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Abstract

Westudyageometric variational problemarising frommodeling two-dimensional
charged drops of a perfectly conducting liquid in the presence of an external po-
tential. We characterize the semicontinuous envelope of the energy in terms of a
parameter measuring the relative strength of the Coulomb interaction. As a conse-
quence,when the potential is confining and theCoulomb repulsion strength is below
a critical value, we show existence and regularity estimates for volume-constrained
minimizers. We also derive the Euler–Lagrange equation satisfied by regular crit-
ical points, expressing the first variation of the Coulombic energy in terms of the
normal 1

2 -derivative of the capacitary potential.

1. Introduction

This paper is concernedwith a geometric variational problemmodeling charged
liquid drops in two space dimensions, whose study was initiated in [30]. The prob-
lem in question arises in the studies of electrified liquids, and one of itsmain features
is that the Coulombic repulsion of charges competes with the cohesive action of
surface tension and tends to destabilize the liquid drop [13,33,37], an effect that is
used in many concrete applications (see, e.g., [3,6,18]). From amathematical point
of view, this problem is interesting due to the competition between short-range
attractive and long-range repulsive forces that produces non-trivial energy mini-
mizing configurations and even nonexistence of minimizers when the total charge
is large enough (for an overview, see [7]). The original model in three dimensions
was proposed by Lord Rayleigh [33] and later investigated by many authors (see,
for example, [4,5,9,15,17,20,21,29,37]; this list is not meant to be exhaustive).

In mathematical terminology, we are interested in the properties of the energy

Eλ(�) := H1(∂�) + λ I1(�) +
∫

�

g(x) dx, (1.1)
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where� ⊂ R
2 is a compact setwith smooth boundary and prescribed area |�| = m,

I1(�) := inf
μ∈P(�)

∫
�

∫
�

dμ(x) dμ(y)

|x − y| , (1.2)

where P(�) is the space of probability measures supported on �, and g is a con-
tinuous function. The function I1(�) is often referred to as the 1-Riesz capacitary
energy of �, and the right-hand side of (1.2) admits a unique minimizer μ�, which
is called the equilibrium measure of � [24]. Physically, the model describes the
energetics of a charged conducting liquid drop sandwiched in a narrow space be-
tween the two parallel plates of a Hele-Shaw cell. The terms in (1.1) are, in the order
of appearance: the surface energy contribution of the liquid meniscus between the
plates, the self-interaction Coulombic energy due to the electric field created in the
three-dimensional ambient space by a perfect conductor carrying a fixed charge,
and the effect of a confining external potential that may be due to the spatial vari-
ations in the liquid-solid interfacial energy, a strong applied magnetic field, or a
steady rotation of the cell when the conducting liquid is surrounded by a heavier
insulating liquid. The first term in (1.1) acts as a cohesive term. In contrast, the
second term is a capacitary term due to the presence of a charge and acts on the
drop as a repulsive term. The parameter λ > 0 measures the relative strength of
Coulombic repulsion. We refer to [30] for a more comprehensive derivation of the
two-dimensional model, as well as for a deeper physical background.

A minimization problem for (1.1) must take into account the fine balance that
exists between the surface and the capacitary term [30]. A rough prediction of the
behavior of minimizers, when they exist, is that if λ is big enough, then the drop
will tend to be unstable, possibly leading to absence of a minimizer at all, while if
λ is small, the dominant term is the surface one, leading to existence and stability
of energy minimizing drops in a suitable class of sets. One of the purposes of this
paper is to make the above prediction precise.

We point out that the energy above is a particular case of the more general
energy

Eλ,α,N (�) := HN−1(∂�) + λIα(�) +
∫

�

g(x) dx,

Iα(�) = inf
μ∈P(�)

∫
�

∫
�

dμ(x) dμ(y)

|x − y|α , (1.3)

where � ⊂ R
N is a compact set with smooth boundary and with prescribed

Lebesgue measure |�| = m, and α ∈ (0, N ). For g ≡ 0, some mathematical
analysis of the minimization problem associated with (1.3) has been carried out in
[20,21], where it was shown that the problem is ill-posed for α < N − 1. Indeed,
the nonlocal term Iα(�) is finite whenever the Hausdorff dimension of a compact
set � is greater than N − α. On the other hand, the Hausdorff measure HN−1 is
trivially null on sets whose Hausdorff dimension is less than N−1. Thus, whenever
a positive gap between N −α and N −1 occurs, it is possible to construct sets with
Iα positive and finite, but arbitrarily small HN−1-measure, ensuing non-existence
of minimizers [20]. The existence of a minimizer for (1.3) in the case g = 0 and
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α ≥ N − 1 is still open, except in the borderline case N = 2 and α = 1 (see [30]).
In this latter case, we showed that there exists an explicit threshold λ = λc(m),
where

λc(m) := 4m

π
, (1.4)

such that for λ > λc(m) no minimizer exists, while for λ ≤ λc(m) the only
minimizer is a ball of measure m.

In this paper we address the question of the existence and qualitative properties
of minimizers of (1.3) for N = 2 and α = 1. To this end, in Theorem 1 we char-
acterize the lower semicontinuous envelope of the energy Eλ with respect to the
L1 topology. As a corollary, we show that the energy Eλ is lower semicontinuous
as long as λ is below the precise threshold λc(m), which is the same as the one
for the case g ≡ 0. Then in Theorem 3 we prove, under a suitable coercivity as-
sumption on g, the existence of volume-constrained minimizers for Eλ, as long as
λ < λc(m). Furthermore, in Theorem 4 we obtain density estimates and finiteness
of the number of connected components of minimizers. Building on these regular-
ity estimates, in Theorem 6 we consider the asymptotic regime λ, m → 0, with
lim sup(λ/λc(m)) < 1. In this limit the potential term is of lower order, and we
show that minimizers, suitably rescaled, tend to a ball, which is the unique min-
imizer when g = 0 [30]. Finally, in Theorem 7 we compute the first variation of
I1 and, as a consequence, we derive the Euler–Lagrange equation of the functional
Eλ, for sufficiently smooth sets.

Notice that the proof of Theorem 7 is based on recent regularity improvements
for nonlocal elliptic equations [34,35]. Such results are valid for more general
classes of nonlocal equations than those considered in this paper. We suspect that
the technique that we developed to obtain the first variation of the energy may also
work for a large class of energies involving nonlocal elliptic operators in dimen-
sions higher than two. Nevertheless, this may require overcoming some additional
nontrivial difficulties, which, in particular, is why we decided not to pursue this
calculation for Eλ,α,N in (1.3) with α �= 1 or N �= 2.

Lastly, we point out that to obtain the results of Theorem 1 we crucially exploit
the knowledge of the exact threshold, known only in dimension two, for which the
ball minimizes the energy for g ≡ 0 (see [30]). Furthermore, to get the existence
of minimizers in Theorem 3 we need to restrict to the class of compact sets with
positive measure and with boundary of finite Hausdorff measure in order to apply
first Blaschke Theorem and then Golab Theorem (see [2, Theorems 4.4.15 and
4.4.17]). Notice that the latter result can be applied to our class of compact sets
only in dimension two.

2. Statement of the Main Results

As was mentioned earlier, the main difficulty in showing existence of minimiz-
ers for the variational problems above is that adding a surface term to a nonlocal
capacitary term typically leads to an ill-posed problem. The strategy adopted in [30]
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to study the minimizers of (1.1) with g = 0 was to show directly a lower bound on
the energy, given by that of a single ball, using some concentration compactness
tools and some fine properties of the theory of convex bodies in dimension two.
The presence of the bulk energy in (1.1) precludes application of these techniques.

The strategy of this paper is different: we first characterize the lower semicon-
tinuous envelope of the functional Eλ, in a class of sets which includes compact
sets with smooth boundary. Its explicit expression allows us to state that for certain
values of λ, the energy Eλ is lower semicontinuous with respect to the L1 conver-
gence. To state the main results of the paper, we introduce some notation. Given
m > 0, we denote by Am the class of all measurable subsets of R2 of measure m:

Am :=
{
� ⊂ R

2 : |�| = m
}

. (2.1)

We then introduce the families of sets

Sm := {� ∈ Am : � compact, ∂� smooth} , (2.2)

Km :=
{
� ∈ Am : � compact, H1(∂�) < +∞

}
. (2.3)

We can extend the functional Eλ defined in (1.1) over Sm to the whole of Km by
setting

Eλ(�) := P(�) + λ I1(�) +
∫

�

g(x) dx, � ∈ Km , (2.4)

where P(�) denotes the De Giorgi perimeter of �, defined as

P(�) := sup

{∫
�

div φ dx : φ ∈ C1
c (R

2;R2), ‖φ‖L∞(R2) ≤ 1

}
, (2.5)

which coincides with H1(∂�) if � ∈ Sm . Given an open set A ⊂ R
2, we also

define the perimeter of � in A as

P(�; A) := sup

{∫
�∩A

div φ dx : φ ∈ C1
c (A;R2), ‖φ‖L∞(A) ≤ 1

}
, (2.6)

so that, in particular, P(�) = P(�;R2).
For � ∈ Am we introduce the L1-relaxed energy for Eλ restricted to Sm :

Eλ(�) := inf
�n∈Sm , |�n��|→0

lim inf
n→∞ Eλ(�n). (2.7)

We observe that, as a consequence of Proposition 14 and Corollary 15 in the fol-
lowing section, we can equivalently define Eλ starting from sets �n ∈ Km in (2.7),
that is, there holds

Eλ(�) = inf
�n∈Km , |�n��|→0

lim inf
n→∞ Eλ(�n). (2.8)

Ourfirst result, below, provides an explicit characterization of the relaxed energy
for sets in Km .
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Theorem 1. Let g be a continuous function bounded from below and let m > 0.
Then for any � ∈ Km we have Eλ(�) = Eλ(�), where

Eλ(�) :=
{
Eλ(�) if λ ≤ λ�,

Eλ�(�) + 2π
(√

λ − √
λ�

)
if λ > λ�,

(2.9)

and

λ� :=
(

π

I1(�)

)2
. (2.10)

Moreover, Eλ is lower semicontinuous onKm with respect to the L1−convergence
if and only if λ ≤ λc(m).

We recall that the quantity λc(m) is defined in (1.4).
Note that as can be easily seen from the definition of λ�, we have

Eλ(�) ≥ Eλ�(�) + 2π(
√

λ −√λ�) ∀λ > 0; (2.11)

see Lemma 16. Therefore, the result of Theorem 1 may be interpreted as follows:
either it is energetically convenient to distribute all the charges over the set� or it is
favorable to send some excess charge off to infinity. More precisely, for a given set
� such that λ > λ� it is possible to find a sequence of sets converging to � in the
L1 sense that contain vanishing parts with positive capacitary energy. In particular,
the vanishing parts contribute a finite amount of energy to the limit, which is a
non-trivial property of the considered problem.

The above result implies existence of minimizers for Eλ in Am , as long as we
require the coercivity and the local Lipschitz continuity of the function g.

Definition 2. We say that a function g : R2 → R is coercive if

lim|x |→+∞ g(x) = +∞, (2.12)

Furthermore, we define the class of functions G as follows:

G := {g : R2 → [0,+∞) : g is locally Lipschitz continuous and coercive}.
(2.13)

Note that the assumption of positivity of g in (2.13) is not essential and may be
replaced by boundedness of g from below. For this class of functions, which rep-
resent the effect of confinement by an external potential g, we have the following
existence result.

Theorem 3. Let m > 0, let λ < λc(m) and let g ∈ G. Then there exists a minimizer
�λ for Eλ over all sets in Km.

We stress that the existence result stated in Theorem 3 is not a direct con-
sequence of Theorem 1, the reason being that the class Km is not closed under
L1−convergence, and is in fact one of the main results of this paper. Furthermore,
we notice that Theorem 3 does not include existence for λ = λc(m), in contrast
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with the case when g ≡ 0. We believe it to be a technical limitation of our proof,
and we conjecture that existence should hold also in this limiting case.

Given � ∈ Km , we let �+ be defined as

�+ := {x ∈ � : |� ∩ Br (x)| > 0 for all r > 0} . (2.14)

Notice that �+ is a closed set. Indeed, recalling that � is closed we have that
x ∈ (�+)c if and only if there exists r > 0 such that |� ∩ Br (x)| = 0. Then, for
every y ∈ Br (x) there holds |� ∩ Br−|y−x |(y)| = 0, hence y ∈ (�+)c, that is,
(�+)c is open and �+ is closed. Furthermore, if � ∈ Km , we have �+ ⊂ � and
� \ �+ = {x ∈ � : |� ∩ Br (x)| = 0 for some r > 0} ⊂ ∂�, so that

H1(� \ �+) ≤ H1(∂�) < +∞. (2.15)

As a consequence, we get |�| = |�+|, P(�) = P(�+). Moreover, since the
Hausdorff dimension of � \ �+ is at most 1, then I1(�) = I1(�+) (see Lemma
10 below). Therefore Eλ(�) = Eλ(�

+), and � is a minimizer of Eλ if and only
if �+ is a minimizer. We observe that �+ is a representative of � which is in
general more regular, and for which we can show density estimates which do not
necessarily hold for � itself.

We now state a regularity estimate for the minimizers given in Theorem 3.

Theorem 4. Let m > 0, λ < λc(m) and g ∈ G. Let also �λ be a minimizer of Eλ

over Km. Then there exist c > 0 universal and r0 > 0 depending only on m, λ and
g such that for every 0 < r ≤ r0 and every x ∈ ∂�+

λ there holds

|�λ ∩ Br (x)| ≥ c

(
1 − λ

λc(m)

)2
r2 and |�c

λ ∩ Br (x)| ≥ c

(
1 − λ

λc(m)

)2
r2.

(2.16)
Furthermore, both�λ and�c

λ have a finite number of indecomposable components
in the sense of [1, Section 4].

Remark 5. From Theorem 4 and [27, Theorem II.5.14] it follows that

H1(∂�+
λ ) = P(�+

λ ) = P(�λ). (2.17)

Therefore, the set �+
λ also minimizes the energy Eλ as defined in (1.1), among all

sets in Km .

The semicontinuity of Eλ allows us to get existence of minimizers for λ <

λc(m), but we cannot say much about their qualitative shape, besides the regularity
estimate given in Theorem 4. On the other hand, for m sufficiently small and λ

small relative to λc(m) we can show that the minimizers become close to a single
ball of mass m located at a minimum of g.

Theorem 6. Let g ∈ G and let mk, λk > 0, k ∈ N, be two sequences such that

lim
k→+∞mk = 0 and lim sup

k→+∞
λk

λc(mk)
< 1. (2.18)

Then the following assertions are true:
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(1) For every k large enough there exists a minimizer �k of Eλk over Kmk .
(2) As k → ∞, there exists a bounded sequence (xk) ∈ R

2 such that the bound-

aries of the translated and rescaled minimizers (π/mk)
1
2 (�k − xk) converge

to ∂B1(0) in the Hausdorff distance.
(3) If x0 is a cluster point of (xk), then x0 ∈ argmin g.

We note that in the local setting, i.e., when λ = 0, the result in Theorem 6
was obtained by Figalli and Maggi in [14], who in fact also obtained strong quan-
titative estimates of the rate of convergence of these minimizers to balls in this
perimeter-dominated regime. This is made possible in the context of local isoperi-
metric problems with confining potentials by an extensive use of the regularity
theory available for such problems [27]. In contrast, minimizers of our problem fail
to be quasi-minimizers of the perimeter and, therefore, their C1,α-regularity is a
difficult open question. The proof of Theorem 6, which extends some results of [14]
to the nonlocal setting involving capacitary energies relies on the arguments used
to obtain some regularity estimates of the minimizers in the subcritical regime in
Theorem 4. These estimates are also the first step towards the full regularity theory
of the minimizers of Eλ.

Finally, we derive the Euler–Lagrange equation for the energy Eλ under some
smoothness assumptions on the shape of the minimizer. The main issue here is to
compute the first variation of the functional I1(�)with respect to the deformations
of the set�. To that end, given a compact set�with a sufficiently smooth boundary,
we introduce the potential function

v�(x) :=
∫

�

dμ�(y)

|x − y| , (2.19)

whereμ� is the equilibriummeasure of�minimizing I1. The normal 12 -derivative
of the potential of v� at the boundary of � is then defined as

∂1/2ν v�(x) := lim
s→0+

v�(x + sν(x)) − v�(x)

s1/2
, (2.20)

where x ∈ ∂� and ν(x) is the outward normal vector to ∂� at x .

Theorem 7. Let�bea compact setwith boundaryof classC2, let ζ ∈ C∞(R2,R2),
and let (�t )t∈R be a smooth family of diffeomorphisms of the plane satisfying
�0 = Id and d

dt �t
∣∣
t=0 = ζ . Then the normal 1

2 -derivative ∂
1/2
ν v� of the poten-

tial v� from (2.19) is well-defined and belongs to Cβ(∂�) for any β ∈ (0, 1/2).
Moreover, we have

d

dt
I1(�t (�))

∣∣∣∣
t=0

= −1

8

∫
∂�

(∂1/2ν v�(x))2ζ(x) · ν(x) dH1(x). (2.21)

As a consequence, the Euler–Lagrange equation for a critical point � ∈ Am of Eλ

satisfying the above smoothness conditions is

κ − λ

8
(∂1/2ν v�)2 + g = p on ∂�, (2.22)

where κ is the curvature of ∂� (positive if � is convex) and p ∈ R is a Lagrange
multiplier due to the mass constraint.
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We note that the result in Theorem 7 relies on recent regularity estimates for
fractional elliptic PDEs obtained in [10,34,35]. It is also closely related to the
result of Dalibard and Gérard-Varet [8] on the shape derivative of a fractional
shape optimization problem.

3. Preliminaries: Capacitary Estimates, Perimeters and Connected
Components

In this section we give some preliminary definitions and results about the func-
tionals I1 and P that define Eλ. We begin with an important remark about the
necessity of introducing the classes Km and Sm .

Remark 8. As mentioned in the Introduction, we have to choose carefully the ad-
missible class for the minimization of Eλ. A natural choice would be minimizing
Eλ in the class of finite perimeter sets. However, in this class the functional Eλ is
never lower semicontinuous. Indeed, given a set� ⊂ R

2 and ε > 0 it is possible to
find another set �ε, with |���ε| = 0 and P(�) = P(�ε), but with I1(�ε) < ε

(see the Introduction in [30]). Such a construction cannot be accomplished in Km .
In this sense, Km is the largest class in which it is meaningful to consider the
minimization of Eλ.

In [30, Theorems 1 and 2] uniform bounds on Eλ(�) were proved for g = 0,
which are attained on balls. These estimates will play a crucial role in the proof of
Theorem 1, and we recall them in the following lemma.

Lemma 9. For any � ∈ Km there holds

H1(∂�) + λI1(�) ≥ 2π
√

λ. (3.1)

Moreover, if λ ≤ λc(m) there also holds

H1(∂�) + λI1(�) ≥ H1(∂Br (x0)) + λI1(Br (x0)), (3.2)

where r = √
m/π and x0 ∈ R

2, i.e., Br (x0) is a ball of measure m, and the equality
holds if and only of � = Br (x0) for some x0 ∈ R

2.

We now recall some basic facts about the functional I1.
Lemma 10. [30, Lemma 1] Let � ⊂ R

2 be a compact set such that |�| > 0
and H1(∂�) < +∞. Then there exists a unique probability measure μ over R2

supported on � such that

I1(�) =
∫

�

∫
�

dμ(x)dμ(y)

|x − y| . (3.3)

Furthermore, μ(∂�) = 0, and we have dμ(x) = ρ(x)dx for some ρ ∈ L1(�)

satisfying 0 < ρ(x) ≤ C/dist (x, ∂�) for some constant C > 0 and all x ∈ int(�).

Another useful estimate is the following:
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Lemma 11. [30,Lemma2]Let�1,�2 ⊂ R
2 be compact setswith positivemeasure

such thatH1(∂�i ) < +∞ for i ∈ {1, 2}, and |�1∩�2| = 0. Then, for all t ∈ [0, 1]
there holds

I1(�1 ∪ �2) ≤ t2I1(�1) + (1 − t)2I1(�2) + 2 t (1 − t)

dist(�1,�2)
, (3.4)

and there exists t̄ ∈ (0, 1) such that

I1(�1 ∪ �2) > t̄2I1(�1) + (1 − t̄)2I1(�2). (3.5)

From [20, Section 2] (see also [24]) we have that

I1(�) = 2π

cap1(�)
, (3.6)

whenever � is a compact set, where cap1(�) is the 1
2 -capacity of � defined as

cap1(�) := inf

{
‖u‖2

H̊
1
2 (R2)

: u ∈ C∞
c (R2), u ≥ χ�

}
, (3.7)

and

‖u‖2
H̊

1
2 (R2)

:= 1

4π

∫
R2

∫
R2

|u(x) − u(y)|2
|x − y|3 dxdy (3.8)

is the Gagliardo norm of the homogeneous fractional Sobolev space obtained via
completion of C∞

c (R2) with respect to that norm [11,26]. For the sake of com-
pleteness, we provide a short justification of this fact: Let v� := μ� ∗ | · |−1 be the
potential of �, where μ� is the equilibrium measure for �. Then v� satisfies

(−�)
1
2 v� = 2πμ� (3.9)

distributionally in R2, and
⎧⎪⎨
⎪⎩

(−�)
1
2 v� = 0 in �c,

v� = I1(�) in �\�0,

lim|x |→+∞ v�(x) = 0 ,

(3.10)

for some �0 ⊂ � with cap1(�0) = 0 (see, for instance, [20, Lemma 2.11] and
[24, p. 137]). Furthermore, arguing as in the proof of [25, Theorem 11.16] one can
see that

u� := I−1
1 (�) v� (3.11)

is the 1
2 -capacitary potential of �, which satisfies cap1(�) = ‖u�‖2

H̊
1
2 (R2)

, and

I1(�) =
∫
R2

v� dμ� = 1

2π

∫
R2

v�(−�)1/2v� dx
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= 1

2π

∫
R2

∣∣∣(−�)1/4v�

∣∣∣2 dx = 1

2π
‖v�‖2

H̊
1
2 (R2)

, (3.12)

so that

cap1(�) = ‖u�‖2
H̊

1
2 (R2)

=
‖v�‖2

H̊
1
2 (R2)

I1(�)2
= 2π

I1(�)
. (3.13)

The link with the classical Newtonian capacity, defined for � ⊂ R
3 as

cap(�) := inf
{
‖∇u‖2L2(R3)

: u ∈ C1
c (R

3), u ≥ χ�

}
, (3.14)

is given by the equality
cap1(�) = 2 cap(� × {0}) (3.15)

for any compact set� ⊂ R
2 [25, Theorem 11.16]. Finally, we recall that cap1(�) =

0 ifH1(�) < ∞ (see [24, Theorem 3.14]).
We note that, a priori, the functional I1 is not lower semicontinuouswith respect

to L1 convergence. However, given a compact set �, I1 is semicontinuous along a
specific family of sets, namely sets of the form

�δ := {x ∈ R
2 : dist(x,�) ≤ δ} (3.16)

for δ → 0. This is formalized in the next lemma, and then exploited in Proposition
17.

Lemma 12. Let � be a compact subset of R2 and let (δn)n∈N ⊂ [0,+∞) and
δ̄ ∈ [0,+∞) be such that δn → δ as n → ∞. Then

I1(�δ) ≤ lim inf
n→+∞ I1(�δn ). (3.17)

Moreover, if δn ↘ δ it holds that

I1(�δ) = lim
n→+∞ I1(�δn ). (3.18)

Proof. We can suppose that (δn)n∈N is a monotone sequence. We have two cases:
If δn ↗ δ, then δn ≤ δ for any n and thus by the monotonicity of I1 with respect
to set inclusions, we have that I1(�δn ) ≥ I1(�δ) and the lower semicontinuity is
proven.

We deal now with the case δn ↘ δ. Let us fix ε > 0 and let ϕ ∈ C1
c (R

2) be such

that ϕ > χ
�δ , and ‖ϕ‖2

H̊
1
2 (R2)

≤ cap1(�
δ) + ε. Then, since {ϕ > 1} is an open set

which contains �δ , for n big enough (depending on ε) ϕ is also a test function for
cap1(�

δn ), and we get

cap1(�
δ) ≤ cap1(�

δn ) ≤ ‖ϕ‖2
H̊

1
2 (R2)

≤ cap1(�
δ) + ε. (3.19)

Letting ε ↘ 0, we get the continuity of cap1 and hence of I1 by (3.13). ��
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We prove now a result which turns out to be very useful in the proof of the
semicontinuity result in Theorem 1, as well as of the existence and regularity results
in Theorems 3 and 4.

Lemma 13. Let � = U ∪ V with U and V compact sets of finite positive measure
and such that |U ∩ V | = 0. Then we have

I1(�) ≥ I1(U ) − π

4|U | P(V ). (3.20)

Proof. By Lemma 11 we have

I1(�) ≥ min
t∈[0,1]

{
t2I1(U ) + (1 − t)2I1(V )

}
. (3.21)

By computing the minimum on the right-hand side, we get

I1(�) ≥ I1(U ) − I2
1 (U )

I1(U ) + I1(V )
≥ I1(U ) − I2

1 (U )

I1(V )
. (3.22)

We recall that I1 is maximized by the ball among sets of fixed volume. Letting
B := B√|U |/π (0), we then get that |B| = |U | and [30, Lemma 3.3]

I1(U ) ≤ I1(B) = π
3
2

2
√|U | . (3.23)

Moreover, by [31, Corollary 3.2] the dilation invariant functional F := I1(·)P(·)
is minimized by balls, and on a ball Br it takes the value I1(Br )P(Br ) = π2, so
that

I1(V ) ≥ π2

P(V )
. (3.24)

We plug these two estimates into (3.22) to get

I1(�) ≥ I1(U ) −
(

π
3
2

2
√|U |

)2
P(V )

π2 = I1(U ) − π

4|U | P(V ), (3.25)

which is the desired estimate. ��
In the proof of Theorem 3 we shall use some topological features of sets of

finite perimeter in dimension two. Since these sets are defined in the L1−sense (as
equivalence classes), it is not a priori immediate how to define what a connected
component for a set of finite perimeter is. A suitable notion of connected compo-
nents for sets of finite perimeter was introduced in [1]. Below we recall some of
their main features that we shall use in the sequel.

Given � ∈ Km , let �̊M be its measure theoretic interior, namely:

�̊M :=
{
x ∈ R

2 : lim
r→0

|� ∩ Br (x)|
πr2

= 1

}
. (3.26)
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Since P(�̊M ) = P(�) = H1(∂M�) ≤ H1(∂�) < +∞, where ∂M� is the
essential boundary of � [27], the set �̊M is a set of finite perimeter. Therefore,
following [1], there exists an at most countable family of sets of finite perimeter

�i such that �̊M =
(⋃

i �̊
M
i

)
∪ �, with H1(�) = 0, where the sets �̊M

i are

the so-called indecomposable components of �̊M . In particular, the sets �i admit
unique representatives that are connected and satisfy the following properties:

(i) H1(�i ∩ � j ) = 0 for i �= j ,
(ii) |�| =∑i |�i |,
(iii) P(�) =∑i P(�i ),

(iv) �i = �̊M
i .

Moreover, each set �i is indecomposable in the sense that it cannot be further
decomposed as above. We refer to these representatives of �i as the connected
components of �. We point out that this notion coincides with the standard notion
of connected components in the following sense: if � has a regular boundary
(Lipschitz continuous being enough) then the components �i are the closures of
the usual connected components of the interior of �.

Such a representation of � as a union of connected components allows us
to convexify the components in order to decrease the energy. Indeed, for every
i ∈ N there holds I1(co(�i )) ≤ I1(�i ) and H1(∂ co(�i )) ≤ H1(∂�i ), where
co(�i ) denotes the convex envelope of the component �i . This follows from the
fact that �i ⊆ co(�i ), and that the outer boundary of a connected component can
be parametrized by a Jordan curve of finite length (see [1, Section 8]). In addition,
since ∂� is negligible with respect to the equilibriummeasure for I1(�) by Lemma
10, we have I1(�) = I1(�̊M ).

The next result shows that the relaxations of Eλ in Sm and in Km coincide.

Proposition 14. Given � ∈ Km, there exists a sequence of sets �n ∈ Sm such that

lim
n→∞ |�n��| = 0 and lim sup

n→∞
Eλ(�n) ≤ Eλ(�). (3.27)

Proof. Assume first that P(�) = H1(∂�). Then by [36, Theorem 1.1] applied
to BR(0) \ �, for R > 0 big enough there exists a sequence of compact sets �̃n

with smooth boundaries such that �̃n ⊃ �, |�̃n��| → 0 and P(�̃n) → P(�)

as n → ∞. Furthermore, by monotonicity of I1 with respect to set inclusions we
have I1(�̃n) ≤ I1(�). Now, we define �n := (m/|�̃n|)1/2�̃n ∈ Sm , and in view
of the fact that |�̃n| → m as n → ∞ we obtain the result.

Let us now consider the general case. By [1, Corollary 1], there exists a sequence
of sets �n ∈ Km such that ∂�n is a finite union of Jordan curves, and as n → ∞
we have

|�n��| → 0, P(�n) → P(�), P(� \ �n) → 0. (3.28)

In particular, P(�n) = H1(∂�n) for every n ∈ N. Then by Lemma 13 it follows
that

I1(�n) ≤ I1(�n ∩ �) ≤ I1(�) + ωn, (3.29)
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with

ωn := π

4 |�n ∩ �| P(� \ �n) → 0 as n → ∞, (3.30)

so that

lim sup
n→+∞

Eλ(�n) ≤ Eλ(�). (3.31)

Applying now the approximation with regular sets to each set �n , we conclude by
a diagonal argument. ��

Proposition 14 yields the following characterization of the relaxed energy Eλ.

Corollary 15. For every � ∈ Am there holds

Eλ(�) = inf
�n∈Km , |�n��|→0

lim inf
n→∞ Eλ(�n). (3.32)

We finish this section with the following elementary lemma establishing (2.11):

Lemma 16. Let m > 0 and � ∈ Km. Then (2.11) holds, where λ� is defined in
(2.10).

Proof. Using the definition of λ�, we have

Eλ(�) − Eλ�(�) − 2π(
√

λ −√λ�) =
(√

λI1(�) − π√I1(�)

)2
≥ 0, (3.33)

which yields the claim. ��

4. The Relaxed Energy: Proof of Theorem 1

In this section we prove Theorem 1.We divide the proof into first characterizing
the relaxation of Eλ in Proposition 17 and then showing the semicontinuity of Eλ

for λ ≤ λc(m) in Proposition 18.

Proposition 17. For any � ∈ Km, it holds that

Eλ(�) =
{
Eλ(�) if λ ≤ λ�,

Eλ�(�) + 2π
(√

λ − √
λ�

)
if λ > λ�,

(4.1)

where λ� is defined in (2.10).

Proof. Let �n be a sequence of sets in Sm such that |�n��| → 0 as n → ∞.
For any δ > 0 we let �δ as in (3.16). Notice that there exists δ0 > 0 such that
�δ ∈ Km+ω(δ), for any δ ≤ δ0, where ω(δ) → 0 as δ → 0 by the monotone
convergence theorem.
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For any n ∈ N we let �n(δ):=�n ∩ �δ and �̃n(δ):=�n \ �δ . By [27, Section
II.7.1], we have

P(�n) ≥ P(�n; int(�δ))+P(�n;R2\�δ) = P(�n(δ))+P(�̃n(δ))−2H1(�n∩∂�δ). (4.2)

Notice that for any fixed δ ∈ (0, δ0), by Coarea Formula [27, Theorem 18.1] we
also have

∫ δ

0
H1(�n ∩ ∂�t ) dt = |�n ∩ (�δ \ �)| ≤ |�n��|, (4.3)

Therefore we can choose δn ∈ (δ/2, δ) such that

H1(�n ∩ ∂�δn ) ≤ 2 |�n��|
δ

. (4.4)

Recalling (4.2) this gives

P(�n) ≥ P(�n(δn)) + P(�̃n(δn)) − ωδ
n, (4.5)

where ωδ
n ≤ 4

δ
|�n��|. Up to a subsequence, we can assume that δn → δ̄ as

n → ∞ for some δ̄ ∈ [δ/2, δ]. Moreover, we can choose δn such that P(�̃n(δn)) =
H1(∂�̃n(δn)) (see [28, Equation (68)]).

We now estimate the nonlocal term. Since �n ⊂ �n(δn) ∪ �̃n(δn), we have

I1(�n) ≥ I1(�n(δn) ∪ �̃n(δn))

≥ min
t∈[0,1]

(
t2I1(�n(δn)) + (1 − t)2I1(�̃n(δn))

)

≥ min
t∈[0,1]

(
t2I1(�δn ) + (1 − t)2I1(�̃n(δn))

)
,

(4.6)

where the second inequality follows from Lemma 11, while the third is due to the
fact that �n(δn) is contained in �δn and that I1 is decreasing with respect to set
inclusions.

By Lemma 9 we have that

H1(∂�̃n(δn)) + λ(1 − t)2I1(�̃n(δn)) ≥ 2π(1 − t)
√

λ. (4.7)

Thus, by combining (4.6) with (4.5), recalling that P(�̃n(δn)) = H1(∂�̃n(δn)),
we obtain

Eλ(�n) ≥ P(�n(δn)) +
∫

�n

g dx − ωδ
n + H1(∂�̃n(δn))

+λ min
t∈[0,1]

(
t2I1(�δn ) + (1 − t)2I1(�̃n(δn))

)

≥ P(�n(δn)) +
∫

�n

g dx − ωδ
n + min

t∈[0,1]

(
λt2I1(�δn ) + 2π(1 − t)

√
λ
)

= P(�n(δn)) +
∫

�n

g dx − ωδ
n +

⎧⎪⎨
⎪⎩
2π

√
λ − π2

I1(�δn )
if I1(�δn ) > π√

λ

λ I1(�δn ) if I1(�δn ) ≤ π√
λ

.
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(4.8)

Therefore, thanks to the lower semicontinuity of the perimeter with respect to the
L1 convergence (notice that |�n(δn)��δ| → 0 as n → +∞) and thanks to the
semicontinuity of I1 in Lemma 12, in the limit as n → ∞ we obtain

lim inf
n→∞ Eλ(�n) ≥ P(�δ̄) +

∫
�

g dx +

⎧⎪⎨
⎪⎩
2π

√
λ − π2

I1(�δ̄)
if I1(�δ̄) > π√

λ

λ I1(�δ̄) if I1(�δ̄) ≤ π√
λ

,

(4.9)

Letting now δ → 0 in (4.9), and again using that I1(�δ̄) → I1(�) by Lemma
12, we finally get

lim inf
n→∞ Eλ(�n) ≥ P(�) +

∫
�

g dx +
⎧⎨
⎩
2π

√
λ − π2

I1(�)
if λ > λ�

λ I1(�) if λ ≤ λ�

= Eλ(�), (4.10)

where Eλ(�) is defined in (2.9).
Wenowhave to show that there exists a sequence�n inSm such that |�n��| →

0 as n → +∞ and
lim sup
n→∞

Eλ(�n) ≤ Eλ(�). (4.11)

Recalling Corollary 15, it is enough to find a sequence �n in Km with the desired
properties.

If λ ≤ λ� we can take �n := � and there is nothing to prove. If λ > λ� we let
R > 0 such that � ⊂ BR/2(0). Notice that, for all n large enough (depending on
R) there exist n points x1, . . . , xn in B2R(0) \ BR(0) such that |xi − x j | ≥ R/

√
n

for all i �= j . We then take �n := ρn � ∪
(
∪n
i=1Br/n(xi )

)
, where

r :=
√

λ − √
λ�

2
and ρn :=

√
1 − πr2

m n
. (4.12)

Notice that with these choices of r and ρn we have that the sets ρn� and Br/n(xi )
are disjoint, |�n| = m and

dist(ρn�,∪n
i=1Br/n(xi )) ≥ R

2
− r

n
≥ R

4
(4.13)

for all n large enough. Letting t = √
λ�/λ, by Lemma 11 we estimate

Eλ(�n) ≤ Eλt2(ρn�) + Eλ(1−t)2

(
∪n
i=1 Br/n(xi )

)
+ 2t (1 − t)λ

dist(ρn�,∪n
i=1Br/n(xi ))

≤ Eλt2(ρn�) + Eλ(1−t)2

(
∪n
i=1 Br/n(xi )

)
+ 2λ

R
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= Eλ�(ρn�) + E(
√

λ−√
λ�)2

(
∪n
i=1 Br/n(xi )

)
+ 2λ

R
. (4.14)

Let now μi be the equilibrium measure for Br/n(xi ). Then 1
n

∑n
i=1 μi is an admis-

sible measure in the definition of I1(∪i Br/n(xi )), so that

I1(∪n
i=1Br/n(xi )) ≤ n · 1

n2
I1(Br/n(x1)) + 1

n2
∑
i �= j

∫
Br/n(xi )

∫
Br/n(x j )

dμi (x) dμ j (y)

|x − y|

≤ 1

n
I1(Br/n(x1)) + 1

n2
∑
i �= j

1

|xi − x j | − 2r
n

≤ 1

n
I1(Br/n(x1)) + 2

n2
∑
i �= j

1

|xi − x j | ,

(4.15)

for n large enough. Since for any i = 1, . . . , n we have

∫
Br/n(xi )

g(y) dy ≤ πr2

n2
‖g‖L∞(B2R(0)), (4.16)

from (4.14) we obtain

Eλ(�n) ≤ Eλ�(ρn�) + nP(Br/n(x1)) + (
√

λ − √
λ�)2

n
I1(Br/n(xi )) + πr2

n
‖g‖L∞(B2R (0))

+ 2(
√

λ − √
λ�)2

n2
∑
i �= j

1

|xi − x j | + 2λ

R

= Eλ�(ρn�) + 2πr + π

2r
(
√

λ −√λ�)2 + πr2

n
‖g‖L∞(B2R (0))

+ 2(
√

λ − √
λ�)2

n2
∑
i �= j

1

|xi − x j | + 2λ

R

= Eλ�(ρn�) + 2π(
√

λ −√λ�) + π(
√

λ − √
λ�)2

4n
‖g‖L∞(B2R (0))

+ 2(
√

λ − √
λ�)2

n2
∑
i �= j

1

|xi − x j | + 2λ

R
,

(4.17)
where we used (4.12) and the fact that I1(Br ) = π

2r (see [30, Equation (2.5)]).
Notice that, since |xi − x j | ≥ R/

√
n, we have

∑
i �= j

1

|xi − x j | ≤ Cn2

R
,

for some universal constantC > 0 and n large enough depending only on R. Notice
also that ρn → 1 as n → ∞, so that

lim
n→∞ Eλ�(ρn�) = lim

n→∞

(
ρn P(�) + λ�ρ−1

n I1(�) +
∫

ρn�

g(x)dx

)
= Eλ�(�),

(4.18)
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where in the last term we passed to the limit using g ∈ G and the Dominated
Convergence Theorem. Sending n → ∞ in (4.17) we then get

lim sup
n→∞

Eλ(�n) ≤ Eλ�(�) + 2π(
√

λ −√λ�) + 2λ + C(
√

λ − √
λ�)2

R
.

Sending now R → +∞, we eventually obtain (4.11) and this concludes the proof.
��

From Proposition 17 we get the following result:

Proposition 18. The functional Eλ is lower semicontinuous in Km if and only if
λ ≤ λc(m).

Proof. Since I1(�) ≤ I1(Bm) for any � ∈ Km (see [32, VII.7.3, p.157]), where
Bm is a closed ball of measure m, we have that λ� ≥ λBm

= 4m/π , with equality

if and only if � = Bm . Thus, if λ ≤ 4m/π , the energy Eλ coincides with its lower
semicontinuous envelope Eλ by Proposition 17. On the other hand, if λ > λBm

then Eλ(Bm) < Eλ(Bm). Indeed, recalling (2.10) we have

Eλ(Bm) − Eλ(Bm)√
λ −

√
λBm

=
(√

λ +
√

λBm

)
I1(Bm) − 2π

=
(√

λ + π

I1(Bm)

)
I1(Bm) − 2π

= √
λ I1(Bm) − π =

(√
λ −

√
λBm

)
I1(Bm) > 0.

In particular, Eλ is not lower semicontinuous for λ > λBm
. ��

Lastly, Theorem 1 directly follows from Propositions 17 and 18.

5. Existence of Minimizers: Proof of Theorem 3

In this section we show existence of minimizers of Eλ under suitable assump-
tions on λ and on the function g. We start with a simple existence result for mini-
mizers of the relaxed energy Eλ.

Proposition 19. Let g ∈ G. Then Eλ admits a minimizer �λ over Am for every
λ > 0.

Proof. Let �k be a minimizing sequence for Eλ(�). Notice that P(�k) < c for
some positive constant c independent of k. Letting �R

k := �k ∩ BR(0), we have
P(�R

k ) ≤ P(�k) + P(BR(0)) ≤ c + 2πR. Thus, by the compactness of the
immersion of BV (BR(0)) into L1(BR(0)), applied to the sequence χ�R

k
, we get

that there exists a set �R⊂ BR(0) such that χ�R
k

→ χ�R in L1, up to a (not
relabeled) subsequence, as k → +∞. Sending R → +∞, by a diagonal argument
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we get that there exists �λ ⊂ R
2 such that, up to extracting a further subsequence,

the functions χ�k converge to χ�λ in L1
loc(R

2).
Now we observe that, since �k is a minimizing sequence for Eλ, there exists

C > 0 such that, for all R > 0 large enough, we have

|�k \ BR(0)| inf
x∈Bc

R(0)
g(x) ≤

∫
�k\BR(0)

g(x) dx ≤
∫

�k

g(x) dx ≤ C, (5.1)

so that

|�k \ BR(0)| ≤ C

inf x∈Bc
R(0) g(x)

. (5.2)

In particular, by (2.12) for any ε > 0 there exists Rε > 0 such that |�k\BRε (0)| ≤ ε

for all k. Thus, recalling the convergence of χ�k to χ�λ in L1
loc(R

2) as k → ∞,
there also exists kε ∈ N such that

|�k��λ| = |(�k��λ) ∩ BRε (0)| + |(�k��λ) \ BRε (0)| ≤ 2ε, (5.3)

for all k ≥ kε, that is, the sequence χ�k converges to χ�λ in L1(R2) as k → ∞.
Since, by definition, Eλ is lower semicontinuous in L1(R2), we eventually get

that �λ is a minimizer of Eλ. ��
The main difficulty in proving Theorem 3 is to show that the minimizer �λ is

indeed an element of Km , so that it is also a minimizer of Eλ by Proposition 17.
We first show that cap1(�) depends continuously on smooth perturbations of

�, where � ⊂ R
2 is a compact set with Lipschitz boundary.

Lemma 20. Let � ⊂ R
2 be a compact set with positive measure and Lipschitz

boundary. Let η ∈ W 1,∞(R2,R2), let �t (x) := x + tη(x) be the corresponding
family of (Lipschitz) diffeomorphisms, defined for t ∈ (−t0, t0) and t0 sufficiently
small, and let �t := �t (�).

Then, for t ∈ (−t0, t0) it holds that

cap1(�) ≤ cap1(�t )(1 + Ct), (5.4)

where the constant C > 0 depends only on the W 1,∞-norm of η.

Proof. Let ut be the 1
2 -capacitary potential of�t minimizing (3.7) with� replaced

by�t , and let u := ut ◦�t . Notice that u is an admissible function for the minimum
problem (3.7). In particular, we have

cap1(�) ≤ 1

4π

∫
R2

∫
R2

|u(x) − u(y)|2
|x − y|3 dxdy. (5.5)

We now compute
∫
R2

∫
R2

|u(x) − u(y)|2
|x − y|3 dxdy

=
∫
R2

∫
R2

|ut (�t (x)) − ut (�t (y))|2
|x − y|3 dxdy
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=
∫
R2

∫
R2

|ut (X) − ut (Y )|2
|�−1

t (X) − �−1
t (Y )|3

∣∣∣det∇�−1
t (X)

∣∣∣
∣∣∣det∇�−1

t (Y )

∣∣∣ dXdY,

(5.6)

where we performed the change of variables X = �t (x), Y = �t (y). Observing
that

|det∇�−1
t (X) − 1| ≤ Ct and |�−1

t (X) − �−1
t (Y )| ≥ (1 − Ct)|X − Y |,

(5.7)

whereC > 0 depends only on theW 1,∞-norm of η, from (5.5) and (5.6) we readily
obtain (5.4). ��

From Lemma 20 and (3.6), we immediately get the following result:

Corollary 21. Under the assumptions of Lemma 20, there holds

I1(�t ) ≤ I1(�)(1 + Ct), (5.8)

where the constant C > 0 depends only on the W 1,∞-norm of η.

We now show that, if λ < λc(m), we can decrease the energy of a set � ∈ Km

by reducing the number of its connected components and holes.

Proposition 22. Let λ < λc(m) and g ∈ G. Then, for any � ∈ Km we can find
�̃ ∈ Km such that Eλ(�̃) ≤ Eλ(�), �̃ ⊂ BR(0), and the numbers of connected
components of both �̃ and of �̃c are bounded above by N, where the numbers
R, N depend only on λ,m, g and Eλ(�).

Proof. We divide the proof into two steps.
Step 1: Construction of a uniformly bounded set with a uniformly bounded number
of connected components.
Let �i be the connected components of �, and up to a relabeling we can suppose
that if mi := |�i |, then mi ≥ mi+1. Let ε ∈ (0,m/2). We claim that there exists
Nε ∈ N depending only on ε and m such that

∣∣∣∣∣∣� \
⋃
i>Nε

�i

∣∣∣∣∣∣ ≥ m − ε

2
>

3

4
m. (5.9)

Indeed, we have
∑∞

i=1mi = m, and by the isoperimetric inequality we get

∞∑
i=1

√
4πmi ≤

∞∑
i=1

P(�i ) ≤ Eλ(�). (5.10)

Recalling that the sequence i �→ mi is decreasing, it follows that

mi ≤ E2
λ(�)

4π i2
. (5.11)
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Hence there exists C > 0 depending only on m and Eλ(�) such that

∑
i≥k

mi ≤ C

k
, (5.12)

so that (5.9) holds for Nε ≥ 2C/ε.
Let us set

Uε :=
Nε⋃
i=1

�i . (5.13)

We claim that there exists R̄ ≥ 1, depending only on m, g and Eλ(�) such that

|Uε ∩ BR̄(0)| ≥ 2

3
m. (5.14)

Notice that the previous equation implies in particular that

|Uε \ BR̄(0)| ≤ 1

3
m. (5.15)

Indeed, reasoning as in the proof of Proposition 19, for any R > 0 we can write

Eλ(�) ≥
∫

�\BR(0)
g dx ≥ |� \ BR(0)| inf

x∈Bc
R(0)

g(x), (5.16)

so that

|� \ BR(0)| ≤ Eλ(�)

infx∈Bc
R(0) g(x)

. (5.17)

Take now R̄ ≥ 1 such that Eλ(�)
infx∈Bc

R̄
(0) g(x)

≤ m
12 . Such a radius exists in view of the

coercivity of g. Then we have

|Uε ∩ BR̄(0)| ≥ |Uε| − m

12
>

3

4
m − m

12
= 2

3
m, (5.18)

which gives (5.14).
By the same argument, there exists Rε ≥ 2R̄ such that |Uε ∩ BRε (0)| ≥ m − ε.

Moreover, since P(Uε) ≤ Eλ(�), we can also find a radius Rn
ε ∈ [Rε, R′

ε], with
R′

ε := Rε + Eλ(�), such that

H1(Uε ∩ ∂BRn
ε
(0)) = 0. (5.19)

Indeed, since we are working in dimension two we can write

H1
({

t ∈ R : H1(∂Bt (0) ∩Uε) > 0
})

≤
Nε∑
i=1

diam(�i ) ≤ 1

2
P(�) ≤ 1

2
Eλ(�),

(5.20)

which ensures the existence of Rn
ε satisfying (5.19).
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Let now ϕ : R → R be a cutoff function defined as

ϕ(s) :=

⎧⎪⎨
⎪⎩
1 if |s| ≤ R̄

2 − |s|
R̄

if R̄ < |s| ≤ 2R̄

0 if |s| ≥ 2R̄.

(5.21)

For t ≥ 0, we introduce the localized dilation �t (x) := (1 + tϕ(|x |))x , and we
observe that

det∇�t (x) = (1 + tϕ(|x |))2 + t |x |ϕ′(|x |)+t2|x |ϕ(|x |)ϕ′(|x |). (5.22)

In particular, the map t �→ |�t (A)| = ∫
A det∇�t (x) dx is continuous for every

set A ⊂ R
2 of finite measure. We notice that a similar construction of a localized

dilation can be found in the proof of [12, Theorem 1].
Recalling (5.14), (5.15) and letting Ũε := Uε ∩ BRn

ε
(0), we have

|�t (Ũε)| =
∫
Ũε

det∇�t (x) dx

=
∫
Ũε

[
(1 + tϕ(|x |))2 + t |x |ϕ′(|x |) + t2|x |ϕ(|x |)ϕ′(|x |)

]
dx

≥ |Ũε| + (2t + t2)|Uε ∩ BR̄(0)| − t + t2

R̄

∫
Uε∩B2R̄(0)\BR̄(0)

|x | dx

≥ |Ũε| + 2

3
m(2t + t2) − 2

3
m(t + t2) = |Ũε| + 2

3
mt ,

which implies that

∣∣∣∣� 3(m−|Ũε |)
2m

(Ũε)

∣∣∣∣ ≥ m. (5.23)

Noting that |�0(Ũε)| = |Ũε| = |Uε ∩ BRn
ε
(0)| ≤ m, we obtain that there exists

tε ≥ 0 such that |�tε (Ũε)| = m and

tε ≤ 3(m − |Ũε|)
2m

≤ 3ε

2m
. (5.24)

Let now Wε := �tε (Ũε). Recalling Corollary 21 and [22, Proposition 3.1] (see
also [27, Proposition 17.1]), the following properties hold:

(i) Wε ⊂ BR′
ε
(0) and Wε has at most Nε connected components;

(i i) |Wε| = m;
(i i i) P(Wε) ≤ Lip(�tε ) P(Ũε) ≤ (1 + tε)P(Ũε) ≤ P(Ũε) + Ctε;
(iv) I1(Wε) ≤ I1(Ũε) + Ctε;
(v)
∫
Wε

g(x) ≤ ∫Ũε
g(x) dx + Ctε;
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where the constant C > 0 depends only on g, m and Eλ(�). Indeed, the first two
assertions follow by construction. Assertion (i i i) holds true since ‖ϕ‖L∞(R) ≤ 1.
Assertion (iv) follows by Corollary 21, while (v) holds true since

∫
Wε

g(x) dx =
∫
Ũε

g(�tε (x))det∇�tε (x) dx

≤ (1 + tε)
2
(∫

Ũε

g(x) dx + C‖∇g‖L∞(B2R̄(0))mtε

)

≤
∫
Ũε

g(x) dx + C ′tε ,

for some C,C ′ > 0 depending only on g, m and Eλ(�).
We claim that Eλ(Wε) ≤ Eλ(�) for ε small enough. Letting Vε := � \ Ũε, we

compute

δε := Eλ(�) − Eλ(Wε) = P(Ũε) + P(Vε) + λI1(Ũε ∪ Vε) +
∫
Ũε

g dx +
∫
Vε

g dx

−P(Wε) − λI1(Wε) −
∫
Wε

g dx

≥ P(Vε) + λI1(Ũε ∪ Vε) − λI1(Ũε) − Ctε , (5.25)

where the constantC > 0 depends only on g,m, and Eλ(�), andwe took advantage
of (5.19). We also have |Vε| < ε by construction. Using Lemma 13 with U = Ũε

and V = Vε, we obtain

P(Vε)+λI1(Ũε∪Vε)−λI1(Ũε) ≥ P(Vε)

(
1 − λπ

4|Ũε|
)

≥ P(Vε)

(
1 − λπ

4(m − ε)

)
.

(5.26)
Recalling that λ < 4m/π , we can choose ε small enough so that

(
1 − λπ

4(m − ε)

)
≥ 1

2

(
1 − λπ

4m

)
. (5.27)

Recalling (5.24) as well, with the help of the isoperimetric inequality we then get

δε ≥ 1

2

(
1 − λπ

4m

)
P(Vε) − 3C

2m
|Vε| ≥ √

π

(
1 − λπ

4m

)
|Vε| 12 − 3C

2m
|Vε| ≥ 0,

(5.28)

provided we choose ε small enough depending only on g, m and Eλ(�). We thus
proved that δε ≥ 0, that is, Eλ(Wε) ≤ Eλ(�).
Step 2: Construction of a set with a uniformly bounded number of holes.
In Step 1 we built a set W ∈ Km , with a uniformly bounded number of connected
components and such that Eλ(W ) ≤ Eλ(�). In particular, there exists a uniform
radius R > 0 such that W ⊂ BR(0). Starting from this, we construct another set
with a uniformly bounded number of holes, where a hole is a bounded connected
component of the complement set.
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Let us denote by {Hi }i∈N the connected components ofWc which are bounded.
As in Step 1, for ε ∈ (0,m/2) we can find Nε such that

∑
i>Nε

|Hi | ≤ ε. Let us
set Hε :=⋃i>Nε

Hi and

�ε :=
√

m

m + |Hε| (W ∪ Hε) ∈ Km . (5.29)

Notice that

P(�ε) ≤ P(W ∪ Hε) = P(W ) − P(Hε), (5.30)

I1(�ε) =
√
m + |Hε|

m
I1(W ∪ Hε) ≤

(
1 + |Hε|

2m

)
I1(W ), (5.31)

∫
�ε

g(x) dx = m

m + |Hε|
∫
W
g

(√
m

m + |Hε| x
)

dx

≤
∫
W
g(x) dx + C |Hε|, (5.32)

where the constantC > 0 depends onm, g and R, and in obtaining (5.31), we used
concavity of the square root and monotonicity of the capacitary term with respect
to filling the holes. Putting together (5.30), (5.31) and (5.32), we then get

Eλ(�ε) ≤ Eλ(W ) − P(Hε) +
(
Eλ(�)

2m
+ C

)
|Hε| , (5.33)

which yields the claim for ε small enough by the isoperimetric inequality. ��
We now prove Theorem 3.

Proof of Theorem 3. Let �n ∈ Km be a minimizing sequence for Eλ. In particular
Eλ(�n) ≤ c, for some c = c(λ, g,m) > 0 depending only on g and m.

Thanks to Proposition 22,we can assume that the sets�n are uniformly bounded
and the number of connected components both of �n and of (�n)

c is uniformly
bounded. In particular, the number of connected components of ∂�n is also uni-
formly bounded.

SinceH1(∂�n) ≤ c, it follows by Blaschke Theorem (see [2, Theorem 4.4.15])
that ∂�n → � in the Hausdorff distance, as n → +∞ up to passing to a subse-
quence, for some compact set � ⊂ R

2 withH1(�) < +∞.
Up to passing to a further subsequence, we also have that the sets �n converge

to some compact set �, again in the Hausdorff distance. We notice that

∂� ⊂ �. (5.34)

Indeed if x ∈ ∂� \ �, then there exists xn ∈ �n such that xn → x . On the other
hand, there exists N ∈ N and ε0 > 0 such that dH (xn, ∂�n) ≥ ε0 for n ≥ N .
Otherwise there would exists yn ∈ ∂�n such that |yn − xn| = d(xn, ∂�n) → 0
and thus

|yn − x | ≤ |yn − xn| + |xn − x | → 0, (5.35)
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which is impossible, since x /∈ �. But then the ball Bε0(xn) is contained, for
n ≥ N , in �n and converges in Hausdorff distance to Bε0(x) ⊂ �. In particular we
get x /∈ ∂�, which gives a contradiction. Thanks to Golab Theorem [2, Theorem
4.4.17], we then obtain

H1(∂�) ≤ H1(�) ≤ lim inf
n→+∞ H1(∂�n) ≤ c. (5.36)

Let now x ∈ R
N \�. Then there exist ε > 0 and N ∈ N such that for n ≥ N , we

have that Bε(x) ⊂ �n or Bε(x) ⊂ (RN \�n). Thus χ�n (x) = 1 or χ�n (x) = 0 for
n large enough. In particular χ�n → χ� almost everywhere and, by the Dominated
Convergence Theorem, we obtain that χ�n → χ� in L1(R2).

We can now conclude that � is a minimizer in Km . Indeed, the minimality is
granted by the lower semicontinuity of Eλ w.r.t. the L1-convergence, since λ <

λc(m). Moreover, � ∈ Km since it is compact, it has measure m and H1(∂�) <

+∞ by (5.36). The proof is concluded. ��

6. Partial Regularity of Minimizers: Proof of Theorem 4

In this section we show that all minimizers of our problem are bounded, con-
tain finitely many connected components and holes, and satisfy suitable density
estimates. For the latter, the argument essentially follows the classical proof of the
density estimates for quasi-minimizers of the perimeter (see [27]). Note, however,
that the standard regularity theory of quasi-minimizers of the perimeter cannot be
applied directly, as the nonlocal term I1 presents a crititcal perturbation to the
perimeter. This additional complication may be overcome with the help of Lemma
13 for subcritical values of λ < λc(m), yielding some mild regularity of the mini-
mizers.

Proof of Theorem 4. Throughout the proof, we identify the minimizer �λ with its
regular representative �+

λ , and drop the superscript “+” for ease of notation.
First of all, the assertion about the number of connected components of �λ and

�c
λ follows from the argument in the proof of Proposition 22, observing that the

inequality in that proposition becomes strict otherwise, contradicting theminimality
of�λ. Therefore, the rest of the proof focuses on the density estimates (2.16), whose
proof uses the estimates similar to those in the proof of Proposition 22. It is enough
to show the first assertion, since the second one can be proved analogously, taking
into account that �+

λ is a closed set.
For r ∈ (0,

√
m/(2π)), so that |�λ \ Br (x)| ≥ m/2, we set

v(0) := 0, v(r) := |�λ ∩ Br (x)|, �λ,r :=
√

m

m − v(r)

(
�λ \ Br (x)

) ∈ Km .

(6.1)

Since x ∈ ∂�+
λ , we have that v(r) > 0 for all r > 0. Moreover, since �λ has finite

perimeter, for almost every r > 0 it holds (see [27]) that

P(�λ) = P(�λ; Br (x)) + P(�λ; Bc
r (x)) and

dv

dr
(r) = H1(∂Br (x) ∩ �λ).

(6.2)
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Recalling the Lipschitz continuity of g, for almost every r ∈ (0,
√
m/(2π)) we

then get

P(�λ; Br (x)) + P(�λ; Bc
r (x)) + λI1(�λ) +

∫
�λ

g(y) dy = Eλ(�λ)

≤ Eλ(�λ,r ) =
√

m

m − v(r)

(
P(�λ; Bc

r (x)) + H1(∂Br (x) ∩ �λ)
)

+ λ

√
m − v(r)

m
I1(�λ \ Br (x)) + m

m − v(r)

∫
�λ\Br (x)

g

(√
m

m − v(r)
y

)
dy

≤ P(�λ; Bc
r (x)) + dv

dr
(r) + λI1(�λ \ Br (x)) +

∫
�λ

g(y) dy + Cv(r),

(6.3)
where the constant C > 0 depends only on m, λ and g.

After some simplifications, (6.3) reads

P(�λ; Br (x)) ≤ dv

dr
(r) + Cv(r) + λI1(�λ \ Br (x)) − λI1(�λ). (6.4)

Applying Lemma 13 with U = �λ \ Br (x) and V = �λ ∩ Br (x), we then obtain

P(�λ; Br (x)) ≤ dv

dr
(r) + Cv(r) + λπ

4|�λ \ Br (x)| P(�λ ∩ Br (x))

≤ dv

dr
(r) + C ′v(r) + λπ

4m
P(�λ ∩ Br (x)), (6.5)

where C ′ > 0 depends only on m, λ and g.
Since for almost every r > 0 there holds

P(�λ; Br (x)) + dv

dr
(r) = P(�λ ∩ Br (x)), (6.6)

by adding the quantity dv
dr (r) to both sides of (6.5) we obtain

P(�λ ∩ Br (x))

(
1 − λπ

4m

)
≤ 2

dv

dr
(r) + C ′v(r). (6.7)

Thanks to the isoperimetric inequality, for almost every r ∈ (0,
√
m/(2π))we then

get

2
√

π

(
1 − λπ

4m

)√
v(r) ≤ 2

dv

dr
(r) + C ′v(r). (6.8)

Recalling that λ < 4m/π , there exists r0 ∈ (0,
√
m/(2π)), depending only on m,

λ and g, such that

2
√

π

(
1 − λπ

4m

)√
v(r) − C ′v(r) ≥ √

π

(
1 − λπ

4m

)√
v(r) for all 0 < r ≤ r0,

(6.9)
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which gives

dv

dr
(r) ≥

√
π

2

(
1 − λπ

4m

)√
v(r) for a.e. 0 < r ≤ r0. (6.10)

After a direct integration, this inequality implies that

v(r) ≥ π

16

(
1 − λπ

4m

)2
r2 for a.e. 0 ≤ r ≤ r0, (6.11)

which gives the first inequality in (2.16). This concludes the proof. ��

7. Asymptotic Shape of Minimizers: Proof of Theorem 6

Proof of Theorem 6. The first assertion is a direct consequence of Theorem 3, since
λk < λc(mk) for k large enough.

We now prove the second assertion. Let �k be a minimizer of Eλk over Kmk .
Recalling Remark 5, without loss of generality we can assume that

P(�k) = H1(∂�k). (7.1)

By a change of variables x = rk x̃ , with rk := √
mk/π we obtain that

Eλk (�k) = rk Fk(�̃k), (7.2)

where �̃k := r−1
k �k , so that, in particular, |�̃k | = π , and

Fk(�) := P(�) + λkπ

mk
I1(�) + rk

∫
�

g (rk x̃) dx̃ . (7.3)

Observe that since g ∈ G, there exists x0 ∈ R
2 such that g(x0) = min g, and

without loss of generality we may assume that x0 = 0. By the minimality of �k

we have that

P(�̃k) + λkπ

mk
I1(�̃k) + rk

∫
�̃k

g (rk x̃) dx̃ ≤ P(B1(0)) + λkπ

mk
I1(B1(0))

+rk

∫
B1(0)

g (rk x̃) dx̃ . (7.4)

Notice also that, since the gradient of g is locally bounded, we have

0 ≤
∫
B1(0)

(g (rk x̃) − g(0)) dx̃ ≤ Crk, (7.5)

where C > 0 depends only on g, for all k large enough. From (7.4) and (7.5) we
then get

P(�̃k) + λkπ

mk
I1(�̃k) + rk

∫
�̃k

(g (rk x̃) − g(0)) dx̃ ≤ P(B1(0)) + λkπ

mk
I1(B1(0)) + Cr2k ,

(7.6)
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and we note that the integral in the left-hand side is non-negative.
We recall from Lemma 9 the inequality

P(B1(0)) + λI1(B1(0)) ≤ H1(�̃k) + λI1(�̃k) = P(�̃k) + λI1(�̃k), (7.7)

where the last equality follows from Remark 5, for all λ ≤ 4. Hence we get

I1(B1(0)) − I1(�̃k) ≤ 1

λ

(
P(�̃k) − P(B1(0))

)
. (7.8)

From (7.6) and (7.8) with λ = 4 we then obtain
(
1 − λkπ

4mk

) (
P(�̃k) − P(B1(0))

)+ rk

∫
�̃k

(g (rk x̃) − g(0)) dx̃ ≤ Cr2k . (7.9)

By the isoperimetric inequality in quantitative form [16], there exist x̃k ∈ R
2

such that

|�̃k�B1(x̃k)|2 ≤ Cmk

(
1 − λkπ

4mk

)−1

, (7.10)

for all k small enough, for some constant C > 0 depending only on g. Hence,
recalling the assumption on λk, mk , we obtain

lim
k→+∞ |�̃k�B1(x̃k)| = 0, (7.11)

implying that �̃k converge to B1(0) in the L1-sense. Hausdorff convergence of �̃k

and of their complements then follows from the fact that the density estimates in
Theorem 4 can be easily seen to hold for �̃k uniformly in k. We conclude, since
Hausdorff convergence of a sequence of sets and of their complements entails
Hausdorff convergence of the boundaries of the sequence (see, for instance, [23,
Theorem 2.7]).

Similarly, from (7.9) written in the original unscaled variables, and with the
help of the isoperimetric inequality we infer that

1

mk

∫
R2

χ�k (x)ḡ(x) dx − g(0) ≤ Cm1/2
k , (7.12)

where ḡ(x) = min{g(x), g(0) + 1} and χ�k are the characteristic functions of �k .
At the same time, defining xk := rk x̃k and using (7.10) we have

∣∣∣∣
∫
R2

(χ�k − χBrk (xk ))ḡ dx

∣∣∣∣ ≤ (g(0) + 1)|�k�Brk (xk)| ≤ Cm3/2
k , (7.13)

for C > 0 depending only on g and all k large enough. Thus, we have that (7.12)
also holds with χ�k replaced with χBrk (xk ), and by Lipschitz continuity of ḡ we
obtain

ḡ(xk) = 1

mk

∫
R2

χBrk (xk)(x)ḡ(xk) dx ≤ 1

mk

∫
R2

χBrk (xk )(x)ḡ(x) dx + Cm1/2
k



1800 C. B. Muratov, M. Novaga, & B. Ruffini

≤ 1

mk

∫
R2

χ�k (x)ḡ(x) dx + C ′m1/2
k ≤ g(0) + C ′′m1/2

k , (7.14)

for some C,C ′,C ′′ > 0 depending only on g and all k large enough. In particular,
ḡ(xk) = g(xk) for all k sufficiently large, and by coercivity of g the sequence of
xk is bounded. Thus, it is the desired sequence.

Finally, to prove the third assertion of the theorem, we pass to the limit k → ∞
in (7.14), after extracting a convergent subsequence, and use continuity of g. ��

8. The Euler–Lagrange Equation: Proof of Theorem 7

The aim of this section is to obtain the Euler–Lagrange equation satisfied by
regular critical points of the functional Eλ. In order to do this, we first compute the
first variation of an auxiliary functional which will be shown to be related to the
capacitary energy.

Given an open set � ⊂ R
2, not necessarily bounded, and a function f ∈

L
4
3 (R2), we define

I�, f (v) :=
⎧⎨
⎩

1
2‖v‖2

H̊
1
2 (R2)

− ∫
R2 f v dx if v ∈ H̊

1
2 (R2) and v|�c = 0,

+∞ otherwise.
(8.1)

Notice that since the space H̊
1
2 (R2) continuously embeds into L4(R2), the func-

tional I�, f admits a unique minimizer u�, f ∈ H̊
1
2 (R2), which satisfies

{
(−�)

1
2 u�, f = f on �,

u�, f = 0 on �c,
(8.2)

in the distributional sense, namely (see [26, Eq. (4.14)]):
∫

�

u�, f (−�)
1
2 ϕ dx =

∫
�

f ϕ dx ∀ϕ ∈ C∞
c (�), (8.3)

where

(−�)
1
2 ϕ(x) := 1

4π

∫
R2

2ϕ(x) − ϕ(x − y) − ϕ(x + y)

|y|3 dy x ∈ R
2, (8.4)

with the usual convention of extending ϕ by zero outside �. Furthermore, when
u�, f |� ∈ C1,α

loc (�) ∩ L∞(�) for some α ∈ (0, 1), we also have that (8.2) holds

pointwise in �, with the definition of (−�)
1
2 in (8.4) extended to such functions

[34, Section 3]. In addition, in this case we have

J f (�) := min I�, f = −1

2

∫
�

u�, f f dx = −1

2

∫
�

u�, f (−�)
1
2 u�, f dx . (8.5)

The following lemma gives a basic regularity result for the Dirichlet problem
in (8.2).
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Lemma 23. Let f ∈ L∞(R2) ∩ L
4
3 (R2), let � ⊂ R

2 be an open set and let u�, f

be the minimizer of I�, f . Then there exists a constant C > 0 depending only on f
such that ‖u�, f ‖L∞(R2) ≤ C.

If in addition f |� ∈ Cα
loc(�) for some α ∈ (0, 1) then u�, f |� ∈ C1,α

loc (�).

Proof. Let ϕ ∈ H̊
1
2 (R2) be the unique solution to (−�)

1
2 ϕ = − f in R

2 (for a
detailed discussion of the notion and the representations of the solution, see [26,

Section 4]). In particular, since by assumption f ∈ L
4
3 (R2) ∩ L∞(R2), from [26,

Lemma 4.1] it follows that ϕ ∈ L∞(R2). Furthermore, since we have

1

2
‖v‖2

H̊
1
2 (R2)

−
∫
R2

v f dx = 1

2
‖v + ϕ‖2

H̊
1
2 (R2)

− 1

2
‖ϕ‖2

H̊
1
2 (R2)

for any v ∈ H̊
1
2 (R2),

(8.6)

we get that the function w�, f := u�, f + ϕ solves the minimum problem

w�, f = argmin

{
‖w‖2

H̊
1
2 (R2)

: w ∈ H̊
1
2 (R2), w|�c = ϕ

}
. (8.7)

By an explicit computation, for any w ∈ H̊
1
2 (R2) we have ‖w̄‖

H̊
1
2 (R2)

≤
‖w‖

H̊
1
2 (R2)

, where

w̄ := min(max(w,−‖ϕ‖L∞(R2)), ‖ϕ‖L∞(R2)). (8.8)

It then follows that ‖w�, f ‖L∞(R2) ≤ ‖ϕ‖L∞(R2), yielding

‖u�, f ‖L∞(R2) ≤ ‖w�, f ‖L∞(R2) + ‖ϕ‖L∞(R2) ≤ 2 ‖ϕ‖L∞(R2). (8.9)

Finally, Hölder regularity of the derivative of u is an immediate consequence
of [34, Eq. (6.2)] (see also the references therein). ��

We now recall the definition of the normal 1
2 -derivative of the function u�, f

vanishing at points of ∂�:

∂1/2ν u�, f (x) := lim
s→0+

u�, f (x − sν(x))

s1/2
x ∈ ∂�, (8.10)

where ν(x) is the outward unit normal vector. We have the following result that
will be crucial for the computation of the shape derivative of J f (�).

Lemma 24. Let �n ,�∞ ⊂ R
2, n ∈ N, be open sets whose boundaries are uni-

formly bounded and uniformly of class C1,α for some α ∈ (0, 1/2). Let f ∈
L∞(R2) ∩ L

4
3 (R2) and assume that �n → �∞, as n → ∞, in the Hausdorff

distance. Then, for all n ∈ N ∪ {∞} the function ∂
1/2
ν u�n , f can be continuously

extended to a function Dn ∈ Cα(R2) such that Dn → D∞ as n → ∞, locally
uniformly in R2.
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Proof. Denote un := u�n , f for simplicity. Let R1 > 2R0 > 0 be such that
∂�n ⊂ BR0/2(0) and BR0(0) ⊂ BR1/2(x0) for all n ∈ N ∪ {∞} and x0 ∈ ∂�n . Let
also �̃n := �n ∩ BR0+R1(0).

Notice that from Lemma 23 it follows that ‖un‖L∞(R2) ≤ C for some constant
C > 0 independent of n. Then by [35, Proposition 1.1], applied with � replaced
by �̃n and B1(0) replaced by BR1(x0) for some x0 ∈ ∂�n , the sequence (un) is
uniformly bounded in C1/2(BR0(0)). We observe that the C1/2-estimate in [35] is
uniform in n since the involved constants depend only on the C1,α-norm of the
boundary of ∂�̃n . As a consequence, by Arzelà-Ascoli Theorem, up to passing to
a subsequence, the functions un converge as n → ∞ to u∗ uniformly in BR0(0).

To identify the limit function u∗, we establish the �-convergence of the func-

tional I�n , f to I�∞, f with respect to the weak convergence in H̊
1
2 (R2). The latter

is the natural topology, since the minimizers of I�n , f are uniformly bounded in

H̊
1
2 (R2) independently of n. Indeed, by Hölder inequality we have

0 = I�n , f (0) ≥ 1

2
‖un‖2

H̊
1
2 (R2)

− ‖ f ‖
L

4
3 (R2)

‖un‖L4(R2), (8.11)

and the last term is dominated by the first term in the right-hand side by frac-
tional Sobolev inequality [11, Theorem 6.5]. The � − lim inf follows from lower-

semicontinuity of the H̊
1
2 (R2)-norm and the continuity of the linear term, together

with the fact that the limit function vanishes a. e. in �c∞ by compact embedding of

H̊
1
2 (R2) into L p

loc(R
2) for any p < 4 [11, Corollary 7.2]. Finally, the � − lim sup

follows by approximating the limit function by a function fromC∞
c (�∞), forwhich

we have pointwise convergence of I�n , f , and a diagonal argument. As a corollary

to this result, we have that un ⇀ u∞ in H̊
1
2 (R2) and, hence, by uniqueness of the

minimizer of I�∞, f , we also have un → u∞ a. e. in R2. In particular, u∗ = u∞ a.
e. in BR0(0).

We now consider the functions Dn : �̃n → R, Dn(x) := un(x)/d
1/2
n (x), where

dn(x) := dist(x, �̃c
n) and n ∈ N∪{∞}. Then by [35, Theorem 1.2] (see also [10]),

applied as before with � replaced by �̃n and B1(0) replaced by BR1(x0) for some
x0 ∈ ∂�n , the sequence (Dn) is uniformly bounded in Cα(BR0(0)). By classical
extension theorems (see for instance [19, Theorem 6.38]) for all n ∈ N we can
extend Dn to a function Dn : BR0(0) → R such that

‖Dn‖Cα(BR0 (0)) ≤ C0‖Dn‖Cα(BR0 (0)) ≤ C, (8.12)

where the constantsC0, C are independent of n. Again by Arzelà-Ascoli Theorem,
up to passing to a subsequence, the functions Dn converge as n → ∞ to a function
D

∗ ∈ Cα(BR0(0)) uniformly. Moreover, from the convergence of un to u∞ we get
that D

∗|�̃∞∩BR0 (0) = D∞.

Finally, we observe that Dn is a continuous extension of ∂
1/2
ν un for all n ∈

N ∪ {∞}, since we have, for any x ∈ ∂�n ,

Dn(x) = lim
s→0+ Dn(x − sν(x)) = lim

s→0+
un(x − sν(x))

dn(x − sν�n (x))
1/2 = ∂1/2ν un(x),

(8.13)
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concluding the proof. ��
Corollary 25. Under the assumptions of Lemma 24, let xn ∈ ∂�n and x ∈ ∂�∞
be such that xn → x ∈ ∂�∞. Then ∂

1/2
ν un(xn) → ∂

1/2
ν u∞(x) as n → +∞.

Proof. Consider the extensions Dn , n ∈ N ∪ {∞}, constructed in the proof of the
previous lemma. Then we have

|∂1/2ν un(xn) − ∂1/2ν u∞(x)| = |Dn(xn) − D∞(x)|
≤ |Dn(xn) − Dn(x)| + |Dn(x) − D∞(x)| (8.14)

and the right-hand side of the latter inequality converges to 0 as n → +∞. ��
We now compute the first variation of the functional J f . We note that for

bounded domains and under stronger regularity assumptions such a computation
was carried out in [8], with a relatively long and technical proof. Here we provide
an alternative, shorter proof, that also covers the case of unbounded domains and
weaker assumptions on the regularity of f and ∂�.

Theorem 26. Let f ∈ L∞(R2) ∩ L
4
3 (R2) be such that f |� ∈ Cα

loc(�) for some
α ∈ (0, 1). Let� be an open set with compact boundary of class C2, and let u�, f be
the unique minimizer of I�, f . Let ζ ∈ C∞(R2,R2), and let (�t )t∈R be a smooth
family of diffeomorphisms of the plane satisfying �0 = Id and d

dt �t
∣∣
t=0 = ζ .

Then, if ν is the outward pointing normal vector to ∂�, the normal 1
2 -derivative

∂
1/2
ν u�, f is well-defined and belongs to Cβ(∂�) for any β ∈ (0, 1/2). Moreover,
we have

d

dt
J f (�t (�))

∣∣∣∣
t=0

= −π

8

∫
∂�

(∂1/2ν u�, f (x))
2ζ(x) · ν(x) dH1(x). (8.15)

Proof. Let �t := �t (�). Since ∂� is of class C2, for all x ∈ ∂�t and |t | small
enough we can write

�−1
t (x) = x + tρt (x)νt (x), (8.16)

where ρt ∈ C2(∂�t ) is a scalar function and νt is the unit outward normal to ∂�t .
Furthermore, the right-hand side of (8.16) establishes a bijection between ∂�t and
∂�, and we have

ρ0(x) := lim
t→0

ρt (x) = −ζ(x) · ν(x) ∀x ∈ ∂�. (8.17)

For t > 0 sufficiently small, let �t ⊂ � be a regular inward deformation of �,
namely,�t is such that (8.16) holds true with some ρt ≥ 0. Note that it is enough to
consider inward perturbations, since for outward perturbations one would simply
interchange the roles of �t and � in the argument below.

We denote u := u�, f and ut := u�t , f for simplicity. Recall that u and ut solve
pointwise {

(−�)
1
2 u = f in �,

u = 0 in �c,
(8.18)
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and {
(−�)

1
2 ut = f in �t ,

ut = 0 in �c
t .

(8.19)

In particular, by [35, Theorem 1.2] we have |u(x)| ≤ C
√
dist(x, ∂�) for some

constant C > 0, which in turn implies that |(−�)
1
2 u(x)| ≤ C/

√
dist(x, ∂�),

and the same holds for the function ut , with � replaced by �t and the constant C
independent of t for all small enough t . These estimates justify all the computations
of integrals involving u and ut below.

From (8.18), (8.19) and (8.5) we get

J f (�t ) − J f (�) = 1

2

∫
R2

u(−�)
1
2 u dx − 1

2

∫
R2

ut (−�)
1
2 ut dx

= −1

2

∫
R2

(ut + u)(−�)
1
2 (ut − u) dx (8.20)

= −1

2

∫
�\�t

u(−�)
1
2 ut dx + 1

2

∫
�\�t

u f dx .

The last term in (8.20) satisfies∣∣∣∣12
∫

�\�t

u f dx

∣∣∣∣ ≤ C ‖ f ‖L∞(�\�t ) ‖ρt‖
1
2
L∞(∂�) t

1
2 |� \ �t | ≤ C ′t

3
2 = o(t).

(8.21)

We thus focus on the first term of the right-hand side of (8.20). We have

−1

2

∫
�\�t

u(−�)
1
2 ut dx = − 1

8π

∫
�\�t

∫
R2

u(x)
2ut (x) − ut (x − y) − ut (x + y)

|y|3 dy dx

= 1

4π

∫
�\�t

∫
�t

u(x)ut (y)

|x − y|3 dy dx . (8.22)

Next we split the integral over �t in (8.22) into integrals over �R and �t\�R ,
where

�R := {x ∈ � : dist(x,�c) > R} (8.23)

and R > 0 is such that ∂�R is of classC2 and�t\�R consists of a union of disjoint
strip-like domains. We have

− 1

2

∫
�\�t

u(−�)
1
2 ut dx

= 1

4π

∫
�\�t

∫
�R

u(x)ut (y)

|x − y|3 dy dx + 1

4π

∫
�\�t

∫
�t\�R

u(x)ut (y)

|x − y|3 dy dx

= 1

4π

∫
�\�t

∫
�R

u(x)ut (y)

|x − y|3 dy dx + 1

4π

×
∫

∂�t

∫
∂�t

∫ tρt (x)

0

∫ R

0

u(x + sνt (x))ut (y − s′νt (y))
|x − y + sνt (x) + s′νt (y)|3

× (1 + sκ(x))(1 − s′κ(y)) ds′ ds dH1(y) dH1(x), (8.24)



Conducting Flat Drops in a Confining Potential 1805

where κ is the curvature of ∂�t , positive if �t is convex. As above, one can check
that the first term on the right-hand side of (8.24) is O(t3/2R−2) for all t small
enough, hence we can focus again just on the second term.

To estimate the last integral in the right-hand side of (8.24), we first observe
that the curvature contributions inside the brackets can be bounded by O(R) and,
therefore, a posteriori give rise to errors of order O(Rt) for all t small enough, as
the integral itself will be shown to be O(t). Thus, we have

− 1

2

∫
�\�t

u(−�)
1
2 ut dx = 1

4π

×
∫

∂�t

∫
∂�t

∫ tρt (x)

0∫ R

0

u(x + sνt (x))ut (y − s′νt (y))
|x − y + sνt (x) + s′νt (y)|3 ds′ ds dH1(y) dH1(x)

+O(t3/2R−2) + O(Rt). (8.25)

For x ∈ ∂�t , we let

F(x) :=
∫

∂�t

∫ tρt (x)

0

∫ R

0

u(x + sνt (x))ut (y − s′νt (y))
|x − y + sνt (x) + s′νt (y)|3 ds′ ds dH1(y),

(8.26)

and split the integral over y into a near-field part

FR(x) :=
∫

∂�t∩BR(x)

∫ tρt (x)

0

∫ R

0

u(x + sνt (x))ut (y − s′νt (y))
|x − y + sνt (x) + s′νt (y)|3 ds′ ds dH1(y),

(8.27)

and the far field part F(x) − FR(x). As with (8.25), the latter may be estimated
to be O(t3/2R−2), so we focus on the computation of FR(x). To that end, we let
y = y(σ ) be the arc-length parametrization of ∂�t ∩ BR(x) relative to x and
observe that

(i) (y(σ ) − x) · νt (x) = O(σ 2),
(ii) νt (x) · νt (y(σ )) = 1 + O(σ 2),
(iii) |y(σ ) − x | = σ + O(σ 3),

uniformly in x and t . Therefore,

|y(σ ) − x−sνt (x) − s′νt (y(σ ))|2 = |y(σ ) − x − (s + s′)νt (x) − s′(νt (y(σ ) − νt (x)))|2
= |y(σ ) − x |2 + (s + s′)2 − 2(y(σ ) − x) · νt (x)(s + s′)

+ |s′|2|νt (y(σ )) − νt (x)|2
− 2s′(y(σ ) − x) · (νt (y(σ )) − νt (x)) + 2(s + s′)s′νt (x) · (νt (y(σ )) − νt (x))

= σ 2 + (s + s′)2 + O(σ 4) + O(σ 2R) + O(σ 2R2)

= (σ 2 + (s + s′)2)(1 + O(R)), (8.28)

again, uniformly in x and t , for all R small enough. Thus we have

|y(σ ) − x − sνt (x) − s′νt (y(σ ))|−3 = (σ 2 + (s + s′)2)−
3
2 (1 + O(R)). (8.29)
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By the uniform convergence of ∂
1/2
ν ut to ∂

1/2
ν u as t → 0, and the fact that

∂
1/2
ν ut is of class Cβ(∂�t ) for all β ∈ (0, 1/2) (by Lemma 24), we have that

u(x + sνt (x)) = (1 + ot (1)) ∂1/2ν u(x + tρt (x)νt (x))
√
tρt (x) − s

= (1 + ot (1)) ∂1/2ν ut (x)
√
tρt (x) − s

(8.30)

and
ut (y(σ ) − s′νt (y(σ )) = (1 + ot (1)) ∂1/2ν ut (y(σ ))

√
s′

= (1 + ot (1) + oR(1)) ∂1/2ν ut (x)
√
s′.

(8.31)

Plugging (8.29), (8.30) and (8.31) into (8.27), we get

FR(x) = (1 + ot (1) + oR(1))
∫ σ+

R (x)

σ−
R (x)

∫ tρt (x)

0

∫ R

0

|∂1/2ν ut (x)|2√(tρt (x) − s)s′
(σ 2 + (s + s′)2)3/2

ds′ ds dσ,

(8.32)
where σ±

R (x) = ±R + O(R3).
Observe that FR(x) = 0 if ρt (x) = 0. If ρt (x) > 0, we can perform the change

of variables

z = s

tρt (x)
, z′ = s′

tρt (x)
, ζ = σ

tρt (x)
, (8.33)

to obtain

FR(x) = (1 + ot (1) + oR(1)) tρt (x)|∂1/2ν ut (x)|2

×
∫ σ+

R (x)/(tρt (x))

σ−
R (x)/(tρt (x))

∫ 1

0

∫ R/(tρt (x))

0

√
(1 − z)z′

(ζ 2 + (z + z′)2)3/2
dz′ dz dζ, (8.34)

which is also valid if ρt (x) = 0. By the Dominated Convergence Theorem, as
t → 0 the integral in the right-hand side converges to

∫ ∞

−∞

∫ 1

0

∫ ∞

0

√
(1 − z)z′

(ζ 2 + (z + z′)2)3/2
dz′ dz dζ

= 2
∫ 1

0

∫ ∞

0

√
(1 − z)z′

(z + z′)2
dz′ dz = π2

2
. (8.35)

We thus have

−1

2

∫
�\�t

u(−�)
1
2 ut dx = (1 + ot (1) + oR(1))

π t

8

∫
∂�t

|∂νut (x)|2ρt (x) dH1(x),

so that by the above estimates and the uniform continuity of ρt and ∂
1/2
ν ut in t , we

get

lim
t→0

J f (�t ) − J f (�)

t
= (1 + oR(1))

π

8

∫
∂�

|∂νu(x)|2ρ0(x)dH1(x). (8.36)

Finally, by (8.17) the thesis follows by sending R → 0 in (8.36) and Lemma 24. ��
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Remark 27. As was mentioned earlier, for bounded domains and under stronger
regularity assumptions the result in Theorem 26 was obtained in [8] with a different
proof. In [8, Theorem 1], the first variation is stated with a non-explicit constant, but
an analysis of the proof shows that their constant agrees with ours, as it should. Our
proof exploits the boundary regularity for non-local elliptic problems developed in
[35] (see also the survey [34] and [10]), which simplifies the proof even for bounded
domains.

We are now in a position to compute the first variation of the functional I1
on C2−regular bounded sets, and consequently the Euler–Lagrange equation for
Eλ for such sets. Recalling (3.6), it is enough to compute the first variation of the
1
2 -capacity cap1(�), which follows directly from Theorem 26, as we show below.

Theorem 28. Let� be a compact setwith boundary of classC2, let ν be the outward
pointing normal vector to ∂� and let u� be the 1

2 -capacitary potential of� defined

in (3.11). Then, the 1/2-derivative ∂
1/2
ν u� is well-defined and belongs to Cβ(∂�)

for any β ∈ (0, 1/2). Moreover, letting ζ and �t be as in Theorem 26, there holds

d

dt
cap1(�t (�))

∣∣∣∣
t=0

= π

4

∫
∂�

(∂1/2ν u�(x))2ζ(x) · ν(x) dH1(x). (8.37)

Proof. Letϕ ∈ C∞
c (R2) be such thatϕ = 1 in an open neighborhood of�. Observe

that our choice of ϕ implies that, if

f (x) := −(−�)
1
2 ϕ(x) = − 1

4π

∫
R2

2ϕ(x) − ϕ(x − y) − ϕ(x + y)

|y|3 dy, (8.38)

then ∈ L∞(R2) ∩ L
4
3 (R2) ∩ C0,1(R2). Notice also that any test function u in the

definition of cap1(�) such that u = 1 on � can be put in correspondence with a
test function v = u − ϕ in the definition of the auxiliary functional I�c, f in (8.1).
Moreover, since

1

2
‖u‖2

H̊
1
2 (R2)

= 1

2
‖v‖2

H̊
1
2 (R2)

+ 1

2
‖ϕ‖2

H̊
1
2 (R2)

−
∫
R2

v f dx, (8.39)

we get that

1

2
cap1(�) = 1

2
‖ϕ‖2

H̊
1
2 (R2)

+ J f (�
c), (8.40)

and the minimizer u� satisfies u� = v�c, f + ϕ, where v�c, f is the minimizer of

I�c, f . Observing also that ∂
1/2
ν u� = ∂

1/2
ν v�c, f , the conclusion follows byTheorem

26. ��

Finally, Theorem 7 is a direct consequence of Theorem 28, together with (3.6) and
(3.11).
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