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Abstract

We study layered solutions in a one-dimensional version of the scalar Ginzburg-Landau equation
that involves a mixture of a second spatial derivative and a fractional half-derivative, together with
a periodically modulated nonlinearity. This equation appears as the Euler-Lagrange equation of
a suitably renormalized fractional Ginzburg-Landau energy with a double-well potential that is
multiplied by a periodically varying positive factor bounded away from zero. A priori this energy
is not bounded below due to the presence of a nonlocal term in the energy. Nevertheless, through
a careful analysis of a minimizing sequence we prove existence of global energy minimizers that
connect the two wells at infinity. These minimizers are shown to be the classical solutions of the
associated nonlocal Ginzburg-Landau type equation.
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1 Introduction

In this paper, we consider minimization of the following nonlocal energy functional:
« "2
J (u) := —/ |u'] der/g(x)W(u)dx
2 Jr R

B (u(@) —u(y)® (@) —n)’
+47T/R/R[ - - 5 ]dydm (1.1)

in the set
A={ueH, (R):u—neH" (R)}.

Here «, 8 are positive constants, g (x) is a 1-periodic function satisfying g (z) > v > 0 for all z € R,
n € C* (R) is a given function satisfying |n| <1, n(z) =1 for x > 1, n(x) = =1 for x < =1, W (u) is
a double well potential satisfying

W(u)>0ifu#+1, W(£l)=W'(£1)=0 and W"(£1) > 0. (1.2)
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Formally, for u € C? (R) N L>°(R) the Euler-Lagrange equation associated with (L.1]) is

2

au”+ﬂ<j302>2u+g(x)W’(u)0 z € R, (1.3)

where

(& )zm il [ @), 1.4

Cda? ST Sy (o)

We are mainly interested in solutions of (1.3 that satisfy

lim w(x)=+1, (1.5)

r—+oo

we call such solutions layered solutions.
Equation (|1.3) is a special case of the more general equation

—alAu+ B (=AY utg@)W (u)=0 z€R"”, (1.6)
where 0 < s < 1. For u € C? _(R™) N L* (R™) the operator (—A)® is the fractional Laplacian defined
by

(—A)u(z):=C,sP.V. u(x);:éys)dy = Cs lim u(x);:éys)dy,
R [z =yl =0 ja—y|ze |z —y]

where C), s is a normalization constant to guarantee that the Fourier symbol of the resulting operator

is |¢]*, see e.g. [23], section 3 for more details.
When g (z) = is a constant, (1.6)) reduces to

—aAu+ B (=AY u+4W' (u) =0 ze€R"™ (1.7)

This type of equation has attracted a lot of attention over the last twenty years (see, e.g., [23H26l{42l{44/48|
59]). In particular, the structure of layered solutions in the case f = 0 (Allen-Cahn) or o = 0 (fractional
Allen-Cahn) is well understood at present. Here a layered solution of is a bounded solution which
is monotone in one direction. When g = 0, De Giorgi conjecture posits that the level sets of such a
layered solution are hyperplanes for n < 8. De Giorgi’s initial conjecture was for W (u) = i(l —u?)2.
This conjecture was proved for any C? function W (u) satisfying by Ghoussoub and Gui [37] when
n = 2. When n = 3, Ambrosio and Cabré [9] proved the conjecture for a large class of W (u) which
includes the original De Giorgi’s choice. Later, Alberti, Ambrosio and Cabré [2] extended their results
to cover all 2 function W (u) with the properties specified in . Under the additional assumption of
anti-symmetry of solutions, Ghoussoub and Gui 38| established the De Giorgi conjecture for n = 4,5.
Further developments on the conjecture can be found in [11]. De Giorgi conjecture was completely
solved by Savin [55,/56] for 4 < n < 8 under the additional assumption lim,, _ 1. u(z) = +1. For
dimensions n > 9, a counter-example was constructed by Del Pino, Kowalczyk and Wei [28]. A weaker
version of the De Gigorgi conjecture, known as Gibbons conjecture, replaced monotonicity assumption
by the stronger condition

. lgrioou(x) = +1 uniformly for (z1,---,z,_1) € R"1. (1.8)
Gibbons conjecture was proved in all dimensions [11}|12}[35].

De Giorgi’s conjecture has also been extended to the fractional Allen-Cahn case. The fractional De
Giorgi conjecture was proved in [23}25]/58] for the case n = 2,s € (0,1), and in [20,21] for n = 3 and
s > 1. Under additional limit conditions, fractional De Giorgi conjecture was proved for n = 3 and
s € (0,1) by Dipierro, Serra and Valdinoci in [32] and by Savin in [57] for 4 < n < 8 and s € [1,1).
The limit condition is removed in [31] for n = 3 and s € (0, ). Recently, Figalli and Serra [36] solved



the De Giorgi conjecture for half-Laplacian when n = 4 (such a result is not known for the classical case
s = 1). Layered solutions of Allen-Cahn type equations in the form of a sum of fractional Laplacians
of different orders was addressed in [22]. Based on all these results, when g (z) is a constant, solutions
to satisfying reduces to the unique one-dimensional solution (modulo translation) which is
monotone and the problem is essentially one-dimensional.

When ¢ (x) is not constant, but rather periodic, the continuous translational symmetry of layered
solutions of is broken and the structure of the set of solutions is much more complex. When 5 = 0,
the nonautonomous Allen-Cahn equation

—Au+ Wy (x,u) =0 xeR" (1.9)

with
Wz +ku) =W (z,u) Vk e Z"

has been studied extensively over the last three decades. Equation is a special case of a model
problem initiated by Moser [43] for developing a PDE version of Aubry-Mather theory of monotone twist
maps (see [10,[13]/14,(52//53] for related work). A different motivation is to view as a model for phase
transitions. When n = 1 and subject to homogeneous Neumann boundry conditions on the interval
of x € (0,1), the following results have been proved for for various choices of the potential term
W (z,u). Angenent, Mallet-Paret and Peletier |1] gave a complete classification of all stable equilibrium
solutions to for W, (z,u) = —u (1 — u) (u — a(z)). Existence and stability of equilibrium solutions
with a single transiton layer is proved in [39] for a general class of W, (z,u) = —f (z,u), with f satisfying
f(z,0) = f(z,1) =0 and f(x+k,u) = f(z,u) for some k > 0. Nakashima [45] proved existence of
stable solutions with multiple transition layers for the case Wy, (z,u) = (u — a (z)) (u — b (z)) (u—c(x)).
Existence and stability of multilayered solutions were provided in [46] for W, (z,u) = h?(x) f (u).
Nakashima and Tanaka [47] studied the one-dimensional case with a general potential W (x,u) and
obtained existence of solutions with clustering layers. For higher dimensions and the special case of

—Auta()W (u)=0  z=(x1,,2,) €ER", (1.10)

Alessio, Jeanjean and Montecchiari [5] proved existence of infinitely many solutions which are distinct
up to periodic translations and satisfy lim,, 4o u (21, z2) = £b uniformly in x5 for the case n = 2 when
a(x1,x2) is a positive, even, periodic function in z1,xs, and W(u) is a double well potential vanishing
at u = +b for some b > 0. For the same equation, Alessio and Montecchiari |7] showed existence
of brake orbits type solutions, and Alessio, Gui and Montecchiari [3] proved existence and asymptotic
behavior of saddle solutions. When a(x1, z2) depends only on one variable, existence of two-dimensional
solutions was proved by Alessio and Montecchiari [4], and existence of infinitely many solutions can
be found in [6,/61]. Alessio and Montecchiari [8] proved existence of infinitely many solutions verifying
limg, 400 w (21, 22, 23) = +1 uniformly in (29, z3) for n = 3 and a = a(x;). For results on solutions to
for n = 2 with general potentials, see the papers by Rabinowitz and Stredulinsky [50l51]. Existence
of various (multi-layer, mountain pass or higher topological complexity) solutions to for general
n was obtained in a series of papers by Byeon and Rabinowitz [16-19]. A review on existence results for
is given in [49] (see book [54] for a more thorough review on extensions of Moser-Bangert theory).

An extensive discussion on moving front solutions for time-dependent inhomogeneous Allen-Cahn
equation can also be found in the literature. For example, Xin [60] considered propagating front solutions
(which include stationary layered solutions) for

uy = Vg (a(x) Vyu) + 0 () - Vou+ f (u)

when a(x), b(z) are periodic and f(u) is bistable. Keener [41] studied propagation of waves in periodic
media for the following model:

Up = Upy + (1+g’ (%))f(u)fau



where g(x) is a 1-periodic function and obtained a nearly complete picture of propagation in perodic
medium. In particular, his results show how wave front shape changes when the medium becomes
more and more nonuniform, and how propagation failure occurs when the medium becomes sufficiently
nonuniform. Pinning and de-pinning phenomena for front propagation in heterogenous media was
discussed in [33]. Existence and qualitative properties of pulsating traveling wave solutions is proved

in [30] for equation
up = (a (%) %)m + f(z,u).

where a(x) and f(z,u) are 1-periodic in x.
Studies of layered solution in the fractional case when g (x) is not constant caught less attention.
The only work we are aware of is [40] where existence of layered solutions to

(35) v=s@w ) ser

was obtained for s > 1 when g > 0 is an even, periodic function and W' (u) is odd. Another related
work is |34] where the authors studied existence of multi-layered solution to the following equation

d?\’
2s 2
€ <_dx2> u—g@)u(l—u?)=0 z €R,

when g (z) is not constant and s > 1.

The work in the current paper is partly motivated by a recent work by the authors [27] where we
considered the following renormalized nonlocal Ginzburg-Landau energy

B.(u) = /Re? |u’|2dx+/RW(u)da:

(u(@) —u()® @@ -n@) |,
= [ e o

(z—y)°

We proved existence, regularity, monotonicity and uniqueness (up to translation) of the minimizer of
E. (u) in A. Moreover, as ¢ — 0 we recovered the solution in [48] as the global minimizer (unique up
to translations) of

_ W) de (U(l‘)—u(y))Q_(77(3?)—77(3/))2 .
Eo(u)—/RW( )d +/R/R[ o — ]dyd.

The proof of existence and uniqueness of minimizers in [27] relies on an essential observation that a
minimizer of E. among all functions satisfying u — n € VVO1 ** (I) on any sufficiently large fixed interval
I is monotone. Such conclusion follows from the key assumption that is translation invariant.
For model with only discrete translation invariance, this argument fails and we need to seek a new
method. The main difficulty to prove the existence of minimizer of lies in two parts. Firstly, since

n ¢ H? (R), it is not a priori clear that J (u) is bounded from below on A. Secondly, the energy bound
does not necessarily imply the boundedness of u in a suitable Sobolev space in general. Therefore, we
cannot a priori apply the direct method of calculus of variations to obtain a minimizer. To show that J
is bounded from below on A, we divide the real line into the regions where u is close to +1 and where
u is away from =+1. By carefully matching the contributions from each region, all negative parts of the
potential infinite energy are cancelled out.

To prove the existence of a minimizer, our main idea is as follows. Given an arbitrary minimizing
sequence {u, }, we replace this sequence by another sequence {,, } constructed via reflecting the nagative
parts of u,, outside suitable regions. Taking into account our energy estimates from the lower bound



argument, we can carefully choose the region where we apply the reflection to u, so that the energy
J (@y,) differs only slightly from J (uy,) . The sequence {u, } satisfies |@, (z) + sgn(z)| > ¢ > 0 outside a
uniformly bounded interval. For such a sequence, boundedness of energy implies boundedness of @,, —
in H' (R). From this and a lower semicontinuity argument, we obtain a limit function which attains a
minimum of J (u) in A.

Our main result is the following existence and regularity theorem.

Theorem 1.1 Let «, 3 be positive constants. Assume g € C*°(R) is a positive 1-periodic function,
n € C*® (R) is a given function satisfying |n| <1, n(x) =1 forxz > 1, n(x) = =1 for x < =1, W (u) is
a double well potential satisfying . Then there exists a minimizer ug of J (u) over A. Moreover,
uy € C22 (R) N L (R) and satisfies the Buler-Lagrange equation

d2 2
_O‘Ug +g(x) W/(UO) + 8 <_dz2> ug = 0,

and the condition at infinity
lim wo(z) = +£1.

r—to0

[N

Here the fractional operator (—;‘%) is defined by (1.4).

We prove Theorem in three steps. We first check that J (u) is bounded from below. Let

o VW () d - L (u(@) —u®)” M) —n) N
F(u) .—/Rg( )W (u(z))d +47T/R/R[ T o) ]dyd . (1.12)

We show that F is bounded from below in section[2} In the second step, we construct a global minimizer
of J in A in section [3] Regularity is treated in section [ and follows from a bootstrap argument, since

1
up = vp +n with vy € H' (R). However, a priori it is not clear whether (—j—;) “ug € L?(R), and we

handle this term separately when deriving the Euler-Lagrange equation.

2 Lower bound on J (u)
Let J (u), F' (u) be defined by (L.1)) and (1.12]) . We shall prove the following lower bound in this section.
Proposition 2.1 There exists a constant C' > 0 such that F (u) > —C' for any u € A.

The lower bound on J (u) follows directly from Proposition

2.1 Overview

Recall that by our assumptions there exists v > 0 such that g(z) >~ for all z € R.

First we observe that replacing w by =1 whenever |u| > 1, the energy is only getting smaller.
Here for the nonlocal term, a direct calculation shows (u(x) — u(y))? > (i(x) — a(y))? where @i(x) =
max{min(u(z),1),—1}). Without loss of generality, we shall assume |u(x)| < 1 on R throughout the
paper. Moreover, the following Lemma can be proved by the same argument as in the proof of Lemma
2.2 from [27].

Lemma 2.2 Givenu € A, there exists a sequence u,, € A such that u,—n € C§° (R) and J (u,) — J (u)
asmn — oo.



We introduce the following subset of A:
Ag:={u € A:|u(x)] <1onR and u —n is compactly supported in R}.

Letting

we can write F'(u) as

o —1 1
Flu) = / g (2) W (u)de + / g (2) W (u)dz + / g (2) W (u)dz

//fﬂcydydx+/ / f (z,y) dydx
+2/1 /_Oof(x,y)dydac+2/1 /_1f(x,y)dydac
42 /_ : /_ 11 £ (2 y) dydz + /_ 11 /_ 11 F (2, ) dyda. (2.1)

Direct calculation shows that the integrals

/ / UIGRUIOIW /. B / UIGRUIGI / / )> @) =1 44,

are all bounded. To show F (u) is bounded from below, the question reduces to showing that

h OQf(:zc,y)dydaz—i— - _1f(x,y)dyd:c+2 h _1f(337y)dydx
1 1 —o0 J —o0 1 —o0

+/1°og(x) W(u)dJH—/__ g (@) W(u)de > —C, (2.2)

for some C' > 0 independent of u € Ay. Since n ¢ H/? (R), the term floo f__;f(x7y) dydz could
potentially be negative infinity. In particular, if we choose a sequence u,, (z) which oscillates between 1
and —1 on intervals which get larger and larger, it is not clear that we can have a uniform lower bound
on the left-hand side in (2.2)) . Our idea is the following: if |u| stays away from 1 on a big portion of R,
the term

/1009(93)W(u)dx+/1g(:c)W(u)dx

oo

/1OO /_O:f(x,y) dydz.

On the other hand, if |u| ~ 1 on R and u oscillates between 1 and —1, the sum

[ e [ s [

would approach infinity at the same order as

/ / ))Qdydx

would dominate



thus eventually canceling out the potential negative infinite energy. In both cases, we obtain a finite
lower bound on F (u).

To explain our ideas more precisely, recall that uw —n € H! (R) and has compact support for every
u € Agp. By Sobolev embedding theorem, u — n and, therefore, u are continuous. Given any § > 0, we
define the following decomposition of (—oo, —1] U [1, 00) with respect to w:

If = {z>1:-1<u(z)<-1+4},
IIf = {z>1:1-6<u(z) <1},
IIIf = {#>1:-14+6<u(z)<1-46}, (2.3)
and
Iy = {z<-1:-1<u(x) <-1+6},
IIy = {a<-1:1-60<u(x) <1},
III; = {z<-1:-14+d<u(z)<1-46}. (2.4)

Under these notations, we observe Igr, 1y, III;r and IIIy are all bounded sets. We show that
there exists a constant C' = C(4,, 3, W) > 0 and independent of u € Ay such that

[m/;f(x,y)dydx—i-Z/loOW(u)da:+Z/O:W(u)dx
/I; /1; 71'("Eﬂ—y)2dydx/llg' /Hé_ W(xﬂ_y)Qdyda:C, (2.5)

/lw/loof(ﬂi,y)dyd:ch/O:/O:f(:z:,y)dydz+g/loow(u)dx
+;I/O:W(u)dx/15+/la_ W(;By)Qdydx/H; /H; W(xzﬂy)zdydx 26)

> —C.

and

Throughout the paper, we will use C' to represent a generic constant independent of u € Ap, and
depending only on 4, v, f and W, which might change from line to line. A lower bound in (2.2 follows

from and ( .

Slnce
/m/mﬂx,y)dydw/1/1f<m,y)dyda:
/ﬁ/n+ - dd n 5/ /Ir - y))Qdydx,

the proof of (2.6)) reduces to the following main technical inequalities:

J(u) = /ﬁ/m — dydxf/ /7 = dyd:z:+ / W (u) dx

> (2.7)



J5 ( = / /11* v )) dydm—/H+ /H 7rxﬁ—y)dydx+ 1 _:W(u)dac
(2.8)

The proof of and uses a contradiction argument. We prove one bound, the other one can
be proved similarly. Assume Jg“ (un) = —oo for some sequence (u, ). Representing the decomposition
of (—oo, —1] U [1, 00) with respect to u,, by adding index n in and , decompose I;,'n, I, and
I I;n into union of disjoint intervals. We can estimate

/IJrn /IIfr7 (un (iz : Z;Z(y>)2 dydx <29)

4
/ / ﬁdydx (2.10)
I+ ; ./L' —

in terms of summation of 1ntegral over those intervals. In particular, J; 5 (un) — —oo implies I;n -
[1, R,,] where R, — oo and (| goes to infinity at most logarlthmlcally in R If || 1s bounded
away from 1 on a large portlon of [1,00), then the term fl (uy,) dominates (2.10)) . If u,, =& —1 on a
large portion of [1,00), then would approach infinity at the same logarlthrmc order as - In
either case, we can always conclude that J; F (uy,) is bounded from below, a contradiction.

and

2.2 F(u) is bounded from below on A4,
We prove Proposition in several steps.

2.2.1 Preliminaries

We first state the following lemma.
Lemma 2.3 Given u € Ay, , the following bounds hold:

1
/g(x)W(u)deC, // n (@) = Z D) e < 4l (210)

-1

[t o, [ [

Proof. The bounds in 1) are straightforward. By the definition of 7), we have

R ey

The second inequality in (2.12) follows from a similar argument. ®
Lemma implies that the terms involving integration on [—1,1] in (2.1) are all bounded from
below. The boundedness of F (u) from below would then follow from the following lemma.

dydx <2 || (2.12)

Lemma 2.4 There exists a constant C = C(d,v,5, W) > 0 such that for all u € Ay, the following
lower bound holds:

T teayar s [ fa a2 [ [ ) dyds
1 N oo oo 1 S

+/1009(9C)W(U)d5€+/ g (x) W (u)dx > —C.



Lemma [2.4] is proved in two steps. Under decompositions (2.3)) and (2.4), we can write

[e%e} —1
/ / [ (z,y) dydz
/ fzydydx+/ fo:ydyder/ / f(z,y) dydx
rJI; II; Iy
/ flz,y dyder/ f(z,y) dydx + / f(z,y) dydx
iy Jig Iy JIig Iy JIiry

/ f(zy dyder/ f(z,y) dydx + / f(z,y)dydz. (2.13)
I Jig ry Jiry ry Jirrg

The following lower bound will be used in the proof of Lemma

Lemma 2.5 Let A C [1,00) and B C (—o0, —1]. Assume either A or B is bounded, then there exists
a constant C' = C(B) > 0 such that for all u € Ay, the following bounds hold:

/A/Bf(a:,y)dyd:cz—5[4(1_“)2_5/)3(14_”)2_%7 (214
/A/Bf(x,y)dydxzs/A(Hu)?5/3(1u)2S (2.15)

Proof. We only show how to obtain (2.14)), as the other inequality follows by a similar argument. Since
(n(z) —n(y))? =4 for x € A and y € B, we have

B [(U(x) —u(y))® - 4} _ B {(U(ﬂf) —u(y) — 2)* + 4(u(x) — uly) — 2)]
A (z — y)2 A (x —y)? '

and

for any e > 0.

f(x,y) =

Hence we deduce

R
_ ﬁrl/A/B(U(x)(:(yz // = A=u@) iy — 4 // Qtuly ddw]
fﬁl/A/B(U(af)(;i(zj/)z_Qfdyd:c—él/Amdx—él/lg,wdy]
§ 4/1/JB(u(m)(:(yy))g—2>2dydm_g/A(1—u)z—e/B(Hu)?—f,

where we applied Holder’s mequality in the last line. Notice that when either A or B is bounded, the

integral [, [, %dydx is finite for any u € Ay, justifying the spliting of the integrals in the

calculation above. m
The first step to prove Lemma [2.4] is the following Lemma.

Y

Lemma 2.6 For any 0 < § < 1, there exists a constant C = C(,~, 3, W) such that for all u € Ag

// f(z,y)dyde + — / W(u dx+ W()
‘/I;/dwdyd””‘/ng/nswdydx‘c



Proof. Recall that I, II;, III; and I1I] are all bounded sets. By estimate (2.14) in Lemma

we have o
/ f(x,y)dyde > —E/ (1—u)’de — E/ (1+u)® - =, (2.16)
1y Jiy I Iy €
/ / f(z,y) dyde > —s/ (1—u)®— 5/ (14 u)® — 9, (2.17)
1y Jirry I 1115 €
/ f(z,y) dydz > —5/ (1—u)?de— 5/ (14 u)? — 9, (2.18)
115 JIy Iry Iy €
and o
/ / f(x,y)dyde > ,5/ (1—u)®— 5/ (14u)® - =. (2.19)
Iy Jirig IIIf III5 £

Here for (2.16) we used the fact that the integral [, + [,— f (x,y)dydx can be written as a sum of
1 Jr;

integrals of the form [, [ f (z,y) dydx, where either A or B is bounded when u € Ajy.
By estimate (2.15) from Lemma [2.5] we have

/ f(z,y) dydz > —s/ (14u)® — 5/ (1—u)®— 9, (2.20)
I Jriy I 115 €
/ / f(z,y) dyde > —s/ (14u)® - a/ (1—u)®— 9, (2.21)
IFJIrry I 1115 €
and o
/ f(z,y) dydz > —5/ (14u)? - 5/ (1—u)?—=. (2.22)
I} JIIy IIry 115 €

Summing up (2.16]) — (2.22)) yields

00 —1 o] -1
/1/_Oof(m,y)dyd:t+%/l W(u)dm—i—% <>OW(u)dy

e L et
1 Jiy m(z —y) 11f Jirg 7w (@ = y) €

—25/ (1+u)2—25/ (1—u)2—€/ (1—u)2dy—€/ (14 u)? dz
Ifuryuriry Irfurry urrng III; Iy

+1/ W(u)dx+1/ W(u)d:c+1/ W (u) da.
4 yury 4 rfurry 4 IIIfUIIIy

Recall that W (£1) = W’ (£1) =0, W (u) > 0 for |u| < 1 and W (£1) > 0. Picking § < 1, we have
the following estimates

W (u(x)) = %W” (—(1=0() +0 (@) u@)(1+u)?> iW” (—1)(1+uw)? foree [} UL, (2.23)

W (u(x)) = %W” (1=0(x) + 0 (x)u(z) (1 —u)®> W’ (1) (1—u)’ forxe Il UII;, (2.24)

==

Since

W (u(x)) > | I‘I<1i1n6W(u) for x € I1I] UIII;,

the conclusion follows by taking & = min (% minj,j<1—s W (u), 55 W” (=1), 5 W" (1)) . =
The second step to prove Lemma [2.4]is the following Lemma.

10



Lemma 2.7 There exists a constant C = C(6,~, 8, W) > 0 such that for all u € Ay we have

[e ] o] -1 —1 0o —1
/ / +/ / f(x,y)dydx—kl/ W(u)dx—i—l W (u) dz
1 1 —o00 J —00 2 1 2 —00
—/ / deydx—/ / Lyiydx
ifJiy m(r—y) i Jip m(x —y)
> —C.

Lemma [2.6| and Lemma imply Lemma

2.2.2 Proof of Lemma

Decompositions and some basic estimates The proof of Lemma [2.7is rather long and technical.
First we decompose each set into intervals. By our assumption, for any given § € (0,1), there exists
Ry (u) > 0 and Ry (u) > 0 such that

u(z) =1 for all x > Ry (u) (2.25)

and
u(z) =—1 for all x < —Ry (u). (2.26)

It follows that I1I] and III; are open subsets of (1, Ry (u)) and (—Rs (u),—1) respectively. By
the structure theorem of open sets in R and choosing u to be the continuous representative, there exist
indices N*, and positive numbers aii, Bli such that we can write 11 Ig‘ and I1I; as unions of disjoint
open intervals in the following form.

Nt N~
I 0 (L Ry () = | (of 8, III; N (=Ry (u),—1) = U (=85, —0;). (2.27)

i=1

Without loss of generality, we can assume N7T are finite and a; < 3; < @41 < Big1 for all 4. In fact,
recall that u —n in Hg (R), write R = max(R;(u), Ra(u)), we can obtain an approximation u; in C*°(R)
that is equal to n for |z| > R + 1 and arbitrarily close to u in H!(R). Taking a linear interpolant us
of uy over a sufficiently fine partition X of [-1 — R,1 + R], we get a function that is arbitrarily close
to uy in WH°°(R). Finally, shifting the values of the function us at the (finitely many) points of X by
arbitrarily small amounts if necessary, we get a function uz that is arbitrarily close to us in W1 (R)
and uj is non-zero a.e. in R. Hence on every interval of the partition X there is at most one point at
which |uz| = 1 — 6. From this, we conclude that each interval of the partition X intersecst I1I; (or
II1I;) at most once. Relabling if necessary, we thus find finitely many disjoint intervals (o, fx) (merge
(ak, Br) U (g1, Brt1) into (ak, Bey1) if B = agy1) where

—146 <u(xz) <1—90 on each (o, Br).

Renaming our endpoints we find disjoint intervals [a; b;] , [¢;,d;] C [1,Ri(u)] and indices K, L such
that

K
If = U [ai,bi] (2.28)
i=1
and
L
115 = [y, d;] (2.:29)
j=1
with

—1<u(z)<—-1496¢ onfgr7
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1-6<wu(x)<lonlIl],

and
—1+d<u(z)<1-4§ on [1,Ry (u)]\(lg UII;) = III;.

Here by a slight abuse of notation, we denote [¢; d;] = [¢;, 0), and if a3 = 1 we replace [a1, b1] by (1, b1]
in (2.28), or if ¢; = 1, replace [c1,d1] by (1,d:] in (2.29)) . Similarly we write II; and I; as unions of
disjoint intervals. For the rest of the paper, we write

If(w) = ULy aib], TIf (u) = Ui [¢j, dj); (2.30)
I (w) = VS, [<by |, I (w) = Uk, -4, -5 (2.31)
with the understanding that [—JZ,—EZ} = (—oo, —Eﬂ and [—51,—51} = {—31,—1) if ap = 1, or
[—071, —El} = [—Jl, —1) if ¢; = 1. Note that in this form, all a;,b; ¢;,d;, Zii,gi’ Ej,cjj are greater or

equal to 1.
We first state some basic estimates.

Lemma 2.8 The following estimates hold:

K L ~ ~
itd b+
// dydx—ln HHG+J- +ij , (2.32)
I+ 5 - i=1j= 1bi+dj ai+cj
K L
1 bi—d; a;—cj
———dydr =1n ! R 2.33
/15+ /II; (z—y)? };[1]1;[1 a; —d; b, — ¢ (2:33)
KLy 5 ~ =~
1 bi—d; a;—cj
———dydr =1In -2 .= (2.34)
Zé ~/115 (x—y)2 EH ai—dj b,j*Cj
K L ~ =
i+di b ;
/ / Gt =TT L (2.35)
i Jig (x—vy 121 b +d; it¢
Proof. By (2.30) and (2.31) , we have
1 K L b; ) K L b; 1 1
——dydx = / / dydx = / — dx
/IJ/; (x—y)* ;; a J-d; (z—y)® ;; w \T+6¢G  z+d

I
]~
=

/__\
s|&
+ |+
uﬁ bn

Sa

+
L[ S
N——

I

=3
—>

SRS

+
&
§ >
+ |+
QO QO

(2.33) , (2.34) and ([2.35) are proved similarly. m
An immediate corollary of Lemmas [2.8]is the following.

Corollary 2.9 We have the following bounds.

1 In2 if ¢1 > bk
——dydr < . , 2.36
/1;/5 (x—y)ny {ln2i’;l< if ¢1 <bg ( )

1 2 if ¢ >bg
/ / ———dydr < . f LUK (2.37)
i Jirg (x —y) 2 if o <bg

12



Proof.

1 K L b & 1

— dydz = / /  ———dydx

/I; /15 (z —y)? ;; 0 Jod; (x—y)?
bk =01 1
/ / ———dydz
ay 7df/ (iﬂ - ZJ)
(bK +c¢ ar+ dZ )

= In — -

a1+ bx +df

< In (bK +fl)
a1 + ¢

IA

If51>bK,
¢ +b
(11—&- K<27
c1 +ap
if51<bK, ~
il+bK<2bK’
c1 +ap aq

so ([2.36]) follows. The estimate (2.37) follows from a similar argument. =
Assume I3, IT§ are written as unions of intervals in the form (2:30) and (2.31) . Let U7, [a;, b;] C I

and U, [¢;,d;] C IIj, ur, {—E,—Ez} C Iy and U?-ll [—dj,—EJ} C IIy. If dj = oo, we write
[cj,d;j] = [¢j,00) and [—cjj, —E]} = (—o0,¢;] if JJ = co. Assume also
O<ar<bi<ag< - <bp_1<a,<b,<c1<di <ca<--<dp

and

0<aq <gl <52<"'<Eﬁ<gﬁ<51<(%<52<"~<dm.

We have the following estimates.

Lemma 2.10 Assume |c; —by| > 1,

51—55’ > 1 for all i and j. For § < 1, there exists C =
C(8,7, 8,W) > 0 such that the following estimates hold for any u € Ay.

ﬁ n m b; dei L 5 oo
sz/a —y)? /II /1; 7T(xy)zcl@/ci:c+4/1 W (u)dz  (2.38)

i=1 j=1"ai J¢j (z

3 dj —bi ﬁln%—K N yming,<i1—s W (u
dj — a; ™ aq

V| - c.

\Y3
N ™
M= 3
=
ole

—1 /b J-d; (z

ﬁrii/ai/%w/ng/ng MdydﬂchZ/;W(u)dm(z?,g)

Cj — a4 dj — bz ™ aq 4

n_om O N S 2% - in,<1_g W
B8 S0 bi dj—a By g | ymidui<i-s W (u) 15| - C.
v

Y

13



Proof. We prove (2.38), (2.39) follows from a similar argument. By Corollary [2.9] and (2.23] )

Y

Y

v

Y]

gi // dydm—/ /_ e g / W (u
A

/ +1+1—u()—2) 4 i

2
(x—y)

—&-ii/@b /C —— dydx—/ﬁ/i = —y dydx—l— / W (u

e [ [

=1 j=1

n m s . u W
+BZZIn(CJ % 4; bl) Oy (2bK> 200 W |y 4 2 2w
7Ti:1 = Cj*bz' djfai s ai 4 ];U[];r
B /b' & / ” 1 1
_= (1- —
W; ai ; dJ*I Z ul = 1 y—a;  y—b

B o= cj—a; dj—b; B bK ymin, <15 W (u "
PSS (G P 111
+7r L £ n c;j —b; d; —a; T a1 + 4 ’ ’

J

771) / (1+ u)2 dx + ;YM;;(I) /H+ (1-— u)2 dx

VDS [ e s E/ cl—w @
_sz;(l)g;/:(l_u( )) dy_wﬁ/l‘f’, g/ _al) 1 g
3o (S o) - () 4 P
P [ TR sy

5 n.om ¢j — ai dj —b; ﬂ b ’ymln‘u|<1 § W +
= 1 L) B (2= 11| -
Fzzn Cj—bi dj—ai 7Tn aq + 4 ‘ |
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The last two steps follow from

n

IN
|
;\&
=
&
+
—
o
QU
5
+
[\)
[]=
\@
/-~

IN
O |
—
+
=
S

+

—_
=

[\

+
ol
INgE
—
8 S
N
)
| —
8

QU

8

€
< —
< 3,
< 5/ (w(@)+ 1) + =
-2 Iy 2e
and
m d n
7 1 1
Bl R e S L
j—l\/cj i=1 y_a“b y_bl
< 5[ a-uwreg
2 II;— y 26'
| |

Proof of the main technical lemma Observe that

00 oo -1 -1
/ / f(z,y dydfc+/ / [ (z,y) dydz
- / / —u( d do+ 2 / / dydx
( —y)*
= / / () — (2 dydx + — / / x) dyd;v
i+ Jrf (x—y) i i (z — y
/ / (ulw) = dydx + — / / ul@) = dydx
it Jrrrg (I - - (z —
/ / z) d do + = / / “( ) dydm
iy Jiry (x — iy Jirrg -
/ / I) u dyda: + — / / dydac
1+ Jrir (x — y) 1 Jirr (z —
/ / (u x) u dydm + — / / dydx
Iy Jirrf (x — y Iy (x —
/ / (u () - d dr + — / / dydx, (2.40)
1y Jrrry (x — iy (z —

Lemma would follow from and the following Lemma.
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Lemma 2.11 There exists a constant C' = C(6,~,5,W) > 0 such that

/ﬁ /U+ (x — dydaz T / /11— 2 — z )) dyde
+Z/1 W(u)dx—i—z —:W(U)dx_/fgr/s7T($ﬁ—y)2dydx_/1q/1157r(xﬁ—y)2dydx
-C

Lemma [2.11]is a direct corollary of the following Lemma.

Lemma 2.12 There exists a constant C = C(4,v,5, W) > 0 such that for all u € Agy the following
bounds hold:

/ / dydx—/ / dydm—i— / W(uw)yde > -—C, (2.41)

I Jirf (x—y HJiy m(r—y

/ / dydm / / dydx—i— / W (u)de > —C.(242)
N (x—y i i m(x -y

Proof. We prove (2.41)), as the proof of (2.42)) is similar. We argue by contradiction and let

J+ = // dydx // dyder / W (u
I Jrrf (x—y I Jiy (x—y

We show that
J;' (up) = —00
implies
a'

li — =1 2.43
B, 24)

On the other hand, 1) and a diagonal argument would imply Jgr (up) is bounded from below, a
contradiction. We prove (2.43)) in a series of steps. We will only explain the first three steps in detail.

The remaining steps can be proved similarly.
Assume ) fails. Then there would exist a sequence {u,} such that J; (u,) < —n. We denote
the decomposMon of IF (u,) and IT5 (u,) as follows.

I, = Uyl b, IO =i [ 45
Iy, = Kn [ bn 7~ﬂ’ 15, :Ui:nl {7d;}’76ﬂ

Here we have d} = oo and ¢} > bj . We assume

(Ve €L,) NI, = Uyl e, il

by, af) N IL, = ufg; Yendr] fori=2,--, K.

Step 1: J§ (un) — —oo implies there exists i} satisfying j7 < i? < L,, such that

Ui n

S a
lim inf =lim sup —* = 1. (2.44)
n—=oo Uy n—00 b K,

16



First we observe

— 2 oo
-n > Jf (u,) = / / (n ( un2(y)) dydx — / / %dydm + l/ W (uy,)
I, Jirf, (x—vy) i, Ji;, m(x—y) 4 )1

b’l’L
—/ / ﬁdydx > —ﬁln (2?) .
Ig:n (;n ™ (m - y) T al

Therefore, J5 (u,) — —oc implies

lim sup b% = oo. (2.45)

n—oo

Case I: Assume that for a subsequence, ¢} —bj <1 (without relabeling for simplicity
of notations). Then by Lemmam

-n > J+(un

bK-,, Un )
> / )2 dyd:c / / dyd$+ / W (uy,) dzx
' I -

B cz 1 5 b7 'ymln‘u|<1_,;W( )
> 1— P (22K < ‘"” NI | —c
= b, —cf, —1 7r al * 4 (Vi <L) &n

5 an —ay B yming,j<i1—s W (u) n
2 ;th—;anﬁ— 4 ’(K?CL)QIII(SW, -C
> Otk g

s bKn

Taking liminf on both sides, we have

3 n

c
L, K,

lim inf =% =lim sup =1
n—00 ;L(n n—00 bnn

For the remaining cases, we shall always assume ¢} — by > 1. Also whenever we need to work on a
subsequence, we always use the original sequence for simplicity of notations.

Case II: Assume for a subsequence that there exists i € { j, j7 +1, ---,L, — 1} such
that ¢ — b < 1. We also assume b —a%k, > 1 (otherwise (2.44) follows directly). Then by

b
Jap () =azx —blnx > b(l—ln > , for x >0, (2.46)
a

17



and Lemma we bound J; (u,,) as follows.

—n > JJ (uy)

B (% (un (2) = un (y) B[ (tn (2) = n ()"
2 47 af, /cz (x — ) dydx—l— / /b" er NIIF duds

. en) (z—y)°
_/1+ /7 77T x/éi 2dyalac—f—z/ W (uy,) dz

S bKn_l/ un _ ( )) dydx /bKn/ n+| bKna an)ﬂIII5n| B dydx
- y)’ m(x—y)’
/ / dydm—i— / W (uy)
- n(x—
n n " n n n n + | _yn
5 B T B B In diy — ak, . iy + ‘(bKn’CLn) NI, | - b, _c
T B T d%—bkld%+MMhmh)mHH;—w%n
B bk yminp, <15 W (u)
P (22Kn g ‘ non VAT
- n CLT‘ + 4 ( Ky CLn) &,n
B Cin—ak 5
> P TKe (1 ’ non AT )
= T n bn T + ( Ky CLn) s,n
miny, W (u
0 \|<ié ()‘<K,CL)OIII§’—R*C
ct —a”
> él K o
0 b,
Taking liminf on both sides, we must have
n an
L = limsup f" =1
K, bKn

18



Case III: Assume no such i} from case II exists, then we must have Cin — b, > 1. Thus

-n > Jf (un

bKn _ 2 oo
. / (tn (1) —n W))° / / P aydet / W (uy) dz
s oo mH+ (z —y) i, Ji, m(x—y) 4 /i
bKn bKn "+| bKn’ CZ?L)OIII;TWJ
> / n (@) = 2 dydm—/ / %dyda:
W w m(r —y)
/ / dydx—l— / W (uy,)
I+ - m—
N ﬁln By o, Ot \<b’f<n,c’in> NIt | - b,
= _bn o\, ‘(b;;n,cgn) NI, | —af,
B bk ’Ymin\u|<1—6W(u)
P (22n = ‘ no ) nIIIf,| - C
o an + 1 (bk,.cL,) sn
B, G0k, B n B 0 om
> ;mij_;ln(c b= bk ) = S (14 (b, NI, )
s TV
+ 12 'i s W () ‘( wo ) NI - C
ct —a’
L B g
oo b

n

The last step used (2.46|) and (b’;(n,c;??) C (b?(n,czn) Nnil I;'n. Taking liminf on both sides of the

equation above, we must have

ct, n

.. J

lim inf b"l = =1,
K, K,

Step 2 J§ (u,) — —oo implies there exists i} satisfying ji' < i} <} such that

3
;T
“2

a’
— = lim sup M =1 (2.47)
Kn—1 n—oo Ui, 4

—n > J (u,) > / / dydx—i— / W (un,)
I+ - x_

b by
> Py <2Kn_1) _ ﬁlnﬁ,
™

n
ay T ak,

lim inf
n—oo

First we observe

Therefore, by Step 1 we have that Jg‘ (up) — —oo implies

. n _
limsup bf, _; = oo.

. al bl _ cin—ak, .
Case I: If liminf,_, % =0, then limsup,,_, o 1—b" = 1. In this case, then we can
; Kp—1 Kyp—1

19



replace (af _y,0% 1)U (af, ,b% ) by (af% _;,b% ) and repeat our argument in Step 1 as follows.

-n > Ji (un)

o (b, oo)NITS (b oo)NITS,

5,m (z — 9)2 (- y)2

_/IIH/M Mdydx+4/l W (uy) d
8

b, o0 _ bl A +| (b, s cF, )OIIIT
N / (1t <x> n @) g e / / i Py
W ety (z—y) ay ) m(r —y)
B b
dydx — ln2 W (un)
b?( _1 Y in .T -
Kn — Kn :L”+|(b?<n’czn)m1115+,n|
7= s i ")
c’-Ln — b _ b7 b 00
—éln“nif(gl— éln2%—éln%+l/ W (u,,) dz
i Cin — Qg ™ ay T a 4
S B Cin = Af¢, 1 B Cin — Uk, 1 B din — af, din + ’(b?ﬂﬁha?{n) NITIg, | = b,
R diy =V, dn 4 ‘(b?(nil,a"Kn) NILIS,| - ag
b'n. b’I'L oo
gl By Pk 0 [Ty de -
T af T ag 4/
B Cn—ag 1 . Ch—bg 4 B B
> 2 Dl N g 5 ——1(’-2—1)”)——1 (1 ‘b” La muﬁ)
oo . brf(n 1 ™ . ny —a ™ B Kn T ntt (K"_l aK") dn
B bk yming<i_s W (u) n
7;IHGT 4 ‘[I[(S,TL 70
K,
ch —a’ ch — b _ b
> éln - fnl éln ——n Kn Lo éln K. ¢
0 b 1 s Cin — a T af
Taking liminf on both sides, we get
... Gn . ag, 1
liminf —— = limsup —~"— = 1.
K,—1 K,—1

n
AK, — bKn -1

’Vl n
c; bKn N

Case II: If liminf, . > 0, There are three cases.
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Case II-i: If (b _,,a% ) NII, =0, then (b, _,a% ) C I

4,n?

—n > Jf (uy)

bKn—l _ bKn _ 2
(b3, . 00)NIIS, (x — y) (b, o0)NIIF, (x —y)
/ / dydx—l— / W (uy)
- (-
bKWl 00 _ Vi, 1 pdin+| (0%, ez, )NITIT |
ay g (z —y) Upor (@ =y)
b, oo . pd ,L+| b, s g, )NIITE
+£/ / (un (@) = 2 dydx f/ / deydm
T Jag, Jep (z— ) ag m(r—y)
bn 'I’L
fEIHQ%f f / W (uy,) dzx
T af a%.
> B Cim—ag. 1 B din —aj, 4 dip + ‘(b?(n’c%n) ﬂIH;n — b, 1
B e o N R B[ Kb o0 s I
5 cn—ak, g (dn—ag, 4 +| Ok, ) NI - bk,
ool P | S
UV \ G Ry (b ep,) L - ok,
b b “ w
Bpolir By ble, | ymin<is W(u )’IH; e
T a? T af, 4 "
B Chn —a?( 8 Cin +1fa?(n 8 . N 26 " . N
2 ;lnw+;l C_nl_;'_l—_bnli;hl(ci?ibf(n)i?ln(l+‘(Kn’an)mIII&n)
b ” W (u
WL/ SN AL T SE, ‘IIIM e
a’;(n 4
Cin — Q' _ 2
> O % Al (14 (a — B 1)~ 2 CEUSE 2, (1+ |0k, ez,) N 1113, )
T by 4 T T
b ” W (u
By D | Y1 ‘IH;H —C
T af, 4
C,?n _ Cln B bn
> PG By Pk g (2.48)
T bKTﬁ1 T af,

where we used ([2.46)) and the facts

(a%, —bi, 1) < ‘III;,_n

, (0?7; — b?(n) < max (1,

Taking liminf on both sides of (2.48]), we conclude

(bi, .. )N ngn

).

Cin afc, -1
lim inf — =lim sup ——*— = 1.
nee Uk 1 n—oo b, 3
C,?n
Case II-ii: If (b3 _,,a% )NIIJ, # 0, there are two cases. If liminf, o ——— = 1, then
n n 3 Kp—

n
n

C;n
(2.47) follows directly. We therefore assume liminf,, o, ——— > 1 for the remaining two cases.
K.
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Case II-ii-a: There exists iy € {j}, jy +1, ---, if} such that ¢ — b _; <1. We assume

b, 1 — @k, > 1 without loss of generality. Applying Corollary Lemma and (2.46)) , we
bound J; (uy,) as follows.

-n > Ji (un)

2
Kn 1 Kn 1 —
17‘1K )11, (z— ) b 00)NIIS, (z —y)
/ / dyda:Jr / W (uy,)
~ n(z—y
bk, —1— ay, b, —1 n+| Kn—1> Uiy, )ﬂ1116n|
47'(' a’Kn—l nn (x—y) a" n (x—y)
bk —1 Hn—1 [din +|(b}‘(n,1,cL ynIIIy, |
/ (un () — 2 dydm / / %dydx
(33— ) m(z —y)
b
—éln2% _ / W (un)
ay
n n n n n n n 7 n + | _pn
™ Cn +1-bg, 1 ak, —ak, T din — by, 1 df, + (b _y,a% ) ﬂIII;n —a%
n n n + n
I S T I R R B |0, e ) O ITEE | = by
B N R [ A0 Na a4 o e S
b b% Ny <1_6 W
—éln2ﬁ—§lnﬁ—0+’ymml 10 W (W) ‘III;_n
m al T A 4 ’
o —al ch —ak 4 a% —b}
> Bt Moy B (G T O ) By (14 |, 1 ak,) N 1115, )
T b, 1 T Cin — by, 1 Gk, — 0% 4 T ’
b’!’l
—éln(l—i— |, . c2,) N IITH]) = AN/ SR
T n n s T a}z(n
min,j<1_s W (u
L (1+c;z o _1) L i<t W) I,
s 2 n 3
Cin — Qg _ a? — b7 bn
L B B ko B Ve,

Y23 7 Y13
T bk, 1 TG = b, T af,

n n
A, *bkn —1

n _—
Ak, K, -1

Taking liminf on both sides, by Step 1 and liminf,, > 0, we must have

Cnn QTIL(
.. 4 . —1
liminf —2— = limsup —2— = 1.
b b
K,—1 Kn—1

Case II-i-b: No such iy exists, then we must have 7 i — b, > 1. Applying Corollary

22



Lemma and (2.46) , we bound J; (u,) as follows.

-n > Jf (un)

> bK”—l/ (un () = un (y)) dydﬁ/b“—l/K o (un () = un (y))Qdydx

2
1) %, nIII'n, (.Z‘ - y)2 (J) - y)

,y oo
— 7dydx+f/ W (uy,) dx
éjwmwf 1), )
b

Vin-1 [Tk, _ Vieyor [dip+|(b, 1v ak, )NIILT, |
. 'n (Z‘—y) A% 1 W(.Z'—y)
b, 1 . b 4 n+| b, —1s €L )T |
/ / (un ( 2 dydz 7/ / Ldydaz
o e o i ")’
b
fél 2 ’Lilf—lnLqu W(un)d;z:
” 4
7r at T 1
+
B (e o= i B (ks B | O i) 0TI b
T o\G Ve ko) T\ Dy bk a4 | (g, I - ak
P S R T O W B |0, ) O ITE | = b
L e din = b, 1 i + ‘(b’;(n,c” )NIIIT [ —af 4
b b} min W (u
—EIHQ%—éln%fCJrV =120 ’III;”n
a’ T .
8. Sy~ B, (ch —ak,—1 ag, —bi, g +
> DGtk By (O TRt Ok TOR, 1) P (1+’b”_,a” NIIT )
2 T e e g, —a ) e U CRe e DHT,
B bx, B yming,<i—s W (u
g -C- (e = b, ) + ; ‘IIIM
C n _ an _ n _ bn bn
> B9 i B 715 £ L5y *u _c.
71' b —1 z b -1 m Ok,
Taking liminf on both sides, we must have
7," n

. . C_] . —1
lim inf -—*— = limsup —"—

K,—1 K,—1

=1

Ste 3: J (un) — —oco implies there exists i} satisfying j < i} < i% such that
s 3 3 3 2

cih
lim inf
n— oo

an
= lim sup % =1 (2.49)
K, —2 n—ro0 b n—2

First we observe
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—n > J5 (uy)
2
_ é/ (u(z) ~ u(y)) dydx_/ / B
I, g (z—y) i+ Ji, m (e —y)
> —/ / b 2dydm
i, i, (e -y
b b b
> Oy (2 K’;ﬁ) —éln—f” S Kol
7r ay Tooay m ag
Therefore
limsup bf, o = oo.
Case I: liminf K" ban"’2 = 0. This implies
Kp—2
—bg. o
hmlnf =1.
Chn — g,

3 n 3 n 3 n 3
In this case, we can replace (af o, b _,)U(afk _1,b% 1)U (ak bk

our argument in step 1.
We estimate J5 (uy,) as follows.

(2.50)

) by (af _y,b% ), and repeat

-n > Ji (un)
Z K” 2 / Un (x) - un2(y) dyd + 7/ K” . / un (fﬂ) - unQ(y))Q
oo )N, (z—-y) by, 00)NIIT, (z —y)
bKn _ o0
B/ / (un (2) u"2 dyda: —/ / ﬁdydaj + 1/ W (uy,) dx
by, o0)NIIT, (x —y) i, Jig, (T —y) 4 1
i  a (o) Ve, (o, )L
477 - cg@ (I ~y) Wy sty m(z —y)
ay, oo oo
—/ / P yde - / / P yde+ 1/ W (un) dz
n n — + - — 4
Vip—2 /iy T (z —y) i, Jis, (2 —y) 1
- 51 Cin = ag, o 51 din — ¥, o din + ’(b?{n,oo) N IIIgfn - bk,
- —in 3 n ——n mn 23 ’
ch — b _ b7 miny,
féln# _ éln2% + w ‘U[;n .
T -k, T T

By (2.50]) , we are back to the situation in Step 1 with (a”Kn,b’}(n) replaced by (a"Kn_z,b"Kn) and we

n
ap, —2

bKn72

conclude
#3 a’
Y Kn=2 _y; n
= 1msupb7— 11m sup n
K, K,
ay —bg _o ak, 1= bk, 2
Case II: liminf % > (0 and liminf %
—2 Ky —2
n
c i — A, 1
limsup —*——— = 1.
i bKn72
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= 0. This implies

(2.51)

dydzx



In this case, we replace (af _,,b% _5) U (a% _y,b% _y) by (a% _,,b% _;) and repeat our argument
in step 2.
We bound J; (u,,) as follows.

-n > J;’(un)

> KH/ (tn (@) — un (9)) dydz+—/K" / (tn () = 0 W))”
N 1, (z —y)* a 1, (z —y)*

by
/ (un ( unQ dydx — / / dydx + - / W (uy,)
s, (x—v) i, (e -

banl _ aKn 1
> / (un () 2 dydm / / p ————dydx
ap _, JIIF, m cTLg,oo (33 — ) T n (‘ T oo 77(:5 — y)
by
5 / / (tun ( un2 dyda: / / dydx + — / W (up,)
Iy (x — ) i, iy, (o -
bKn —1 _ bKn _
II ﬁ cg,oo (1‘_3}) II+ x—y)

Chn b _
/ / dyda: + = / W (uy,) dx — él ¢
I+ — x — C G‘K —1

By (2.51)), we are back to the case of step 2 with (a% _;,b), _;) replaced by (af _,,b% _;) and we

can conclude
U n

.. Cin . Ay, 9 . ak. o
lim inf = limsup —2—= = limsup —2—= = 1.
'3 n 7
Kn—1 Kn—1 K,—2
b
Case III: lim inf % > 0 and lim inf w > 0. We discuss several cases.
Ky —2 Kp—2
,1 n T n

n
bK-,L 1

i o by 1
Case III-i: (b _,,a% _)NIIJ, =0.Then (b} _,,a% _) C III], . Wealso assume lim inf,, o M
l1
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We have

> Jf (un)
bKn—2 _ bKn—Q _ 2
_paj )NIIE, (x — y) (b, c0)NII; (x -Y)
bK,L 1 _ bxn 1 _ 2
10 Ok, OII;,n (‘T_y) ﬂII+ (:L‘—y)
—/ / ﬁdydx—l—l/ W (un) da
i, iy, (@ —y) 41
Vin—2 [OK, — 2 Doz pdin+|(bk, 1.0k, )OI,
.8 / ) =0 | / : 5 gy
i a ey ) o, s w@—)
bKn_2 bKn -2 n+| bKn CLn)mIII§ TL|
/ (un ( 2( )) dydx — / / Ldyda:
) m(z—y)’
bk, —1—1 ragk, _ bk, —1 mJF‘ K —1> aKn)mIIIé,n‘
:zg (x — y) a" n ™
b b
fél pUku=2 Py Vion K" / W (uy)
™ af T a?{n_l
B (ks ot 5 (ke B |G ak,) DT - b
- —in ' n ’ n n ——n mn n ’
T Cin — b, o A —afk T di;" — bk, o d% + ‘(b?{”_l,a?{n) N Illgfn —ak o
n n n n n n n + | _ pn
+é In Cip — Ak, 1 . afg, —bg 1+1 B éln dig — A, 1 . dig" + ‘(bKn—l’a’Kn) n IIIJ,n bk, 1
m o +1=bk _y  af —ak m din — by, 1 dg, + ‘(ann—l’a?(n) NIIIS, | —af
B b= s B ook B (Ao, B |Gk NI <,
T G bKn—2 ™ —b0k, 1 7 dip — b, —2 i + ’(b}’( VNI | —al
1 1 ” miny, W (u
Bpoaze By Yy E111—Kﬂ _ ¢ Y Muls1=d ‘Ulgn
™ a’f T A . T A 4
. éln Cin - é Cin — af -1 a:IZ{n — b:Kn—Z N éln C% - a:;}n,Q . a"KjL— an"n_l +1
m bK,,,—Q 7r Ci; - bKn—2 Ak, — 0k, 2 Q Cin — bKn—Q U, — Ak, 1
5 C;%f - a?(nfl IB n n 26 n n
+Zn S h In (¢ = b, +1) = —In (1 + ](bKn,l,aKn) n1ty,|)
b miny, W (u
—éln(l—i—‘(’}(,cg)ﬁlllgrn>—éln£ By Y _ gy YOS5 ‘ngrn
T n n 5 T a}l(nf
ch % ch —al _ ay —bp ;1 +1
> ﬁln 2 Kn 2+§ln Jiy TKn-—1 —|—§ln K, n=1
T b, o T c%, — bk o T — bk 1
b b
—éln En _ éln Kol ¢,
™ aT}(n ™ arj(n_l
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Taking liminf on both sides, we get

in ag, 2
. . K3 . —
lim inf -—%— = lim sup ﬁ =1.
K,—1 K,—2
- af, —bk _ 41 . Cip —ak, " b
If liminf, e Tp L = 0, then limsup,,_, . T = 1. We can modify the argument above
7 n 11 n -

by replacing (a}l(nfl,b?(nq) U (a?{n,b}l(n) by (a?(nq,b?(n) and same conclusion follows.
Case IIl-ii: (b}t(n72,a%n71) NI} +#(. There are two cases.
Case IIlI-ii-a: There exists i§ € {j§, j5 +1, ---,j3 — 1} such that

=i, o<1 (2.52)
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We bound J; (u,,) as follows.

V

-n

v

v

v

v

Y

5 7o
e () = 0 g, , & /K [ (i (2) =0 W))”

)nITs (z —y)* alor (x —y)?

Kn

bKn,—2 u (l‘) —u (y))? - 0o
/ n "2 dydx — / / 72dyda: + - / W (uy,) dx
W o I (Ui, 00)NIIF, (x—y) i, Jig, (T —y) 4 J;

s,n

b, -1 pal 4 _ 2 b, _o pdin| (0%, _awat, _)NIIIT |
n—2 cin (z—y) ap n m(z—y)

3
Viep—a o, _ 2 Ve —o pdin+| (b, —v.af, )NIIL], |
a m m(z —y)

b, oo s (b, cL )NIIIT |
+£ / (un (z) = dyda? / / deydx
c a

2
A Sage, o ey (2 ) m(z—y)

B obk,—2 B Yk, B b
n2—-—=——ln—>———In
i m

n
- bKn—Q

n n n +
( Ciy ~Ok,—2 O, ~ brfg—z) B In din —afe, o dip + ‘(bKn—waKn—l) NI,
T dr — b} +

i~ VKa-2 dfy + (0%, _graf i) NIIIT,

_an
A, 2

n
- bK.,L72

n n n +
B (C%’ —ak,—2 ak, — bk ,-2) B W ag, ., dipt ‘(banlvaKn) NI,
i

—pn +
feoa dy + ’(b’;{nil,a’;{n) NI, | —ap

N3

n n n + n

G~V ™\ ke ag o+ |k, 2 )0 HI;n

n
— Ak, 2

b b b min W (u

SEANPL E NE R S R AN SR e ‘m;n
™ af T ag 4, T df,

é C%" - a?(n_2 é G;TIL{”71 - ann72 . C%L - a,’;{n_Q é C:;';f - aj,,}(n_Q . a"’IL{n - b”IL(-,L72

™ Kn—2 ™ Ok, -1~ Ak,—2 Gz — Vk,—2 ™ Cn —Ok,—2 Ok, — 0k, 2

——ln( s 72+1) —gln( )(b}gﬂ,a}; 71)m1115+n‘) —éln (1+‘(b’}{ el ) NI,

B, bk, 1 B
) L TR
Toag . 07

K
ak,
N Rl <KbK S s %—) Dy e Vs 25
™

—In—*—"—+—-In
Y23 n g3 TL
T bk, 2 ™ ch — b Cin —

)

yminj,<1—s W (u

—C+ ‘Hfjn

B n
~Zn (1 | (O, ek, N ITT3,

n
Ak, 1

Taking liminf on both sides, we conclude

ch "

. iy . A, —2

lim inf = limsup —2—= = 1.
n n

K, —2 K, —2

Case III-ii-b: no such i} satisfying (2.52)) exists. Then we must have

b, >1 (2.54)
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In this case, we can estimate J5+ (ur,) in the same way as case ITI-i with c% replaced by c}’g and conclude

U n
%y _ lim su YKn—2 _ 1
n - p b -
K,—2 K,—2

lim inf

Continuing this way, we conclude that J; (u,) — —oo implies

n n n
. AR, -1 . ay
= limsu =...=limsup — = 1.
p p
bn n bn
K, Kn—1 1

n

lim sup

We now pick our subsequence as follows. Pick our first subsequence {u,,} such that for its decomposition
a 1

In 22 < — for all n.
b, 2

Next we pick a subsequence of the chosen subsequence such that

a% _ 1
In 22—t « ~ for all n.

n
bKT,,—l

Continuing this way, we pick our final subsequence using a diagonal argument. For simplicity of nota-
tions, we use the original sequence. For the final subsequence, we have for all n,
ag, -1 1

<§’...

n n
W, (1 Gy (1

In n
n ? n ? n
bKn 2 bKn_l 4 banl

it then follows that

K s ~
4 n ot fde b
/ / ———dydr < 41nH & T Zn+ a
iy, Jig, (@ —y) b +dp e ta
<

Kn g
?
43 In <4
i=1
a contradiction to the assumption that J; (u,) — —occ. ®

3 Existence of minimizer of J (u).

3.1 Overview

In this section, we prove the existence of a minimizer of J (u). Observe that in general the boundedness
of J (uy,,) does not imply the boundedness of v,, = u,, —n in H' (R). A priori it is not clear whether we
can obtain a suitable limit function from a minimizing sequence, using the direct method of calculus
of variations. On the other hand, for a sequence {u,} satisfying |u, (z) + sgn(x)| > c¢o > 0 outside a
uniformly bounded interval, the boundedness of .J (u,,) implies the boundedness of {u,, —n} in H' (R).
Our main idea, therefore, is to show that we can replace a minimizing sequence {u,, } by another one {@, }
which satisfies [@, (z) + sgn(x)| > ¢ > 0 for some constant ¢y outside a uniformly bounded interval.
The new sequence {%,} has uniformly bounded energy J (%), and {%, —n} is bounded in H! (R).
From this, we obtain a subsequence which weakly converges to a limit function v € A that achieves the
minimum energy in 4. To construct the replacement sequence {@, }, we use the interval decompositions
of u,, from the previous section. We first construct u,, by reflecting u,, over suitable regions. Keeping

29



track of the energy contributions from each interval in the decomposition, we show that we can choose
our regions of reflection so that the energy difference between J (1,) and J (uy,) is approaching zero as
n — oo. Lastly, we define u,, by a suitable translation of @, so that |, () + sgn(z)| > ¢y > 0 for
some constant ¢y outside a uniformly bounded interval. By periodic translation invariance of J and the
above property of J (4,), we conclude that {@,} is another minimizing sequence.

We first state a translation invariant lemma.

Lemma 3.1 Given any ¢ € Z, let u. (x) = u(x +¢), then J (uc (x)) = J (u(x)).

Proof. Since the first two terms are translation invariant for ¢ € Z, J(u.) = J(u) + D(n., n), where

D (o) = / / ((m <2 :Z; ®’_ (@ —77(21/))2> dydz.

By Lemma 2.1 in |27], we have D (n.,n) = 0 for any constant c¢. The conclusion of the Lemma then
follows. m

3.2 Existence of a minimizer

Let {u,} be a minimizing sequence. By Lemma we may assume that u,, —n is compactly supported
in R. By Lemma and our assumption on the behavior of {u, } at infinity, after a suitable translation
by an integer there exists ¢, € [0,1) such that u, (1 +¢,) = 0 and

Up () <0 for z <1+ cy.

Throughout this section, we assume that on [1 + ¢,,0), u, has a decomposition

If, = U [al b}] (3.1)

and
LTL

1§, = U [, dr] . (3.2)
j=1

exists Cs > 0 such that
W(u)>Cs(1—u)® whenl+u>6 (3.3)

and
W (u) > Cs (1+u)® when1—u>é. (3.4)
3.2.1 Case I: limsup b} < oo.

In this case, we prove the following proposition.

Proposition 3.2 Let § > 0 be such that W (u) satisfies (3.3) and (3.4). Let u, be a minimizing
sequence for J(u) in Ay with decompositions and . If there exists a constant M > 1 such
that by, < M for all n, then a subsequence of {u,} converges weakly to a minimizer ug of J (u) in A.
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Proof. Without loss of generality, we can assume |u,| < 1. Consider v,, := u,, — 7. Decomposition (3.1
and our assumption imply

Up+1>6forax>M (3.5)

and
U, —1< =1forx<1+ey,, ¢, €[0,1) (3.6)

We write J (uy,) in terms of v, as follows:

S = /R[gwug( dx+//<uﬂ o _<”<2:2)<§/>>2>dydx
= [ Bl +o@ d:c+f// L0 .
D[ e ) =), o
We have

n =00 g, [ / (00 (@) =00 ) (1 @) = (),
1

~oo (z—y)°

/ (0 —vn% <x> 1) g g / / (00 (@) =00 W) (1 @) = (@),

2

= (x)—n(y))dydx
2
2
-4

[f
/.
Ll
o[ [ e //“n
f e Zfzy dydl’"// O [
> / x—s/ool y—*—CHﬁIILw // (o x_vn dydx

_,/ / (v ( _U”2 dydx— 7/ / (vn () = 2 dyda: (3.8)
4 —o0 J—1 (x—

The last inequality in (3.8]) follows from Holder inequality and bounds on

/ / ))Qdydm /1°° /11 (n (2:2)(231))2@%
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By (3.3), (3.4), (3.7) and (3.8), we have
e -1
C > J(up) 2/g|u;|2dx+/ 7W(un)dx+/ YW (uy,) dz
R 1 —o0

00 C
_ﬁg 2 dw—fs/ —i—cum'nm)

2w
m/lfl - <x_”(y dyd“*// - yQ())gdydx
L L S

> /|u | dx+057/v dr + — // on { Un2 w)* dydx — C (M, ||n|| 1) -
(z—y

From this we conclude that v,, is bounded in H! (R), and, hence, there exists a subsequence v, — v €
H! (R) and

// U, ( vm (y))(n(fﬂ)—n(y))d // (v(z) —v(y) (n(x) —n(y))
yder — dydzx.
R JR (x

(z —y)? —y)?

Here the convergence above follows from the identity

// Ui ( vnk ) (n (x) —n(y))dydeQ/vnk(x) lim (@) =1W) g i
R

(z —y)? =0 jomyi>e |z -yl

the fact that
lim n(z) —nly) ,

Y
€20 Jig—y|>e |£L' - y|2

lies in L?(R) (see the discussion around (4.5 in section 4) and the weak convergence of v, in L?(R).
Let ug = v + 7, then ug € A and

liminf J (uy,)
- nmmf{/[ Wl + g (x )W(un)} dz

// (0 ( —vn(y))2_2(vn($)—Un(y))(n($)_n(y))]dydx}
(x—y)°

/[4 ol + g () W (uo)] dar + 2= // dydx
/ [ <Z)<2x>n< D) s

vV

3.2.2 Case II: limsup by = oo.

We prove the following proposition.
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Proposition 3.3 If limsupbf, = oo, we can find a new minimizing sequence {u,} and ¢, € [0,1)
such that
U, <0 for r<1+4+¢,

and

[1+ 2, 00) NI, = UK [al, bY]
with lim sup 5%" < 00

Proof. Let p} < a} be the biggest zero point of u, that lies to the left of a} and o} > b} be the
smallest zero of u, lying to the right of b}. Set

Af ={z>1+cy, u, (z) >0},

and
A ={z>1+cp, up(z) <0},

We construct our replacement minimizing sequence {u, } in two cases.

Case I: There exists 0 <[ < K,,, such that limsup, bK" L=y < 1and limsup, % =1
n—l Kp—i
for all i =0,1,--- 1 —1.
The main idea to construct a replacement minimizing sequence in this case is to show that we must
have limsup,, (a}’(n_l - b?) < oo and lim sup,,

bnal = 0. We then reflect the positive part of u,, defined
Kp—1

on [1 + cn, p’}("_l] to —u,. It can be shown that the energy of the resulting function differs from initial
minimizing sequence by a small amount, a suitable translation of this reflected minimizing sequence
satisfies the assumption in Proposition and we can obtain a limit function from this replacement

minimizing sequence. To illustrate our main idea, we first assume [ = 0.

Case I-i: limsup,, b” Kn —

o
1

By definition of p}', o', we have lim supn = 0. In this case, we consider the sequence {uy}

defined by o
- _ —un(x) zEe[l+cnpk |NAS
tin () = { Uy, () otherwise ' (3.9)
Then
4 ~ Un — Un 2 Uy, (T) — Up, ?
AT ) — T ] = // [ ©)° (@) =T @),
B — ) (x —y)
_ _g / / Un (@)U (9) 4 g7
[1+en.o, ]mA+ R\([1+cn, o, JnAf) (7 —y)
PKn 1
> —8/ ————dydzx
1e, Jop (T —y)
1 —tn
_ g Tl (3.10)
9K, ~ PK,

Since

(3.10) implies the subsequence of {u,, } is also a minimizing sequence. Let s,, = [a%n] be the largest inte-
ger smaller than o . By periodic translation invariance of the energy, we define @, (v) = u, (v + s, — 1).
Then J (u,) = J (u,) and @, satisfies

Up () <0 for o <14 0% — sn,
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and
Up () > —1+0forz >1+o0g —sp.

We conclude from Proposition that %, is bounded in H'(R), and %, converges weakly to a
minimizer in A. ar
Case I-ii: limsup,, b” = = p < 1. Then we must have limsup,, (aK — b') < oo and limsup,, b“ =
0. In thls case, we prove that we essentially get back to the same situation as case I-i, with a replaced
by a}
By estimates in section 2 (we use the same notations in this section)

TF (un) = fﬂ/ﬁ /m (“"(ZZ;Q(y))2dydx/+ / %dyd:ch%/mW(un)dx

)-c

(3.11)

Vi, oo — bKn din+| (b5, 00)NIITT | 2
(ff - y) i (ff y)
7/ / dydx+ / W (uy) da
—a b “ W (u
> Py “5ln<2f‘")+7mm' 19 ]HI; *éln(lJr’(nK,OO)ﬂHL;r
T c =g o af 4 "eow " "
ﬂ - a?(" ’len\u|<1 ) W + B n n
> - - - o T
> Cl b” e C ‘1115 W = S (e -0, )

).

Assuming lim sup,, Znﬂ = v, (3.11)) and the boundedness of J; (u,) imply ‘I I I;rn‘ < C. We construct
Kn )

U, as follows.

B
~Zn (14 | (O, »00) NI,

. —upn () € [L+cn,pl | NAY
tn = { Up, () elsewhere : (3.12)

We first show that there does not exist an s such that lim sup,, (a’}(n —al,) = A, < oo, limsup, (a’}{n — bs)

Q.
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Otherwise, letting ¢,, = } [1+ cn, Pk, | N ‘ a N II(s |, We can write
4
5 [ (n) = J ()]
(un () —u (y))2 (an () = (y))®
(z—y)
_ g / / Un (@) n (V) g0 gy
[1+en, pf, [nAL JR\([L+en.p, |nAT) (x—vy)

oo 1+cn
L [ ), f [ ),
[l-l-cn7 pK ﬁAi o’}l(n (CU — y) [1+cn, p}‘(n]ﬂAi —o0 (.’E )

T
-8 / Un () tn (9) Q(y) dydz — 8 / / Un ( ( Un (@) n Q) b
[1+cn, pK [1+c", p}’(n]ﬂA; (1' — y) [lJrcn7 pK ﬂA+

1 02" n n
> —8/ / ﬁdyd:cfég/ / wdydx
P, —tn YO (I — y) [1+C",p’;<n]ﬂAI o (:L' — y)
Pin [ b,
> -8 / ——dydx — 8/ / Un (@) n (9) g gy
Py, —tn Jop (@ —y) [bg,a" nirf, Jay, (T —y)
ot — " 4 t, bl +tY 1-§
> —81In % + 8/ / ( ) d dr
9K, Pk, . ay, (z—y)’
o —ph +1,
= 8l THe PKa (3.13)
9K, ~ PK,
b — pn —n a® —p"
+8(15)QIH<K"” s ns. nKn ns )
bK,L - bs Ak, — bs — s
Recall that
tn i
e < e (3.14)
9k, ~ Pk, 9K, PK,
bLo—br -t b — o
K, s LSS K, — Pk, >1- PKH’ (3.15)
by —bp by — by b
and
limsup (af% — b —t?) = limsup (ak, —al, +al,, — bl —t7) (3.16)
n n

< AS+Hb;‘,a;‘+1] NI, <c.

Taking liminf on both sides of (3.13]), we have

limi%f [J (up) — J ()] = oo,

contradicting the assumption that {u,} is a minimizing sequence and the fact that J is bounded from
below. Therefore we must have lim sup,, (a"Kn - b’f) = ag < 0.

Next we show that lim sup,, af

- : T — +
= 0. If limsup,, b‘;{ln > 0 and kK, := ‘[1 + cn,p’}(n} N II&”

, then

t =k < |11}, < C,
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and

= i, — (L) = | [L+ ek, | NI,
_ ‘ [1+cn, pie, | NIIIS,
< ak, —(L+en) = (0F —al).

Therefore, we have

-8 ————dydx
/[1+c”, P, JNAL /R\([L ok, Jnat) (@ —y)* ’

0o 1+cn
-8 / En \L) B \Y) (z) un Q(y) dydx — 8/ /
[1+cn Pk, ﬁAt o (Z’ - y) [1+cn, p?(n]ﬂAf{ —o0

- J
[1+('n,pK ﬁAf[ [1+cn.py<n]ﬂA;

(x—y)

Uy, () un (y)

dydzx
(z—y)

Up, (T) Up, 2(y) dydi — 8/ / Kn qup, () up, 2(y) dyd
[1+(‘n P ]ﬂA,L

(x—y)

Py, 1
> 8/ / dydw / / wu”gy)dydx
pr —tn Jop (T — y) [14enpo JNII, 1enon 0I5, (T —Y)
_8/ /bK" Un (2) un (y)
[tenppe, It Jag, (@ =)
o —pt 4t 14+cn+rn b}l(n 1
> 781HM+8(175)2/ / -
n n 2
9K, ~ Pk, 1+cn ap. —bp+ay (T —y)
oy —pg +t
= —§ln 2k Pi T (3.17)
ok, ~ Pk,
b —1—c, — kK a —b+at—1—c
+8(1—48)* In Ko . He Pt —
bKn—l—cn aKn—bl—Fal—l—cn—Fan
Since N T N
o — o
lim sup K"n pK”n < limsup Ko — < 00, (3.18)
n Ok, Pk, n Ok, ~ Pk,
v —1—c, — kK al —1—c¢, +a% — b}
lim inf —= " > 1 — limsup — S ) (3.19)
n b?(" —1—c, n ann -1
and
@ — b+l — 1=y — ki < o+ ‘Hfgn (3.20)

taking liminf on both sides of (3.17) , it follows from (3.18)), (3.19) and (3.20) that

lim ir&f (J (up) — J (up)) = o0,

a contradiction.
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Lastly we estimate the energy difference between u,, and @,. We have

i T () = T @)

= // [ Up, (T) — Up, (y))2 _ (tn () — (y)>2] dydx
- )’ (e~ 9)°

_8 /
[1+en.p JNAL JR\([1+cn o3, JNAY) (x —y)°
(
]

e’} 1+c,
_ 3 / / Un (@) Un (9) 4 g _ g / / Un (@) un (9) g g
[t+enop, Jnaf Jop  (z—y) [1enpp, JnAt J—o (2 —y)

[vreni, Joat J[tsen g o4z (@ y)’ (enoy, Jnat oy, (x—y)

dydzx

1 PKn
> —8/ / dydx / / dydm
1+4cn U" — oy o :C_
o — 1 —Cpn — —
> g T LT gy, TR Pk, + ok, i (3.21)
Ok, — P1 UKn - PKn

Recalling that

Pk ax Pr ay
limsup —= < limsup - =v <1, limsup —— < limsup —— =0,
K, b K., bk,

and
limsup (pf —of) < limsup (af —b}) =ao < oo,

we conclude that

n n s n
: K, ~ Pk, TPk, — 01 _
lim sup - m = 1,
n Ok, ~ Pk,
n
o —1-c
. . K. n
liminf ——— = 1.

n 7
" Ok, ~P1

Thus by (3.21]) we have that {u,} is also a minimizing sequence. Defining
Uy, = Up (T + 85, — 1),
where s, = [0} ] is the largest integer smaller than o} , then {%,} is a minimizing sequence satisfying

Uy () <0 forx <1+o0g —sp,and Uy, () > —1+0 foraz >1+o0g —

Proposition applies to u,, from which we can extract a converging subsequence to a minimizer
ug € Ap.

Case I-iii: There exists [ > 1 such that limsup, bK" L =1forj =01,---,1—1 and
lim sup,, b: < 1. Then we must have limsup,, (a _, — b}) < oo and limsup,, b"i =0.
— n Knp—1
We construct Uy, as follows.
- —up () wE€[l+cypl]NAS
tn = { Uy, () elsewhere ‘ (3.22)
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We also need
-1
4 b _. b7
/ / ——dydr < 4ln | J[] === | +41n <2K7;;l> :
1,15, (T —y) =0 VKn—j ajy

We can follow a similar argument in Case I-i and Case I-ii by replacing any estimates on [a’}{n , b’;(n] in
(3.13), (3.21) and (B.17) by estimates on [a _;, bl ], using Uy, = Uy, (¢ 4 spy — 1), where s,,; = [07]
is the largest integer less than or equal to o}'.

Case II: No such [ exists, i.e., limsup,, Z—J =1 for all j where limsup,, b} = occ. Let [ be such

J
that limsup,, b _; = oo for all j <[ and limsup,, by, _; < oco. In this case, we will reflect the negative

—J
part of u, to —u, outside a big portion of (b _; afk _;, 1) N Ilgfn. Following notations in section 2,
we write

(ann—lvaTIL(n—lH) N Hé,n Ujl i [c?’ dﬂ :

First by

cC > J(; Up) > / / dydm—i— / W (uy,) (3.23)
I+ - CL‘_

pn K,
> —éln Qﬁ _ E élni+m III+
s al T a® 4 o

1 i=K,—1+1 i

we conclude that
iy, < e

Case II-i: There exists j (I) € {j,, -+ ,j" —1} such that
lim sup (d?(z) — c}b) = 00. (3.24)

Let T = |3y, 2, | 0 A, My =

Tha N III;:H‘ . We define

Uy, (z) = { Tl we [d?(”’czw} N4,
U, () otherwise
Since
un (Y1) Un (y2)
72~ 2
(=) (. —y2)

forz e T, y1 € {c;.’(l),d?(l)] and ys € [b?(n—lv c?(l)} N A, , together with (3.24]) and the fact that

H:b?(n*l’ C;L(l):| . S ‘Illg:n’ S 07

we conclude that

/m/ “”(;x)_?)( i dac+/ /M “"xiuy)( ) dydzr < 0.

K , =17 7(’) An 0]
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It then follows that

Sl T @) = J ()

N / /\T ()dda:

J(l)
< / / tn ()t dd;v+8/ / L dydz
(r—y (l),cL Jnat (z—vy)
7(1)
+8/ / “"m“" ddx+8/ / )dd:v
(z—y
bKn—l
< / / “” “" Un (@) n (Y) 400 4 g / / Un (2) tn (y) “”Q(y) dyda
(@—y -v CJ(Z) (z —y)
10wy () un (y
+8/ / 72()dydx
Ty, c’f .T —
J(l) n,1+d7, ) ?{ 1 UKn i 8
< / / ' dydm+z / / — 2 dyda
(z y)
7(’)
+8/ / “”(x)“” ddm+8/ / Un ()dd:r,
1 € (z) A (z—y) T -
M +d- —cl =1 n b
S 8111 n’;n J(l)n ](l) + Zlnoi{—bnl - 0’
OREI0! im0 Pr.—i = Uk,

. — . e . . . n . . . Th
ie., {U,} is also a minimizing sequence with b = b, _; satisfying limsup by < oo.

Case II-ii:
lim st:lp Lzminjzgfl (d? — c;’) < 00.
Let So={ j,+1, -+, j =1} . We define S5 as follows.
Sy ={jeSo:d} —c)>c—dj_}
There exists k = k(n) and indices p(1),---, p(k) € So , q(1),---

,q(k) € Sy such that i € Sy if

p(s) <i<ql(s) amdigZSO+ ifg(s)<i<p(s+1)fors=1,---,k We write S; = {1,--- ,k}.

Case II-ii-1: There exists s < k such that

lim sup %:) (df — ) — oo.
" i=p(s)
Let
Touis = {dg(s),czn} nNA,
M,,, = ‘HI;H ATl
We define

U (v) =

_ _ { —up, (z) z€ [d;‘(s),czﬂ} NA,

U, () otherwise
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Since
|(J’ ])|>|( Jj— 1, € J)| fOI‘p( )<]§q(8), Uj(ép(s) (d;L 1 J) CIII;_n

and
q(s)
lim sup Z (d? — ') — o0, <C,
" i=p(s)
together with the observation that
un (y1) Un (y2)

@)’ (@)

forzeTnleayle(Jadj) yQE(dJ 1 j),p(s)gqu(s),and

Un (Y1) > _ Up (Y2)

(z—1)° (z —12)°

J=p(s) \"7° 7

/m/ . M“’zi)_“é i 32 [ [

j=p(s) 7Tt
n l,s x -
0.

forz € Ty 15, 11 € V! a(s) (cm,d?), ya € Illgfn N (b?(nfl,cg(s)) , we conclude that

Jj=p(s)

IN
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Therefore

41 T (@) — 7 ()]

B /nzs/\Tnzs ((x y)gy)dydx
AR

()’CL
+8/ / tn () tn ( )ddyc
-y

Tn,s Jcl
() dg(s)
< / / tn u"()ddac+8/ / tn ()dydx
Thn,s SC - Tn,i,s
Kn l
Th,1,s ZC_ ) Th,i,s Z’cp() An (x_y)
q( )
+8/ / n (@ “”( Un (@) un () oo
n l,s ',I: -
v(s) [ Ma, s+dq< ) Kn—-l [TKn—i 8
< / / dyda: + Z / / — s dydz
Pl —i (r—y)
( )Un Q( ) J Un )
+8 / / dydx+8 > / / o dydx
Th,i,s l7C ﬁA— (x_ ) j=p(s) Th,s
(I(g) ” )
+8 Y / / L dyda
j=p(s) Y Tntis
po) [ Muistdges) Vit [OKn-i 8
< / / dyd:L‘ + / / ———dydx
" Z (z—y)?
Mn S + d S S n b
< 8hn ,z;in q( )n p( +8Zl 7Il( bK —1
a(s) ~ p(s) Pk, Kn—l
— 0

Case II-ii-2:
q(s)
sup lim sup Z d—cf) | < oo.
n
i=p(s)

We consider

q(a) q(a)
Sf=qaeS: > (d—c)> > (d-d)
i=p() i=l4q(a—1)

There exists m = m (n) < k and p; (7),q1 (7) € S; for each 7 < m and 7 € N such that v € S} if
p(T)<y<q(r)andy ¢ SFifq (1) <y<pi(t+1). Let So ={1,--- ,m}
Case II-ii-2-a: There exists 7 = 7 (n) such that

qa(m)  qly

hmsup Z Z (dl —cf) (3.25)

y=p1(1) i=p(v)
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Then we consider

@, () = —up (x) x€ [dg(ql(r)),c’in] NA~
Uy () otherwise
Let Totqu(r) = [igs oy T | VAT Moy = | [y 7, | 0 A7 NS, | Observe
) | o)
(»T 1) (z —ys)”
for x € Ty, 1.,(r)> 1 € ( J,dj) Yo € (d;L 15C ;L) when p(p1 (7)) < j < q(¢q1 (7)) . The same inequality

also holds for = € T}, ; 4,(r), Y1 € U;I(q;((;l)zﬂ) (cj , dj) Yo € [b R CZ(Pl(T)):| N A, . Moreover, by (3.25),

-| < ‘Hfgn <c,

[tsts ] N4

and

q(q1(7)) n N
UJ ;(m(‘r))( i—1:C j) CIII(SW

we conclude that
q(q1(7))

/ / 7un(fﬂ)unQ(y)dyder 3 / /j’ wn (@)t (Y) )

2
Dot 7 e -0 €y (r)) na, (2 —y) j=p(p1(r)) * Tt (@—y)
q(q1(7)) U )u )
+ Y / / 2 dydz < 0.
(z—
J P(p1(7' n l,qy (1)
Therefore
477

Tty (7) YR\ Tn 1,41 (7) (m—y)

q(q ()
_ / / 1) uy () up (y Un (@) tn (Y) e 8/ / Up (2) Up, 2(y) dyde
(z — AL (z—y)

Tht,q1 () q(ql(T))’ cL An
+8 / / “” “” )d de
Totaqy(m) /€L, (x—
bxn_z dgay (v
T a1 (r) Trn,t,q1 () - y)
p(p1 (1) .l m*d (a1(7) bK 1 [OKp—i 8
< / o / - o dydx + Z/ / ———dydzx
4G ta1 (7)) (z — (z—y)
n (%) un (3) oo G (1) un (3)
+8/ / o L dydr +8 Y / / o 0 Y dyda
Totarn ! [Vt Gy o047 (& —Y) i) Tntann Jep (2 —y)
ata () U )u )
+8 Y / / — o dyda
G=p(p1(r) ? Tt (0 (@—y
n,l,q1(7) q1(7)) p (7)) 9K, n—l
< 8In ldn _lcn ! —I—SZIH o —b”
q(q1(7)) p(p1(7)) Pk, -1
— 0.
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Continuing this way if necessary, we can define the set S; inductively by each m € S;, p; (m), q; (m) €
Si—1 such that any p; (m) <p < g;(m),peS;,if ¢ (m) <p<p;(m+1),peSi1\S;,. Here
St =
qi(m) qi—1(l:) q(l2) qi(m) qi—1(l:) q(l2)

meS: Y S S @-g)> S S Y (q—dry)

li=pi(m) li—1=pi—1(l;) li=p(l2) li=pi(m) li—1=pi—1(l:) li=p(l2)

By the definition of S;, we have |S;| < |S;—1| < -+ < |Sp|. Since ‘Illgfn

limsup (af, _;,; — bl _;) = 0o, we would be able to find r,, such that S, = S} . Let u =[S, | and

define
T () =4 Un@) TE [dle(ql(---qrn(u))’din} nAy
U, () otherwise

is uniformly bounded and

By a similar argument, we can show that {@,} is a minimizing sequence which is close to +1 away from
a uniformly bounded interval. m

Proof of the first half of Theore Given a minimizing sequence {u,} , if limsup,, b, < oo
we obtain a minimizer by Proposition If limsup b} = oo, we obtain a new minimizing sequence

{@,} which satisfies lim sup B%n < 0o by Proposition existence then follows from Proposition

4 Regularity of the minimizers

Proof of the second half of Theorem [I.1l
Proposition 4.1 Any minimizer ug of J over A is a C*2 (R) solution of
d2 %
—aug + g () W' (uo) + <—de> up =0,
where we understand the fractional operator in the sense of (1.4).

Proof. Let vg = ug — n. We write J (ug) in terms of vy as

J(vo+n) = %/R|’l}6+n/|2dx+/Rg(aj)W(vo+n daj—‘,——// vo ( )) dydz
B (vo () —vo (y)) (0 () —n (y))
+7/R/R (:v—y)z dydzx.

Consider now variations v, = vy + €, where ¢ is any smooth compactly supported function. Since ug
is a minimizer, we must have

0 = (jJ@k+W) = [ (g 4 o @ W (o))
/ / vg ( —Uo(;y? 2;2( z) —¢(y)) dyda
B n(@) —n@) (@) -e@), .
+ 71_/}R/]R (acfy)Q dydz. (4.1)

=

Since vg € H! (R), we can define (—%) vo via Fourier transform as (see e.g. [29] Proposition 3.3)

(iiﬂMQM@@,
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and write the second term in (4.1)) (see [29] Remark 3.7) as

%/R/R (vo () — vo((xy)_) ;?2(1‘) — ‘p(y))dyda: _ 64¢($) (_dd;) : v ().

Since n € C* (R), for x > 1 take ¢ < 1 such that

1
— - 2
/ n(z) ngy)dy:/ n(z) ngy) dy < ’ (4.2)
lo—ylze  (z—y) —oo (x—y) z—1
and for z < —1 take € <« 1 such that
_ 00 — D)
/ n(x) —n gy) dy = / n(x) —n gy) dy < . (4.3)
lo—yl>e (T —Y) -1 (z—y) z+1
For —1 <z <1, we can write
- 1 —y) =2
lim n(z) ngy)dy _ Ly n(x+y)+n(9; v =@,
=0 jpmylze (. —y) 290 Jy1>e y
B 1/ n(@t+y)+nle—y) =),
- 2 y)
2 Jr Yy

where the last step follows from the fact that n € C* (R).
For each € R we have

—y) —2 > 4 1y ! —y)—2
/n(x+y)+n(€ y) n(x)dy‘ < / 72+/ 2+‘/ n(z+y)+n(fg ) n(x)dy
R Y 1Y e Y 1 Yy
< 842D, .. - (4.4)
Combining (4.2)), (4.3) and (4.4]) , we conclude that the function
. n(x) —ny)
lim L Ty (4.5)

o—ylze (T —y)
belongs to L?(R). Thus the third term in can be written as
(n(z) —n () (¢ (x) — ¢ (y)) ~ lim (n(x) —ny) (¢ () =9 ), .

Jh (@) i = ) e

= 2 ) lim wd dx.
/RSD( 1 o—ylze  (z—y)? !

We now introduce the notation

2\ 2 2\ 2 _
< d ) uo;:( d ) Uo—i-hmi Md:%

dr? dr? SO Sz (2 —y)°

where the fractional operator in the right-hand side is understood via Fourier transform. Since ¢ is
arbritrary, we conclude from (4.1)) that ug satisfies the following equation in the distributional sense:

2 2
— aul + g () W' (wo) + (—ddxz) wo = 0. (46)
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1
Since |ug| <1 and vy = ug —n € H' (R), we have W’ (up) € L? (R) and (—j—;) “ug € L2 (R). Thus

1
(4.5) implies that & V? o € L2 (R) . By elliptic estimates, we then conclude that ug € W22 (R).

(_ dx?

Weakly differentiating (4.6)) yields

. d2 2
a4 (W) . ()W () + 8 (=5 ) e =0

in the sense of distributions. Here we used the facts that

d d2 % d2 %
% (_d(ﬂQ) Vo = <_d1'2> Vox (47)
e d (x) ~ 1 (v) (&)= (9)
. ) — . ) —
— lim %dy = lim 777?72ydy7 (4.8)

dr e=0 )iz y>e  (z—y) =0 Jjpyi>e (—y)

which follow from the properties of Fourier transform of Sobolev functions and the following calculation:

d . n(z) —n(y)
hm 7d
/ry|>€ Y

dg =0 (x—y)*

| mﬂ/ NN =) gy (@) =0 4,
h—0 h |e—0 lz+h—y|>e (.’b +h— y) =0 Jiz—y|>e («'5 - y)

. . n(x+h)—n(z+h) . n (@) —n(y)
- iy |1 ey [ O
- |—z|>e (x—2) lz—yl>e (T —Y)
— tim L i 77(93+h)—n(x)—n(y+h)+n(y)dy
h=0h e=0 |, _yis. x_y)Q
— lim li L | 1@+ h) = (@) —nly+h) +n(y) dy
e—0 \m—y|2€h_>0h (x—y)Q
’ o
~ lim L @) =0 ) g,
0T Jjg—y>e (2 —y)

The same arguments as in the case of (4.5 can be used to prove that the function
1 / _
' (@) =0 W)

lim — 5
0T Jig—y>e (. —y)

belongs to L?(R) as well. Define

2 % 2 % , o

_@ _@ dx e—0 T le—y|>e (aj — y)2

1
Since W € C*'(R), we have ¢'W'(uo) + gW (ug) uo. € L*(R), (7;17;) “voe € L2(R), we have

( i )E ugy € L? (R). Thus elliptic estimates imply ug, € W22 (R), i.e., ug € W2 (R) C C*s (R).

T dx?
Thus vy is a classical solution of (4.6)). Moreover, since uy € C%2 (R), we can write
1
d2 2 1 —
<_2>%@:ml o (@) o (y) 5,
dx 0T Jjz—ylze (¥ —y)

The second half of Theorem [[.1] follows. m
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