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- spins act as tiny magnetic dipoles 
- quantum-mechanical interaction between spins: exchange 
- in transition metals below the critical temperature, exchange results in local 

spin alignment into the ferromagnetic state 
-  magnetic field mediates long-range attraction/repulsion between magnets

?
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interfaces and atomically thin (2D) materials, and examine their utility 
towards the generation and conversion of spin currents. Next, we describe 
the developments on interfacial-DMI-induced non-collinear spin textures 
(skyrmions and chiral domain walls) in magnetic films, and techniques 
to generate, stabilize and manipulate them in devices. Finally, we explore 
the feasibility of realizing the technological promise of these diverse SOC-
induced surface and interface phenomena towards room-temperature 
device applications.

Spin-polarized surface and interface states
Rashba states
The Rashba effect arises from SOC and broken inversion symmetry at 
material surfaces and interfaces1, with the corresponding Hamiltonian:

ˆ σ= ⋅ ×z kH v ( ) (2 )R 0

Here v0 is the Rashba parameter, σ is spin, k is momentum and ẑ  is the 
unit normal to the surface or interface. The Rashba effect results in spin-
split 2D dispersion surfaces and, importantly, in the locking of spin and 
momentum degrees of freedom to each other (Fig. 2b).

Rashba SOC–split states have been investigated across various sur-
faces and interfaces2,12,13, as shown for angle-resolved photoemission 
spectroscopy (ARPES) measurements of the Au(111) surface (Fig. 2d)13. 
Interface alloying of heavy elements with intermediate-weight metals 
can enhance the in-plane potential gradient via hybridization, leading to 
more pronounced Rashba effects, as on the Bi/Ag(111) alloyed interface 
(v0 = 3 eV Å; ref. 14).

Topological surface states
In materials with heavy elements, strong SOC can split the p band by a 
large enough magnitude to flip the s–p band structure, inducing band 

inversion. Notably, 2D heterostructures of HgxCd1−xTe exhibit, in 
 addition to such an inversion, an associated topological phase 
 transition15,16, which results in protected states at the edges of the sample. 
The presence of edge states in 2D heterostructures was subsequently 
 generalized to 3D insulators17,18. The surfaces or interfaces of such topo-
logical insulators must host protected states at time-reversal-invariant 
k-space points17,18. These topological surface states have a nearly linear 
energy–momentum relationship (Fig. 2a)18. The Dirac Hamiltonian that 
describes these  surface states, ˆ σ∝ ⋅ ×z kH v ( )D 0 , has the same Rashba 
form (Equation (2)) and locks the spin and momentum degrees of 
 freedom (Fig. 2a, c)18. However, whereas Rashba SOC leads to spin-split 
parabolic surface states in conventional metals, topological surface states 
are distinguished by their helical single Dirac cone character, which 
emerges from the  requirement to connect the bulk valence and 
 conduction bands.

ARPES measurements demonstrated the topological nature of surface 
states first in the indirect-bandgap semiconductor Bi1−xSbx (ref. 19) and 
then in a larger, direct-bandgap (300 meV) topological insulator Bi2Se3 
(ref. 20). The discovery of a simple Dirac cone within the bandgap of bulk 
Bi2Se3 (Fig. 2c), with a chemical potential that is tunable via chemical 
doping20 and the electric field effect21, has since led to the discovery of 
several other single-Dirac-cone topological insulators18.

The electronic transport of topological insulators is governed by the 
helical Dirac nature of topological surface states. First, surface-state 
transport arises from a 2D Dirac cone: therefore, it can be ambipolar, 
controlled by electric fields, and tuned through the Dirac point with a 
characteristic minimum conductivity21. Second, spin–momentum lock-
ing prevents backscattering between states of opposite momenta with 
opposite spins, as evidenced across several topological insulators22. 
Because backscattering dominates charge dissipation in conventional 
metals, quasiparticles of topological insulators are expected to exhibit 

Figure 1 | Emergent phenomena from spin–orbit coupling (SOC) at 
surfaces and interfaces. A schematic illustration of the connection between 
the presence of strong SOC at material surfaces and interfaces (inner ellipse) 
and the resulting emergence of new interactions and electronic states 
(middle ellipse), such as Dzyaloshinskii–Moriya interaction (DMI; see 
Fig. 4a, e for details), Rashba interfaces (Fig. 2b, d) and topological surface 

states (TSS; Fig. 2a, c). These emergent phenomona can in turn be used to 
generate new 2D spintronics effects (outer ellipse), such as spin–charge 
conversion (Fig. 2e, f and 3), the photogalvanic effect, enhanced SOC  
in 2D materials, such as graphene (Fig. 3d, e), magnetic skyrmions  
(Fig. 4b) and chiral domain walls (Fig. 4c), which have direct device 
applications (periphery). FM, ferromagnet; NM, non-magnetic material.
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MgO layer relating to the Mg insertion. We first verified
whether the self-heating phenomenon changes according to
the electrons direction using Technology Computer Aided
Design (TCAD) simulations under the same experimental
environment. Next, we fabricated the actual MTJs and
identify the amount of trap sites generated according to the
Mg layer through interval voltage stress (IVS) tests. Finally,
we investigated a suitable reliability model via a time-
dependent dielectric breakdown (TDDB) experiment, and
confirmed that the power-law V model is most appropriate
for the case of MgO with an Mg insertion.

2. Device fabrication

To evaluate the effect of the Mg insertion upon resistance
drift and TDDB characteristics, we fabricated MTJ structures
with an Mg layer inserted below the MgO dielectric. We
deposited multilayer stacks on thermally oxidized Si sub-
strates by using an ultrahigh vacuum magnetron sputtering
system with a base pressure of less than 8×10−7 Pa. The
stacks had the following structure, with numbers in par-
entheses representing thicknesses in nm: Ta (5)/Ru (10)/Ta
(5)/ Ni80Fe20 (5) buffer layer/Ir20Mn80 (11)/Co75Fe25
(CoFe) (2.5)/Ru (0.85)/Co40Fe40B20 (CoFeB) (2)/CoFe (1)/
Mg (0.25 or 0.5)/MgO (1)/CoFe (0.4)/CoFeB (2)/Ta (2)/
Ru (8). Here, the CoFe layers below the Mg insertion and
above the MgO layer are inserted to promote crystallization of
the CoFeB layers for a large TMR ratio. After deposition, the
stacks were annealed at 360 °C for 30 min under a 5 kOe
magnetic field to obtain a large TMR ratio and to improve a
magnetic hysteresis shape. After the annealing process under
5 kOe, the MTJ is in plane magnetized and the purpose of
5 kOe was to set the exchange bias of the pinned layer. The

stacks were then patterned into 100×200 nm2 ellipsoidal
shapes by means of electron beam lithography, photo-
lithography, and Ar-ion milling. Figures 1(a) and (b) show a
schematic illustration and a high-resolution transmission
electron microscopy (TEM) image, respectively. The TMR
ratio and the RA of the MTJ with a 0.25 nm Mg layer were
125% and 39Ω·μm2, and those of the MTJ with a 0.5 nm
Mg layer were 143% and 78Ω·μm2, respectively. Here,
values of RA showing 39∼79Ω·μm2 are higher compared
to 5∼10Ω·μm2 in STT-MRAM [21]. The RA value is
critical for cycling tests based on STT, but this work is to
extract the breakdown model of MTJ under constant voltage
stress. From this consideration, we believe that the results
from this MTJ can be applicable to a TDDB model in those of
STT-MRAM. When an Mg layer is inserted under the MgO,
it not only suppresses the generation of trap sites but also
extends the total MgO thickness since the Mg layer itself
reacts with oxygen in the sputter chamber to form MgO as
investigated in our previous works [18]. MTJs without the Mg
insertion in our experiment showed very small TMR ratios
(below 50%) due to a degraded bottom MgO barrier interface
(overoxidation). Therefore, we selected the Mg inserted MTJs
for this work. The actual MgO thicknesses (tMgO) evaluated
using TEM images of the MTJs with the 0.25 and the 0.5 nm
Mg insertion were approximately tMgO=1.1 and 1.2 nm,
respectively. Note that state-of-the-art MTJs for STT-MRAM
applications use perpendicular MTJs with high thermal sta-
bility. In the present study, although experiments were con-
ducted using in-plane MTJs instead of perpendicular ones, the
results of our experiments can be thought to be sufficiently
applicable to the case for state-of-the-art MTJs (tMgO∼1 nm)
because almost the same tunnel barrier thicknesses
(tMgO∼1.1–1.2 nm) with the adaptable RA range were used.

Figure 1. Cross-sectional structure of MTJ device: (a) schematic illustration and (b) high-resolution TEM image.
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Topological spin textures

spin spirals and chiral domain walls:
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When the DM interaction is comparably small or the ani-
sotropy energy

∑= ( )E K S
i

i i
z

an i
2

 (3)

plays a significant role a system can also form an inhomogeneous 
spin spiral, where the variation of the angle between adjacent 
spins depends on the quantization axis. In an extreme case this 
may lead to collinear magnetic domains which are separated by 
walls with unique rotational sense due to the DM interaction, i.e. 
chiral domain walls. This means that a pair of domain walls will 
always fulfill a 360° rotation of the magnetization as the walls 
must have the same rotational sense. If in such a case the domains 
are ferromagnetic also contributions from the dipolar energy
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need to be considered for the magnetic properties of the 
system.

Higher-order Heisenberg interactions are typically 
neglected but recently it has been shown that they can become 
important and contribute to the energy landscape and ground 
state formation [15, 19]. In the extended Heisenberg model 
the next higher-order interactions are the biquadratic and four-
spin interactions, which involve two and four nearest neigh-
bors, respectively, as is obvious from their Hamiltonians:

∑= − ( )E B S S· ,
ij

ij i jbiq
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In the Heisenberg model spin spirals (single- ⃗Q  states) are 
degenerate with superpositions of symmetry-equivalent spin 
spirals (multi- ⃗Q  states); however, the higher order interac-
tions can lift this degeneracy and depending on the sign of the 
interaction favor one over the other state [16].

3. Chirality and topological protection

A phenomenological view of the symmetry of spin spirals 
helps to understand the DM related selection rules from 

Moriya [20, 21]. Figure 5 sketches helical (left) and cycloi-
dal (right) spin spirals. Whereas helical spirals can exist 
with two opposite rotational senses, there is only one type 
of cycloidal spiral possible (the ones shown in figure 5 can 
be transformed into each other by rotation and translation). 
However, such a cycloidal spiral can be placed onto a sur-
face (dark blue plane in figure  5) in two different ways, 
i.e. due to the breaking of the inversion symmetry of the 
environment two distinct rotational senses of cycloidal 
spin spirals are generated. Looking at the yellow ribbons 
symbolizing the different spirals it becomes evident that 
the two helical spirals (with or without surface) are mirror 
images of each other, meaning that they are degenerate in 
energy. Contrary to that, the two cycloidal spirals on the 
surface cannot be linked by any symmetry operation, prov-
ing the possibility to have different energy, i.e. one rota-
tional sense is favored due to the DM-interaction and the 
other one does not occur as it possesses higher energy. The 
same arguments also hold for domain walls induced by the 

Figure 3. The DM interaction favors a 90° rotation between 
adjacent spins and the rotational sense is determined by the sign 
of the DM vector.

Figure 4. The two-dimensional Brillouin-zone of a hexagonal 
lattice. The red line indicates a typical cut for the calculation of 
the spin spiral dispersion, where the angle φ between adjacent 
spins ranges from 0° at the Γ -point (ferromagnetic FM) via 120° 
at the K -point (Néel state) to 180° for the M -point (row-wise 
antiferromagnetic order RWA).

= 0° 120° 180°

FM RWANéel

Figure 5. Sketch of helical (left) and cycloidal (right) spin spirals, 
where the propagation direction is perpendicular to or within the 
plane of the spin rotation, respectively. While the helical spin spirals 
are degenerate in energy even when they are on a surface (dark blue 
plane), the cycloidal spin spirals can have a different energy due 
to the DM interaction, i.e. one cycloidal spin spiral can be favored 
while the other one has a higher energy on the surface.

J. Phys.: Condens. Matter 26 (2014) 394002
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the field grow (shrink). Thus, the direction of ms can be identi-
fied for all domains. On the tip side, sweeping the field causes 
mt to increasingly rotate into the perpendicular direction. 
Consequently, the in-plane domain wall contrast gradually 
disappears and is eventually replaced by an out-of-plane con-
trast, allowing to image the domains rather than the domain 
walls, figures 9(c) and (d). The large domains with ms being 
parallel to the field appear bright whereas residual domains, 
being shrunken to mere lines and with ms being antiparallel 
to the field, appear dark. This observation can be generalized 
such that for the tip-sample combination in our experiment, at 
the given bias voltage, bright colors (high dI/dU signal) indi-
cate a parallel alignment of ms and mt while dark (low dI/dU 
signal) corresponds to an antiparallel alignment. Applying this 
result to the measurement shown in figure 8(a) one can iden-
tify the direction of ms also for the domain walls. Combining 
the knowledge from these two experiments (figures 8 and 9) 
we can conclude that the Fe DL exhibits only right-rotating 
Néel-type walls ↑ →↓(  and ↓←↑ ) [29, 34].

This experimental finding of cycloidal walls with unique 
rotational sense immediately suggests that the DM interaction 
is the relevant factor determining the rotational sense of the 
walls, see section 3. Indeed, starting from phenomenological 
DM vectors [20] Monte-Carlo simulations showed that the 
unique rotational sense can be explained as a consequence 
of the DM interaction [36]. By density functional theory 
(DFT) combined with micromagnetic calculations the DM 
vector was determined from first principles [37]. The mag-
netic ground state was predicted to be ferromagnetic although 
within numerical accuracy a non-collinear spin spiral ground 
state could not be ruled out. However, two domains of opposite 

magnetization induced in this system by appropriate boundary 
conditions were found to be separated by right-rotating Néel-
type domain walls extending along the [110] axis, in agree-
ment with the experiment [29].

It appears to be an academic question whether this spin 
configuration of the extended Fe DL should be classified as an 
inhomogeneous spin spiral or a periodic arrangement of chiral 

Figure 8. Spin-polarized dI/dU maps of the Fe DL on W(1 1 0) (red 
areas correspond to DL and black to other Fe thickness); B indicates 
the in-plane orientations of the external magnetic field B = 150 mT 
which aligns the tip magnetization. (a), (b) Domain walls show up 
in the DL as black and white lines along the [110] direction; they 
invert the contrast from (a) to (b). (c), (d) Vanishing domain wall 
contrast. Tunnel parameters: U = + 0.55 V, I = 0.5 nA (all images 
taken from [29]).
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Figure 9. Spin-polarized dI/dU maps of the Fe DL on W(1 1 0) 
measured for variable field values B applied normal to the surface, 
as indicated in (a)–(d). The domains parallel to B grow while 
antiparallel domains shrink. The tip magnetization (and hence the 
magnetic sensitivity) is gradually rotated from in-plane to out-of-
plane due to the applied magnetic field. Tunnel parameters:  
U = + 0.55 V, I  = 0.5 nA (all images taken from [29]).

B = 0
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Figure 10. Chiral domain walls in Fe DL wires on W(1 1 0). 
(a) Spin-polarized dI/dU map. The density of domain walls 
decreases with decreasing DL wire width while the chirality is 
preserved. Tunnel parameters: U = + 0.7 V, I = 0.3 nA, T = 14 K.  
(b) Schematic side view of two right rotating domain walls.

100 nm
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which is magnetized mostly in-plane; the arrow indicates the 
tip magnetization, which was derived from the analysis of the 
magnetic contrast. As in SP-STM the magnetic contrast reflects 
the projection of tip and sample magnetization this leads to a 
bright-to-dark gradient of a skyrmion along the tip magnetiza-
tion axis. From this image it is apparent, that all skyrmions have 
the same rotational sense not only within one island, but also 
in independent islands, as is expected from the directionality 
imposed by the DM interaction. The spin spiral is now inhomo-
geneous due to the applied magnetic field, but also here one can 
see the unique rotational sense which is identical to that of the 
skyrmions. When the lines of the spin spiral run parallel to the 
tip magnetization axis the magnetic contrast vanishes (see left 
end of top island).

7.  3. Writing and deleting single magnetic skyrmions

While in previous studies the samples were in the thermo-
dynamic ground state, for PdFe the ratio between the energy 
barrier separating two topologically distinct states and the mea-
surement temperature is much larger. This can be exploited to 
study ground state properties at slightly higher temperature, i.e. 

about T  >  8 K, or to trap the magnetic configuration in a meta-
stable state for lower temperatures. This can be understood e.g. 
for the transition between skyrmions (S  =  1) and the ferromag-
netic state (S  =  0) within a simple two state model, see sketch 
in figure 21(a): when the magnetic field is increased, the energy 
of the skyrmion state rises and the ferromagnetic state becomes 
the lower energy state. When the system is in the ferromagnetic 
state and the magnetic field is lowered at reduced temperature, 
then the energy barrier cannot be overcome and the ferro-
magnetic state is preserved to smaller magnetic field values, 
even though the topologically protected skyrmion has a lower 
energy, see top sketch in figure 21(a). It has been found, that the 
energy barrier between the two states can be overcome not only 
by thermal excitation, but also the tunnel electrons can induce 
a transition between the topologically distinct states. Note that 
the potential landscape is asymmetric, as the two states are not 
linked by a symmetry operation, and different attempt frequen-
cies and lifetimes of the two states are likely.

The telegraph noise in figures 21(b)–(d) demonstrates the 
switching between the presence of a skyrmion (S = 1) and 
its absence (S = 0) for different parameters at the same sam-
ple position. While the power of the injected tunnel current 
is identical for all three traces, the response of the system is 
very different: for (b) the switching takes place at a time scale 
of several seconds and the histogram to the right shows that 
the skyrmion state is slightly favored. In (c) the magnetic field 
is increased, which leads to a shift of the population of the 
states towards the ferromagnetic state, as expected. However, a 

Figure 19. SP-STM measurements of the PdFe bilayer on 
Ir(1 1 1) in dependence on an external magnetic field at T = 8 K. 
(a) B = 0 T: spin spiral state, (b) B = 1.4 T: hexagonal skyrmion 
lattice, (c) B = 2 T: ferromagnetic phase. (d) Sketch of the different 
magnetic phases (all taken from [4]).

Figure 20. SP-STM measurements of the PdFe bilayer on Ir(1 1 1) 
at T = 8 K. (a) B = 0 T: the spin spiral state in the PdFe wire and 
island is visible together with the nanoskyrmion lattice in the Fe 
ML on Ir(1 1 1) [15], (b) B = − 1 T: coexistence of spin spiral and 
skyrmions with unique rotational sense, the tip magnetization 
direction is indicated by the arrow (for both: gray-scale of the layers 
adjusted separately for better visibility of the magnetic state).

(a)

(b)
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distance d from its centre for several magnetic field values.
We relate the degree of non-collinearity in the centre of a skyrmion
with the angle αc between a central atom and its neighbouring
spins, and find that αc scales linearly with B (inset of Fig. 3a).
Figure 3b displays spectra taken at the centre of one skyrmion at
different applied fields, as indicated, together with reference
spectra of the FM background. One can clearly see a systematic
shift of the higher-energy peak with the applied field. The
peak shift ΔE with respect to the peak of the FM state is roughly
linear with αc (inset of Fig. 3b), which corroborates our proposal
of an effect of the local magnetic non-collinearity on the
electronic properties. The laterally resolved dI/dU maps at the FM
peak energy in Fig. 3c show how the maximum of non-collinearity
moves from the rim of the skyrmion to its centre with
increasing magnetic field, in agreement with the skyrmion profiles
in Fig. 3a.

For the FM state, the experimental dI/dU spectra (Figs 2d
and 3b) are in good agreement with the vacuum LDOS calculated
by density functional theory (DFT)10 (Fig. 4a). The vacuum
LDOS is typically dominated by states close to the !Γ point. A
detailed analysis of the spin-resolved band structure and LDOS
(Supplementary Sections 2 and 3) reveals that the sharp peak at
about +0.9 eV stems from the minority d states, whereas the
step-like LDOS of the majority spin channel is caused by bands
of s and p character.

In a non-collinear spin structure, there is a mixing between the
two spin channels that results in a change of the band structure
and the LDOS29. This is seen in DFT calculations for the spin
spiral phase (Supplementary Sections 2 and 3), which are in agree-
ment with the corresponding experimental data (Supplementary
Section 4). To capture the key physics of this band mixing for
two-dimensional (2D) localized skyrmions and to include the
skyrmion profiles12 (Fig. 3a) we use a tight-binding (TB)
model. The corresponding Hamiltonian at every atom site is
given by

H0 =
ϵ↑ 0
0 ϵ↓

( )
(1)

where ϵ↑, ϵ↓ are the on-site energies of the two states. Based on
DFT for the FM state, we describe the electronic states of PdFe/
Ir(111), which dominate the vacuum LDOS, by using a majority
band with a hopping parameter t↑ = −0.5 eV, and a minority band
with t↓ = +0.09 and ϵ↑ − ϵ↓ = 3.1 eV, as depicted in green and
red in Fig. 4b. The corresponding spin-resolved LDOS in the
vacuum for the FM state is qualitatively very similar to that
obtained by DFT calculations10 (compare Fig. 4a,c) and a
similar agreement is obtained for the spin spiral states
(Supplementary Section 3). The non-collinearity within the
skyrmion leads to a mixing between the majority and the
minority spin channels and the hopping between adjacent
atomic sites can be described by the matrix

V(αij) =
t↑ cos(αij /2) −t↑↓ sin(αij /2)
t↓↑ sin(αij /2) t↓cos(αij /2)

( )
(2)

where αij is the angle between the spins on neighbouring sites i
and j and t↑↓ = −t↓↑ describes the nearest-neighbour hopping
matrix element between the two states.

Before solving this TB model for a realistic skyrmion profile,
it is instructive to study the effect of the spin mixing in a simpli-
fied way. We assume that the matrix V(αij) is the same for all
atom sites by fixing all αij to the same angle α and thus obtain a
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a   Néel-type skyrmion b   Bloch-type skyrmion

c   Skyrmion lattice in an Fe monolayer 
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx −  mx∂xmz + mz∂ymy −  my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 
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layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.
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pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
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of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
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and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as
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where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
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250 T. LANCASTER

Figure 4. (a) The potential energy for d = D = 2. (b) The vor-
tex excitation. (c) The hedgehog or monopole excitation for
d = D = 3. (Adapted from Ref. [2].)

in different regions of space, subject to the all-important
constraint that the field vary smoothly from place to
place. The defect in this case is known as a vortex, an
example of which is shown in Figure 4(b). The vortex has
a core at its centre and has a field that swirls around the
core.3

An important point about the vortex is that there are
lots of very similar structures we can make, for exam-
ple, by globally rotating all of the arrows by some fixed
angle. In fact, from the point of view of topology, each of
these excitations is equivalent. The quantity that defines
the topological properties of the vortex is its integerwind-
ing number w. This quantity counts the number of times
the arrows rotate through 2π radians as we follow a cir-
cle around the vortex core. The diagram shows a w = 1
vortex, since the arrows make a complete rotation as we
follow a circle around the vortex core. It is possible to
make vortices with w = 2. In contrast to a w = 1 object,
a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.

In the three-dimensional case of D = 3, d = 3 we
have a configuration called a hedgehog (or monopole)
shown in Figure 4(c). Here the winding number is given
by considering the 3D field φ(x1, x2), where x1 and x2
are coordinates allowing us to locate points on a closed
surface (conventionally we choose angles x1 = θ and

Figure 5. The stereographic projection (denoted P ) squashes
the hedgehog into D = 2, where it becomes a skyrmion. The left-
hand version is aNéel skyrmion; the right-hand version,where the
spins have been combed over (denotedR), is a Bloch skyrmion.
(Based on a figure from Ref. [22].)

x2 = ϕ, for example), and we evaluate the integral

w = 1
4π

∫
dx1dx2 φ̂ ·

(
∂φ̂

∂x1
× ∂φ̂

∂x2

)

, (3)

where φ̂ = φ/|φ| is the normalised (unit) field andwhere
the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an infinite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the fields never become uniform. The first term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an infinite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Specifically, Derrick investigated static
field configurations as they are scaled up and down in
their spatial size. If a field configuration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the field configuration has no such
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a core at its centre and has a field that swirls around the
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follow a circle around the vortex core. It is possible to
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a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.
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have a configuration called a hedgehog (or monopole)
shown in Figure 4(c). Here the winding number is given
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where φ̂ = φ/|φ| is the normalised (unit) field andwhere
the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an infinite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the fields never become uniform. The first term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an infinite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Specifically, Derrick investigated static
field configurations as they are scaled up and down in
their spatial size. If a field configuration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the field configuration has no such
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain
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In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:
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This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and

- anisotropy constant
- saturation magnetization
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin

 
�1

wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:

� '
4h arccos

⇣


2
p

Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and

film thickness d = 0.6 nm

1

lateral dimension:
d = 0.6 nm L ⇠ 100 nm

1

- DMI strength                                  applied field strength 
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin

 
�1

wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:

� '
4h arccos

⇣


2
p

Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin
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wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:
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Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and

exchange length                         d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67

1
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10�11J/m, K = 1.25 ⇥ 106 J/m3, Ms = 1.09 ⇥ 106

A/m. The representative values of the DMI strength
and applied field are D = 1 mJ/m2 and µ0H = 100 mT,
respectively2.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
simulations,15 obtained using Mumax3 within the lo-
cal approximation of the magnetostatic energy16 (as in
Eq. (5)), with the 1D domain wall profiles m↵ minimiz-
ing E↵ in Eq. (21). In the micromagnetic simulations,
we used a conservative discretization step of 1 nm in x-y
plane. To obtain the one-dimensional profiles m

↵ min-
imizing E↵, we solved Eqs. (22)–(24) by writing m

↵ in
polar coordinates for ✓ and �:

m
↵ = (sin ✓ cos�, sin ✓ sin�, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2
⇠ +Q� 1

�
sin ✓ cos ✓ + h cos ✓ sin�

� �⇠ sin(�� ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos�

+ ✓⇠ sin(�� ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and
� the wall energy is

E↵(m
↵) =

Z 1

�1

✓
✓2⇠ + �2

⇠ sin
2 ✓ + (Q� 1) sin2 ✓

� 2h sin ✓ sin�+
h2

Q� 1
+ ✓⇠ cos(�� ↵)

� �⇠ sin(�� ↵) cos ✓ sin ✓

◆
d⇠. (65)

The parameters at the beginning of this section cor-
respond to the dimensionless parameters Q = 1.674,
 = 0.366 and h = 0.073. For these parameters, we car-
ried out Mumax314 simulations in a 800 nm ⇥ 400 nm
strip, which corresponds to w = 109 � 1, and obtained
the magnetization profile with the tilt angle � = 11.2�.
We then solved Eqs. (63) and (64) with ↵ = 11.2� and
obtained the optimal one-dimensional wall profile m

↵.
The result of the two-dimensional computation is com-
pared with the one-dimensional profile in Fig. 4, which
plots the z-component of the two-dimensional profile m

along the x-axis alongside with the corresponding section
of the optimal profile m�↵ obtained from m

↵. One can
see an almost perfect agreement between the full two-
dimensional simulation result and the theoretical predic-
tion of Sec. IV. The same agreement is also observed
in the other two components of the magnetization (not
shown). This justifies the main premise of our theory
about the one-dimensional character of the interior wall
profiles.

FIG. 4: A one-dimensional y = 0 cut through the computed
two-dimensional profile m (red dots) vs. a one-dimensional
cut through the optimal profile m�↵ (blue line). See text for
details.

FIG. 5: The dependence �wall(↵) obtained from the numer-
ical minimization of E↵ (blue solid), the analytical expres-
sions in Eqs. (32) (red dashed) and Eqs. (41) (green dotted),
corresponding to the dimensionless parameters Q = 1.674,
 = 0.366 and h = 0.073.

To further test the conclusions of our theory, we com-
puted the energy �wall(↵) of the interior walls as a func-
tion of their orientation angle ↵ from the solutions of
Eqs. (63) and (64) for the considered values of the param-
eters. The result is plotted in Fig. 5, along with the ana-
lytical approximations given by Eqs. (32) and (41). One
can see that both analytical formulas give a fairly good
approximation to the exact interior wall energy �wall(↵)
for these parameters. The agreement becomes much bet-
ter for smaller values of h.
We used the interior wall energy �wall(↵) obtained nu-

merically to calculate the equilibrium tilt angle by mini-
mizing the energy in Eq. (53) numerically. This resulted
in a unique minimizing angle � = 11.1�, in excellent
agreement with the result of the full two-dimensional sim-
ulation. For comparison, the formulas in Eqs. (56) and
(59) yield � = 12.8� and � = 8.8�, respectively, still in a
good agreement with the two-dimensional result, which
is reasonable since both these formulas are at the limits
of their applicability for the considered parameters.
When h gets smaller, the agreement with the predic-

tions of the analytical theory becomes much better. We
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field

m : Ω → S2.

Let us assume that the sample is a cylinder, i.e.,

Ω = Ω′ × (0, t)

where Ω′ is the cross section of the sample of diameter ℓ and t is the thickness of the cylinder

(see Figure 2.1). According to micromagnetics, stable magnetizations in Ω are described by (local)

tȍ’ t

l

x3

x1
x2

Figure 2.1: A ferromagnetic sample.

minimizers of the energy functional defined as:

E3D(m) = d2

∫

Ω
|∇m|2 dx + Q

∫

Ω
ϕ(m) dx +

∫

R3

|∇U |2 dx − 2

∫

Ω
Hext · m dx. (2.1)

In the following we explain the four components of the micromagnetic energy E3D.

• The first term, called exchange energy is due to short range interactions of spins and favors

parallel alignment of neighboring spins. The constant d is the exchange length and corresponds to

an intrinsic parameter of the material of the order of nanometers.

• The second term in (2.1) represents the anisotropy energy that penalizes certain magnetization

axes. The anisotropy energy density ϕ is a nonnegative function with symmetry properties inherited

from the crystalline lattice. The preferred directions of magnetization are the zeros of ϕ. Typically,

we have uniaxial or multi-axial anisotropy (e.g., ϕ(m) = 1−m2
1 that favors the direction (±1, 0, 0))

and surface anisotropy (e.g., ϕ(m) = m4
3 where the easy plane is the horizontal one). The quality

factor Q is a second intrinsic parameter of the material that measures the strength of the anisotropy

energy relative to the stray-field. According to the values of Q, we distinguish two classes of

materials: soft materials if Q < 1 and hard materials if Q > 1.

• The third term of E3D is the stray-field energy and is created by long range interactions between

electron spins modelled by the static Maxwell equation. More precisely, the stray-field potential

U : R3 → R is determined by

∆U = ∇ ·
(

m1Ω

)

in R3, (2.2)

i.e.,

∫

R3

∇U ·∇ζ dx =

∫

Ω
m ·∇ζ dx, ∀ζ ∈ C∞

c (R3).

By the electrostatic analogy, two types of charges generate the potential U : volume charges with

density given by the divergence of m in the interior of the sample Ω and surface charges represented

by the normal component of the magnetization on the boundary of Ω. Therefore, this nonlocal

term favors domain patterns that achieve flux closure.
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Need reduced micromagnetic models

analytically, the full 3D problem poses a formidable challenge:
- vectorial 
- nonlinear     
- nonlocal 
- multiscale 
- topological constraints 
need a simplified model which is valid for the relevant parameter range 
and still captures quantitatively the physical features of the system 

Solution: introduce reduced thin film models that are amenable to analysis

Use the tools from rigorous asymptotic analysis of calculus of variations

A. De Simone, R. V. Kohn, S. Müller, F. Otto,  
Recent Analytical Developments in Micromagnetics, 2006



Dimension reduction

assume the magnetization                      does not vary significantly across the 
film thickness, measure lengths in the units of     , scale energy by

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms
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2

saturation magnetization, exchange sti↵ness, anisotropy
constant, applied magnetic field and the DMI strength.
As usual, µ0 is the permeability of vacuum. In the stray
field term, the vector field M(r) is extended by zero out-
side ⌦, and r ·M is understood distributionally (i.e., in-
cludes the contributions of boundary charges). Since the
considered DMI is due to interfacial e↵ects, its contribu-
tion to the energy is via a surface integral over the bottom
film surface @⌦0 corresponding to an interface between
the ferromagnet and a heavy metal, and M = (M?, Mk)
is the value of M on @⌦0. However, using the standard
convention, we normalize the DMI strength parameter D
to a unit volume of the ferromagnet.

Assume that the external applied field is in the film
plain and is normal to the strip axis, i.e., H = Hŷ, where
ŷ is the unit vector in the direction of the y-axis. As-
sume also that the film is much thinner than the exchange
length `ex =

p
2A/(µ0M2

s ), so that the magnetization in
⌦ is constant along the film thickness. Measuring lengths
in the units of `ex and setting M(x, y, z) = Msm(x, y)
with |m| = 1 in ⌦, we can rewrite the energy, to the
leading order6 in d/`ex, in the units of Ad as

E(m) '
Z l/2

�l/2

Z w/2

�w/2

n
|rm|2 + (Q � 1)|m?|2 � 2hŷ · m?

+ 
�
mkr · m? � m? · rmk

� o
dy dx. (2)

Here we defined m? 2 R2 and mk 2 R to be the respec-
tive in-plane and out-of-plane components of the unit
magnetization vector m, introduced the dimensionless
parameters

Q =
2K

µ0M2
s

,  = D

s
2

µ0M2
s A

, h =
H

Ms
, (3)

and defined the rescaled nanostrip dimensions l = L/`ex

and w = W/`ex. In Eq. (3), Q > 1 is the material’s
quality factor yielding PMI,  is the dimensionless DMI
strength, which without loss of generality, may be as-
sumed positive, and h is the dimensionless applied field
strength.

We are interested in the case of long nanostrips corre-
sponding to l � w. Note that when l ! 1, the energy
in Eq. (2) diverges even if h = 0 because of the pres-
ence of edge domain walls giving O(l) contribution to the
energy7,8. Therefore, in order to pass to the limit l ! 1
we need to subtract from E the contribution of the one-
dimensional ground state energy e0(h, w) = min E0(m),
where

E0(m) =

Z w/2

�w/2

n
|m0|2 + (Q � 1)|m?|2 � 2hŷ · m?

+ 
⇣
(ŷ · m0

?)mk � (ŷ · m?)m0
k

⌘ o
dy. (4)

The precise functional form of e0(h, w) is the subject of
Sec. III.

Putting everything together, we now write the expres-
sion for the energy that describes a Dzyaloshinskii do-
main wall running across the nanostrip as

E(m) =

Z 1

�1

Z w/2

�w/2

n
|rm|2 + (Q � 1)|m?|2�

� 2hŷ · m? � w�1e0(h, w)

+ 
�
mkr · m? � m? · rmk

� o
dy dx. (5)

This formula forms the basis for all of the analysis
throughout the rest of the paper.

III. EDGE DOMAIN WALLS

We next focus on the minimizers of E0 from Eq. (4) in
the case of w � 1 and  below the threshold of the onset
of helicoidal structures corresponding to x-independent
ground state magnetization configurations. From the
physical considerations (for a rigorous mathematical jus-
tification in the case h = 0, see Ref. [8]), it is clear that
in these states the magnetization vector will rotate in the
yz-plane. Hence, introducing the ansatz:

m(y) = (0, sin ✓(y), cos ✓(y)), (6)

into (4), we rewrite E0(m) as

E0(m) =

Z w/2

�w/2

n
|✓0|2 + (Q � 1) sin2 ✓

�2h sin ✓ + ✓0
o

dy. (7)

The corresponding Euler-Lagrange equation associated
with E0 is

✓00 � (Q � 1) sin ✓ cos ✓ + h cos ✓ = 0, (8)

with boundary conditions

✓0
⇣

± w

2

⌘
= �

2
. (9)

Notice that (8) and (9) obey the following symmetry re-
lation which leaves the energy E0 unchanged:

✓ ! ⇡ � ✓, y ! �y. (10)

Introducing

✓h = arcsin

✓
h

Q � 1

◆
, (11)

we first note that when w ! 1, we should have ei-
ther ✓ ! ✓h or ✓ ! ⇡ � ✓h, corresponding to the
two monodomain ground states in the extended film for
0  h < Q � 1. In view of the symmetry in (10), it is
enough to consider only the former case.

In computing the minimal value e0(h, w) of E0 for w �
1 one needs to take into account the contributions of the
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a reduction to an energy functional that depends only on the average of the magnetization over
the film thickness (see, e.g., [26, Lemma 3]; for an analytical treatment in a closely related context,
see [25, 34]). Therefore, we introduce an ansatz M(x1, x2, x3) = Ms(m(x1, x2), 0)�(0,d)(x3), where
m : R2

! R2 is a two-dimensional in-plane magnetization vector satisfying |m| = 1 in D and
|m| = 0 outside D, and �(0,d) is the characteristic function of (0, d). Next, we define the exchange
length `, the Bloch wall thickness L and the thin film parameter ⌫ [35]:
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s
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µ0M2
s

, L =

r
A

K
, ⌫ =

µ0M2
s d

2
p
AK

, (2)

and note that the above ansatz is relevant when d . ` [12, 16, 17, 26, 35]. Then, measuring the
energy in the units of 2Ad and lengths in the units of L, we obtain the following expression for the
energy as a function of m [18]:
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where � = d/L is the dimensionless film thickness,
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and we set H = K/(µ0Ms)(h, 0) for h : R2
! R2, assuming that the applied field lies in the film

plane. More explicitly, assuming that @D is of class C2, we have
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where n is the outward unit normal vector to @D, and we took into account that the distributional
divergence of m is the sum of the absolutely continuous part in D and a jump part on @D.

We now consider the thin film limit introduced in [35] by sending � to zero with ⌫ and D fixed.
Observe that when � is small, we have
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4⇡r
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Therefore, when m does not vary appreciably on the scale of �, to the leading order we have
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Since the last term in (7) blows up as � ! 0, unless m · n = 0 a.e. on @D, in the limit we recover
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distributionally in R3, µ0 is the permeability of vacuum, H = H(x, y, z) is the applied
magnetic field, and D is the Dzyaloshinskii-Moriya interaction constant, following the
standard convention to write D in the units of energy per unit area. In writing the DMI
term in this specific form, we took into account that it arises as a contribution from the
interface between the magnetic layer and a non-magnetic material and should, therefore,
enter as a boundary term in the full three-dimensional theory.

In the above framework, the equilibrium magnetization configurations in the ferromag-
netic sample correspond to either global or local minimizers of a non-local, non-convex
energy functional in (2.1). This energy includes several terms, in order of appearance:
the exchange term, which prefers constant magnetization configurations; the magnetocrys-
talline anisotropy, which favors out-of-plane magnetization configurations; the Zeeman, or
applied field term, which prefers magnetizations aligned with the external field; the mag-
netostatic term, which prefers divergence-free configurations; and the surface DMI term,
which favors chiral symmetry breaking. The origin of the latter is the antisymmetric ex-
change mediated by the spin-orbit coupling in the conduction band of a heavy metal at
the ferromagnet-metal interface [13, 17,19].

The variational problem associated with (2.1) poses a significant challenge for analysis.
Therefore, in the following we introduce a simplified version of the energy in (2.1) that
is suitable for ultrathin ferromagnetic films of thickness d . `ex =

p
2A/(µ0M

2
s ), where

`ex is the material exchange length. In this case a two-dimensional model is appropriate
in which the stray field energy can be modeled by a local shape anisotropy term (see,
e.g., [21]; for a more thorough mathematical discussion of the stray field e↵ect in ultrathin
films with perpendicular anisotropy, see [28]). Measuring the lengths in the units of `ex and
the energy in the units of Ad, we can rewrite the energy associated with the magnetization
configuration M(x, y, z) = Msm(x, y), where m : ⌦ ! S2, as
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where we defined m? 2 R2 and mk 2 R to be the respective components of the unit magne-
tization vector m and introduced the dimensionless quality factor Q and the dimensionless
DMI strength :

Q =
2K

µ0M
2
s
,  = D

s
2

µ0M
2
sA

, (2.3)

where D is the DMI constant [51]. In (2.2), we also introduced a dimensionless applied
magnetic field h = (h?, hk) = H/Ms, with h? 2 R2 and hk 2 R.

We are interested in the regime in which the film favors magnetizations that are normal
to the film plane, i.e., when Q > 1. Also, since the energy is invariant with respect to the
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Reduced thin film energy
regime           :                                             Taylor-expand in Fourier spaced = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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for bounded 2D samples, extra boundary terms appear Di Fratta, M, Slastikov 
(in preparation) 
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proper definition of the non-local terms is via Fourier:

Via m2
k = 1 � m

2
? in ⌦ we can rewrite the first term as

Z

⌦
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kd
2r = |⌦| �

Z

⌦
|m?|2d2r. (1.10)

As the volume contribution |⌦| is a constant, we may drop it from the energy, which allows
us to replace ⌦ with R2 in the rest of the terms in the regime of the size of e⌦ being
much larger than `ex. The remaining Fourier terms then have the following real space
representation (after subtracting the limit at infinity for mk) [13, Theorems 5.9 and 7.12]:
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In total, we arrive at E(m) ⇡ E(m) with the following simplified energy
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under the assumptions d . `ex and ⌦ being much larger than `ex. Under the condition
m(r) ! �z as |r| ! 1, we furthermore consider the skyrmion number q(m) given by
[14,15]

q(m) :=
1
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Z
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m ·

✓
@m

@x
⇥ @m
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◆
dx dy. (1.14)

As argued in the main paper, we aim to minimize the energy in (1.13) over the set

A+1 :=

⇢
m 2 H̊1(R2; S2) : m + ẑ 2 L2(R2; R3), q(m) = +1,

Z

R2
|rm|2d2r < 16⇡

�
,

(1.15)

where H̊1(R2; S2) denotes the space of unit length vector fields in R3 with square integrable
gradient, and the first condition in (1.15) is consistent with the requirement m(r) ! �z

as |r| ! 1.
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Reduced thin film energy (cont.)

regime           :                                            d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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the difference between the energies is lower order in d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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ii) m" 6= ±ẑ for � > �c.

2

Es(m) = �

Z

T`

|m?|
2
d
2
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r0))2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r0)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r0)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r0|)r ·m?(r)r ·m?(r
0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r0)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r0))2

|r� r0|3
d
2
r d

2
r
0

m = (m
0
,m3)

m
0
= (m1,m2)

� ! 0

m : R2
! S2

, rm 2 L
2
, m

0
2 L

2
6) E�,�(m) > �1

Fsurf(mR,3) ⇠ R lnR � = 0 K1 S✓ 2 SO(3)

� 2 B ) E�,�(�) = 1 ! L0 '
16⇡
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Reformulation
rescale                                                                                           notation:

we choose, recalling that m = (m0,m3),

Eex(m) :=
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2 dx, (2.2)
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�
, (2.6)

where the normalized, nonlocal contributions Fvol(m0) and Fsurf(m3) of the volume and surface
charges, respectively, are defined via
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for f 2 C1
c (R2;R2) and f̃ 2 C1(R2) such that there exists c 2 R with f̃ + c having compact

support. They can be interpreted as multiples of the squares of the H̊� 1
2 -norm of r · m0 and

the H̊
1
2 -norm of m3, respectively, and an extension of these terms of su�cient generality for our

purposes can be found in Section 3. In total, our functional may then be expressed as
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where we integrated by parts to simplify the DMI term.
In order to remove one of the parameters and make the mathematical structure of the energy

explicit, we further rescale our functional (2.9). We first point out that the sign of  is not essential:
If we have  < 0, then considering em(x) := m(�x) gives
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conformal limit

Finally, we have the representation

Fsurf(f, g) =
1

2

ˆ
R2

|k|F(f + c)F(g + d)
dk

(2⇡)2
, (3.9)

and for f̃ , g̃ 2 C1
c (R2;R2) we also have

1

4⇡

ˆ
R2

ˆ
R2

r · f̃(x)r · g̃(x̃)

|x� x̃|
dx̃ dx =

1

2

ˆ
R2

F

⇣
r · f̃

⌘
F (r · g̃)

|k|

dk

(2⇡)2
. (3.10)

In particular, the definition (3.3) extends that in (2.7).

With these extensions, we prove that the representation (2.13) of E�,� is still valid. Notice that
the density result below is a variant of [62, Lemma 4.1] (see also Schoen and Uhlenbeck [74]).

Corollary 3.2. For � > 0, � > 0 and m 2 H̊1(R2; S2) with m + e3 2 L2(R2;R3) there exists a

sequence mn 2 D with limn!1 kmn �mkH1 = 0, and we have

E�,�(m) =

ˆ
R2

|rm|
2 dx+ �2

✓ˆ
R2

|m0
|
2 dx� 2�

ˆ
R2

m0
·rm3 dx

+ (1� �)
�
Fvol(m

0)� Fsurf(m3)
�◆

.

(3.11)

Proof of Lemma 3.1. We first deal with the surface term. The estimate (3.5) is trivial. The Fourier
representation (3.9) follows immediately from [54, Theorem 7.12, identity (4)]. The estimate (3.7)
is then a straightforward consequence of the Cauchy-Schwarz inequality and Plancherel’s theorem,
[54, Theorem 5.3].

Next, we turn to the volume terms. Again, non-negativity (3.6) is a trivial consequence of the
definition (3.3). For f̃ , g̃ 2 C1

c (R2;R2), the equality (3.10) is a result of [54, Theorem 5.2, identity
(2)].

By a density argument, it is su�cient to prove the interpolation result (3.8) still under the
assumption f̃ , g̃ 2 C1

c (R2;R2). To this end, we define a vectorial variant of the Riesz transform

T f̃ := F
�1

✓
i
k

|k|
· F f̃

◆
. (3.12)

By the standard fact that F(r · f̃)(k) = ik · F f̃(k) for a.e. k 2 R
2 and Plancherel’s identity, we

have

1

2

ˆ
R2

F (r · f)F (r · g)

|k|

dk

(2⇡)2
=

1

2

ˆ
R2

T
⇣
f̃
⌘
r · g̃ dx. (3.13)

By the Mihlin-Hörmander multiplier theorem [36, Theorem 6.2.7], T extends to a bounded operator
from Lp(R2;R2) to Lp(R2) for all p 2 (1,1). As a result, Hölder’s inequality implies the desired
inequality (3.8).

Proof of Corollary 3.2. By the density result [62, Lemma 4.1] we may choose a sequence mn 2

C1(R2; S2) with mn + e3 2 L2 such that limn!1 kmn �mkH1 = 0. The proof of [28, Lemma 8]
implies that we may furthermore take mn + e3 to have compact support for all n 2 N, so that we
have mn 2 A. The local terms are obviously continuous in the H1-topology. Continuity of Fvol

and Fsurf is ensured by Lemma 3.1.
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Ea(m) := Q
ˆ
R2

|m′|2 dx, (2.3)

EZ(m) := 0, (2.4)

EDMI(m) := κ

ˆ
R2

(
m3∇ · m′ − m′ · ∇m3

)
dx, (2.5)

Es(m) := −
ˆ
R2

|m′|2 dx + δ
(
Fvol(m′) − Fsurf(m3)

)
, (2.6)

where the normalized, nonlocal contributions Fvol(m′) and Fsurf(m3) of the volume
and surface charges, respectively, are defined via

Fvol( f ) :=
1
4π

ˆ
R2

ˆ
R2

∇ · f (x)∇ · f (x̃)
|x − x̃ | dx̃ dx, (2.7)

Fsurf( f̃ ) :=
1
8π

ˆ
R2

ˆ
R2

( f̃ (x) − f̃ (x̃))2

|x − x̃ |3 dx̃ dx, (2.8)

for f ∈ C∞
c (R2;R2) and f̃ ∈ C∞(R2) such that there exists c ∈ R with f̃ + c

having compact support. They can be interpreted as multiples of the squares of the
H̊− 1

2 -norm of ∇ · m′ and the H̊
1
2 -norm of m3, respectively, and an extension of

these terms of sufficient generality for our purposes can be found in Sect. 3. In total,
our functional may then be expressed as

EQ,κ,δ(m) :=
ˆ
R2

(
|∇m|2 + (Q − 1)|m′|2 − 2κm′ · ∇m3

)
dx

+ δ
(
Fvol(m′) − Fsurf(m3)

)
,

(2.9)

where we integrated by parts to simplify the DMI term.
In order to remove one of the parameters and make the mathematical structure

of the energy explicit, we further rescale our functional (2.9). We first point out that
the sign of κ is not essential: If we have κ < 0, then considering m̃(x) := m(−x)
gives

EQ,κ,δ(m) = EQ,−κ,δ (m̃) . (2.10)

and thus we may additionally suppose κ ≥ 0. Furthermore, provided κ + δ > 0 we
use the rescaling

x̄ := Q − 1
κ + δ

x and m̄(x̄) := m
(

κ + δ

Q − 1
x̄
)

(2.11)

in the energy (2.9), so that for

σ := κ + δ√
Q − 1

and λ := κ

κ + δ
, (2.12)

we finally obtain EQ,κ,δ(m) = Eσ,λ(m̄), where



Skyrmions

- topologically nontrivial configurations of nonlinear field theories 

- introduced by Tony Skyrme in the early 1960s to empirically 
describe the low-energy properties of baryons

- received attention in the mathematical literature from the 1980s onward

Chiral Magnetic Skyrmions 

Topologically stable vector field object 
“Combed hedgehog” 

Emergent electrodynamics arising from Berry phase 
Each skyrmion = φ0 of fictitious magnetic flux 
Moving skyrmions => effective electric field 

Skyrmion Crystal 
Tony Skyrme FRS 

Sir Michael  
Berry FRS 

Fe0.5Co0.5Si - Yu Nature (2010) 

- relevant example:                                                         baby skyrmions

1334 F. LIN AND Y. YANG

We note that the 2D Skyrme model has applications in condensed matter physics
(the quantum Hall effect and anionic superconductivity [2, 17, 22, 23, 35]) and cos-
mology (Skyrmion-induced gravitational defects [3, 29]).

2 Statement of Results

In normalized form, the two-dimensional Skyrme energy functional governing
a configuration map u : R3 → S2 is defined by

(2.1) E(u) =
1

2

∫

R2

{

|∇u|2 +
λ

2
|∂1u × ∂2u|2 +

µ

2
(1 − n · u)2

}

dx ,

where ∂i (i = 1, 2) denotes the partial derivative, n = (0, 0, 1) is the north pole
of S2 in R3, and λ and µ are positive coupling constants. Note that, sometimes in
literature, the potential term in (2.1) is chosen to be of a lower power, µ(1 − n · u),
which makes the potential energy of a stereographic projection take infinite value.
In order to maintain a finite value for the potential of a stereographic projection,
we observe the above (common) convention for the choice of the potential den-
sity. However, our general analysis is not affected by such a convenient, definitive
choice.

The condition that u lies on S2 implies that (1 − n · u)2 = |n − u|4/4. Hence
(2.1) becomes

(2.2) E(u) =
∫

R2

{

1

2
|∇u|2 +

λ

4
|∂1u × ∂2u|2 +

µ

16
|n − u|4

}

dx .

The finite-energy condition implies that u tends to n as |x | → ∞. Therefore u may
be viewed as a map from S2 to itself that defines a homotopy class in π2(S

2) = Z

whose integer representative is the Brouwer degree of u with the integral represen-
tation

(2.3) deg(u) =
1

4π

∫

R2

u · (∂1u × ∂2u)dx .

In this paper, we are interested in the basic minimization problem

(2.4) Ek = inf{E(u) : E(u) < ∞, deg(u) = k}

where k ∈ Z. Of course, Ek = E|k| for all k ∈ Z. A solution of (2.4) for k = ± 1 is
called a Skyrmion; a solution of (2.4) for |k| ≥ 2 is called a multisoliton [27].

Below is our main existence result for Skyrmions.

THEOREM 2.1 If the coupling constants λ andµ satisfy

(2.5) λµ ≤ 48 ,

then the minimization problem (2.4) has a solution for k = ± 1. Moreover, E1 < Ek

for all |k| ≥ 2 if λµ ≤ 12.
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Lin and Yang, 2004; Li and Zhu, 2011

Esteban, 1986; Esteban, 1992; Faddeev and Niemi, 1997; Esteban, 2004; Lin and Yang, 2004



Admissible class
      compact skyrmion                  vs.                 skyrmionic bubble
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m3

for bubble skyrmion, the stray field energy diverges with radius: 

for m̄ 2 D.
Of course, the assumption on regularity and decay at infinity encoded inD is much too restrictive

to allow for existence of minimizers. In view of the discussion in Section (1.1), it would be natural
to consider instead the energy on the S2-valued variant of the homogeneous Sobolev space H̊1(R2),
which we define as a space of functions

H̊1(R2) :=

⇢
u 2 H1

loc(R
2) :

ˆ
R2

|ru|2 dx < 1

�
, (2.14)

equipped with the L2-norm of the gradient (note, however, some technical issues associated with
such a critical space [4, Section 1.3]). Consequently, we aim to consider the energy E�,� on the set

A :=

⇢
m 2 H̊1(R2; S2) :

ˆ
R2

|rm|
2 dx < 16⇡, m+ e3 2 L2(R2), N (m) = 1

�
, (2.15)

where the condition m + e3 2 L2(R2) is the appropriate way of prescribing lim|x|!1m(x) = �e3,
see Lemma 5.1. Note that the definition of the topological charge, also referred to as the degree,

N (m) :=
1

4⇡

ˆ
R2

m ·
�
@1m⇥ @2m

�
dx, (2.16)

is valid for all m 2 H̊1(R2; S2) and is consistent with equation (1.2) for smooth maps that are
constant su�ciently far from the origin. However, due to the nonlocal terms, some care needs to
be taken in extending the energy to A. To avoid technicalities before the statement of results, we
extend by relaxation, i.e., for m 2 H̊1(R2; S2) with m+ e3 2 L2(R2;R3) we set

E�,�(m) := inf{lim inf
n!1

E�,�(mn) : mn 2 D for n 2 N with lim
n!1

kmn �mkH1 = 0}. (2.17)

Corollary 3.2 states that the representation (2.13) is still valid, provided the nonlocal terms Fvol

and Fsurf are interpreted appropriately.

2.2 Statement of the results

We first establish that the energy E�,� admits minimizers over A for all � 2 [0, 1], provided �
is su�ciently small. In particular, we get existence of skyrmions even in the case � = 0, which
corresponds to no DMI being present. Our model therefore predicts skyrmions purely stabilized by
the stray field. The proof of Theorem 2.1 below closely follows the previous works by Melcher [62]
and Döring and Melcher [28] and relies on the concentration compactness principle of Lions [57].
The main new aspect is the inclusion of the nonlocal terms due to the stray field, which we deal
with by standard interpolation inequalities.

Theorem 2.1. Let � > 0 and � 2 [0, 1] be such that �2(1 + �)2  2. Then there exists m�,� 2 A

such that

E�,�(m�,�) = inf
em2A

E�,�(em). (2.18)

Note that throughout the rest of the paper we suppress � in the index of m�,� for simplicity of
notation.

We now turn to the heart of the paper, namely, the analysis of the limit � ! 0 in which the
Dirichlet energy dominates. As was already pointed out by Döring and Melcher [28], in this limit
one expects minimizers m� of E�,� to converge to minimizers of

F (m) :=

ˆ
R2

|rm|
2 dx (2.19)
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Room-temperature skyrmions have also been found in magnetic 
bilayers (Figs. 4f, 5b), although generally with a larger diameter69,77–79. 
These efforts offer promising directions towards stack engineering of 
magnetic interactions to tune skyrmion properties in films for device  
applications80.

Detection and manipulation of chiral spin textures
Skyrmions in epitaxial films were first imaged using spin-polarized 
scanning tunnelling microscopy (SP-STM; Fig. 4d)61,62. Since then, they 
have been imaged in sputtered multilayer films using various magnetic 
microscopy techniques, including scanning transmission X-ray micros-
copy (STXM; Fig. 4g)67,68, photoemission electron microscopy (PEEM;  
Fig. 4f)78, spin-polarized low-energy electron microscopy (SPLEEM)77, 
and magneto-optical Kerr effect (MOKE) microscopy (Fig. 5b)69. 
Importantly, skyrmions can also be detected using a variety of thermo-
dynamic and transport techniques81. In particular, the Berry phase that 
is accumulated by electrons traversing the 2D spin texture of skyrmions 
results in an additional component in anomalous Hall effect measure-
ments, known as the topological Hall effect60,81. The Hall signal can be 
used to detect the presence of skyrmions and to address their motion 
in films and devices81,82. However, such Hall signatures of skyrmions 
have been detected thus far only in bulk crystal and films with intrinsic 

DMI81–83; these techniques remain to be established in multilayer films 
with interfacial DMI.

Magnetic skyrmions, owing to their small size and non-trivial topology, 
are attractive candidates for data storage in magnetic materials—provided 
that they can be nucleated, moved and read. Several nucleation techniques 
have been explored with micromagnetics simulations75,84. In SP-STM 
experiments on Fe/Pd bilayers (Fig. 5a), individual skyrmions were nucle-
ated and deleted using the current injected from the STM tip62. In other 
experiments, skyrmions have been created by applying field pulses68. A 
remarkable result in this regard is the recent demonstration of “blowing of 
skyrmion bubbles”69,85, generated by the current divergence out of a con-
striction (Fig. 5b). In future, skyrmions should be able to be moved with 
notable ease compared with, for example, domain walls82 by exploiting the 
SOT provided by the spin current75,86,87, which emerges naturally from the 
spin Hall effect of the neighbouring heavy metal layers. The dynamic prop-
erties of skyrmions have been explored using micromagnetics simulations 
and microscopy techniques in device configurations68,69. These works 
demonstrate that skyrmions can be manipulated with current and field 
pulses in lithographed geometric structures (Fig. 5b, c)68,69—techniques  
that can be incorporated in memory devices with relative facility.

These properties of magnetic skyrmions portend great potential 
towards realizing high-density and energy-efficient memory86,87. Several 

Figure 4 | Interfacial DMI and chiral spin textures. a, Anatomy of 
interfacial DMI from ab initio calculations. Bottom, Layer-resolved DMI 
in a Pt/Co bilayer. Top, distribution of SOC energies associated with the 
DMI in the interfacial Co layer. Inset, a schematic of DMI at the interface 
between a ferromagnetic metal with out-of-plane magnetization (Co, grey) 
and a strong SOC metal (Pt, blue). The DMI vector D12, associated with 
the triangle composed of two Co atoms and a Pt atom, is perpendicular to 
the plane of the triangle. S1,2, neighbouring spins. b, c, Schematics of the 
spin configuration in interfacial-DMI-induced chiral spin textures such as 
magnetic skyrmions (b) and chiral Néel domain walls (c), with the colour 
scale corresponding to the out-of-plane magnetization component. d, 
SP-STM imaging of an individual skyrmion (with a diameter of 8 nm at a 
field of 3.25 T) in a Fe/Pd bilayer on Ir(111), acquired in constant-current 
topographic mode, with an in-plane magnetized tip, with the modelled 
magnetization overlaid (arrows). e, Skyrmion stabilization in multilayers, 

illustrated using a multilayer stack of Ir/Co/Pt. The close-up of the trilayer 
shows DMI vectors (D12 and D34) at the top (Co/Ir) and bottom (Pt/Co) 
interfaces of Co. The effective DMI magnitude is enhanced by the same 
direction of D12 and D34 at the different interfaces. f, Room-temperature 
skyrmions in a Pt/Co/MgO multilayer in a lithographed 400 nm × 400 nm 
square, seen by XMCD-PEEM, with the magnetization profile along the 
red line shown below. g, Room-temperature skyrmions in (Ir/Co/Pt) × 10 
multilayers patterned into 300-nm-diameter disks (left) or 200-nm-wide 
tracks (right), seen by STXM. Panel a (main panel) adapted from ref. 72, 
American Physical Society. Panel a (inset) adapted from ref. 70, Nature 
Publishing Group. Panel d reproduced from ref. 62, American Association 
for the Advancement of Science. Panels e and g adapted from ref. 67, 
Nature Publishing Group. Panel f adapted from ref. 78, Nature Publishing 
Group.
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introduce:

for m̄ 2 D.
Of course, the assumption on regularity and decay at infinity encoded inD is much too restrictive

to allow for existence of minimizers. In view of the discussion in Section (1.1), it would be natural
to consider instead the energy on the S2-valued variant of the homogeneous Sobolev space H̊1(R2),
which we define as a space of functions

H̊1(R2) :=

⇢
u 2 H1

loc(R
2) :

ˆ
R2

|ru|2 dx < 1

�
, (2.14)

equipped with the L2-norm of the gradient (note, however, some technical issues associated with
such a critical space [4, Section 1.3]). Consequently, we aim to consider the energy E�,� on the set

A :=

⇢
m 2 H̊1(R2; S2) :

ˆ
R2

|rm|
2 dx < 16⇡, m+ e3 2 L2(R2), N (m) = 1

�
, (2.15)

where the condition m + e3 2 L2(R2) is the appropriate way of prescribing lim|x|!1m(x) = �e3,
see Lemma 5.1. Note that the definition of the topological charge, also referred to as the degree,

N (m) :=
1

4⇡

ˆ
R2

m ·
�
@1m⇥ @2m

�
dx, (2.16)

is valid for all m 2 H̊1(R2; S2) and is consistent with equation (1.2) for smooth maps that are
constant su�ciently far from the origin. However, due to the nonlocal terms, some care needs to
be taken in extending the energy to A. To avoid technicalities before the statement of results, we
extend by relaxation, i.e., for m 2 H̊1(R2; S2) with m+ e3 2 L2(R2;R3) we set

E�,�(m) := inf{lim inf
n!1

E�,�(mn) : mn 2 D for n 2 N with lim
n!1

kmn �mkH1 = 0}. (2.17)

Corollary 3.2 states that the representation (2.13) is still valid, provided the nonlocal terms Fvol

and Fsurf are interpreted appropriately.

2.2 Statement of the results

We first establish that the energy E�,� admits minimizers over A for all � 2 [0, 1], provided �
is su�ciently small. In particular, we get existence of skyrmions even in the case � = 0, which
corresponds to no DMI being present. Our model therefore predicts skyrmions purely stabilized by
the stray field. The proof of Theorem 2.1 below closely follows the previous works by Melcher [63]
and Döring and Melcher [28] and relies on the concentration compactness principle of Lions [58].
The main new aspect is the inclusion of the nonlocal terms due to the stray field, which we deal
with by standard interpolation inequalities.

Theorem 2.1. Let � > 0 and � 2 [0, 1] be such that �2(1 + �)2  2. Then there exists m�,� 2 A

such that

E�,�(m�,�) = inf
em2A

E�,�(em). (2.18)

Note that throughout the rest of the paper we suppress � in the index of m�,� for simplicity of
notation.

We now turn to the heart of the paper, namely, the analysis of the limit � ! 0 in which the
Dirichlet energy dominates. As was already pointed out by Döring and Melcher [28], in this limit
one expects minimizers m� of E�,� to converge to minimizers of

F (m) :=

ˆ
R2

|rm|
2 dx (2.19)

8

why 16π? Topological lower bound:

due to the chain rule (A.17), the area formula and the fact that 1
2 |r�|2 is the Jacobian of �. For

almost all y 2 em�1(⌫) we have rm(y) = 0 by standard statements about weak derivatives. There-
fore, for i = 1, 2 we can almost everywhere express (⌧i ·r)em(y) in the basis {⌧1(em(y)), ⌧2(em(y))}
to get

N (m) =
1

4⇡

ˆ
S2

em · (⌧1(em)⇥ ⌧2(em)) det (rem) dH2 = NS2(em) (A.22)

by virtue of z · (⌧1(z)⇥ ⌧2(z)) = 1 for all z 2 S
2
\ {⌫} according to (A.19).

A.2 The topological bound and energy minimizing harmonic maps of degree 1

In this section, we prove the topological bound (1.4) and characterize the corresponding minimizers
for the convenience of the reader. The following statement is an amalgam of results due to Belavin
and Polyakov [6], Lemaire [51] and Wood [79], see the discussion in Section 1. Our approach below
is to reduce the problem to that of the solutions of an H-system treated by Brezis and Coron [17].

Lemma A.3. For all m 2 H̊1(R2; S2) we have

|rm|
2
± 2m · (@1m⇥ @2m) = |@1m⌥m⇥ @2m|

2
� 0, (A.23)

almost everywhere, as well as

ˆ
R2

|rm|
2 dx � 8⇡ |N (m)| . (A.24)

The functions with N = 1 achieving equality, i.e., energy minimizing harmonic maps of degree 1,

are given by the set of Belavin-Polyakov profiles B, see definition (2.20). We furthermore have the

representation

BS2 =

⇢
� � f � ��1 : f(x) :=

ax+ b

cx+ d
for a, b, c, d 2 C with ad� bc 6= 0

�
(A.25)

for the set BS2 of minimizing harmonic maps of degree 1 from S
2
to itself, see definition (2.45).

We also briefly state a version of [53, Lemma 9] in our setting relating the energy excess to the
Hamiltonian, see Section 4.1, which will come in handy a number of times.

Lemma A.4 ([53, Lemma 9]). For m 2 H̊1(R2; S2) and � 2 B we have the identity

F (m)� 8⇡ =

ˆ
R2

�
|r(m� �)|2 � (m� �)2|r�|2

�
dx. (A.26)

Proof of Lemma A.3. The inequality (A.23) is a result of completing the square, and the topological
bound (A.24) then follows by integration.

Let � 2 H̊1(R2; S2) be such that N (�) = 1 and
ˆ
R2

|r�|2 dx = 8⇡. (A.27)

Then equation (A.23) implies @1� = �� ⇥ @2� almost everywhere. Together with the fact that
� · @i� = 0 for i = 1, 2 almost everywhere, we also have �⇥ @1� = ��⇥ (�⇥ @2�) = @2� and

2@1�⇥ @2� = @1�⇥ (�⇥ @1�)� (�⇥ @2�)⇥ @2� = |r�|2�. (A.28)
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due to the chain rule (A.17), the area formula and the fact that 1
2 |r�|2 is the Jacobian of �. For
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is to reduce the problem to that of the solutions of an H-system treated by Brezis and Coron [17].

Lemma A.3. For all m 2 H̊1(R2; S2) we have

|rm|
2
± 2m · (@1m⇥ @2m) = |@1m⌥m⇥ @2m|

2
� 0, (A.23)

almost everywhere, as well as

ˆ
R2

|rm|
2 dx � 8⇡ |N (m)| . (A.24)

The functions with N = 1 achieving equality, i.e., energy minimizing harmonic maps of degree 1,
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representation

BS2 =

⇢
� � f � ��1 : f(x) :=

ax+ b

cx+ d
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for the set BS2 of minimizing harmonic maps of degree 1 from S
2
to itself, see definition (2.45).

We also briefly state a version of [53, Lemma 9] in our setting relating the energy excess to the
Hamiltonian, see Section 4.1, which will come in handy a number of times.

Lemma A.4 ([53, Lemma 9]). For m 2 H̊1(R2; S2) and � 2 B we have the identity

F (m)� 8⇡ =
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R2

�
|r(m� �)|2 � (m� �)2|r�|2

�
dx. (A.26)

Proof of Lemma A.3. The inequality (A.23) is a result of completing the square, and the topological
bound (A.24) then follows by integration.

Let � 2 H̊1(R2; S2) be such that N (�) = 1 and
ˆ
R2

|r�|2 dx = 8⇡. (A.27)

Then equation (A.23) implies @1� = �� ⇥ @2� almost everywhere. Together with the fact that
� · @i� = 0 for i = 1, 2 almost everywhere, we also have �⇥ @1� = ��⇥ (�⇥ @2�) = @2� and
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allows to exclude splitting in the concentration compactness arguments

Theorem 1. Let � > 0 and � 2 [0, 1] be such that �2(1+�)2  2. Then there exists
m�,� 2 A such that

E�,�(m�,�) = inf
em2A

E�,�(em).

2

adapting arguments of Melcher, 2014, and Döring and Melcher, 2017 
see also Greco, 2019 

2

|rm|
2
± 2m · (@1m⇥ @2m) = |@1m⌥m⇥ @2m|

2

for m̄ 2 D.
Of course, the assumption on regularity and decay at infinity encoded inD is much too restrictive

to allow for existence of minimizers. In view of the discussion in Section (1.1), it would be natural
to consider instead the energy on the S2-valued variant of the homogeneous Sobolev space H̊1(R2),
which we define as a space of functions

H̊1(R2) :=

⇢
u 2 H1

loc(R
2) :

ˆ
R2

|ru|2 dx < 1

�
, (2.14)

equipped with the L2-norm of the gradient (note, however, some technical issues associated with
such a critical space [4, Section 1.3]). Consequently, we aim to consider the energy E�,� on the set

A :=

⇢
m 2 H̊1(R2; S2) :

ˆ
R2

|rm|
2 dx < 16⇡, m+ e3 2 L2(R2), N (m) = 1

�
, (2.15)

where the condition m + e3 2 L2(R2) is the appropriate way of prescribing lim|x|!1m(x) = �e3,
see Lemma 5.1. Note that the definition of the topological charge, also referred to as the degree,

N (m) :=
1

4⇡

ˆ
R2

m ·
�
@1m⇥ @2m

�
dx, (2.16)

is valid for all m 2 H̊1(R2; S2) and is consistent with equation (1.2) for smooth maps that are
constant su�ciently far from the origin. However, due to the nonlocal terms, some care needs to
be taken in extending the energy to A. To avoid technicalities before the statement of results, we
extend by relaxation, i.e., for m 2 H̊1(R2; S2) with m+ e3 2 L2(R2;R3) we set

E�,�(m) := inf{lim inf
n!1

E�,�(mn) : mn 2 D for n 2 N with lim
n!1

kmn �mkH1 = 0}. (2.17)

Corollary 3.2 states that the representation (2.13) is still valid, provided the nonlocal terms Fvol

and Fsurf are interpreted appropriately.

2.2 Statement of the results

We first establish that the energy E�,� admits minimizers over A for all � 2 [0, 1], provided �
is su�ciently small. In particular, we get existence of skyrmions even in the case � = 0, which
corresponds to no DMI being present. Our model therefore predicts skyrmions purely stabilized by
the stray field. The proof of Theorem 2.1 below closely follows the previous works by Melcher [62]
and Döring and Melcher [28] and relies on the concentration compactness principle of Lions [57].
The main new aspect is the inclusion of the nonlocal terms due to the stray field, which we deal
with by standard interpolation inequalities.

Theorem 2.1. Let � > 0 and � 2 [0, 1] be such that �2(1 + �)2  2. Then there exists m�,� 2 A

such that

E�,�(m�,�) = inf
em2A

E�,�(em). (2.18)

Note that throughout the rest of the paper we suppress � in the index of m�,� for simplicity of
notation.

We now turn to the heart of the paper, namely, the analysis of the limit � ! 0 in which the
Dirichlet energy dominates. As was already pointed out by Döring and Melcher [28], in this limit
one expects minimizers m� of E�,� to converge to minimizers of

F (m) :=

ˆ
R2

|rm|
2 dx (2.19)
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main point:

A Quantitative Description of Skyrmions 271

By the Rellich–Kondrachov compactness theorem, [55, Theorem 8.9], there
exists mσ : R2 → S2 such that mn+ e3 → mσ + e3 in L2(BR̃ (0);R3) for all
R̃ > 0 and mn+ e3 ⇀ mσ + e3 in H1(R2;R3). We first argue that we even have
mn → mσ in L2(R2;R3). Let ε > 0 and let R > 0 be such that the tightness
estimate (5.125) holds. Then, by lower semi-continuity of the L2-norm and the
Minkowski inequality, we have

lim sup
n→∞

ˆ
R2

|mn−mσ |2 dx ≤ 2ε + lim sup
n→∞

ˆ
BR(0)

|mn−mσ |2 dx = 2ε.

(5.126)

Therefore, we see mn+ e3 → mσ + e3 in L2(R2;R3), and in particular we have
mσ + e3 ∈ L2(R2;R3).

Next, we argue that

lim inf
n→∞

(
Eσ,λ(mn) −8πN (mn)

)
≥ Eσ,λ(mσ ) −8πN (mσ ). (5.127)

By the identity (A.23), we obtain for any n∈ N that

Eσ,λ(mn) −8πN (mn)

=
ˆ
R2

(
|∂1mn+ mn× ∂2mn|2 + σ 2|m′

n|2 −2σ 2λm′
n · ∇mn,3

)
dx

+ σ 2(1 −λ)
(
Fvol(m′

n) −Fsurf(mn,3)
)
.

(5.128)

We have ∂1mn ⇀ ∂1mσ and mn× ∂2mn ⇀ mσ × ∂2mσ in L2(R2;R3), the latter
by a weak-times-strong convergence argument. In the first term, we can thus use
lower semi-continuity of the L2-norm. The anisotropy term converges strongly by
our previous argument. By (5.126) and weak convergence of the gradients we have

lim
n→∞

ˆ
R2

m′
n · ∇mn,3 dx = lim

n→∞

ˆ
R2

m′
σ · ∇mn,3 dx =

ˆ
R2

m′
σ · ∇mσ,3 dx

(5.129)

so that also the DMI-term converges. Finally, we see Fvol(m′
n) → Fvol(m′

σ )

and Fsurf(m3,n) → Fsurf(mσ,3) as n → ∞ by the interpolation inequalities of
Lemma 3.1. Taking all of these things together, we see

lim inf
n→∞

(
Eσ,λ(mn) −8πN (mn)

)

≥
ˆ
R2

(
|∂1mσ + mσ × ∂2mσ |2 + σ 2|m′

σ |2 −2σ 2λ(m′
σ · ∇)mσ,3

)
dx

+ σ 2(1 −λ)
(
Fvol(m′

σ ) −Fsurf(mσ,3)
)

= Eσ,λ(mσ ) −8πN (mσ ),

(5.130)

where in the last line we again use the identity (5.128).
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complete solution formally obtained by Belavin and Polyakov, 1975
degree 1 minimizers of                                    over                          belong to:

due to the chain rule (A.17), the area formula and the fact that 1
2 |r�|2 is the Jacobian of �. For

almost all y 2 em�1(⌫) we have rm(y) = 0 by standard statements about weak derivatives. There-
fore, for i = 1, 2 we can almost everywhere express (⌧i ·r)em(y) in the basis {⌧1(em(y)), ⌧2(em(y))}
to get

N (m) =
1

4⇡

ˆ
S2

em · (⌧1(em)⇥ ⌧2(em)) det (rem) dH2 = NS2(em) (A.22)

by virtue of z · (⌧1(z)⇥ ⌧2(z)) = 1 for all z 2 S
2
\ {⌫} according to (A.19).

A.2 The topological bound and energy minimizing harmonic maps of degree 1

In this section, we prove the topological bound (1.4) and characterize the corresponding minimizers
for the convenience of the reader. The following statement is an amalgam of results due to Belavin
and Polyakov [6], Lemaire [51] and Wood [79], see the discussion in Section 1. Our approach below
is to reduce the problem to that of the solutions of an H-system treated by Brezis and Coron [17].

Lemma A.3. For all m 2 H̊1(R2; S2) we have

|rm|
2
± 2m · (@1m⇥ @2m) = |@1m⌥m⇥ @2m|

2
� 0, (A.23)

almost everywhere, as well as

ˆ
R2

|rm|
2 dx � 8⇡ |N (m)| . (A.24)

The functions with N = 1 achieving equality, i.e., energy minimizing harmonic maps of degree 1,

are given by the set of Belavin-Polyakov profiles B, see definition (2.20). We furthermore have the

representation

BS2 =

⇢
� � f � ��1 : f(x) :=

ax+ b

cx+ d
for a, b, c, d 2 C with ad� bc 6= 0

�
(A.25)

for the set BS2 of minimizing harmonic maps of degree 1 from S
2
to itself, see definition (2.45).

We also briefly state a version of [53, Lemma 9] in our setting relating the energy excess to the
Hamiltonian, see Section 4.1, which will come in handy a number of times.

Lemma A.4 ([53, Lemma 9]). For m 2 H̊1(R2; S2) and � 2 B we have the identity

F (m)� 8⇡ =

ˆ
R2

�
|r(m� �)|2 � (m� �)2|r�|2

�
dx. (A.26)

Proof of Lemma A.3. The inequality (A.23) is a result of completing the square, and the topological
bound (A.24) then follows by integration.

Let � 2 H̊1(R2; S2) be such that N (�) = 1 and
ˆ
R2

|r�|2 dx = 8⇡. (A.27)

Then equation (A.23) implies @1� = �� ⇥ @2� almost everywhere. Together with the fact that
� · @i� = 0 for i = 1, 2 almost everywhere, we also have �⇥ @1� = ��⇥ (�⇥ @2�) = @2� and

2@1�⇥ @2� = @1�⇥ (�⇥ @1�)� (�⇥ @2�)⇥ @2� = |r�|2�. (A.28)
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for m̄ 2 D.
Of course, the assumption on regularity and decay at infinity encoded inD is much too restrictive

to allow for existence of minimizers. In view of the discussion in Section (1.1), it would be natural
to consider instead the energy on the S2-valued variant of the homogeneous Sobolev space H̊1(R2),
which we define as a space of functions

H̊1(R2) :=

⇢
u 2 H1

loc(R
2) :

ˆ
R2

|ru|2 dx < 1

�
, (2.14)

equipped with the L2-norm of the gradient (note, however, some technical issues associated with
such a critical space [4, Section 1.3]). Consequently, we aim to consider the energy E�,� on the set

A :=

⇢
m 2 H̊1(R2; S2) :

ˆ
R2

|rm|
2 dx < 16⇡, m+ e3 2 L2(R2), N (m) = 1

�
, (2.15)

where the condition m + e3 2 L2(R2) is the appropriate way of prescribing lim|x|!1m(x) = �e3,
see Lemma 5.1. Note that the definition of the topological charge, also referred to as the degree,

N (m) :=
1

4⇡

ˆ
R2

m ·
�
@1m⇥ @2m

�
dx, (2.16)

is valid for all m 2 H̊1(R2; S2) and is consistent with equation (1.2) for smooth maps that are
constant su�ciently far from the origin. However, due to the nonlocal terms, some care needs to
be taken in extending the energy to A. To avoid technicalities before the statement of results, we
extend by relaxation, i.e., for m 2 H̊1(R2; S2) with m+ e3 2 L2(R2;R3) we set

E�,�(m) := inf{lim inf
n!1

E�,�(mn) : mn 2 D for n 2 N with lim
n!1

kmn �mkH1 = 0}. (2.17)

Corollary 3.2 states that the representation (2.13) is still valid, provided the nonlocal terms Fvol

and Fsurf are interpreted appropriately.

2.2 Statement of the results

We first establish that the energy E�,� admits minimizers over A for all � 2 [0, 1], provided �
is su�ciently small. In particular, we get existence of skyrmions even in the case � = 0, which
corresponds to no DMI being present. Our model therefore predicts skyrmions purely stabilized by
the stray field. The proof of Theorem 2.1 below closely follows the previous works by Melcher [63]
and Döring and Melcher [28] and relies on the concentration compactness principle of Lions [58].
The main new aspect is the inclusion of the nonlocal terms due to the stray field, which we deal
with by standard interpolation inequalities.

Theorem 2.1. Let � > 0 and � 2 [0, 1] be such that �2(1 + �)2  2. Then there exists m�,� 2 A

such that

E�,�(m�,�) = inf
em2A

E�,�(em). (2.18)

Note that throughout the rest of the paper we suppress � in the index of m�,� for simplicity of
notation.

We now turn to the heart of the paper, namely, the analysis of the limit � ! 0 in which the
Dirichlet energy dominates. As was already pointed out by Döring and Melcher [28], in this limit
one expects minimizers m� of E�,� to converge to minimizers of

F (m) :=

ˆ
R2

|rm|
2 dx (2.19)
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for m 2 H̊1(R2; S2) with N (m) = 1, i.e., minimizing harmonic maps of degree 1. These have been
identified by Belavin and Polyakov [6], see also Brezis and Coron [17, Lemma A.1] or Lemma A.3
below, to be given by the previously mentioned Belavin-Polyakov profiles

B :=
�
S�(⇢�1(• � x)) : S 2 SO(3), ⇢ > 0, x 2 R

2
 
, (2.20)

where � is a rotated variant of the stereographic projection with respect to the south pole

�(x) :=

✓
�

2x

1 + |x|2
,
1� |x|2

1 + |x|2

◆
(2.21)

for x 2 R
2. One can moreover see that they achieve equality in the topological bound (1.4) in view

of ˆ
R2

|r�|2 dx = 8⇡ (2.22)

for all � 2 B. It is even known, see [29, (11.5)], that B comprises all solutions � : R2
! S

2 of the
harmonic map equation

��+ |r�|2� = 0 (2.23)

with N (�) = 1, meaning all critical points of F of degree 1 are absolute minimizers.
The task then is to identify which Belavin-Polyakov profiles � = S�(⇢�1(•� x)) for S 2 SO(3)

and ⇢ > 0 are selected in the limit � ! 0. By the requirement m+e3 2 L2(R2;R3), we can certainly
expect to have Se3 = e3 in the limit, so that S = S✓ for some angle ✓ 2 [�⇡,⇡) and

S✓ :=

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A . (2.24)

However, even for such Belavin-Polyakov profiles it holds that �+e3 62 L2(R2;R3) due to logarithmic
divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
spirit of the construction by Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also section 5.2, leads
one to believe that the optimal skyrmion radius ⇢0 is given asymptotically by

⇢0 '
ḡ(�)

16⇡

1

| log �|
, (2.25)

where the auxiliary function

ḡ(�) :=

(
(8 + ⇡

2

4 )⇡ ��
⇡
3

4 if � � �c,
128�2

3⇡(1��) +
⇡
3

8 (1� �) else,
(2.26)

in which the critical threshold �c is defined as

�c :=
3⇡2

32 + 3⇡2
, (2.27)
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Brezis, Coron, 1985
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spirit of the construction by Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also section 5.2, leads
one to believe that the optimal skyrmion radius ⇢0 is given asymptotically by

⇢0 '
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and vice versa

for m̄ 2 D.
Of course, the assumption on regularity and decay at infinity encoded inD is much too restrictive

to allow for existence of minimizers. In view of the discussion in Section (1.1), it would be natural
to consider instead the energy on the S2-valued variant of the homogeneous Sobolev space H̊1(R2),
which we define as a space of functions

H̊1(R2) :=

⇢
u 2 H1

loc(R
2) :

ˆ
R2

|ru|2 dx < 1

�
, (2.14)

equipped with the L2-norm of the gradient (note, however, some technical issues associated with
such a critical space [4, Section 1.3]). Consequently, we aim to consider the energy E�,� on the set

A :=

⇢
m 2 H̊1(R2; S2) :

ˆ
R2

|rm|
2 dx < 16⇡, m+ e3 2 L2(R2), N (m) = 1

�
, (2.15)

where the condition m + e3 2 L2(R2) is the appropriate way of prescribing lim|x|!1m(x) = �e3,
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and Fsurf are interpreted appropriately.

2.2 Statement of the results

We first establish that the energy E�,� admits minimizers over A for all � 2 [0, 1], provided �
is su�ciently small. In particular, we get existence of skyrmions even in the case � = 0, which
corresponds to no DMI being present. Our model therefore predicts skyrmions purely stabilized by
the stray field. The proof of Theorem 2.1 below closely follows the previous works by Melcher [63]
and Döring and Melcher [28] and relies on the concentration compactness principle of Lions [58].
The main new aspect is the inclusion of the nonlocal terms due to the stray field, which we deal
with by standard interpolation inequalities.

Theorem 2.1. Let � > 0 and � 2 [0, 1] be such that �2(1 + �)2  2. Then there exists m�,� 2 A

such that

E�,�(m�,�) = inf
em2A

E�,�(em). (2.18)

Note that throughout the rest of the paper we suppress � in the index of m�,� for simplicity of
notation.

We now turn to the heart of the paper, namely, the analysis of the limit � ! 0 in which the
Dirichlet energy dominates. As was already pointed out by Döring and Melcher [28], in this limit
one expects minimizers m� of E�,� to converge to minimizers of

F (m) :=

ˆ
R2

|rm|
2 dx (2.19)
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Theorem 1. Let � > 0 and � 2 [0, 1] be such that �2(1+�)2  2. Then there exists
m�,� 2 A such that

E�,�(m�,�) = inf
em2A

E�,�(em).

Theorem 2. For every m 2 C there exists � 2 B that achieves the infimum in the
Dirichlet distance D(m;B). Furthermore, there exists a universal constant ⌘ > 0
such that

⌘D2(m;B)  F (m)� 8⇡.

2

=> minimizers are close to

Finally, we have the representation

Fsurf(f, g) =
1

2

ˆ
R2

|k|F(f + c)F(g + d)
dk

(2⇡)2
, (3.9)

and for f̃ , g̃ 2 C1
c (R2;R2) we also have

1

4⇡

ˆ
R2

ˆ
R2

r · f̃(x)r · g̃(x̃)

|x� x̃|
dx̃ dx =

1

2

ˆ
R2

F

⇣
r · f̃

⌘
F (r · g̃)

|k|

dk

(2⇡)2
. (3.10)

In particular, the definition (3.3) extends that in (2.7).

With these extensions, we prove that the representation (2.13) of E�,� is still valid. Notice that
the density result below is a variant of [62, Lemma 4.1] (see also Schoen and Uhlenbeck [74]).

Corollary 3.2. For � > 0, � > 0 and m 2 H̊1(R2; S2) with m + e3 2 L2(R2;R3) there exists a

sequence mn 2 D with limn!1 kmn �mkH1 = 0, and we have

E�,�(m) =

ˆ
R2

|rm|
2 dx+ �2

✓ˆ
R2

|m0
|
2 dx� 2�

ˆ
R2

m0
·rm3 dx

+ (1� �)
�
Fvol(m

0)� Fsurf(m3)
�◆

.

(3.11)

Proof of Lemma 3.1. We first deal with the surface term. The estimate (3.5) is trivial. The Fourier
representation (3.9) follows immediately from [54, Theorem 7.12, identity (4)]. The estimate (3.7)
is then a straightforward consequence of the Cauchy-Schwarz inequality and Plancherel’s theorem,
[54, Theorem 5.3].

Next, we turn to the volume terms. Again, non-negativity (3.6) is a trivial consequence of the
definition (3.3). For f̃ , g̃ 2 C1

c (R2;R2), the equality (3.10) is a result of [54, Theorem 5.2, identity
(2)].

By a density argument, it is su�cient to prove the interpolation result (3.8) still under the
assumption f̃ , g̃ 2 C1

c (R2;R2). To this end, we define a vectorial variant of the Riesz transform

T f̃ := F
�1

✓
i
k

|k|
· F f̃

◆
. (3.12)

By the standard fact that F(r · f̃)(k) = ik · F f̃(k) for a.e. k 2 R
2 and Plancherel’s identity, we

have

1

2

ˆ
R2

F (r · f)F (r · g)

|k|

dk

(2⇡)2
=

1

2

ˆ
R2

T
⇣
f̃
⌘
r · g̃ dx. (3.13)

By the Mihlin-Hörmander multiplier theorem [36, Theorem 6.2.7], T extends to a bounded operator
from Lp(R2;R2) to Lp(R2) for all p 2 (1,1). As a result, Hölder’s inequality implies the desired
inequality (3.8).

Proof of Corollary 3.2. By the density result [62, Lemma 4.1] we may choose a sequence mn 2

C1(R2; S2) with mn + e3 2 L2 such that limn!1 kmn �mkH1 = 0. The proof of [28, Lemma 8]
implies that we may furthermore take mn + e3 to have compact support for all n 2 N, so that we
have mn 2 A. The local terms are obviously continuous in the H1-topology. Continuity of Fvol

and Fsurf is ensured by Lemma 3.1.
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Rigidity estimate for degree ±1 harmonic maps
define the class of degree 1 Sobolev maps from      to

While not strictly speaking adhering to a �-convergence framework, the proof of Theorem 2.2
is very much in the spirit of �-equivalence [15] in that we compare the sequence of energies at
minimizers to a sequence of finite-dimensional reduced energies. This simplification allows us to
explicitly compute approximate minimizers and even analyze their stability properties. As is usual
in the theory of �-convergence, the comparison is done via upper bounds obtained by construction
and ansatz-free lower bounds. The constructions have already been alluded to above. The main
ingredient for the lower bounds is the following Theorem 2.4, a quantitative stability estimate for
degree 1 harmonic maps from R

2 to S
2, i.e., for the maps in the set B, see definition (2.20). Once

we know that the minimizers are close to Belavin-Polyakov profiles, we use this information to
estimate the remaining lower order terms in the energy.

To state the theorem, we first introduce the family of all H̊1-maps from R
2 to S

2 of degree 1 :

C :=
n
m̃ 2 H̊1(R2; S2) : N (m̃) = 1

o
. (2.37)

We next introduce a notion of distance between elements in this family and Belavin-Polyakov
profiles, which we term the Dirichlet distance:

D(m;B) := inf
e�2B

✓ˆ
R2

���r
⇣
m� e�

⌘���
2
dx

◆ 1
2

. (2.38)

With these definitions we have the following theorem.

Theorem 2.4. For every m 2 C there exists � 2 B that achieves the infimum in the Dirichlet

distance D(m;B). Furthermore, there exists a universal constant ⌘ > 0 such that

⌘D2(m;B)  F (m)� 8⇡. (2.39)

Well understood compactness properties of minimizing sequences for the Dirichlet energy [55]
ensure the existence of a Belavin-Polyakov profile � that is close to an almost minimizer m of
the Dirichlet energy but do not provide us with a rate of closeness. To overcome this issue, we
pass to the corresponding linearized problem, which can easily be solved using a suitable vectorial
version of spherical harmonics, see Proposition 4.2 below. However, naive attempts at explicitly
estimating the error terms arising in the linearization procedure tend to break down due to the
logarithmic failure of the critical Sobolev embedding H1

6,! L1 in two dimensions. Therefore, the
main conceptual issue is to find additional cancellations resulting form the structure of the problem.

The relevant structure, it turns out, is the fact that the harmonic map problem is conformally
invariant, and that all Belavin-Polyakov profiles are conformal maps. This allows us to reformulate
the problem as stability of the identity map id : S

2
! S

2, denoted from now on as idS2 , by
considering em := m � ��1. Nonlinear terms can then be estimated using the standard Sobolev
embedding on the sphere, and the required cancellation is that the identity map on the sphere
has average zero. This idea leads us to the following estimates, which when expressed on R

2 also
provides topologies in which m itself converges to �.

Lemma 2.5. There exists a universal constant ⌘̃ > 0 such that the following holds: Let p 2 [1,1).
Then there exists a constant Cp > 0 such that if m 2 H1(S2; S2) satisfies

´
S2
|r(m�idS2)|

2 dH2
 ⌘̃,

then we have the estimate

✓ˆ
S2
|m� idS2 |

p dH2

◆ 1
p

 Cp

✓ˆ
S2
|r(m� idS2)|

2 dH2

◆ 1
2

. (2.40)
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and the Dirichlet distance to degree 1 Belavin-Polyakov profiles:

While not strictly speaking adhering to a �-convergence framework, the proof of Theorem 2.2
is very much in the spirit of �-equivalence [15] in that we compare the sequence of energies at
minimizers to a sequence of finite-dimensional reduced energies. This simplification allows us to
explicitly compute approximate minimizers and even analyze their stability properties. As is usual
in the theory of �-convergence, the comparison is done via upper bounds obtained by construction
and ansatz-free lower bounds. The constructions have already been alluded to above. The main
ingredient for the lower bounds is the following Theorem 2.4, a quantitative stability estimate for
degree 1 harmonic maps from R

2 to S
2, i.e., for the maps in the set B, see definition (2.20). Once

we know that the minimizers are close to Belavin-Polyakov profiles, we use this information to
estimate the remaining lower order terms in the energy.

To state the theorem, we first introduce the family of all H̊1-maps from R
2 to S

2 of degree 1 :
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n
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ensure the existence of a Belavin-Polyakov profile � that is close to an almost minimizer m of
the Dirichlet energy but do not provide us with a rate of closeness. To overcome this issue, we
pass to the corresponding linearized problem, which can easily be solved using a suitable vectorial
version of spherical harmonics, see Proposition 4.2 below. However, naive attempts at explicitly
estimating the error terms arising in the linearization procedure tend to break down due to the
logarithmic failure of the critical Sobolev embedding H1

6,! L1 in two dimensions. Therefore, the
main conceptual issue is to find additional cancellations resulting form the structure of the problem.

The relevant structure, it turns out, is the fact that the harmonic map problem is conformally
invariant, and that all Belavin-Polyakov profiles are conformal maps. This allows us to reformulate
the problem as stability of the identity map id : S
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considering em := m � ��1. Nonlinear terms can then be estimated using the standard Sobolev
embedding on the sphere, and the required cancellation is that the identity map on the sphere
has average zero. This idea leads us to the following estimates, which when expressed on R
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provides topologies in which m itself converges to �.

Lemma 2.5. There exists a universal constant ⌘̃ > 0 such that the following holds: Let p 2 [1,1).
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Theorem 1. Let � > 0 and � 2 [0, 1] be such that �2(1+�)2  2. Then there exists
m�,� 2 A such that

E�,�(m�,�) = inf
em2A

E�,�(em).

Theorem 2. For every m 2 C there exists � 2 B that achieves the infimum in the
Dirichlet distance D(m;B). Furthermore, there exists a universal constant ⌘ > 0
such that

⌘D2(m;B)  F (m)� 8⇡.
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- conformal invariance of the harmonic maps => switch to maps from     to
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- spectral gap for the linearized problem via vectorial spherical harmonics
- reduce the problem to that of stability of the identity map on 
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Reduction to maps between spheres
given a map            that is close to                                 the map
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By the Mihlin–Hörmander multiplier theorem [36, Theorem 6.2.7], T extends to
a bounded operator from L p(R2;R2) to L p(R2) for all p ∈ (1,∞). As a result,
Hölder’s inequality implies the desired inequality (3.8). ⊓$
Proof of Corollary 3.2. By the density result [63, Lemma 4.1] we may choose a
sequencemn ∈ C∞(R2;S2)withmn+e3 ∈ L2 such that limn→∞ ∥mn − m∥H1 =
0. The proof of [28, Lemma 8] implies that we may furthermore take mn + e3 to
have compact support for all n ∈ N, so that we have mn ∈ A. The local terms are
obviously continuous in the H1-topology. Continuity of Fvol and Fsurf is ensured
by Lemma 3.1. ⊓$

4. Rigidity of Degree ± 1 Harmonic Maps

The goal of this section is to prove Theorem 2.4, the quantitative stability
statement for Belavin–Polyakov profiles with respect to the Dirichlet energy F(m).
As explained in Sect. 2.2, it will be helpful at times to think of maps m̃ : S2 → S2
by setting m̃ := m ◦ φ− 1 for some appropriately chosen φ ∈ B. The maps φ ∈ B
have the nice property of being conformal, see [27, Chapter 4, Definition 3]. As
such, the above re-parametrization leaves the harmonic map problem invariant, see
Lemma A.2, and we gain compactness of the underlying sets, as well as a greater
conceptual clarity in some of our arguments.

The definitions of gradients, Laplace operators andSobolev spaces on the sphere
can be found in Sect. A.1. In particular, we use the same symbol for the Euclidean
and Riemannian versions of gradients and Laplace operators as it is always clear
from context which one is meant.

4.1. The Spectral Gap Property for the Linearized Problem

This subsection is devoted to the solution of the linear problem corresponding
to Theorem 2.4 and Corollary 2.6, i.e., we establish the sharp spectral gap property
for the Hessian of F , or equivalently FS2 , at minimizers. The notions and arguments
needed are fairly standard. Here we provide the proof for the convenience of the
reader.

Given a map m ∈ C that is close to φ ∈ B in H̊1(R2;R3), by Lemma A.2 we
also have that m ◦ φ− 1 is close to idS2 in H1(S2;R3). Therefore, we only have
to compute the Hessian at the identity map idS2 : S2 → S2. The corresponding
Hessian on S2 and in local coordinates given by φ ∈ B is, respectively

H(ζ, ξ) :=
ˆ
S2
(∇ζ : ∇ξ − 2ζ · ξ) dH2, (4.1)

Hφ(ζφ, ξφ) :=
ˆ
R2

(
∇ζφ : ∇ξφ − ζφ · ξφ |∇φ|2

)
dx, (4.2)

see [62,77], defined for tangent vector fields ζ, ξ ∈ H1(S2; TS2), see equation
(A.5) for the definition of this space, and

ζφ, ξφ ∈ H1
w(R2; TφS2)
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reader.

Given a map m ∈ C that is close to φ ∈ B in H̊1(R2;R3), by Lemma A.2 we
also have that m ◦ φ− 1 is close to idS2 in H1(S2;R3). Therefore, we only have
to compute the Hessian at the identity map idS2 : S2 → S2. The corresponding
Hessian on S2 and in local coordinates given by φ ∈ B is, respectively

H(ζ, ξ) :=
ˆ
S2
(∇ζ : ∇ξ − 2ζ · ξ) dH2, (4.1)

Hφ(ζφ, ξφ) :=
ˆ
R2

(
∇ζφ : ∇ξφ − ζφ · ξφ |∇φ|2

)
dx, (4.2)

see [62,77], defined for tangent vector fields ζ, ξ ∈ H1(S2; TS2), see equation
(A.5) for the definition of this space, and

ζφ, ξφ ∈ H1
w(R2; TφS2)

              is close to 
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By the Mihlin–Hörmander multiplier theorem [36, Theorem 6.2.7], T extends to
a bounded operator from L p(R2;R2) to L p(R2) for all p ∈ (1,∞). As a result,
Hölder’s inequality implies the desired inequality (3.8). ⊓$
Proof of Corollary 3.2. By the density result [63, Lemma 4.1] we may choose a
sequencemn ∈ C∞(R2;S2)withmn+e3 ∈ L2 such that limn→∞ ∥mn − m∥H1 =
0. The proof of [28, Lemma 8] implies that we may furthermore take mn + e3 to
have compact support for all n ∈ N, so that we have mn ∈ A. The local terms are
obviously continuous in the H1-topology. Continuity of Fvol and Fsurf is ensured
by Lemma 3.1. ⊓$

4. Rigidity of Degree ± 1 Harmonic Maps

The goal of this section is to prove Theorem 2.4, the quantitative stability
statement for Belavin–Polyakov profiles with respect to the Dirichlet energy F(m).
As explained in Sect. 2.2, it will be helpful at times to think of maps m̃ : S2 → S2
by setting m̃ := m ◦ φ− 1 for some appropriately chosen φ ∈ B. The maps φ ∈ B
have the nice property of being conformal, see [27, Chapter 4, Definition 3]. As
such, the above re-parametrization leaves the harmonic map problem invariant, see
Lemma A.2, and we gain compactness of the underlying sets, as well as a greater
conceptual clarity in some of our arguments.

The definitions of gradients, Laplace operators andSobolev spaces on the sphere
can be found in Sect. A.1. In particular, we use the same symbol for the Euclidean
and Riemannian versions of gradients and Laplace operators as it is always clear
from context which one is meant.
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Hessian of the Dirichlet energy at the identity map:
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ζφ, ξφ ∈ H1
w(R2; TφS2)

define the Jacobi fields:
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:=
{
ξ̃φ ∈ H1

w(R2;R3) : ξ̃φ(x) · φ(x) = 0 for almost all x ∈ R2
}
. (4.3)

Here, we introduced a vector-valued variant H1
w(R2;R3) of the weighted Sobolev

space

H1
w(R2) :=

{
u ∈ H1

loc(R2) :
ˆ
R2

(
|∇u|2 + |u|2

1+ |x |4
)

dx < ∞
}
, (4.4)

arising from H1(S2;R3) under parametrization by φ ∈ B due to Lemma A.2, and
the pullback TφS2 := ⋃

x∈R2{φ(x)} × Tφ(x)S2 of the tangent bundle TS2 of the
sphere. In particular, note that ζφ · ξφ |∇φ|2 is integrable. As idS2 is a minimizer
of FS2 , the Hessians are non-negative bilinear forms in the sense that for all ξ ∈
H1(S2; TS2) and ξφ ∈ H1

w(R2; TφS2) we have

H(ξ, ξ) ≥ 0, (4.5)

Hφ(ξφ, ξφ) ≥ 0. (4.6)

In view of identity (4.1), the inequality (4.5) can be interpreted as a Poincaré type
inequality on the space H1(S2; TS2) that does not rely on subtracting averages.

The next step is to identify the null space of the Hessian:

J :=
{
ζ ∈ H1

(
S2; TS2

)
: H(ζ, ζ ) = 0

}
. (4.7)

It is well known that ζ ∈ J is equivalent to ζ solving the so-called Jacobi equation

L(ζ )(y) := −$ζ(y) − 2ζ(y) − 2(∇ y : ∇ζ(y))y = 0 (4.8)

for all y ∈ S2, where the Laplace–Beltrami operator is taken component-wise. We
call solutions to the Jacobi equation Jacobi fields. In local coordinates given by
φ ∈ B, i.e., for ζφ := ζ ◦ φ−1, this equation is

Lφ(ζφ) := −$ζφ − |∇φ|2ζφ − 2(∇φ : ∇ζφ)φ = 0. (4.9)

For our purposes we only need to rigorously ensure that ζ ∈ J solves a weak
version of the equation in local coordinates under the (a posteriori unnecessary)
assumption that ζ ∈ J is smooth, which we will do in Lemma 4.1 below for the
convenience of the reader.

Lemma 4.1. Let ζ ∈ J be smooth and φ ∈ B. Then for all ξ ∈ H̊1(R2;R3) ∩
L∞(R2;R3) the function ζφ := ζ ◦ φ satisfies

ˆ
R2

(
∇ζφ : ∇ξ − ζφ · ξ |∇φ|2 − 2φ · ξ ∇φ : ∇ζφ

)
dx = 0. (4.10)

Using the characterization of the Hessian H as the second derivative of FS2 at
idS2 , we can readily find Jacobi fields: If for ε > 0 and t ∈ (−ε, ε), the function ut
is a smooth curve of minimizers of FS2 with u0 = idS2 , then

d
dt |t= 0ut ∈ J . To use

this idea, we recall the representation

ut = & ◦ ft ◦ &−1 (4.11)
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vector spherical harmonics:
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for ft (z) = at z+bt
ct z+1 and at , bt , ct ∈ C with at − btct ̸= 0 and a0 = 1, b0 = c0 = 0,

see equation (2.46). Differentiating in t , we see that j ∈ J , where by the chain rule
we have

j (y) :=
(
∇! ◦ !− 1(y)

)
g ◦ !− 1(y) y ∈ S2, (4.12)

for the complex polynomial g (z) := − d
dt |t= 0ct z2 + d

dt |t= 0at z + d
dt |t= 0bt . In

particular, we know that dim J ≥ 6.
In the next Proposition (4.2), we prove that all Jacobi fields arise in such a

manner and we compute the spectral gap. To this end, we use to the notion of vector
spherical harmonics [35, Chapter 5.2], as they turn out to diagonalize H. They are
related to the spherical harmonics Yn , j : S2 → R for n ≥ 0 and j = − n , . . . n ,
which are eigenfunctions of the Laplace–Beltrami operator " with eigenvalues
− n (n + 1). Here, we take them to be normalized such that they form a real-valued,
orthonormal system for L2(S2). Their definition is well-known and we do not need
their explicit expressions in the following (an interested reader may refer to [35,
Chapter 3.4]). The vector spherical harmonics, see [35, equation (5.36)] are defined
for y ∈ S2 as

Y(1)
0,0(y) :=

1√
4π

y, (4.13)

and for n ≥ 1 and j = − n , . . . , n as

Y(1)
n , j (y) := Yn , j (y) y, (4.14)

Y(2)
n , j (y) :=

1√
n (n + 1)

∇Yn , j (y), (4.15)

Y(3)
n , j (y) :=

1√
n (n + 1)

y × ∇Yn , j (y). (4.16)

Similarly to their scalar counterparts, they are eigenfunctions with eigenvalues
− n (n +1) for a suitably defined vectorial Laplace–Beltrami operator [35, Theorem
5.28 andDefinition 5.26]: For ξ ∈ C2(S2;R3), using the projections πt and πn onto
tangential and normal components, we set

"vξ := πn(" + 2)(πnξ)+ πt"(πtξ), (4.17)

where " is to be understood as the component-wise Laplace–Beltrami operator.
Furthermore, they form an orthonormal system for L2(S2;R3), see [35, Theorem
5.9].

Turning to tangential vector fields, we note that by the above results the set
{Y(2)

n , j ,Y
(3)
n , j : n ≥ 1, j = − n , . . . , n } of tangential vector spherical harmonics

forms an orthonormal system for

L2(S2; TS2) :=
{
ξ ∈ L2(R2;R3) : ξ(y) · y = 0 for almost all y ∈ S2

}
. (4.18)
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Jacobi fields and a spectral gap
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Additionally, we can use the fact that the vector spherical harmonics are eigenfunc-
tions of !v to integrate by parts, see equation (A.7) below, to obtain

ˆ
S2

∇Y(k)
n, j : ∇Y(o)

p,i dH
2 = n(n + 1)δn,pδ j,iδk,o (4.19)

for n, p ≥ 1, j = −n, . . . n, i = −p, . . . p and k, o ∈ {2, 3}, where the δ symbols
denote the corresponding Kronecker deltas.

With this information, we are finally able to characterize both the space of
Jacobi functions J and the spectral gap of the Hessian H with respect to the H̊1-
scalar product. To this end, we define the space of tangent vector fields which are
H̊1-orthogonal to the space J of Jacobi fields

H1 :=
{
ξ ∈ H1(S2; TS2) :

ˆ
S2
(∇ξ : ∇ζ ) dH2 = 0 for all ζ ∈ J

}
. (4.20)

The choice of the H̊1-scalar product is motivated by Theorem 2.4 requiring us to
estimate the H̊1-distance of any given m ∈ C to B.

Proposition 4.2. We have J = span
{
Y(2)
1, j ,Y

(3)
1, j ; j = −1, 0, 1

}
. In particular, all

Jacobi fields are smooth and it holds that dim J = 6. Furthermore, we have the
spectral gap property

H(ξ, ξ) ≥ 2
3

ˆ
S2
|∇ξ |2 dH2 (4.21)

for all ξ ∈ H1. Finally, the L2-orthogonal projection πJ : L2(S2; TS2) →
L2(S2; TS2) onto J is well-defined and orthogonal with respect to the inner product
in H̊1(S2).

Thus all Jacobi fields arise from variations of the form (4.11).
Having presented all statements of this subsection, we provide their proofs

below.

Proof of Lemma 4.1. Step 1: We have ζ ∈ J if and only if the condition
ˆ
S2
(∇ζ : ∇ξ − 2ζ · ξ) dH2 = 0 (4.22)

holds for all ξ ∈ H1(S2; TS2).
Let ζ ∈ J , meaning we have ζ ∈ H1(S2; TS2) with H(ζ, ζ ) = 0. As H is a
non-negative bilinear form, the Cauchy–Schwarz inequality implies for all ξ ∈
H1(S2; TS2) that

0 ≤ |H(ζ, ξ)| ≤ H
1
2 (ζ, ζ )H

1
2 (ξ, ξ) = 0, (4.23)
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fromwhich the representation J = H1 immediately follows by virtue of n(n+1) ≥
6 for n ≥ 2. To deduce the spectral gap property, note that by the same token we
have the sharp estimate n(n + 1) − 2 ≥ 2

3n(n + 1). If ξ ∈ H1 we therefore have

H(ξ, ξ) ≥ 2
3

∑
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j= −n
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k= 2,3

n(n + 1)
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S2
ξ · Y(k)

n, j dH
2
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which concludes the proof of estimate (4.21).
Finally, in view of the fact that the tangential vector spherical harmonics are an

orthonormal system for L2(S2; TS2) we see that
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j= −1,0,1

[(ˆ
S2

ξ · Y(2)
1, j dH

2
)
Y(2)
1, j +

(ˆ
S2

ξ · Y(3)
1, j dH

2
)
Y(3)
1, j

]

(4.38)

is the L2-orthogonal projection onto J , which by identity (4.31) coincides with the
H̊1-orthogonal projection. ⊓&

4.2. From Linear Stability to Rigidity

In order to make use of the spectral gap property of Proposition 4.2, we first
have to find a degree one harmonic map to which to apply it. It turns out that it
is advantageous to take φ ∈ B minimizing the Dirichlet distance D(m;B), see
definition (2.38), between B and m ∈ C, which is possible due to the following
Lemma 4.3. As in its proof it is more convenient to deal with Belavin–Polyakov
profiles rather than Möbius transformations, we formulate it in the R2-setting.

Lemma 4.3. For any m ∈ C there exists φ ∈ B such that

D(m;B) =
(ˆ

R2
|∇(m − φ)|2 dx

) 1
2

. (4.39)

With this statements, we are in a position to prove a local version of Theorem2.4
by projectingm−φ onto a vector field tangent to φ and using Lemma 2.5 to control
the resulting higher order terms.

Lemma 4.4. Let η̃ > 0 be as in Lemma 2.5. For m ∈ C with D2(m;B) < η̃ we
have
(
2
3

− 2
3
C2
4D(m;B) − 19

12
C4
4D

2(m;B)
)
D2(m;B) ≤ F(m) − 8π, (4.40)

where C4 is the constant from Lemma 2.5.
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where C4 is the constant from Lemma 2.5.

Proof of Lemma 4.3. Towards a contradiction, we assume that inf�2B
´
R2 |r(m � �)|2 dx is not

attained. Throughout the proof, we ignore the relabeling of subsequences without further comment.
Step 1: If the infimum is not attained, then

´
R2 |r(m � �)|2 dx >

´
R2 |rm|

2 dx + 8⇡ for all

� 2 B.

For n 2 N, let Rn 2 SO(3), 0 < ⇢n < 1 and xn 2 R
2 be such that �n := Rn�

�
⇢�1
n (• � xn)

�
2 B

satisfies

lim
n!1

ˆ
R2

|r(m� �n)|
2 dx = inf

�2B

ˆ
R2

|r(m� �)|2 dx. (4.41)

As SO(3) is compact, there exists a subsequence and R 2 SO(3) such that limn!1Rn = R. By
direct computation, we have uniformly for all �̃ 2 B

lim
n!1

ˆ
R2

���r
⇣
Rn�̃

⌘
�r

⇣
R�̃

⌘���
2
dx = 0. (4.42)

We may thus suppose that Rn = R for all n 2 N. Due to the fact that there does not exist
an optimal approximating Belavin-Polyakov profile we have limn!1 ⇢n = 0, limn!1 ⇢n = 1, or
limn!1 xn = 1.

Let us first deal with the case limn!1 ⇢n = 0, which implies r�n * 0 in L2. Consequently, by
expanding the square we get

inf
�2B

ˆ
R2

|r(m� �)|2 dx = lim
n!1

ˆ
R2

|r(m� �n)|
2 dx =
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R2

|rm|
2 dx+ 8⇡. (4.43)

As the infimum is not achieved, we obtain
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|r(m� �)|2 dx >

ˆ
R2

|rm|
2 dx+ 8⇡ (4.44)
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4.2 From linear stability to rigidity

In order to make use of the spectral gap property of Proposition 4.2, we first have to find a degree one
harmonic map to which to apply it. It turns out that it is advantageous to take � 2 B minimizing
the Dirichlet distance D(m;B), see definition (2.38), between B and m 2 C, which is possible due
to the following Lemma 4.3. As in its proof it is more convenient to deal with Belavin-Polyakov
profiles rather than Möbius transformations, we formulate it in the R

2-setting.

Lemma 4.3. For any m 2 C there exists � 2 B such that

D(m;B) =

✓ˆ
R2

|r(m� �)|2 dx

◆ 1
2

. (4.39)

With this statements, we are in a position to prove a local version of Theorem 2.4 by projecting
m � � onto a vector field tangent to � and using Lemma 2.5 to control the resulting higher order
terms.

Lemma 4.4. Let ⌘̃ > 0 be as in Lemma 2.5. For m 2 C with D2(m;B) < ⌘̃ we have
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where C4 is the constant from Lemma 2.5.
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We may thus suppose that Rn = R for all n 2 N. Due to the fact that there does not exist
an optimal approximating Belavin-Polyakov profile we have limn!1 ⇢n = 0, limn!1 ⇢n = 1, or
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for all � 2 B.
In the case limn!1 ⇢n = 1, we rescale mn := m(⇢nx + xn) and observe rmn * 0 in L2.
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In dealing with the case limn!1 xn = 1 we may consequently assume that limn!1 ⇢n = ⇢ 2

(0,1). Once again we then get r�n * 0 in L2, and we conclude as in the first case.
Step 2: Derive the contradiction.

Expanding the square in the result of Step 1 yields
ˆ
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rm : r� dx < 0 (4.46)

for every � 2 B. Now, for x 2 R
2 we define the four Belavin-Polyakov profiles:

�+,+(x) := (�1(x),�2(x),�3(x)), (4.47)

��,+(x) := (�2(x),�1(x),��3(x)), (4.48)

�+,�(x) := (��1(x),��2(x),�3(x)), (4.49)

��,�(x) := (��2(x),��1(x),��3(x)). (4.50)

It is straightforward to see that
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a contradiction.

Proof of Lemma 4.4. Lemma 4.3 ensures the existence of � 2 B such that
ˆ
R2

|r(m� �)|2 dx = D2(m;B). (4.55)

As � arises from � purely by invariances of the energy, we may without loss of generality suppose
� = � by re-defining m. Throughout the proof, we abbreviate J̃ := {⇠ � � : ⇠ 2 J}.

Step 1: We decompose m�� into a vector field parallel to �, a Jacobi field and a tangent vector

field normal to Jacobi fields. Furthermore, we state a few preliminary estimates and identities.
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conclude by testing against Belavin-Polyakov profiles
with permuted and reflected components



Theorem 1. Let � > 0 and � 2 [0, 1] be such that �2
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Theorem 2. For every m 2 C there exists � 2 B that achieves the infimum in the
Dirichlet distance D(m;B). Furthermore, there exists a universal constant ⌘ > 0
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where C4 is the constant from Lemma 3.

2

From linear stability to rigidity (cont.)



Back to the conformal limit: an Ansatz
every ansatz-free analysis requires a good ansatz 🙂
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anisotropy energy blows up logarithmically => need a suitable cutoff at infinity
for L > 1, introduce

5.2 Upper bounds via minimization of a reduced energy

We now turn to defining a simplified energy that reduces the minimization to finding the best
Belavin-Polyakov profile taking the correct value at infinity. As these profiles have logarithmically
divergent anisotropy energy, a truncation is necessary to make sense of the energy.

Let

f(r) :=
2r

1 + r2
(5.17)

be the in-plane modulus of the Néel-type Belavin-Polyakov profile
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We consider the truncation at scale L > 1 defined as
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Here, K1 is the modified Bessel function of the second kind of order 1, for a more detailed discussion
see Section A.3. The ansätze are then given by

�⇢,✓,L(x) := S✓�L(⇢
�1x) (5.21)

for ⇢ > 0, ✓ 2 [�⇡,⇡), L > 1 and where S✓ is given by (2.24). For convenience, we also define
�⇢,✓,1(x) := S✓�(⇢�1x).

For later computations, it turns out to be convenient to not quite use the variables ⇢ and L in
the definition of the reduced energy, but to make the substitutions

e⇢ = | log �|⇢, eL =
L

2
p
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We furthermore divide the energy by �
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constant K > 0 the rescaled energy of �⇢,✓,L is then given to the leading order in � ⌧ 1 by
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Belavin-Polyakov profile taking the correct value at infinity. As these profiles have logarithmically
divergent anisotropy energy, a truncation is necessary to make sense of the energy.

Let

f(r) :=
2r

1 + r2
(5.17)

be the in-plane modulus of the Néel-type Belavin-Polyakov profile

�(x) =

✓
�

2x

1 + |x|2
,
1� |x|2

1 + |x|2

◆
. (5.18)

We consider the truncation at scale L > 1 defined as
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✓
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, sign(1� |x|)
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where

fL(r) :=
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1
2 .

(5.20)

Here, K1 is the modified Bessel function of the second kind of order 1, for a more detailed discussion
see Section A.3. The ansätze are then given by

�⇢,✓,L(x) := S✓�L(⇢
�1x) (5.21)

for ⇢ > 0, ✓ 2 [�⇡,⇡), L > 1 and where S✓ is given by (2.24). For convenience, we also define
�⇢,✓,1(x) := S✓�(⇢�1x).

For later computations, it turns out to be convenient to not quite use the variables ⇢ and L in
the definition of the reduced energy, but to make the substitutions

e⇢ = | log �|⇢, eL =
L

2
p
⇡
. (5.22)

We furthermore divide the energy by �
2

| log �| . As we will show below, for � > 0, � 2 [0, 1] and a
constant K > 0 the rescaled energy of �⇢,✓,L is then given to the leading order in � ⌧ 1 by
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�eL
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on the domain
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⌘
: e⇢ > 0, ✓ 2 [�⇡,⇡), eL �

1
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⇡
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, (5.24)

where

g(�, ✓) := 8⇡� cos ✓ +
⇡3

8
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�
1� 3 cos2 ✓
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. (5.25)
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Figure S2: An illustration of the behavior of the truncated Belavin-Polyakov profile. The
solid blue line indicates the graph of the function fL(r) defined in Eq. (2.4) at L = 9. The
dashed green line indicates the profile f(r) in the absence of truncation.

The class of ansätze obtained from mL via dilations and rotations is then given by
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✓
�fL(⇢�1|r|)R✓r
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◆
, r 2 R2, (2.6)

for ⇢ > 0, ✓ 2 [�⇡, ⇡), L > 1.

2.2 Expansion of the energy

We first present the leading order contributions of E(mL), from which E(m⇢,✓,L) can then
straightforwardly be obtained. The exchange energy can be expanded for L � 1 as follows:

Z

R2
|rmL|2 d2r ⇡ 8⇡ +

4⇡
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. (2.7)

In particular, we have
Z

R2
|rmL|2 d2r < 16⇡, (2.8)

for all L � 1. As the map L 7! q(mL) is continuous and integer-valued, it must be
constant. We also have limL!1 q(mL) = q(m1) = +1. In particular, we have mL 2 A+1

for all L � 1.
The anisotropy energy is
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Upper bound on energy

5.2 Upper bounds via minimization of a reduced energy

We now turn to defining a simplified energy that reduces the minimization to finding the best
Belavin-Polyakov profile taking the correct value at infinity. As these profiles have logarithmically
divergent anisotropy energy, a truncation is necessary to make sense of the energy.

Let

f(r) :=
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1 + r2
(5.17)

be the in-plane modulus of the Néel-type Belavin-Polyakov profile
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Here, K1 is the modified Bessel function of the second kind of order 1, for a more detailed discussion
see Section A.3. The ansätze are then given by

�⇢,✓,L(x) := S✓�L(⇢
�1x) (5.21)

for ⇢ > 0, ✓ 2 [�⇡,⇡), L > 1 and where S✓ is given by (2.24). For convenience, we also define
�⇢,✓,1(x) := S✓�(⇢�1x).

For later computations, it turns out to be convenient to not quite use the variables ⇢ and L in
the definition of the reduced energy, but to make the substitutions

e⇢ = | log �|⇢, eL =
L

2
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. (5.22)

We furthermore divide the energy by �
2

| log �| . As we will show below, for � > 0, � 2 [0, 1] and a
constant K > 0 the rescaled energy of �⇢,✓,L is then given to the leading order in � ⌧ 1 by
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fix                                        and                   as above

for m 2 H̊1(R2; S2) with N (m) = 1, i.e., minimizing harmonic maps of degree 1. These have been
identified by Belavin and Polyakov [6], see also Brezis and Coron [17, Lemma A.1] or Lemma A.3
below, to be given by the previously mentioned Belavin-Polyakov profiles

B :=
�
S�(⇢�1(• � x)) : S 2 SO(3), ⇢ > 0, x 2 R

2
 
, (2.20)

where � is a rotated variant of the stereographic projection with respect to the south pole

�(x) :=

✓
�

2x

1 + |x|2
,
1� |x|2

1 + |x|2

◆
(2.21)

for x 2 R
2. One can moreover see that they achieve equality in the topological bound (1.4) in view

of ˆ
R2

|r�|2 dx = 8⇡ (2.22)

for all � 2 B. It is even known, see [29, (11.5)], that B comprises all solutions � : R2
! S

2 of the
harmonic map equation

��+ |r�|2� = 0 (2.23)

with N (�) = 1, meaning all critical points of F of degree 1 are absolute minimizers.
The task then is to identify which Belavin-Polyakov profiles � = S�(⇢�1(•� x)) for S 2 SO(3)

and ⇢ > 0 are selected in the limit � ! 0. By the requirement m+e3 2 L2(R2;R3), we can certainly
expect to have Se3 = e3 in the limit, so that S = S✓ for some angle ✓ 2 [�⇡,⇡) and

S✓ :=

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A . (2.24)

However, even for such Belavin-Polyakov profiles it holds that �+e3 62 L2(R2;R3) due to logarithmic
divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
spirit of the construction by Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also section 5.2, leads
one to believe that the optimal skyrmion radius ⇢0 is given asymptotically by

⇢0 '
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16⇡

1

| log �|
, (2.25)
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3

8 (1� �) else,
(2.26)

in which the critical threshold �c is defined as

�c :=
3⇡2

32 + 3⇡2
, (2.27)
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define a test profile

5.2 Upper bounds via minimization of a reduced energy

We now turn to defining a simplified energy that reduces the minimization to finding the best
Belavin-Polyakov profile taking the correct value at infinity. As these profiles have logarithmically
divergent anisotropy energy, a truncation is necessary to make sense of the energy.

Let

f(r) :=
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1 + r2
(5.17)

be the in-plane modulus of the Néel-type Belavin-Polyakov profile
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Here, K1 is the modified Bessel function of the second kind of order 1, for a more detailed discussion
see Section A.3. The ansätze are then given by

�⇢,✓,L(x) := S✓�L(⇢
�1x) (5.21)

for ⇢ > 0, ✓ 2 [�⇡,⇡), L > 1 and where S✓ is given by (2.24). For convenience, we also define
�⇢,✓,1(x) := S✓�(⇢�1x).

For later computations, it turns out to be convenient to not quite use the variables ⇢ and L in
the definition of the reduced energy, but to make the substitutions

e⇢ = | log �|⇢, eL =
L

2
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. (5.22)

We furthermore divide the energy by �
2

| log �| . As we will show below, for � > 0, � 2 [0, 1] and a
constant K > 0 the rescaled energy of �⇢,✓,L is then given to the leading order in � ⌧ 1 by
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then 

minimized by 

for m 2 H̊1(R2; S2) with N (m) = 1, i.e., minimizing harmonic maps of degree 1. These have been
identified by Belavin and Polyakov [6], see also Brezis and Coron [17, Lemma A.1] or Lemma A.3
below, to be given by the previously mentioned Belavin-Polyakov profiles

B :=
�
S�(⇢�1(• � x)) : S 2 SO(3), ⇢ > 0, x 2 R

2
 
, (2.20)

where � is a rotated variant of the stereographic projection with respect to the south pole
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,
1� |x|2

1 + |x|2

◆
(2.21)

for x 2 R
2. One can moreover see that they achieve equality in the topological bound (1.4) in view

of ˆ
R2

|r�|2 dx = 8⇡ (2.22)

for all � 2 B. It is even known, see [29, (11.5)], that B comprises all solutions � : R2
! S

2 of the
harmonic map equation

��+ |r�|2� = 0 (2.23)

with N (�) = 1, meaning all critical points of F of degree 1 are absolute minimizers.
The task then is to identify which Belavin-Polyakov profiles � = S�(⇢�1(•� x)) for S 2 SO(3)

and ⇢ > 0 are selected in the limit � ! 0. By the requirement m+e3 2 L2(R2;R3), we can certainly
expect to have Se3 = e3 in the limit, so that S = S✓ for some angle ✓ 2 [�⇡,⇡) and

S✓ :=

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A . (2.24)

However, even for such Belavin-Polyakov profiles it holds that �+e3 62 L2(R2;R3) due to logarithmic
divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
spirit of the construction by Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also section 5.2, leads
one to believe that the optimal skyrmion radius ⇢0 is given asymptotically by

⇢0 '
ḡ(�)

16⇡

1

| log �|
, (2.25)

where the auxiliary function

ḡ(�) :=

(
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in which the critical threshold �c is defined as
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32 + 3⇡2
, (2.27)
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results from the balance of the DMI and stray field terms. The function ḡ(�) can straightforwardly
be seen to be continuous and satisfy

1

C
 ḡ(�)  C (2.28)

for a universal constant C > 0. Furthermore, the two optimal rotation angles ✓+0 2 [0, ⇡2 ] and
✓�0 2 [�⇡

2 , 0] are asymptotically

✓±0 :=

(
0 if � � �c,

± arccos
⇣

32�
3⇡2(1��)

⌘
else.

(2.29)

Here, the angle ✓±0 = 0 corresponds to a Néel-type skyrmion profile present in the regime � � �c

of DMI dominating over the stray field, while skyrmions purely stabilized by the stray field have
Bloch-type profiles in view of ✓±0 = ±

⇡

2 for � = 0. The following convergence theorem confirms
these expectations.

Theorem 2.2. Let � 2 [0, 1]. Let m� be a minimizer of E�,� over A. Then there exist x� 2 R
2
,

⇢� > 0 and ✓� 2 [�⇡,⇡) such that m� � S✓��(⇢
�1
� (• � x�)) ! 0 in H̊1(R2;R3) as � ! 0, and

lim
�!0

| log �|⇢� =
ḡ(�)

16⇡
, lim

�!0
|✓�| = ✓+0 , (2.30)

as well as

lim
�!0

| log �|2

�2 log | log �|

����E�,�(m�)� 8⇡ +
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| log �|

✓
ḡ2(�)

32⇡
�

ḡ2(�)

32⇡

log | log �|

| log �|

◆���� = 0. (2.31)

Remark 2.3. For the convergences in Theorem 2.2, our methods also allow to provide the following
non-optimal (with the exception of the estimate (2.35)) rates:

ˆ
R2

��r
�
m�(x)� S✓��(⇢

�1
� (x� x�))

���2 dx  C�2, (2.32)
����| log �|⇢� �

ḡ(�)

16⇡

���� 
C

| log �|
, (2.33)

��|✓�|� ✓+0
��4 + |�� �c|

��|✓�|� ✓+0
��2  C

| log �|
, (2.34)

as well as

1

C

�2

| log �|2
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| log �|2
, (2.35)

and
����
| log �|
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(E�,�(m�)� 8⇡)�

✓
�
ḡ2(�)

32⇡
+

ḡ2(�)

32⇡

log | log �|

| log �|

◆���� 
C

| log �|
, (2.36)

for C > 0 universal and � 2 (0,�0) with �0 > 0 small enough and universal. In fact, our proof does
establish all these rates except the one for the angles ✓�, whose proof relies on some lengthy, but
elementary estimates. Note that the loss in the rate of convergence of ✓� to ✓±0 for the parameter
� = �c coincides with Néel profiles becoming linearly unstable.
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for m 2 H̊1(R2; S2) with N (m) = 1, i.e., minimizing harmonic maps of degree 1. These have been
identified by Belavin and Polyakov [6], see also Brezis and Coron [17, Lemma A.1] or Lemma A.3
below, to be given by the previously mentioned Belavin-Polyakov profiles

B :=
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2
 
, (2.20)

where � is a rotated variant of the stereographic projection with respect to the south pole
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(2.21)

for x 2 R
2. One can moreover see that they achieve equality in the topological bound (1.4) in view

of ˆ
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|r�|2 dx = 8⇡ (2.22)

for all � 2 B. It is even known, see [29, (11.5)], that B comprises all solutions � : R2
! S

2 of the
harmonic map equation

��+ |r�|2� = 0 (2.23)

with N (�) = 1, meaning all critical points of F of degree 1 are absolute minimizers.
The task then is to identify which Belavin-Polyakov profiles � = S�(⇢�1(•� x)) for S 2 SO(3)

and ⇢ > 0 are selected in the limit � ! 0. By the requirement m+e3 2 L2(R2;R3), we can certainly
expect to have Se3 = e3 in the limit, so that S = S✓ for some angle ✓ 2 [�⇡,⇡) and
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0
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cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A . (2.24)

However, even for such Belavin-Polyakov profiles it holds that �+e3 62 L2(R2;R3) due to logarithmic
divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
spirit of the construction by Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also section 5.2, leads
one to believe that the optimal skyrmion radius ⇢0 is given asymptotically by

⇢0 '
ḡ(�)

16⇡

1

| log �|
, (2.25)

where the auxiliary function

ḡ(�) :=

(
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⇡
3

4 if � � �c,
128�2
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in which the critical threshold �c is defined as
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3⇡2
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, (2.27)
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for m 2 H̊1(R2; S2) with N (m) = 1, i.e., minimizing harmonic maps of degree 1. These have been
identified by Belavin and Polyakov [6], see also Brezis and Coron [17, Lemma A.1] or Lemma A.3
below, to be given by the previously mentioned Belavin-Polyakov profiles

B :=
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S�(⇢�1(• � x)) : S 2 SO(3), ⇢ > 0, x 2 R
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, (2.20)

where � is a rotated variant of the stereographic projection with respect to the south pole
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for x 2 R
2. One can moreover see that they achieve equality in the topological bound (1.4) in view

of ˆ
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with N (�) = 1, meaning all critical points of F of degree 1 are absolute minimizers.
The task then is to identify which Belavin-Polyakov profiles � = S�(⇢�1(•� x)) for S 2 SO(3)
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1
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divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
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for m 2 H̊1(R2; S2) with N (m) = 1, i.e., minimizing harmonic maps of degree 1. These have been
identified by Belavin and Polyakov [6], see also Brezis and Coron [17, Lemma A.1] or Lemma A.3
below, to be given by the previously mentioned Belavin-Polyakov profiles

B :=
�
S�(⇢�1(• � x)) : S 2 SO(3), ⇢ > 0, x 2 R

2
 
, (2.20)

where � is a rotated variant of the stereographic projection with respect to the south pole
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◆
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for x 2 R
2. One can moreover see that they achieve equality in the topological bound (1.4) in view

of ˆ
R2

|r�|2 dx = 8⇡ (2.22)

for all � 2 B. It is even known, see [29, (11.5)], that B comprises all solutions � : R2
! S

2 of the
harmonic map equation

��+ |r�|2� = 0 (2.23)

with N (�) = 1, meaning all critical points of F of degree 1 are absolute minimizers.
The task then is to identify which Belavin-Polyakov profiles � = S�(⇢�1(•� x)) for S 2 SO(3)

and ⇢ > 0 are selected in the limit � ! 0. By the requirement m+e3 2 L2(R2;R3), we can certainly
expect to have Se3 = e3 in the limit, so that S = S✓ for some angle ✓ 2 [�⇡,⇡) and

S✓ :=

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0
0 0 1

1

A . (2.24)

However, even for such Belavin-Polyakov profiles it holds that �+e3 62 L2(R2;R3) due to logarithmic
divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
spirit of the construction by Döring and Melcher [28, Lemma 3].

Indeed, careful minimization in a corresponding class of ansätze [8], see also section 5.2, leads
one to believe that the optimal skyrmion radius ⇢0 is given asymptotically by

⇢0 '
ḡ(�)
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, (2.25)

where the auxiliary function
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in which the critical threshold �c is defined as

�c :=
3⇡2

32 + 3⇡2
, (2.27)
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FIG. 1. Dependences of the skyrmion characteristics on the parameters obtained from the asymptotic analysis for |κ|, δ ≪
√

Q − 1: (a) the
dimensionless skyrmion radius r0 from Eq. (6); (b) the skyrmion collapse energy barrier #E0 from Eq. (8); and (c) the rotation angle |θ0| from
Eq. (5). The solid line shows the transition from Néel to mixed Néel-Bloch skyrmions governed by Eq. (9). The dashed line corresponds to
the boundary of the region defined in Eq. (3) in which existence of skyrmion solutions is guaranteed. The dotted line shows the parameters at
which the skyrmion radius achieves its minimum value as a function of δ according to Eq. (11).

Belavin-Polyakov profile m0 given by

m0(r) =
(

− 2r0Rθ0 r
|r|2 + r2

0
,

r2
0 − |r|2

r2
0 + |r|2

)
r ∈ R2, (4)

where Rθ0 is the 2 × 2 matrix of in-plane rotations by angle

θ0 =

⎧
⎨

⎩

0 if κ ! 3π2

32 δ,

−π if κ " −3π2

32 δ,

± arccos
( 32κ

3π2δ

)
else,

(5)

and the dimensionless skyrmion radius is asymptotically

r0 ≃ 1
16π

√
Q − 1

ε̄(κ, δ, Q)
| ln (βε̄(κ, δ, Q))|

, (6)

for βε̄ ≪ 1 with β ≈ 0.04816 and

ε̄(κ, δ, Q) = 1√
Q − 1

{
8π |κ| − π3

4 δ if |κ| ! 3π2

32 δ,

128κ2

3πδ
+ π3

8 δ else.
(7)

The above expressions may be obtained by considering a
suitably truncated magnetization profile in the form of Eq. (4),
optimizing in θ0 and r0, and expanding the obtained expres-
sions in the leading order of δ and |κ| (see Ref. [44] for more
details). Our analysis also yields the following asymptotic
expression for the skyrmion energy:

E0 ≃ 8π − ε̄2(κ, δ, Q)
32π | ln (βε̄(κ, δ, Q))|

. (8)

The associated skyrmion collapse energy barrier #E0 = 8π −
E0 gives an indication of the skyrmion stability as it rep-
resents the energy necessary to suppress the skyrmion via
compression [3,27,34]. The solution described in Eqs. (4)–(8)
is asymptotically exact to the leading order for |κ| ≪

√
Q − 1

and δ ≪
√

Q − 1, but in practice remains at least qualitatively
correct also up to κ ∼

√
Q − 1 and δ ∼

√
Q − 1. Neverthe-

less, to avoid artifacts from the predictions of our formulas
outside their range of validity, we somewhat arbitrarily restrict
the considered parameters to those for which βε̄(κ, δ, Q) "
e−1, ensuring | ln (βε̄(κ, δ, Q))| ! 1.

C. Asymptotic properties of skyrmion solutions

The dependences of the dimensionless skyrmion radius
r0, the collapse energy #E0, and the rotation angle θ0 on
the model parameters obtained from the asymptotic analysis
of Sec. III B are presented in Fig. 1. The first important
characteristic of the solution is the existence of a minimum
or threshold |κ| value

|κ|thresh
sky = 3π2

32
δ, (9)

above which pure Néel skyrmions (θ0 = 0 or θ0 = −π , de-
pending on the sign of κ) are obtained and below which
skyrmions are characterized by a nonzero rotation angle θ0.
This angle tends to ± π/2, corresponding to pure Bloch
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skyrmions when κ → 0. It is a direct consequence of the
competition between long-range dipolar interaction, which
favors a Bloch rotation, and interfacial DMI, which favors a
Néel rotation. Note that a similar threshold is observed in the
case of straight domain walls [37,56]:

|κ|thresh
wall = 4 ln 2

π2
δ. (10)

Thus, a larger DMI is necessary to obtain a pure Néel
skyrmion as compared to the case of a one-dimensional (1D)
Néel wall, as can be seen from the factor of ≈3 difference
between the values of |κ|thresh

sky and |κ|thresh
wall . This is an indi-

cation that dipolar effects play a stronger role for skyrmions
compared to domain walls.

The second characteristic associated with the interplay
between DMI and the dipolar interaction that is visible in
Figs. 1(a) and 1(b) is the nonmonotone dependence of the
dimensionless skyrmion radius r0 and collapse energy $E0
on δ for Q and κ fixed. For δ below the critical value
where skyrmions are of Néel character, the skyrmion radius
decreases with increasing δ, while for large enough δ, in the
regime with nonzero θ0, the radius increases with δ. As can be
seen from Eq. (6), the skyrmion radius reaches its minimum
at δ = δopt, where

δopt = 32|κ|
π2

√
3
. (11)

This observation is of importance for applications, as the
thickness of the film is the parameter which is the most
easy to tune experimentally for a thin film in order to
optimize the skyrmion size and stability. Interestingly, at
δ = δopt the rotation angle θ0 attains a universal value of
θ

opt
0 = ± arccos (sgn(κ )/

√
3), i.e., θ

opt
0 ≈± 54.74◦ for κ > 0

or θ
opt
0 ≈± 125.3◦ for κ < 0.

The third important result illustrated in Fig. 1 is the
existence of skyrmions stabilized solely by the long-range
dipolar interaction for κ = 0. Such dipolar skyrmions possess
a pure Bloch character (θ0 = ± π/2), with volume charges
not contributing to the energy. We observe in Fig. 1(a) that,
starting from κ = 0 and following a skyrmion solution of
fixed radius while decreasing δ, one goes continuously from
a Bloch skyrmion at κ = 0 to a Néel skyrmion at δ = 0.
Consequently, skyrmions stabilized by DMI and stray field
cannot be distinguished by their radius.

D. Phase diagram

To complete our description, we locate the skyrmion so-
lutions on a phase diagram (see Fig. 2). For that purpose,
we fix a representative set of parameters: exchange constant
A = 20 pJ/m, film thickness d = 1 nm, and DMI constant
D = 0.3 mJ/m2, and vary the saturation magnetization Ms
and magnetocrystalline anisotropy constant Ku over a wide
range. The solid black line represents the threshold at which
the magnetization reorientation transition between in-plane
and out-of-plane occurs (Q = 1, i.e., for Ku = Kd). In the
dark blue region above this line, the magnetization prefers
to lie in the film plane, and no compact skyrmion solutions
exist in an infinite film. Below this line, the easy axis is
perpendicular to the film plane. In the zone represented in

FIG. 2. Skyrmion phase diagram for A = 20 pJ/m, D =
0.3 mJ/m2, and d = 1 nm. The dark red zone is the domain of
existence of our skyrmion solutions (see Sec. III D for a complete
description of the different zones and lines).

light blue, the domain wall energy density defined as σwall =
4
√

A(Ku − Kd ) − πD is negative. Here, the expected ground
state of the thin film is the helicoidal state [58], and isolated
compact skyrmions do not exist in the absence of an applied
magnetic field [1]. Below the dashed blue line correspond-
ing to Kcrit

u = π2D2

16A + Kd, the ferromagnetic ground state is
restored, the domain wall energy becomes positive again, and
compact skyrmions may exist as metastable states. In the light
red region, the existence of compact skyrmion solutions as
metastable state is not guaranteed. Indeed, in this region close
to the transition to the helicoidal state, skyrmions may be
subject to elliptical instabilities favored by both the DMI and
the long-range dipolar interaction [23,59]. The dark red zone
represents the domain of existence of our skyrmion solutions.
It is delimited on one side by a dashed black line, which
represents the boundary of the region defined by Eq. (3),
below which we have existence of a compact skyrmion. When
the anisotropy is further increased (or Ms is decreased), the
limit of validity of our 2D thin film model is reached as the
skyrmion radius becomes of the order of the film thickness.
The white dashed line represents the line at which rsky = d as
a guide to the eye. We point out that below this line skyrmion
solutions may exist and develop z dependence [35,39]. Further
below this line, the continuum micromagnetic model is no
longer valid, as the skyrmion radius becomes of the order of
the interatomic spacing.

E. Application to specific examples for low and
intermediate D values

In this section, we apply our compact skyrmion results
to the case of ferrimagnetic materials, i.e., materials with
low Ms and Ku values (e.g., GdCo [60]). These conditions

045416-4

a   Néel-type skyrmion b   Bloch-type skyrmion

c   Skyrmion lattice in an Fe monolayer 
 on Ir(111)

d   Individual skyrmions in a PdFe 
 bilayer on Ir(111)

B 10 nm

and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx −  mx∂xmz + mz∂ymy −  my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
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FIG. 3: Dependences of the skyrmion characteristics in the low DMI regime. The parameters are A = 20 pJ/m, Ms = 105

A/m and Ku = 6346 J/m3 corresponding to Q = 1.01. (a) The skyrmion radius rsky. (b) The normalized skyrmion collapse
energy barrier �Esky/(kBT293K). (c) The rotation angle |✓0|. (d) The skyrmion profile obtained numerically for d = 5 nm and
D = 0.018 mJ/m2, corresponding to the white dot in panels (a)–(c), using MuMax360 on a 4096 ⇥ 4096 nm2 square domain
subject to periodic boundary conditions, with the mesh size of 4⇥4⇥5 nm3. The image in (d) is constructed by superimposing
the in-plane magnetization m? represented with arrows and the out-of-plane magnetization mk represented by a colormap. The
black dashed line in (a)–(c) indicates the boundary of the region defined in Eq. (3), and the white dot marks the parameters
for which the micromagnetic simulation in (d) was carried out.

order as the film thickness. In this regime, 3D models
and full 3D micromagnetic simulations will be needed to
take into account the long-range dipolar e↵ects.

IV. SUMMARY

We have used rigorous mathematical analysis to
develop a skyrmion theory that takes into account the
full dipolar energy in the thin film regime and provides
analytical formulas for compact skyrmion radius, rota-
tion angle and energy. While long-range interactions are
often assumed to have a negligible impact on skyrmions
in this regime, we demonstrate that the DMI threshold
at which a compact skyrmion looses its Néel character
is a factor of ⇠ 3 higher than that for a 1D wall. A

reorientation of the skyrmion rotation angle from Néel
to intermediate Néel-Bloch angles is predicted as the
layer thickness is increased in the low DMI regime,
which is confirmed by micromagnetic simulations. The
estimation of this reorientation thickness is important
for applications as the skyrmion angle a↵ects its current-
induced dynamics62.
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Outline of proof

• matching upper and lower bounds in terms of energies of truncated BP 
profiles in the spirit of Γ-equivalence


• use the established rigidity of degree 1 harmonic maps to estimate the 
remaining terms in the energy


• the main difficulty is that the limiting BP profile may not  
satisfy


• estimate the anisotropy energy penalty for deviations of                          from         
-e3, using our version of Moser-Trudinger inequality


• relate the difference between      and         to the Dirichlet excess via relaxing 
the unit length constraint and minimizing the exchange + anisotropy


• conclude by utilizing the rigidity of the finite-dimensional energy of BP profiles
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6 The conformal limit

In this section we prove Theorem 2.2. In the spirit of a �-convergence argument, we do so by
providing ansatz-free lower bounds matching the upper bounds obtained in Corollary 5.6. As
the Dirichlet term provides closeness to a Belavin-Polyakov profile � = S�(⇢�1x) for S 2 SO(3)
and ⇢ > 0 via Theorem 2.4, we have to capture the behavior of the lower order terms as the
magnetization approaches �.

Here the main di�culty is the fact that the limiting Belavin-Polyakov profile � from Theorem
2.4 does not necessarily satisfy lim|x|!1 �(x) = �e3, which is a more subtle issue than one might
expect. The fundamental problem is that for r > 0 the embedding ofH1(Br (0)) to L1(Br (0))) fails
logarithmically, and we only have H1(Br (0)) ,! BMO(Br (0)) (as a simple result of the Poincaré
inequality and the definition [18, (0.5)] of BMO), which in and of itself is not strong enough to
control the value at infinity. Indeed, at this stage it is entirely possible that the minimizers exhibit
a multi-scale structure: On the scale of the skyrmion radius the profile might approach a tilted
Belavin-Polyakov profile, while only on a larger truncation scale decaying to �e3, see for example
[28, Step 2b in the proof of Lemma 8] for a construction. Of course such a profile would have a
large anisotropy energy, which we exploit in the following Lemma 6.1. The idea is to replace the
logarithmic failure of the embedding H1

6,! L1 with the Moser-Trudinger inequality proved in
Lemma 2.5.
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Skyrmion bags
CHIRAL MAGNETIC SKYRMIONS WITH ARBITRARY … PHYSICAL REVIEW B 99, 064437 (2019)

FIG. 1. Morphology of stable chiral skyrmions with topological charges Q = −3, −2, . . . , 2. Top row of images (a) corresponds to zero
magnetocrystalline anisotropy (u= 0) in external magnetic field applied perpendicular to the plane h= 0.65. Bottom row of images (b)
corresponds to the case of uniaxial anisotropy u= 1.3 and zero external field h= 0. All images are given in the same scale. Colors encode the
direction of the n vectors according to a standard scheme [54]: black and white denote up and down spins, respectively, and red-green-blue
reflect the azimuthal angle with respect to x axis.

from 6402 to 51202 nodes (see Appendix A). The values of the
variables A and D have been chosen such that the parameter
LD equals 52 internode distances.

Supplementary movies [72] illustrate the process of craft-
ing the initial states for different anticipated morphologies of
skyrmion solutions and the energy minimization process (see
Appendix B for details).

To obtain a Q < −1 skyrmion, we put Ncores = |Q| number
of π skyrmions inside a “sack” representing a closed 2π
domain wall, i.e., skyrmionium which has topological charge
Q = 0 (see Fig. 1). This closed domain wall plays the role of
the shell of the skyrmion and has a tendency to shrink down
to the equilibrium size of skyrmionium. Interparticle repulsion
of π skyrmions in turn prevent such shrinking. Similar to the
effect of surface tension, the balance of external and internal
pressures results in the stability of this spin texture. For a
skyrmion with Q > 0 the role of a sack or a shell is played by
a closed π domain wall which possesses a nonzero topological
charge Q = −1 as a π skyrmion. The domain within the
closed loop has magnetization opposite to the surrounding
ferromagnetic background. Due to the opposite polarity, each
π vortex inside such a sack has a self-topological charge
Q = 1. In Fig. 1 see Q = 1 and 2, they look like “holes” inside
the white domains. As a result, the total topological charge (2)
gives Q = (Ncores − 1), where the amount of cores is equal
to the number of holes. We found solutions with absolute
values of Q equal to units, tens, hundreds, and even thousands
(see Appendix C for details). Thereby there is every reason
to expect that Q can be equal to any arbitrary large integer
number.

The dependence of the skyrmion energy as a function on
its topological charge is found to be well approximated by
a piecewise linear function for small |Q|, while some points
slightly deviate from the linear law (Figs. 2 and 3). Note,
the linear law dependence E (Q) is known to be a good
approximation in the baby Skyrme model [2,3], while for
an isotropic ferromagnet model [26] the relation is strictly
linear. Our analysis shows (see Appendix C) that the curves
Easpt = E0 (α(± )Ncores + β(± )

√
Ncores) are good candidates for

the true asymptotics when Q → ± ∞. Moreover, a detailed

numerical analysis with a high precision confirm the equality
α(−) = EQ=−1/E0 (for details see Appendix C).

Let us first consider the case where u= 0 (Fig. 2) and
some arbitrary chosen h above the field of the elliptical
instability [73] and below the field of the thermodynamic
stability of π skyrmion, EQ=−1 < 0 [74]. The right branch of
the “spectrum” for Q ! −1, Fig. 2, increases monotonically
with Q. In contrast to that the left branch of the spectrum (Q <
−1) displays the opposite behavior and the energy decreases
with |Q|. This feature reflects the fact that the global energy
minimum corresponds to a hexagonal lattice of π skyrmions
[74], and the big skyrmions Q ≪ −1 on the left branch of
the spectrum form a kind of lattice inside their shells (see
Appendix C).

Significantly, the set of the solutions contains also states
with higher energies. In Fig. 2 we have shown only the

FIG. 2. The energy of skyrmions E as function of topological
charge Q for the case of a magnet without magnetocrystalline
anisotropy u= 0. Open circles are the lowest energy solutions for
each particular Q, and solid squares are solutions with higher ener-
gies but nearest to the lowest energy state. The dotted lines are linear
fits for corresponding sets of points.
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many more solutions in the homotopy classes (even w/o stray field):
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FIG. 5. Morphology of stable chiral skyrmions with high topological charges in the case of magnetic field applied perpendicular to the
plane h= 0.65 and zero magnetocrystalline anisotropy u = 0. Note, the scale is different for all figures.

APPENDIX C: BIG AND EXTREMELY BIG SKYRMIONS

It the case of |Q|≫1, the kernel of the skyrmion, its major
internal part, consists of tightly packed cores representing π
vortices. The shell of such heavy skyrmions which represents
a π or 2π domain wall for positive and negative Q, respec-
tively, occupies a relatively small area along the outer perime-
ter, see Fig. 5. When increasing the number of cores (Ncores)
the structure of the skyrmion kernel becomes more regular
while the area engaged by the kernel increases proportionally
to Ncores. As a result, the energy of the skyrmion kernel
tends to be proportional to Ncores while contribution from the
boundary is proportional to the perimeter of the skyrmion and
is proportional to

√
Ncores. Thereby, the asymptotic behavior

of the energy of the skyrmions with increasing |Q| should have
the following form:

Easpt

E0
=

{
α(−)|Q| + β(−)

√
|Q| (Q ≪ −1),

α(+)(Q + 1) + β(+)
√

Q + 1 (Q ≫ 1),
(C1)

where α(±), β(±) are the constants which depend only on u
and h.

For the careful verification of (C1), we first calculated ten
skyrmions (five for negative Q and five for positive Q) with
relatively high topological charges in the range 100 ! |Q| !
300 [see empty circles in Figs. 6(a) and 6(c)]. Then assuming
that such values of |Q| are sufficiently large for the energy
to be slightly different from the asymptote fitted with (C1)
we obtain the following fitting parameters: α(−) = −3.552,
β(−) = 7.663, α(+) = 9.885, β(+) = 2.308. The dependencies
corresponding to (C1) are represented as solid curves in
Figs. 6(a)– 6(c). Finally, in order to verify the expected asymp-
totic behavior, we have calculated the energies corresponding
to the skyrmions with extremely high |Q|. As seen from
Figs. 6(a) and 6(c), the agreement is excellent.

To emphasize the deviation of E (Q) from the linear depen-
dence, we plotted results of the linear fit with the same points
assuming E ≈ c1|Q| + c2, see the dashed lines in Figs. 6(a)
and 6(c).

Despite the fact that for large |Q|, the cores form a tri-
angular lattice, the corresponding unit cell is different from
the one of the skyrmion lattice phase also known as a
skyrmion crystal. In particular, the interskyrmion distances for
an equilibrium skyrmion lattice is different from the intercores
distance found in the kernels of big skyrmions. In the case
of the equilibrium skyrmion lattice, the particles are packed

in such a way that the average energy density is minimized,
while the number of particles is assumed to be unlimited in
an infinite space. In contrast, the packing in the kernel of a
big skyrmion minimizes the total energy for a fixed number of
cores inside a limited size domain.

In the case of negative Q, if |Q| increases, then the pressure
inside the sack decreases together with the curvature of the
shell. Thereby, the stress of the internal lattice should tend to
zero as Q → −∞. For such a limiting case this lattice can
be regarded in a first approximation as a set of individual
noninteracting Q = −1 skyrmions, which means that α(−)
is equal to EQ=−1/E0. Our calculation gives EQ=−1/E0 =
−3.565 (Table I). The corresponding discrepancy is only
0.4% mostly due to the fact that the coefficients for the
asymptote are obtained for a finite value of |Q|. For the case of
uniaxial anisotropy (u = 0.65, h= 0.3), following the same
procedure we found α(−) = 0.627. The corresponding energy
EQ=−1/E0 = 0.622 (Table I).

APPENDIX D: SKYRMIONS IN LATTICE MODELS

1. Chiral ferromagnet

The results presented in this work which employs a high
accuracy method for the quantitative analysis of continuous
solutions remain valid in the discrete limit of classical spins on
lattice. In addition to that, our results are also validated by the
discrete approach for systems where the continuum approach
(1) is unsuitable. For illustration, we consider a standard spin
lattice model of a chiral magnet [90,91]:

H = − J
∑

⟨i j⟩,i> j

ni · n j −
∑

⟨i j⟩,i> j

Di j · [ni×n j]

− Ku

∑

i

n2
i,z − µsBext

∑

i

ni, (D1)

where J is the exchange coupling constant, and µs is the
magnetic moment of each spin. The unit vector ni defines the
orientation of the spin at site i. The notation ⟨i j⟩, i > j denotes
that the summation runs over each nearest-neighbor pair once.
We assumed that each Dzyaloshinskii-Moriya pseudovector
Di j is perpendicular to the bond between sites i and j and lies
in the (xy) plane. The modulus of vector D = |Di j | is assumed
to be fixed for all interacting pairs of spins. For definiteness,
we consider the case of a 2D square lattice with lattice
constant a; however, results presented below remain valid for
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Questions?

Cosmonauts A.Balandin and G.Strekalov with the Banner of Peace. Mir Space Station.


