra þ 1/q ¼ 0

DblExp-Ser DblExp-Var DblExp-Global

P 2l/3 l 8ln2� 5ð Þ þ 4
3
q2h 1� h qð Þ 1� 3 ln 4

3

� �
2l(1 � ln2) þ q2h(1 � qh)(ln3 � 1)

Q l� q2h
2 lþ 2

3
q2h


1 � 6 ln 9

8
þ 2qh



1 � 6 ln 4

3

��
l� 2q2h



1 � ln 81

32
þ 2qh ln 9

8

�
R 1 (qh þ 2)/3 qh þ 2(1 � qh) ln(3/2)

All double-exponential approximants described by Eq. 26 depend on a single parameter a that, in turn, depends on model parameters l, q, and h through the

solution to a cubic equation of same form but with different values of polynomial coefficients P, Q, and R shown here. There is at most one positive real root of

the cubic equation, given in Appendix A.

Efficient Ca2þ Nanodomain Approximants
Fig. 1 compares these three approximants (Exp-Ser,
DblExp-Ser, and Exp-Pad�e) with the previously developed
Pad�e approximants of the two lowest orders, as well as
RBA2 (Fig. 1 A) and LIN (Fig. 1 C). The accurate numer-
ical solution is shown as a gray curve. For the parameters
in Fig. 1 A (l ¼ n ¼ 0.1), Exp-Ser is not as accurate as
other approximants, but the accuracy of Exp-Pad�e and
DblExp-Ser is excellent and comparable with that of
Pad�e2; in fact, the three curves overlap the numerical solu-
tion curve. This is despite the fact that the value of a in
DblExp-Ser is complex for l ¼ n ¼ 0.1, so this is not an
optimal parameter region for DblExp-Ser, and the real
part of Eq. 26 is used in this case. For larger values of l
and/or n in Fig. 2 B (l ¼ 0.1, n ¼ 10) and 2 C (l ¼ 1,
n ¼ 10), approximants Exp-Ser and DblExp-Ser are more
accurate than Pad�e and even Pad�e2. These results suggest
that these series interpolants may be superior to previously
developed approximants in a wide range of model param-
eters. Among previously developed approximants listed
in Table 1, only RBA2 provides comparable accuracy
when l < 1 (Fig. 1 A).

Comparing the results by eye for several combinations of
model parameters is clearly insufficient to unveil the param-
eter sensitivity of approximant accuracy. Therefore,
following prior work (19,33,34), we explore parameter
dependence of the absolute deviation between the given
approximation bapp and the accurate numerical solution,
bnum:

kbapp � bnum k ¼ 1

N

XN
n¼ 1

��bappðrnÞ � bnumðrnÞ
�� ;

rn ¼ 10�3þ5n=N; n ¼ 1; 2; :::N:

(28)

The deviations are computed on a set of N ¼ 100 points
spanning five orders of magnitude of distance r, from
10�3 to 102. Because we use exponentially spaced points,
this norm is equivalent to an L1 norm weighted by 1/r, and
therefore, it requires a short-range cutoff (we pick r R
10�3). The higher weight at small r is justified by the fact
that the short distance range is of greater interest, physically.
Fig. 1 indicates that the chosen range of r is sufficient to cap-
ture the qualitative behavior of solutions for a wide range
of parameter values. We checked that none of the conclu-
sions are changed qualitatively by choosing an LN norm
instead.

The parameter dependence of this error norm is shown in
Fig. 2, as buffering strength n is systematically varied from
10�2 to 102, for three distinct values of l. Each curve shows
the error measure given by Eq. 28 for the corresponding
approximation. For the sake of comparison, also shown
are the error of Pad�e2 interpolant, the linear approximant
(LIN), and RBA2 (Fig. 2 A only). For smaller values of l
(Fig. 2 A), Pad�e2 and RBA2 are still the superior approxima-
tion methods, but with increasing l, the exponential approx-
imants, Eqs. 25, 26, and 27, outperform all approximants in
Table 1. Thus, the choice of the optimal approximation de-
pends on the particular combination of model parameter
values.
Variational approach

We now consider a completely different method of approx-
imating solutions, based on a variational approach. As we
rigorously demonstrate in Appendix D, the solution to Eq.
14 represents a unique minimizer of the following func-
tional in an appropriate function space:

F b½ � ¼
Z
ℝ3

l

2
Vbj j2 þ V b; rð Þ � V bRBA rð Þ; rð Þ

 �
d3r; (29)

where V(b, r) is defined by
 �

Vðb; rÞ ¼ � hb þ 1

jr j þ h� n
b2

2
þ n b3

3
(30)

and bRBA(r) is the first-order RBA approximant given in
Table 1, which solves Eq. 14 when l ¼ 0. Subtraction of
V(bRBA(r), r) in Eq. 29 is necessary to ensure boundedness
of F[b]. Considering perturbations b/ bþ εf, where f is a
smooth function with compact support ðf˛CN

c ðR3ÞÞ, and
denoting V0(b, r) the first partial derivatives with respect
to b, the variational derivative (the Gâteaux derivative) of
F[b] in the direction of f is
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DfF b½ � ¼ lim
ε/N

F bþ εf½ � � F b½ �
ε

¼
Z
ℝ3

l Vb$Vfþ V 0 b; rð Þff g d3r

¼
Z
ℝ3

l Vb$Vfþ b� 1ð Þ nbþ hð Þ þ b

jrj
 �

f

� �
d3r:

(31)

Therefore, setting

DfF½b� ¼ 0 for cf˛CN
c

�
R3

�
(32)

formally yields the weak form (40) of Eq. 14. As is proved in
Appendix D, the minimizer of F[b] is unique and radially
symmetric. Therefore, we seek an ansatz of the form b(r;
ak) and consider perturbations with respect to the ansatz pa-
rameters ak, i.e., we take f¼ vb(r; ak)/vak. Performing inte-
gration by parts in the derivative term transforms Eqs. 31
and 32 to

vF½bðr ; akÞ�
vak

¼ 4p

Z N

0

E½bðr; akÞ� vb

vak

r2 dr ¼ 0; (33)

where E[b] is defined in Eq. 18. For the ansatz given by Eqs.
25, 26, and 27, this integral may be computed in closed
form, allowing us to obtain the optimal values of ak explic-
itly. For the lowest-order exponential ansatz (Eq. 25),
considering b(r; a) with one free parameter in Eq. 33 leads
to a quadratic equation for awith a unique positive real root,
as given in Table 2. The corresponding approximant will be
referred to as Exp-Var.

For the more complicated case of a double-exponential
ansatz (Eq. 26), Eq. 33 leads to a cubic rather than a
quadratic equation for a, analogously to the series interpo-
lation method; this cubic is shown in Table 3, and its
closed-form solution is given in Appendix A. This cubic
has a single real positive real root for a wide range of model
parameters {l, n, h}, and we refer to the corresponding ap-
proximant as DblExp-Var. However, just like in the case of
DblExp-Ser, a becomes complex when both l and n are suf-
ficiently small. In this case, the real part of Eq. 26 still pro-
vides an accurate approximant. The performance of Exp-Var
and DblExp-Var approximants will be investigated below,
after considering our final approximation method.
Global method: modification of the variational
approach

Given that Eqs. 25 and 26 represent narrow classes of func-
tions that cannot provide a true minimum of F[b], it may be
useful to consider modifications of Eq. 33 that allow us to
1248 Biophysical Journal 119, 1239–1254, September 15, 2020
achieve a lower value of our chosen error norm, Eq. 28.
One such modification is to replace the Jacobian factor r2

in Eq. 33 with r, increasing contribution of small distances
in this integral and thereby potentially reducing the error
at short range: Z N

0

E½bðr; aÞ� vb
va

r dr ¼ 0 (34)

We refer to this method of setting approximant parameter
values as the ‘‘global’’ method or modified variational
method. Eq. 34 can be rigorously obtained from the varia-
tional derivative given by Eqs. 31 and 32, but this time
applied to perturbations f of form

f rð Þ ¼ 1

r

vb r; að Þ
va

(35)

Note that for the ans€atze in Eqs. 25 and 26, this perturbation
remains finite as r / 0. Numerical results show that this
modification does lead to noticeable improvement of the re-
sulting approximants close to the channel location for many
combinations of model parameters. In fact, for some param-
eter regimes, this method clearly outperforms the series
interpolation and the variational approaches with respect
to the weighted L1 error measure given by Eq. 28.

For the lowest-order exponential ansatz (Eq. 25), after re-
placing b(r; a) in Eq. 34 with Eq. 25, one obtains a quadratic
equation for a with a single positive real root given in Table
2; we refer to the corresponding approximant as Exp-
Global. Just as in the case of the series interpolant method
and the variational method, applying this method to the dou-
ble-exponential ansatz (Eq. 26) leads to a cubic equation for
parameter a, given in Table 3. We verified that this cubic has
a single positive real root for a wide range of model param-
eters {l, n, h}, and we refer to the corresponding approxim-
ant as DblExp-Global. However, like in the case of DblExp-
Ser and DblExp-Var approximants, parameter a becomes
imaginary when both l and n are sufficiently small; in that
case, the real part of Eq. 26 will be used.

We note that a more straightforward approach of mini-
mizing a weighted L2 norm of E[b] also leads to a closed-
form solution in the case of a single-exponential ansatz,
but the resulting approximant does not perform significantly
better than the ones we present above, and it requires a so-
lution of a more complicated fourth-order polynomial
equation.
Accuracy of the variational and global
approximants

Fig. 3 compares all variational and global approximants
described above (Exp-Var, DblExp-Var, Exp-Global, and
DblExp-Global) with Pad�e2 and the accurate numerical so-
lution, using the same combination of model parameters as
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in Fig. 1. It shows that in some cases (Fig. 3, B and C), the
global approximations are more accurate than Pad�e2 and
other series interpolants (cf. Fig. 1, B and C). Further, in
Fig. 3, B and C, global approximants perform better than
the corresponding variational approximants, and the differ-
ences between global methods and numerical results are
barely noticeable. In contrast, Fig. 3 A illustrates that for
n¼ l¼ 0.1, none of the variational and global approximants
are as accurate as Pad�e2, suggesting that the series interpo-
lation methods may be superior for small values of n and l.
We conclude that the variational and global approximants
can be great improvements compared with the series inter-
polants in some, but not all, parameter regimes.

Fig. 4 shows a more systematic comparison to reveal the
accuracy of the approximants obtained using the variational
and the global methods in more detail. As in Fig. 2, buffer
strength n is varied from 10�2 to 102 for three fixed values
of dimensionless buffer diffusivity l. Each curve shows the
average absolute error in free buffer approximation, as
given by Eq. 28. The error of the series interpolant
DblExp-Ser is also included for comparison, and Fig. 4 A
also shows the accuracy of RBA2 and Pad�e2. For small
values of n and l (Fig. 4 A), RBA2, Pad�e2, and even
DblExp-Ser are outperforming the variational approxim-
ants. However, as one increases the values of n and l, vari-
ational approaches are starting to show their advantage. For
most parameter regimes, buffer approximations obtained
using the modified variational (i.e., global) method are
more accurate than the corresponding approximations ob-
tained using the unmodified variational method. For
example, in all panels of Fig. 4, Exp-Global is superior to
Exp-Var.

We note that the second term in the DblExp approximants
reflects the second term in the long-range asymptotic series,
which scales as q3 ¼ 1/(h þ n)3; therefore, the double-expo-
nential and the monoexponential ans€atze approach each
other when q is sufficiently small, corresponding to large
values of buffer strength n. This behavior of accuracy as n
/ N is apparent in Figs. 2 and 4.
Accuracy in approximating [Ca2D]

As noted above, [Ca2þ] is uniquely determined by equilib-
rium buffer concentration through the Ca2þ conservation
law, Eq. 15. Nevertheless, it is useful to look separately at
the accuracy of the Ca2þ estimation by the methods we pre-
sent. Close to the channel location, [Ca2þ] is dominated by
the unbounded point-source term, 1/r, and therefore, we will
use a logarithmic error measure when comparing [Ca2þ] ap-
proximations to our numerical solutions (19,33,34):

kcapp � cnum k ¼ 1

N

XN
n¼ 1

�� ln cappðrnÞ� ln cnumðrnÞ
�� (36)
This sum extends over the same exponentially spaced
points that were used for the buffer error measure given
by Eq. 28, namely a set of 100 points spanning five orders
of magnitude of distance. Fig. 5 plots this Ca2þ error mea-
sure for the optimal approximations that achieve the great-
est accuracy over the wide range of parameters l and n.
Because of the difference between the buffer and the
Ca2þ error measures (cf. Eq. 28 vs. Eq. 36), the accuracy
profile of different [Ca2þ] approximants shown in Fig. 5
does not match perfectly the accuracy of the corresponding
free buffer approximants shown in Figs. 2 and 4, despite the
1:1 relationship between the Ca2þ and free buffer concen-
trations. As explained above, the relative error in [Ca2þ]
estimation is particularly sensitive to the accuracy of the
method at intermediate distances, rather than its accuracy
in the vicinity of the channel, as is the case for the free
buffer error measure (19,34). Note in particular that the
DblExp-Var or DblExp-Global yield the most accurate
Ca2þ approximations for l R 1 (see Fig. 5, B and C), con-
trary to the error in buffer estimation, which is minimized
by the Exp-Global and DblExp-Global approximants (cf.
Fig. 4, B and C). However, for small values of l, RBA2
and Pad�e2 are the best methods for estimating both
[Ca2þ] and buffer (Figs. 4 A and 5 A).
Summary and approximant selection algorithm

Fig. 6 summarizes all results presented in Figs. 1, 2, 3, 4, and
5, marking the best approximants and their errors over five
orders of magnitude of buffer mobility l and buffering
strength n. It shows that the methods we presented signifi-
cantly improve the accuracy of approximation for a wide
range of model parameters, and especially those corre-
sponding to larger l and n. In fact, these methods outper-
form all previously developed approximants with the
exception of RBA2 and Pad�e2 (19,34), which are still supe-
rior in wide regions of parameter space corresponding to
small l and small-to-moderate n. Fig. 6, A1 and B1 can be
used to design a simple algorithm for the selection of the
optimal method. We find that such an algorithm can be
further simplified by using just three methods, Pad�e2,
RBA2, and DblExp-Global, with only a small sacrifice in
accuracy. Below is the full sequence of steps allowing us
to achieve good accuracy in the entire parameter range
that we explored, combined with the steps needed to obtain
final results in physical units:

1) Compute all nondimensional parameters (Eqs. 10, 12,
and 13).

2) Find the nondimensional buffer concentration b using
one of three methods:

a) If ln < 0.1 and lh < 0.03, then use RBA2 (Table 1).
b) Otherwise, use DblExp-Global if its parameter a is real

(Eqs. 26, 37, 38, and 39).
c) Otherwise, use Pad�e2 (Table 1, Eqs. 43 and 44).
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3) Compute nondimensional [Ca2þ] using conservation
law, Eq. 15.

4) Convert concentrations and distance to physical units:
[Ca2þ] ¼ c K, [B] ¼ b BN, r / r/L.

In the last step, K denotes buffer’s affinity, and BN is the free
buffer far from the channel (Eq. 8). Fig. 7 shows that the
average error of the approximants chosen according to this
simplified algorithm remains within 1% even for this simpli-
fied approach, for a very wide range of l- and n-values and
two different values of h, namely h ¼ 1 and h ¼ 10. Note
that the overall accuracy is increased at larger h-values,
which corresponds to higher background [Ca2þ] and/or
reduced mobility of the Ca2þ-bound buffer state. Results
in Fig. 6, A1 and B1 reveal that a somewhat better perfor-
mance could be achieved if the buffer and Ca2þ approxima-
tions are chosen independently for a given set of parameter
values, but this would lead to only a minor improvement.
Apart from algorithm simplicity, choosing the same method
for Ca2þ and buffer estimates guarantees that the conserva-
tion law, Eq. 15, is satisfied.

Finally, we note that another accurate buffer approximant
can be obtained by applying the conservation law (Eq. 15) to
the second-order EBA approximation for [Ca2þ] derived in
terms of exponential integrals in (19). This approximation
has excellent performance relative to other methods when
n > 30, in a certain range of l-values. However, its accuracy
advantage is significantly reduced when h > 1 and depends
very steeply on the value of n.
DISCUSSION

We presented a significant extension of prior modeling work
on equilibrium single-channel Ca2þ nanodomains, based on
two distinct approaches applied to several types of para-
metric approximants that, to our knowledge, have not
been considered previously. In particular, we extended the
series interpolation methods recently used to construct
rational-function (Pad�e) approximants (34), generalizing it
to more accurate and natural parametric forms given by
Eqs. 25, 26, and 27, which bear resemblance to the EBA
and LIN approximants obtained previously using different
methods. Furthermore, we applied two versions of the vari-
ational approach to approximants of the same functional
form, resulting in significant improvement of approximation
accuracy for a wide range of parameters. As summarized in
Figs. 6 and 7, a combination of previously developed and
newly presented approximants can achieve an excellent esti-
mation for the buffer and Ca2þ concentrations near an open
channel for several orders of magnitude of model parame-
ters l, n, and h. Further, we showed that a subset of just three
methods, Pad�e2, RBA2, and DblExp-Global, allows us to
achieve an average accuracy of 1% or better in the entire
parameter range that we explored. As Figs. 6 and 7 show,
the parameter region posing the greatest challenge corre-
1250 Biophysical Journal 119, 1239–1254, September 15, 2020
sponds to l << 1, n >> 1. However, Figs. 1 B, 2 A, 3 B,
4 A, and 5 A illustrate that reasonable accuracy is achieved
even in this parameter regime.

We note that the accuracy profiles shown in Figs. 2, 4,
5, 6, and 7 depend on our choice of the error measures,
given by Eqs. 28 and 36. For instance, without spacing
mesh points exponentially in these error measures, the ac-
curacy ranking of different methods may change. Howev-
er, this error measure choice provides a very demanding
and restrictive comparison, covering a very wide range
of distances and weighting the error more at short dis-
tances from the channel (19,33,34). Therefore, we believe
that the chosen error measures are appropriate and yield
the best comparison method given the wide range of pa-
rameters we consider. Further, we checked that the conclu-
sions are not substantially changed if the LN norm is
chosen instead.

The drawback of the methods we present is that the
expression for approximant parameters can be quite com-
plex, especially for the ans€atze with more than one exponen-
tial term. The level of complexity of different methods is not
the same: the simplest ones are the monoexponential ap-
proximants (Exp-Ser, Exp-Var, and Exp-Global), followed
by double-exponential methods that require finding a root
of a cubic equation (DblExp-Ser, DblExp-Var, and
DblExp-Global), and finally, two methods (Exp-Pad�e and
Pad�e2) require solving a fourth-order polynomial system.
However, all approximants were determined as closed-
form expressions that only take several lines of computer
code (see Appendices A, B, and C).

Several other functional formswere also considered but are
not presented here because they either did not result in better
accuracy compared to other approximants or provided only a
minor improvement in limited regions of parameter space
while complicating the expressions for parameters. This is
true for example for the double-exponential approximation
similar to Eq. 26 but with two different decay rates, a1 and
a2. However, it is possible that we missed other accurate ap-
proximants. Such improved ans€atze could be found, for
instance, by taking into account the singularities of the ana-
lytic extension of the solution to the unphysical complex-dis-
tanceplane.Aswenoted above, onlyRBAcaptures the branch
cut of this analytic extension; further, RBA2 derived in (19)
agrees with the long-range asymptotic expansion of the true
solution given by Eq. 22 up to terms of order x5 (34). There-
fore, our initial efforts to construct an improved ansatz were
focused on modifying RBA. However, so far, we have failed
to find a modification that improves its performance.

More importantly, the presented approaches can be
extended to the study of complex buffers with more realistic
Ca2þ binding properties. Most prior modeling efforts,
including this work, focused on a simple buffer with 1:1
Ca2þ binding,whereasmost biological buffers possess several
binding sites with distinct Ca2þ binding characteristics, for
instance, calretinin and calmodulin (41–43). To date, only
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RBA has been extended to such buffers, and only to first order
(33). Our preliminary exploration reveals that the series inter-
polation approach can be extended to bufferswith twobinding
sites, using a combination of rational and exponential func-
tions, which is a subject of our work. Another direction of po-
tential improvement is relaxing some of the key simplifying
assumptions of the model, allowing for simple volumetric
Ca2þ extrusion, considering Ca2þ channel pore of a finite
width (16), and exploring the generalization of these methods
to the case of two or more channels.
APPENDIX A: DOUBLE-EXPONENTIAL
APPROXIMATION

Parameter a for each of the double-exponential ans€atze described by Eq. 26

satisfies a cubic equation of the same form,

h q2Pa3 �Qa2 � Raþ 1=q ¼ 0; (37)

where the polynomial coefficients P, Q, and R are given in Table 3.

The three roots of this cubic can be succinctly represented in the following

form:

ak ¼ 1

W


Q� Gk � E

Gk

�
;

8>>>>><>>>>>:

W ¼ 3h q2P; E ¼ Q2 þWR;

F ¼ 3

2
ðQR�W=qÞW þ Q3;

Gk ¼ pk

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � E3

p
þ F

i1=3
:

(38)

The constants pk (k¼ 1, 2, 3) in the expression for the intermediate quantity

Gk denote branches of (�1)1/3:

p1 ¼
�
1þ i

ffiffiffi
3

p �.
2; p2 ¼

�
1� i

ffiffiffi
3

p �.
2; p3 ¼ �1

(39)

In this notation, the real positive root of Eq. 37 corresponds to the

value a1 when implemented verbatim in MATLAB (The MathWorks,

Natick, MA). For each of the three double-exponential approximants,

the imaginary part of the root becomes nonzero for small values of n

and l corresponding to the inner region marked by thin arcs in Fig. 6,

A1 and B1.
APPENDIX B: EXP-PAD�e APPROXIMATION

For the Exp-Pad�e ansatz (Eq. 27), matching the relationship

between the first three terms in the Taylor series of the solution (Eq.

20) leads to the following algebraic system for the ansatz parameters

a and b:8><>:
b ¼ hq3½qaðlaþ 1Þ � 1��1

;

ðabÞ21� 2hq

2hlq2
þ ab



aþ 2hq

l

�
þ 6 ¼ h2q3

l
:

(40)
This leads to a fourth-order polynomial equation for a, with the following

explicit solution:

a ¼ 1

2l

"
H1=2 �Qþ



2V

H1=2
� H � 6U

�1=2
#
; (41)
where constants U, V, H, and Q are determined by model parameters {l, q,

h} according to

P ¼ 6þ h q2ð1� h qÞ
l

; Q ¼ 1

P



6þ h q2

2l

�
;

R ¼ Q



1� 2l

q

�
þ 2h2q2

P
;

U ¼ R

3
� Q2

2
; V ¼ Q

�
R� Q2

�þ 12l

qP
;

W ¼ Q2



R

3
� Q2

4

�
þ 4l

6ðQþ l=qÞ � h2q2

3qP
;

E ¼ V2



V2

4
þ U

�
U2 � 3W

���W
�
W � 3U2

�2
;

G ¼ V2

2
þ U

�
U2 � 3W

�þ E1=2;

H ¼ W þ U2

G1=3
þ G1=3 � 2U:

(42)
We note that the other three roots do not yield real positive values

of a and b. In the parameter regime 1 � qh < 10�2 and l < 10�2,

these expressions suffer from numerical loss of significance because

of subtraction of values close in magnitude in several of the interme-

diate variables. The loss of accuracy can be corrected by an algebraic

manipulation of the terms, by using higher-precision computation, or

by applying a couple of Newton’s iteration steps to the computed

root value.
APPENDIX C: PAD�e2 APPROXIMATION

The Pad�e2 rational-function ansatz in Table 1 is obtained by series interpo-

lation and leads to a fourth-order polynomial system (34), with the

following exact solution for coefficients A1,2 and B1,2:8>>>>>>>>><>>>>>>>>>:

B2 ¼ q

R



Qþ G1=3 þ H

G1=3

�
;

B1 ¼ 1

V


B2ðB2R� 3qKÞ

6lq2
� J

�
;

A1 ¼ B1 � q;

A2 ¼ B2 � q
�
B1 � hq2

�
;

(43)
where constantsQ,G,H, R, K, J, and Vare determined by model parameters

{l, q, h} and p ¼ qn according to
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R ¼ 24l� 3pqðp� 2Þ;
K ¼ 8l2 � 2lq

�
2p2 � 5p� 2

�� pq2ðp� 2Þ;
Q ¼ K þ 24l2 � 4lpqð2p� 3Þ;
V ¼ 2lðpþ 6Þ þ pqðp� 3Þðp� 2Þ;
F ¼ 6l2 � lqðpþ 3Þðp� 2Þ � hp q3ð2p� 3Þ;
J ¼ 24l2 � 2lpqð5p� 8Þ � hp2q3ðp� 2Þ;
E ¼ 12l2 þ h p q2

�
8lþ hp q2

�
;

H ¼ p2q4ðp� 2Þ2 þ 1600l4 � 104l3qðp� 2Þð9pþ 4Þ
þ4l2q2

�
39p4 � 87p3 � 63p2 þ 184pþ 4

�
�4lpq3ðp� 2Þ�6p3 � 21p2 þ 20pþ 2

�
;

W ¼ 12000l5 � 4l4q
�
2687p2 � 2966p� 553

�
þ4l3q2

�
729p4 � 1626p3 þ 486p2 þ 421pþ 70

�
�l2q3

�
243p6 � 810p5 þ 609p4 þ 210p3 � 21p2 � 240p

�4Þ � 2lh p q5ðp� 2Þ�20p2 � 13p� 1
�þ p2h2q7;

G ¼ Q3 þ 2lR
h
3QF� 9lERþ Vð�3qWÞ1=2

i
:

(44)

The other three roots do not yield positive real values of coefficients A1,2

and B1,2 satisfying the constraints required for the correct physical behavior

of the solution (34).
APPENDIX D: EXISTENCE AND UNIQUENESS OF
SOLUTION

Here, we outline a rigorous mathematical study of Eq. 14 to establish

the basic qualitative characteristics of its biophysically relevant solu-

tions. The solutions of this equation must be understood in the distribu-

tional sense in R3 (40), in view of the fact that the right-hand side of

Eq. 14 blows up at the origin, and therefore, the derivatives of b(r)

are undefined classically at r ¼ 0. We will take advantage of the vari-

ational formulation, Eqs. 29, 30, 31, and 32, to establish the basic ex-

istence, uniqueness, regularity, and symmetry properties of the solutions

of the above equation in the physically relevant class of functions b:

R3/R, namely functions that approach the limit at infinity sufficiently

fast and obey the bounds in Eq. 16. To make the statement in Eqs. 29,

30, 31, and 32 more precise, we need to ensure that F[b] is well defined

and differentiable for a given b. A natural class of functions ensuring

these conditions is the homogeneous Sobolev space �W
1;2 ðR3Þ, i.e.,

the space of locally integrable functions with square integrable first

weak derivatives (for the basic notations and the definitions of the func-

tion spaces used below, see (40,44)). This makes the first term in the

integrand in Eq. 29 well defined. Nonetheless, we still need to make

sure that the rest of the integrand does not give rise to a divergent in-

tegral due to a possible slow decay of b(r) � 1 as r / þN. To control

the latter issue, we invoke Eq. 16. For simplicity of notation, let V0(b, r)
and V00(b, r) denote the first and the second partial derivatives with

respect to b. Taylor expanding around bRBA(r) and taking into account

that V0(bRBA, r) ¼ 0, we have

Vðb; rÞ ¼ VðbRBAðrÞ; rÞ þ 1

2
V 00�~bðrÞ; r�ðb� bRBAðrÞÞ2

(45)

for some ~b(r) lying between b(r) and bRBA(r). We note that bRBA(r) satisfies

the bounds in Eq. 16, obeys bRBA(r)� jrj as jrj/ 0, and agrees up to order

O(jrj�3) with Eq. 22 as jrj / þN. Because ~b also satisfies the bounds in

Eq. 16 and because
1252 Biophysical Journal 119, 1239–1254, September 15, 2020
V 00�~b; r� ¼ h� nþ 1=jr j þ 2n~b; (46)

we obtain from Eq. 46 and the definition of h (Eq. 13) that

V 00�~b; r�R h� cN ¼ 1
	
d�B > 0 (47)

In particular, F is non-negative in the considered class. Also, by inspection,

bRBA ˛ �W
1;2

ℝ3
� �

. Therefore, it holds that

F½bRBA� < þN; (48)

indicating that F is finite on a nonempty subset of �W
1;2

ℝ3
� �

, satisfying the

bounds in Eq. 16.

We now proceed with establishing existence of solutions of Eq. 14

that are minimizers of F among all b ˛ �W
1;2

ℝ3
� �

satisfying Eq. 16.

To this aim, we first redefine F to relax the constraints in Eq. 16, by

introducing

~F b½ � ¼
Z
ℝ3

l

2
Vbj j2 þ ~V b; rð Þ � V bRBA rð Þ; rð Þ� d3r;


(49)

where

~V b; rð Þ¼
V 0 b� rð Þ; rð Þ b� b� rð Þð Þ; b< b� rð Þ;

V b; rð Þ; b� rð Þ%b%bþ rð Þ;
V 0 bþ rð Þ; rð Þ b� bþ rð Þð Þ; b> bþ rð Þ:

8<:
(50)

Notice that ~F½b� ¼ F[b] for all b satisfying Eq. 16. Also, by inspection,
~Vð , ; rÞ˛C 1 ;1ðRÞ for all r s 0 and

V 0ðb�ðrÞ; rÞ< 0;V 0ðbþðrÞ; rÞ> 0 (51)

In particular, ~V(b, r) R V(bRBA, r) for all b ˛ R and r ˛ R3.

Next, we use the direct method of calculus of variations (45) to establish

existence of minimizers of ~F½b�. In view of Eq. 48, we have inf ~F b½ �< þN.

The existence of minimizers then follows from coercivity and lower semi-

continuity of ~F½b� with respect to the weak convergence in �W
1;2 ðR3Þ and

strong convergence in L1locðR3Þ (45). Indeed, if bn ˛ �W
1;2

ℝ3
� �

is a mini-

mizing sequence, then for any R > 0, we have

þN> ~F½bn� ¼
Z
R3


l

2
jVbn j 2þ~Vðbn; rÞ�VðbRBAðrÞ; rÞ

�
d3r

R � 4p

3
CR3 þ l

2
kVbn k 2

L2ðR3Þ

þ c

Z
BRð0Þ

jbn j d3r

(52)

because by construction ~Vðb; rÞ � VðbRBA; rÞRmaxð0; cjb j �CÞ for some

c, C > 0, and any b˛�W
1;2 ðR3Þ: From Eq. 52, we obtain

lim supn/NkVbn k 2
L2ðR3Þ < þN, and after extraction of a subsequence,

we have Vbn.Vb in L2ðR3; R3Þ and bn(r) / b(r) for almost every r

˛ R3 for some b˛�W
1;2 ðR3Þ. Then, by lower semincontinuity of the

norm and Fatou’s lemma applied to V(bn(r), r), we get that

lim infn/N
~F½bn�RF½b�, and so b is a minimizer of ~F. Furthermore,

because ~F is Fr�echet differentiable with respect to compactly supported per-

turbations, we also have Df
~F½b� ¼ 0, i.e.,



Efficient Ca2þ Nanodomain Approximants
Z
R3


l

2
Vb , Vfþ ~V

0ðb; rÞf
�
d3r ¼ 0;cf˛CN

c

�
R3

�
(53)

Having established existence of a minimizer of ~F, we now show that it

satisfies Eq. 16 a posteriori. To show that b % bþ, we define ~b ¼ min(bþ,
max(b(r), 1 � cN/n)); by Eq. 51, we have ~F½ ~b �%~F½ b �, and this inequality

is strict unless ~b¼ b almost everywhere inR3: Similarly, to establish bR b�,
we define w ¼ min(0, b � b�) ˛ �W

1;2
ℝ3
� �

and note that w ¼ 0 in B1/n(0) or

whenever b R b� in B c
1 =nð0Þ: Defining ~bðrÞ ¼ max(b(r), b�(r)), we have

~F½b� � ~F
�
~b
� ¼

Z
B c

1=n
ð0Þ


l

2
Vðb þ b�Þ , Vw

þ V 0ðb�ðrÞ; rÞ w

�
d3r (54)

Using Eqs. 51 and 53 and the fact that V2b� ¼ 0 in B c
1 =nð0Þ distribution-

ally, integrating by parts we obtain

~F½b� � ~F
�
~b
� ¼ 1

2

Z
B c

1=n
ð0Þ
V 0ðb�ðrÞ; rÞw d3rR0 (55)

This inequality is strict unless b ¼ b� almost everywhere in R3: Thus, the

minimizer b satisfies Eq. 16 and hence is also a minimizer of F[b] in
�W

1;2 ðR3Þ, subject to the constraint in Eq. 16.

We now establish uniqueness, regularity, and radial symmetry of the

minimizer b. By Eq. 53, b satisfies Eq. 32 and is unique in this class because

of the strict convexity of F ensured by Eq. 47. Namely, if b is a minimizer

and w ˛ �W
1;2

ℝ3
� �

is such that b þ w still satisfies Eq. 16, with the help of

Eqs. 53 and 45, we can write

F½bþw� �F½b� ¼ 1

2

Z
R3

�
l
��Vwj2 þV 00�~bðrÞ; r�w2

�
d3r

(56)

for some ~bðrÞ between b(r) and b(r)þ w(r). So, by Eqs. 56 and 47, we have

F[b þ w] > F[b] for every w(r) s 0, and, therefore, b(r) þ w(r) is not a

minimizer unless w(r) ¼ 0 almost everywhere in R3:

Then, by uniqueness of minimizer, we have b(r) ¼ b(jrj) (with a slight

abuse of notation), i.e., b is radially symmetric, as minimization may be car-

ried out in the class of radial functions to obtain a radial solution of Eq. 32.

Finally, elliptic regularity theory (44) yields that for any 1% p< 3, we have

b ˛ W2;p
loc ðR3ÞXCNðR3 =f0gÞ, and hence, by Sobolev embedding (40), we

have b ˛ C0,aðR3Þ for any a ˛ (0, 1). In particular, b(r) is continuous at r ¼
0 and solves Eq. 18 for each r > 0. Integrating this equation once near the

origin yields

db

dr
¼ C

r2
þ bð0Þ

2l
þ OðraÞ; r/0 (57)

for someC˛R. In view of the square integrability ofVb, we must haveC¼
0, and so b is in fact Lipschitz continuous at the origin, which justifies Eq.

20. Lastly, boundedness of F[b], Eq. 47, Lipschitz continuity of b, and

decay of bRBA � 1 at infinity yield b(r) / 1 as r / N.
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