Magnetic skyrmions in the conformal limit

Cyrill B. Muratov

Department of Mathematical Sciences
New Jersey Institute of Technology
T. Simon (Institute for Applied Mathematics, University of Bonn, Germany) A. Bernand-Mantel (LPCNO, University of Toulouse, France)
supported by NSF via DMS-1614948 and DMS-1908709, and by DARPA via MIPR No. HR0011831554.

Magnetism and magnets

Magnetic Materials

Loose and Random Magnetic Domains

Effect of Magnetization Domains Lined-up in Series

- spins act as tiny magnetic dipoles
- quantum-mechanical interaction between spins: exchange
- in transition metals below the critical temperature, exchange results in local spin alignment into the ferromagnetic state
- magnetic field mediates long-range attraction/repulsion between magnets

Magnetic domains

- stray field frustrates the ferromagnetic order
- gives rise to a great variety of spin textures
- principle of pole avoidance

J. McCord, J. Phys. D: Appl. Phys. 48, 333001 (2015)

Next generation materials

atomically thin multilayers with strong spin-orbit coupling (SOC):

C.-M. Choi et al., Semicond. Sci. Technol. 32, 105007 (2017)

Topological spin textures

spin spirals and chiral domain walls:

2ML Fe on W (110)

$\mathrm{Pd} /$ Fe bilayer on $\operatorname{Ir}(111)$

K. von Bergmann et al., J. Phys.: Condens. Matter 26, 394002 (2014)
magnetic skyrmions:

Micromagnetic modeling framework

continuum theory (statics):
$\Omega \subseteq \mathbb{R}^{2}$ - film shape

$$
\begin{aligned}
E(\mathbf{M})= & \frac{A}{M_{\mathrm{s}}^{2}} \int_{\Omega \times(0, d)}|\nabla \mathbf{M}|^{2} \mathrm{~d}^{3} r+\frac{K}{M_{\mathrm{s}}^{2}} \int_{\Omega \times(0, d)}\left|\mathbf{M}_{\perp}\right|^{2} \mathrm{~d}^{3} r-\mu_{0} \int_{\Omega \times(0, d)} \mathbf{M} \cdot \mathbf{H} \mathrm{d}^{3} r \\
& +\mu_{0} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\nabla \cdot \mathbf{M}(\mathbf{r}) \nabla \cdot \mathbf{M}^{\left(\mathbf{r}^{\prime}\right)}}{8 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d}^{3} r \mathrm{~d}^{3} r^{\prime}+\frac{D d}{M_{\mathrm{s}}^{2}} \int_{\Omega}\left(\bar{M}_{\|} \nabla \cdot \overline{\mathbf{M}}_{\perp}-\overline{\mathbf{M}}_{\perp} \cdot \nabla \bar{M}_{\|}\right) \mathrm{d}^{2} r .
\end{aligned}
$$

M, Slastikov, 2016
Here $\mathbf{M}=\left(\mathbf{M}_{\perp}, M_{\|}\right), \quad \mathbf{M}_{\perp} \in \mathbb{R}^{2} \quad M_{\|} \in \mathbb{R} \quad|\mathbf{M}|=M_{\mathrm{s}} \quad$ in $\Omega \times(0, d) \subset \mathbb{R}^{3}$
Parameters and their representative values:

- exchange constant $A=10^{-11} \mathrm{~J} / \mathrm{m}$
- anisotropy constant $K=1.25 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$
- saturation magnetization $M_{s}=1.09 \times 10^{6} \mathrm{~A} / \mathrm{m}$
film thickness $d=0.6 \mathrm{~nm}$ lateral dimension:
$L \sim 100 \mathrm{~nm}$
- DMI strength $D=1 \mathrm{~mJ} / \mathrm{m}^{2} \quad$ applied field strength $\mu_{0} H=100 \mathrm{mT}$

Need reduced micromagnetic models

analytically, the full 3D problem poses a formidable challenge:

- vectorial
- nonlinear
- nonlocal
- multiscale
- topological constraints
need a simplified model which is valid for the relevant parameter range and still captures quantitatively the physical features of the system

Solution: introduce reduced thin film models that are amenable to analysis
Use the tools from rigorous asymptotic analysis of calculus of variations

Dimension reduction

$$
\mathbf{m}=\left(\mathbf{m}_{\perp}, m_{\|}\right)
$$

assume the magnetization $\mathbf{m}=\mathbf{M} / M_{s}$ does not vary significantly across the film thickness, measure lengths in the units of $\ell_{e x}$, scale energy by $A d$

$$
\begin{aligned}
& E(\mathbf{m})=\int_{\mathbb{R}^{2}}\left\{|\nabla \mathbf{m}|^{2}+(Q-1)\left|\mathbf{m}_{\perp}\right|^{2}-2 \kappa \mathbf{m}_{\perp} \cdot \nabla m_{\|}\right\} d^{2} r \\
& +\frac{1}{2 \pi \delta} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}-\frac{1}{\sqrt{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}+\delta^{2}}}-2 \pi \delta^{(2)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\right) m_{\|}(\mathbf{r}) m_{\|}\left(\mathbf{r}^{\prime}\right) d^{2} r d^{2} r^{\prime} \\
& \quad+\delta \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} K_{\delta}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right) d^{2} r d^{2} r^{\prime}
\end{aligned}
$$

Here:

$$
Q=\frac{2 K}{\mu_{0} M_{s}^{2}}, \quad \kappa=D \sqrt{\frac{2}{\mu_{0} M_{s}^{2} A}}, \quad \ell_{e x}=\sqrt{\frac{2 A}{\mu_{0} M_{s}^{2}}}, \quad \delta=\frac{d}{\ell_{e x}}
$$

$$
K_{\delta}(r)=\frac{1}{2 \pi \delta}\left\{\ln \left(\frac{\delta+\sqrt{\delta^{2}+r^{2}}}{r}\right)-\sqrt{1+\frac{r^{2}}{\delta^{2}}}+\frac{r}{\delta}\right\} \simeq \frac{1}{4 \pi r} \quad \delta \ll 1
$$

Reduced thin film energy

$\mathbf{m}=\left(\mathbf{m}_{\perp}, m_{\|}\right)$
regime $\delta \ll 1$:
Taylor-expand in Fourier space

$$
\begin{aligned}
E(\mathbf{m}) & \simeq \int_{\mathbb{R}^{2}}\left\{|\nabla \mathbf{m}|^{2}+(Q-1)\left|\mathbf{m}_{\perp}\right|^{2}-2 \kappa \mathbf{m}_{\perp} \cdot \nabla m_{\|}\right\} d^{2} r \\
& +\frac{\delta}{4 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{2} r d^{2} r^{\prime}-\frac{\delta}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\left(m_{\|}(\mathbf{r})-m_{\|}\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime}
\end{aligned}
$$

M, Slastikov, 2016
the expression for the stray field energy is rigorously justified via Γ-expansion
Knüpfer, M, Nolte, 2019
for bounded 2D samples, extra boundary terms appear
Di Fratta, M, Slastikov
(in preparation)
proper definition of the non-local terms is via Fourier:

$$
\begin{aligned}
& \left.\frac{1}{2} \int_{\mathbb{R}^{2}}|\mathbf{k}|\left|\widehat{m}_{\|}(\mathbf{k})\right|^{2} \frac{d^{2} k}{(2 \pi)^{2}}=\frac{1}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\left(m_{\| \mid}(\mathbf{r})-m_{\|}\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime}, \quad\right\} \begin{array}{l}
\text { surface } \\
\text { charges }
\end{array} \\
& \left.\frac{1}{2} \int_{\mathbb{R}^{2}} \frac{\left|\mathbf{k} \cdot \widehat{\mathbf{m}}_{\perp}(\mathbf{k})\right|^{2}}{|\mathbf{k}|} \frac{d^{2} k}{(2 \pi)^{2}}=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{2} r d^{2} r^{\prime} .\right\} \begin{array}{l}
\text { volume } \\
\text { charges }
\end{array}
\end{aligned}
$$

Reduced thin film energy (cont.)

regime $\delta \ll 1$:
define $\quad \overline{\mathbf{m}}=\frac{1}{\delta} \int_{0}^{\delta} \mathbf{m}(\cdot, z) d z$

$$
\begin{aligned}
\left.E_{s}(\overline{\mathbf{m}})=\frac{1}{\delta} \int_{\mathbb{T}_{\ell} \times(0, \delta)} \right\rvert\, m_{\|} \|^{2} d^{3} r & -\frac{\delta}{8 \pi} \int_{\mathbb{T}_{\ell}} \int_{\mathbb{R}^{2}} \frac{\left(\bar{m}_{\|}(\mathbf{r})-\bar{m}_{\|} \mid\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime} \\
& +\frac{\delta}{4 \pi} \int_{\mathbb{T}_{\ell}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot \overline{\mathbf{m}}_{\perp}(\mathbf{r}) \nabla \cdot \overline{\mathbf{m}}_{\perp}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{2} r d^{2} r^{\prime}
\end{aligned}
$$

Theorem There exists a universal constant $C>0$ such that

$$
\left|\mathcal{E}_{s}(\mathbf{m})-E_{s}(\overline{\mathbf{m}})\right| \leq C \delta \int_{\mathbb{T}_{\ell} \times(0, \delta)}|\nabla \mathbf{m}|^{2} d^{3} r
$$

the difference between the energies is lower order in $\delta \ll 1$

Reformulation

$$
\begin{aligned}
F_{\mathrm{vol}}(f) & :=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot f(x) \nabla \cdot f(\tilde{x})}{|x-\tilde{x}|} \mathrm{d} \tilde{x} \mathrm{~d} x \\
F_{\text {surf }}(\tilde{f}) & :=\frac{1}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{(\tilde{f}(x)-\tilde{f}(\tilde{x}))^{2}}{|x-\tilde{x}|^{3}} \mathrm{~d} \tilde{x} \mathrm{~d} x
\end{aligned}
$$

rescale

$$
\bar{x}:=\frac{Q-1}{\kappa+\delta} x \text { and } \bar{m}(\bar{x}):=m\left(\frac{\kappa+\delta}{Q-1} \bar{x}\right)
$$

$$
\begin{aligned}
m & =\left(m^{\prime}, m_{3}\right) \\
m^{\prime} & =\left(m_{1}, m_{2}\right)
\end{aligned}
$$

energy:

$$
\begin{aligned}
E_{\sigma, \lambda}(m)=\int_{\mathbb{R}^{2}}|\nabla m|^{2} \mathrm{~d} x+\sigma^{2}(& \int_{\mathbb{R}^{2}}\left|m^{\prime}\right|^{2} \mathrm{~d} x-2 \lambda \int_{\mathbb{R}^{2}} m^{\prime} \cdot \nabla m_{3} \mathrm{~d} x \\
& \left.+(1-\lambda)\left(F_{\text {vol }}\left(m^{\prime}\right)-F_{\text {surf }}\left(m_{3}\right)\right)\right)
\end{aligned}
$$

parameters:

$$
\sigma:=\frac{\kappa+\delta}{\sqrt{Q-1}} \text { and } \lambda:=\frac{\kappa}{\kappa+\delta}
$$

ultimately, we wish to consider the asymptotic limit $\sigma \rightarrow 0$ with λ fixed

Skyrmions

- topologically nontrivial configurations of nonlinear field theories
- introduced by Tony Skyrme in the early 1960s to empirically describe the low-energy properties of baryons
- received attention in the mathematical literature from the 1980s onward Esteban, 1986; Esteban, 1992; Faddeev and Niemi, 1997; Esteban, 2004; Lin and Yang, 2004
- relevant example: baby skyrmions

$$
E(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left\{|\nabla u|^{2}+\frac{\lambda}{2}\left|\partial_{1} u \times \partial_{2} u\right|^{2}+\frac{\mu}{2}(1-\mathbf{n} \cdot u)^{2}\right\} \mathrm{d} x
$$

- existence of minimizers of

$$
E_{k}=\inf \{E(u): E(u)<\infty, \operatorname{deg}(u)=k\} \quad \operatorname{deg}(u)=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} u \cdot\left(\partial_{1} u \times \partial_{2} u\right) \mathrm{d} x
$$

Admissible class

$$
\mathcal{N}(m):=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} m \cdot\left(\partial_{1} m \times \partial_{2} m\right) \mathrm{d} x
$$

topological degree

compact skyrmion

vs.
skyrmionic bubble

for bubble skyrmion, the stray field energy diverges with radius:

$$
F_{\text {surf }}\left(m_{R, 3}\right) \sim R \ln R
$$

hence

$$
m: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}, \nabla m \in L^{2}, m^{\prime} \in L^{2} \nRightarrow E_{\sigma, \lambda}(m)>-\infty
$$

no hope to construct solutions as absolute minimizers with prescribed degree

Compact skyrmions as local minimizers

introduce:

$$
\mathcal{N}(m):=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} m \cdot\left(\partial_{1} m \times \partial_{2} m\right) \mathrm{d} x
$$

$$
\mathcal{A}:=\left\{m \in \grave{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{S}^{2}\right): \int_{\mathbb{R}^{2}}|\nabla m|^{2} \mathrm{~d} x<16 \pi, m+e_{3} \in L^{2}\left(\mathbb{R}^{2}\right), \mathcal{N}(m)=1\right\}
$$

why 16π ? Topological lower bound: $m \in \stackrel{\circ}{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{S}^{2}\right)$

$$
\int_{\mathbb{R}^{2}}|\nabla m|^{2} \mathrm{~d} x \geq 8 \pi|\mathcal{N}(m)|
$$

$$
|\nabla m|^{2} \pm 2 m \cdot\left(\partial_{1} m \times \partial_{2} m\right)=\left|\partial_{1} m \mp m \times \partial_{2} m\right|^{2}
$$

allows to exclude splitting in the concentration compactness arguments
Theorem 1. Let $\sigma>0$ and $\lambda \in[0,1]$ be such that $\sigma^{2}(1+\lambda)^{2} \leq 2$. Then there exists $m_{\sigma, \lambda} \in \mathcal{A}$ such that

$$
E_{\sigma, \lambda}\left(m_{\sigma, \lambda}\right)=\inf _{\widetilde{m} \in \mathcal{A}} E_{\sigma, \lambda}(\widetilde{m})
$$

adapting arguments of Melcher, 2014, and Döring and Melcher, 2017
main point:
$m_{n}+e_{3} \rightarrow m_{\sigma}+e_{3}$ in $L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$

$$
E_{\sigma, \lambda}(m)=\int_{\mathbb{R}^{2}}|\nabla m|^{2} \mathrm{~d} x+\sigma^{2}\left(\int_{\mathbb{R}^{2}}\left|m^{\prime}\right|^{2} \mathrm{~d} x-2 \lambda \int_{\mathbb{R}^{2}} m^{\prime} \cdot \nabla m_{3} \mathrm{~d} x\right.
$$

Conformal limit

$$
\left.+(1-\lambda)\left(F_{\mathrm{vol}}\left(m^{\prime}\right)-F_{\mathrm{surf}}\left(m_{3}\right)\right)\right)
$$

setting $\sigma=0$ leads to harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} with prescribed degree complete solution formally obtained by Belavin and Polyakov, 1975 degree 1 minimizers of $F(m):=\int_{\mathbb{R}^{2}}|\nabla m|^{2} \mathrm{~d} x$ over $m \in \dot{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{S}^{2}\right)$ belong to:

$$
\mathcal{B}:=\left\{S \Phi\left(\rho^{-1}(\bullet-x)\right): S \in \mathrm{SO}(3), \rho>0, x \in \mathbb{R}^{2}\right\}
$$

i.e., dilations, rotations and translations of:

$$
\Phi(x):=\left(-\frac{2 x}{1+|x|^{2}}, \frac{1-|x|^{2}}{1+|x|^{2}}\right)
$$

furthermore, if $\phi \in \mathcal{B}$ then $\int_{\mathbb{R}^{2}}|\nabla \phi|^{2} \mathrm{~d} x=8 \pi$ and

$$
\Delta \phi+|\nabla \phi|^{2} \phi=0 \quad \mathcal{N}(\phi)=1
$$

and vice versa
minimizers of $E_{\sigma, \lambda}$ as $\sigma \rightarrow 0$ are almost minimizers of F
=> minimizers are close to \mathcal{B}

Rigidity estimate for degree ± 1 harmonic maps

define the class of degree 1 Sobolev maps from \mathbb{R}^{2} to \mathbb{S}^{2}

$$
\mathcal{C}:=\left\{\tilde{m} \in \dot{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{S}^{2}\right): \mathcal{N}(\tilde{m})=1\right\}
$$

and the Dirichlet distance to degree 1 Belavin-Polyakov profiles:

$$
D(m ; \mathcal{B}):=\inf _{\widetilde{\phi} \in \mathcal{B}}\left(\int_{\mathbb{R}^{2}}|\nabla(m-\widetilde{\phi})|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
$$

Theorem 2. For every $m \in \mathcal{C}$ there exists $\phi \in \mathcal{B}$ that achieves the infimum in the Dirichlet distance $D(m ; \mathcal{B})$. Furthermore, there exists a universal constant $\eta>0$ such that

$$
\eta D^{2}(m ; \mathcal{B}) \leq F(m)-8 \pi .
$$

- conformal invariance of the harmonic maps => switch to maps from \mathbb{S}^{2} to \mathbb{S}^{2}
- reduce the problem to that of stability of the identity map on \mathbb{S}^{2}
- spectral gap for the linearized problem via vectorial spherical harmonics

Reduction to maps between spheres

given a map $m \in \mathcal{C}$ that is close to $\phi \in \mathcal{B}$ in $\stackrel{H}{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$, the map $m \circ \phi^{-1}$ is close to $\operatorname{id}_{\mathbb{S}^{2}}$ in $H^{1}\left(\mathbb{S}^{2} ; \mathbb{R}^{3}\right)$.

Hessian of the Dirichlet energy at the identity map: $\quad \zeta, \xi \in H^{1}\left(\mathbb{S}^{2} ; T \mathbb{S}^{2}\right)$

$$
\mathfrak{H}(\zeta, \xi):=\int_{\mathbb{S}^{2}}(\nabla \zeta: \nabla \xi-2 \zeta \cdot \xi) \mathrm{d} \mathcal{H}^{2}
$$

define the Jacobi fields:

$$
J:=\left\{\zeta \in H^{1}\left(\mathbb{S}^{2} ; T \mathbb{S}^{2}\right): \mathfrak{H}(\zeta, \zeta)=0\right\}
$$

vector spherical harmonics:

$$
\begin{aligned}
& \mathcal{Y}_{n, j}^{(1)}(y):=Y_{n, j}(y) y, \quad \mathcal{Y}_{0,0}^{(1)}(y):=\frac{1}{\sqrt{4 \pi}} y, \\
& \mathcal{Y}_{n, j}^{(2)}(y):=\frac{1}{\sqrt{n(n+1)}} \nabla Y_{n, j}(y), \\
& \mathcal{Y}_{n, j}^{(3)}(y):=\frac{1}{\sqrt{n(n+1)}} y \times \nabla Y_{n, j}(y) .
\end{aligned}
$$

Jacobi fields and a spectral gap

$$
\begin{aligned}
& \text { Proposition We have } J=\operatorname{span}\left\{\mathcal{Y}_{1, j}^{(2)}, \mathcal{Y}_{1, j}^{(3)} ; j=-1,0,1\right\} \text {. In particular, all } \\
& \text { Jacobi fields are smooth and it holds that } \operatorname{dim} J=6 \text {. Furthermore, we have the } \\
& \text { spectral gap property } \\
& \qquad \mathfrak{H}(\xi, \xi) \geq \frac{2}{3} \int_{\mathbb{S}^{2}}|\nabla \xi|^{2} \mathrm{~d} \mathcal{H}^{2} \\
& \text { for all } \xi \in \mathbb{H}^{1} \text {. Finally, the } L^{2} \text {-orthogonal projection } \pi_{J}: L^{2}\left(\mathbb{S}^{2} ; T \mathbb{S}^{2}\right) \rightarrow \\
& L^{2}\left(\mathbb{S}^{2} ; T \mathbb{S}^{2}\right) \text { onto } J \text { is well-defined and orthogonal with respect to the inner product } \\
& \text { in } \stackrel{H}{1}^{1}\left(\mathbb{S}^{2}\right) \text {. }
\end{aligned}
$$

here:

$$
\mathbb{H}^{1}:=\left\{\xi \in H^{1}\left(\mathbb{S}^{2} ; T \mathbb{S}^{2}\right): \int_{\mathbb{S}^{2}}(\nabla \xi: \nabla \zeta) \mathrm{d} \mathcal{H}^{2}=0 \text { for all } \zeta \in J\right\}
$$

NJIT

From linear stability to rigidity

find $\phi \in \mathcal{B}$ that best approximates $m \in \mathcal{C}$ in Dirichlet distance $D(m ; \mathcal{B})$
Lemma For any $m \in \mathcal{C}$ there exists $\phi \in \mathcal{B}$ such that

$$
D(m ; \mathcal{B})=\left(\int_{\mathbb{R}^{2}}|\nabla(m-\phi)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
$$

let $\phi_{n}:=R_{n} \Phi\left(\rho_{n}^{-1}\left(\cdot-x_{n}\right)\right) \in \mathcal{B}$ be a minimizing sequence (wlog $R_{n}=R$) arguing by contradiction, we have

$$
\lim _{n \rightarrow \infty} \rho_{n}=0, \lim _{n \rightarrow \infty} \rho_{n}=\infty, \text { or } \lim _{n \rightarrow \infty} x_{n}=\infty
$$

=> either $\nabla \phi_{n} \rightharpoonup 0$ in L^{2} or $\nabla m_{n} \rightharpoonup 0$ in $L^{2} \quad$ (after rescaling) $=>$

$$
\int_{\mathbb{R}^{2}}|\nabla(m-\phi)|^{2} \mathrm{~d} x>\int_{\mathbb{R}^{2}}|\nabla m|^{2} \mathrm{~d} x+8 \pi<=>\int_{\mathbb{R}^{2}} \nabla m: \nabla \phi \mathrm{d} x<0 \text { for all } \phi \in \mathcal{B} .
$$

conclude by testing against Belavin-Polyakov profiles with permuted and reflected components

From linear stability to rigidity (cont.)

Lemma 3. There exists a universal constant $\tilde{\eta}>0$ such that the following holds: Let $p \in[1, \infty)$. Then there exists a constant $C_{p}>0$ such that if $m \in H^{1}\left(\mathbb{S}^{2} ; \mathbb{S}^{2}\right)$ satisfies $\int_{\mathbb{S}^{2}}\left|\nabla\left(m-\mathrm{id}_{\mathbb{S}^{2}}\right)\right|^{2} \mathrm{~d} \mathcal{H}^{2} \leq \tilde{\eta}$, then we have the estimate

$$
\left(\int_{\mathbb{S}^{2}}\left|m-\mathrm{id}_{\mathbb{S}^{2}}\right|^{p} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{p}} \leq C_{p}\left(\int_{\mathbb{S}^{2}}\left|\nabla\left(m-\mathrm{id}_{\mathbb{S}^{2}}\right)\right|^{2} \mathrm{~d} \mathcal{H}^{2}\right)^{\frac{1}{2}}
$$

Furthermore, there exists a universal constant $C>0$ such that the Moser-Trudinger type inequality

$$
\int_{\mathbb{S}^{2}} e^{\frac{2 \pi}{3} \frac{\left|m-\mathrm{id}_{\mathrm{S}^{2}}\right|^{2}}{\left\|\nabla\left(m-\mathrm{i} \mathbb{S}^{2}\right)\right\|_{2}^{2}}} \mathrm{~d} \mathcal{H}^{2} \leq C
$$

holds.
Lemma 4. Let $\tilde{\eta}>0$ be as in Lemma 3. For $m \in \mathcal{C}$ with $D^{2}(m ; \mathcal{B})<\tilde{\eta}$ we have

$$
\left(\frac{2}{3}-\frac{2}{3} C_{4}^{2} D(m ; \mathcal{B})-\frac{19}{12} C_{4}^{4} D^{2}(m ; \mathcal{B})\right) D^{2}(m ; \mathcal{B}) \leq F(m)-8 \pi,
$$

where C_{4} is the constant from Lemma 3.

Back to the conformal limit: an Ansatz

every ansatz-free analysis requires a good ansatz
problem: $\quad \phi \in \mathcal{B} \Rightarrow E_{\sigma, \lambda}(\phi)=\infty$!

$$
f(r):=\frac{2 r}{1+r^{2}}
$$

anisotropy energy blows up logarithmically => need a suitable cutoff at infinity
for $L>1$, introduce
$\Phi_{L}(x):=\left(\left.-f_{L}(|x|) \frac{x}{|x|} \right\rvert\, \operatorname{sign}(1-|x|) \sqrt{1-f_{L}^{2}(|x|)}\right) \quad f_{L}(r):= \begin{cases}f(r) & \text { if } r \leq L^{\frac{1}{2}}, \\ f\left(L^{\frac{1}{2}}\right) \frac{K_{1}\left(r L^{-1}\right)}{K_{1}\left(L^{-\frac{1}{2}}\right)} & \text { if } r>L^{\frac{1}{2}} .\end{cases}$
K_{1} is the modified Bessel function of the second kind of order 1

- decays exponentially
- arises from the exact minimizers of the exchange + anisotropy at infinity

Upper bound on energy

$$
S_{\theta}:=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

fix $\rho>0, \theta \in[-\pi, \pi), L>1$ and $S_{\theta} \in \mathrm{SO}(3)$ as above define a test profile

$$
\phi_{\rho, \theta, L}(x):=S_{\theta} \Phi_{L}\left(\rho^{-1} x\right)
$$

then

$$
\begin{aligned}
E_{\sigma, \lambda}\left(\phi_{\rho, \theta, L}\right) \simeq 8 \pi & +\frac{4 \pi}{L^{2}}+4 \pi \sigma^{2} \rho^{2} \log \left(\frac{4 L^{2}}{e^{2(1+\gamma)}}\right) \\
& -8 \pi \sigma^{2} \lambda \rho \cos \theta+\sigma^{2}(1-\lambda) \frac{\pi^{3} \rho}{8}\left(3 \cos ^{2} \theta-1\right)
\end{aligned}
$$

minimized by

$$
\rho_{0} \simeq \frac{\bar{g}(\lambda)}{16 \pi} \frac{1}{|\log \sigma|}, \quad L_{0} \simeq \frac{16 \pi}{\bar{g}(\lambda)} \frac{|\log \sigma|}{\sigma}, \quad \theta_{0}^{ \pm}:= \begin{cases}0 & \text { if } \lambda \geq \lambda_{c}, \\ \pm \arccos \left(\frac{32 \lambda}{3 \pi^{2}(1-\lambda)}\right) & \text { else } .\end{cases}
$$

$$
\lambda_{c}:=\frac{3 \pi^{2}}{32+3 \pi^{2}}, \quad \bar{g}(\lambda):= \begin{cases}\left(8+\frac{\pi^{2}}{4}\right) \pi \lambda-\frac{\pi^{3}}{4} & \text { if } \lambda \geq \lambda_{c} \\ \frac{128 \lambda^{2}}{3 \pi(1-\lambda)}+\frac{\pi^{3}}{8}(1-\lambda) & \text { else }\end{cases}
$$

Main result

Theorem 5. Let $\lambda \in[0,1]$. Let m_{σ} be a minimizer of $E_{\sigma, \lambda}$ over \mathcal{A}. Then there exist $x_{\sigma} \in \mathbb{R}^{2}, \rho_{\sigma}>0$ and $\theta_{\sigma} \in[-\pi, \pi)$ such that $m_{\sigma}-S_{\theta_{\sigma}} \Phi\left(\rho_{\sigma}^{-1}\left(\bullet-x_{\sigma}\right)\right) \rightarrow 0$ in $\stackrel{\circ}{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$ as $\sigma \rightarrow 0$, and

$$
\lim _{\sigma \rightarrow 0}|\log \sigma| \rho_{\sigma}=\frac{\bar{g}(\lambda)}{16 \pi}, \quad \quad \lim _{\sigma \rightarrow 0}\left|\theta_{\sigma}\right|=\theta_{0}^{+}
$$

as well as

$$
\lim _{\sigma \rightarrow 0} \frac{|\log \sigma|^{2}}{\sigma^{2} \log |\log \sigma|}\left|E_{\sigma, \lambda}\left(m_{\sigma}\right)-8 \pi+\frac{\sigma^{2}}{|\log \sigma|}\left(\frac{\bar{g}^{2}(\lambda)}{32 \pi}-\frac{\bar{g}^{2}(\lambda)}{32 \pi} \frac{\log |\log \sigma|}{|\log \sigma|}\right)\right|=0
$$

$$
\lambda_{c}:=\frac{3 \pi^{2}}{32+3 \pi^{2}}, \quad \bar{g}(\lambda):= \begin{cases}\left(8+\frac{\pi^{2}}{4}\right) \pi \lambda-\frac{\pi^{3}}{4} & \text { if } \lambda \geq \lambda_{c} \\ \frac{128 \lambda^{2}}{3 \pi(1-\lambda)}+\frac{\pi^{3}}{8}(1-\lambda) & \text { else }\end{cases}
$$

Remark: quantitative estimate of the closeness to the BP profile available

Interpretation

$$
\begin{aligned}
E(\mathbf{m}) & \simeq \int_{\mathbb{R}^{2}}\left\{|\nabla \mathbf{m}|^{2}+(Q-1)\left|\mathbf{m}_{\perp}\right|^{2}-2 \kappa \mathbf{m}_{\perp} \cdot \nabla m_{\|}\right\} d^{2} r \\
& +\frac{\delta}{4 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{2} r d^{2} r^{\prime}-\frac{\delta}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\left(m_{\|}(\mathbf{r})-m_{\|}\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime}
\end{aligned}
$$

(b)

Outline of proof

- matching upper and lower bounds in terms of energies of truncated BP profiles in the spirit of Γ-equivalence
- use the established rigidity of degree 1 harmonic maps to estimate the remaining terms in the energy
- the main difficulty is that the limiting BP profile may not satisfy $\lim _{|x| \rightarrow \infty} \phi(x)=-e_{3}$
- estimate the anisotropy energy penalty for deviations of $\nu:=\lim _{|x| \rightarrow \infty} \phi(x)$ from $-e_{3}$, using our version of Moser-Trudinger inequality
- relate the difference between ν and $-e_{3}$ to the Dirichlet excess via relaxing the unit length constraint and minimizing the exchange + anisotropy
- conclude by utilizing the rigidity of the finite-dimensional energy of BP profiles

Skyrmion bags

many more solutions in the homotopy classes (even w/o stray field):

Questions?

Cosmonauts A.Balandin and G.Strekalov with the Banner of Peace. Mir Space Station.

