An interplay between dimensionality and topology
N thin ferromagnetic films
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Topological spin textures
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T. Lancaster, Contemp. Phys. 60, 246-261 (2019)

spin spirals and chiral domain walls from Dzyaloshinskii-Moriya interaction (DMI):

magnetic skyrmions:

Néel-type skyrmion
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C. Hanneken et al., Nature Nanotechnol. 10, 1039-1042 (2015)



Topological what?

topology Is a branch of mathematics that deals with properties of objects
that are preserved under continuous deformations (homotopies)

INn the context of ferromagnetism, the object is the magnetization field:

M:Q — R?

magnetization field is a map from a domain occupied by the ferromagnet
into the space of 3D vectors

a homotopy invariant is a characteristic of the magnetization field such that

S(My) is true = S(M;) is true
Vo : [0,1] x Q — R® continuous
Mt(r) — Sp(ta I‘)




Topological what?

- need to specify the source manifold () where the magnetization M lives

- need to specify the target manifold = the range of allowed values of M

- need to specify the notion of continuity between different M fields
once the above are fixed, need to identify the homotopy invariants S(M)

all of the above are model-specific!

Example: winding Néel wall
Q=RU{occ} |M|=M, M=0

continuity: Ve>036>0: |[t—1t| <0 and
lz— 2| <dor|z| >0, 2 =00 = |My(z) - My(2)| <e¢

homotopy invariant = winding number (topological degree) of M
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~easy axis

Micromagnetics of thin films (3D)

statics: Q=D x (0,d), DCR? M(z,y) =
E(M) = A /\VM\%P A[;d/ |ML\2d2r—u0/M3Hd3
()33/Dd/——_— o\ g2
—|—/L()/RS/RS 87T’I‘—I"| d’r d’r —I—MS D(MHV M, — M, VMH)d’I“

Landau and Lifshitz, 1935; Brown, 1963; Néel, 1954; Crépieux and Lacroix, 1998; M, Slastikov, 2016
Here M=M_,M;), M, c R? MyeR M|=Ms; in Q H=0

Parameters and their representative values:

- exchange constant A = 10~1J/m film thickness d = 0.5 —5nm
- anisotropy constant K = 1.25 x 10% J/m?’ lateral dimension:

- saturation magnetization M, = 1.09 x 10° A /m L =50 — 500 nm

- DMl strength D = 1 mJ/m? applied field strength  poH = 100 mT
NJ 1

exchange length /., = 3.66 nm




Dimension reduction (3D to 2D) m = (m_,m)

assume the magnetization m = M /M, does not vary significantly across the
film thickness, measure lengths in the units of ¢, scale energy by Ad

ex’

E(m) = {]Vm|2 +(Q—1)m,|* —2km, - Vi — 2h(m — 1)} d°r

: 2./
27T5/R2/R? (rr’ VI — /’2+52—27T(5 (I‘r)5> my (v)my (x') d°r d°r

+5/ Ks(lr — ')V -m_(r)V -m, (v') d*r d°r'
R JR?

Here:

S

1 6+ V62 + r? 2 1
— ] 1+ — ~
2@{“( ; ) \/ +52+5} ~ 0K 1

C. Garcia-Cervera, Ph.D. thesis (1999)




Reduced thin film energy (2D) m = (my,m)

regime § < 1. Taylor-expand in Fourier space

E(m):/ (IVmf + (Q — 1)|m. > — 2xm, - Vimy — 2h(my — 1) }d2
RQ

+i V-m,(r)V- -m,(r) d2rd2r’——

4 R2 JR2 ]I‘—I‘" R2 JR2 |I'—I'/‘3

(my(r) — my(r

)) dZ,r, d2r/

M, Slastikov, 2016

the expression for the stray field energy Is rigorously justified via a [ -expansion
KnUpfer, M, Nolte, 2019

for bounded 2D samples, extra boundary terms appear b Fratta, M, Slastikov, 2021

proper definition of the non-local terms via Fourier:

1 (m —m
1 / | |y (k)| / (x) —my (c)® 5 2 } surface
2 Jr2 27r r2 JR2 \r — /|3 charges
1 ’kfl’\lj_(k V - mJ_ V mL( ) 9 9 volume
3 d“rd-r.

k| (2m)? r2 JR2 |r — /| charges




Reduced thin film energy (1

energy per unit length:

D)

m = (mgy, Mg, Ms3)

E(m)

Y

:/{\maw2+1m;\2+\mg|2+< —1><m%+m3>—%mlmg—zh(mg—n}dw
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dx dx’

setting 6 = 0 and a Néel profile m =

/( m|”
r \1—m3

winding number

deg(m) =

E(m)

1

2T

(m17 07 m3)7

/ (mim% —mam}) dx =
R

(mq, mg3) € St

+(Q = 1)(1 = ) — 2wy — 20(ons 1))
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360-degree wall j f

minimize in the homotopy class { deg(m) = +1 } TNl

choosing m; = —siné ms = cosf we get

E(m) = [R 116')7 + (Q — 1) sin? 0 + 2h(1 — cosf) } dw — 27k deg(m)

where
1 / / 1 /
deg(m) = —/ (mymg —msmy) de = — | 0'dx € Z
27T R 27T R
since  mg(oo) =1 = 0O(f£o0) € 27Z
1
minimizer exists iff deg(m) = %[9(4—00) — f(—00)] = +1, Q>1,h>0

v2sin (4) v/2h + (@ — 1) cosf + Q — L tanh ™ ( V/2(h+ Q1) cos( ) )

V/ 2h+(Q—1) cos 0+Q—1
V(h+Q —1)(2h(1 — cosf) + (Q — 1) sin* )

implicitly = = —

NJILT




s the 360-degree wall “topologically protected™”

actually, that depends on what you mean!

Topological fact: the obtained Néel profle m: R —S', m = (—sin#, cos6)

cannot be continuously deformed into the ferromagnetic state m = (0, 1)

But why continuously”?

In general, solutions of LLG may fail to be continuous — finite time blowup

However, in 1D a discontinuity formation costs infinite energy:

i )= / Pl S U dx/ Pd:c) :
< 1y — 14 (/R \m’\zd:c) 2

=> here topology is controlled by energy <=> infinite energy barrier
N JI




s the 360-degree wall “topologically protected™”

but wait a minute! The profile is actually a map

m:R —S* m=(—siné,0,cos0)

this map can be continuously deformed into the ferromagnetic state:

this transformation passes over a finite energy barrier
N JI




What is the “topological degree™?

actually, there are several notions of topological degree (or topological charge)

- the one just introduced is an example of the Kronecker index:

1 / /
deg(m) = oy /R (mymg — msm7) dx

- a deeper notion in topology is that of the Brouwer degree:

given I : Q — M differentiable, (2, M compact oriented n-dim manifolds

then if p € M is aregular point of F, i.e., if det DF #£0 Va € F~'(p)
deg(F,Q,p) = »  sign(det DF(x))

reF~1(p)

where DF is the Jacobi matrix of F in an oriented coordinate chart containing x

Topological fact: if M is connected, the Brouwer degree does not depend on p.

N JI eeeee - ... Brouwer degree is a unique homotopy invariant index (integer)




—Xample: one-to-one maps

if Fis one-to-one, then it is either orientation preserving or orientation reversing

deg(F,€,p) =1 or  deg(F,€,p)=—1

Example: 360-degree Néel wall, Q=RU{c}, M=S'

B e :

o - N w H (3] (2]
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xxxxxxxxxxxxxxxxxxxxxxxxxxxx

deg (m,RU {o0},p = m(x)) = signf'(x) = +1

Note: degim) #0 => the map mis onto <=> the image of mis all of M

New Jersey’s Science & Technology University



Brouwer degree for m: RU {oo} — S'

degree 1 maps:

S

winding number: (loy Area formula)

1 21
/ 0 dx = —/ deg(m, RU {0}, p(#))do = 1
R 21 Jo

1

T o

deg(m)

Warning: the degree ofamap m : R — S? is not defined|

NJ/I"L dimension mismatch




Magnetic skyrmions

maps m:R* — §?

example: harmonic maps

with non-trivial topology

E(m):/ IVm|*d*r
R2

all minimizers with prescribed degree are known

Bloch-type skyrmion

WYY pAAAAAA
S (LD

Yy
W< L. e
MRREEEarTT MR

T. Lancaster, Contemp. Phys. 60, 246-261 (2019)

Belavin and Polyakov, 1975

after stereographic projection, reduces to harmonic maps from §? to §?
they are holomorphic or anti-holomorphic maps

specifically, all degree 1 minimizing maps are

dilations, rotations and translations of:

New Jersey’s Science & Technology University

Eells and Sampson, 1964
Lemaire, 1978

Wood, 1974

Brezis, Coron, 1985

m(r):< o1

L —|r[?
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One-to-one maps from R* U {cc} to S © X

introduce a stereographic projection m ~ (u,v) € R? m(o0) = (0,0, —1)
2U 2V 1 —u? — 2
! 1+ u? 4 v? ? 1+ u? 4 v? ST 4 w2 402

defines one-to-one maps from R* U {oo} to R*U {oo}:  (z,y) — (u,v) € R?

topological charge (Kronecker index): Brouwer degree = +1

1 Om Om e O(u,v) du dv B
N(m) = 47 /Rz o ( or Oy ) do dy = sign det (8(x,y)) /Rz m(1+u2+02)2 =

—Z

more generally, an integer:  defining m(z,y,2) =m(z,y)e

_ |Oom Om
/ /R2 82( [—xa—y]>dxdydz

ml,mg,m3)> 3 3 / 3 ~
det d°r = —deg d°m = deg(m
/ /R2 ( O(z,y,2) e B1(0) )

we get




142 1+ |2

2r 1 —|r|?
. , m(r) =
Selavin-Polyakov profiles ( )

| o iIdentity map
orientation preserving and minimize the exchange energy: / (u,v) = l(gc', Y)
equality
. 2 2
Vm[2d?r = 8 + 4 / (ot = Oy0)” + O+ 0:0) 5 g
R? R (14 w? +v?)?

equality achieved => every minimizer satisfies the Cauchy-Riemann equations
w = u+ 1 z=x+1y = w= f(z) analytic

f(z) Is smooth and goes to infinity at infinity => it is a polynomial

flz) is one-to-one => f(z2) = pe’(z — 2) Belavin and Polyakov, 1975

=> all sol’s are translations, dilations and in-plane rotations of the BP profile

topologically protected? yes: impossible to deform continuously to m(oo)

energy barrier? no: the minimum is degenerate

can be deformed to m(oo) almost everywhere without paying any energy!

topological collapse



Skyrmions as strict degree 1 energy minimizers

exchange + anisotropy (and/or Zeeman): let m,(r) = my(p 'r)

E(m,) = /]1@2 IVmg|*d°r + (Q — 1)p° /R2 imy | [*d*r + 2hp* /R2(1 — mg,)d°r

achieves minimum when p — 0 => Nno minimizer
goes back to Derrick, 1964; Pokhozhaev, 1965; Berestycki and Lions, 1983

exchange + anisotropy/Zeeman + DMI:
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F(m,) = Vmo|°d*r — 2kp | mg | - Vmg d°r + 2h,02/ (1 —mgy)d°r
R? R? R?

choosing myg as the Belavin-Polyakov profile, we find min F(m) < 87

=> suggests existence of a global energy minimizer with non-trivial degree
Bogdanov and Yablonskii, 1989; Bogdanov, Kudinov and Yablonskii, 1989; lvanov et al., 1990

rigorous proof for sufficiently small k yields existence of a global energy
NJ/I"L minimizer with degree 1, finite energy barrier

Melcher, 2014; Li and Melcher, 2018



E(m):/ {IVm|* + (Q — 1)|m_|* — 2sm, - Vi } &*r

. . V-m(r)V-m,(r) , 27"’—— . 2
Admissible class?| L LT e e L

compact skyrmion VS. skyrmionic bubble
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for bubble skyrmion, the stray field energy diverges with radius:

F;(mgp) ~ —RInR M, Simon, 2019

hence m:R*—S*, Vmc L’ m, €L # E(m)>—oc0

No hope to construct solutions as absolute minimizers
with prescribed degree

New Jersey’s Science & Technology University
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Compact skyrmions as local minimizers h*m ZoRm u**}
introduce: N(m) = % m - (Oym x Oom) d°r

A= {m € ﬁ]l(Rz;Sz) : N(m) =1, m +e5 € L*(R?), /

R2

IVm|*d*r < 167r}

why 167? Topological lower bound: m € H'(R? S?)

’Vm|2d2r > 8T ‘N(m)’ Vm|® + 2m - (9;m x dym) = [ym F m x Jym|”

R2

allows to exclude splitting in the concentration compactness arguments

Theorem 1. Let Q > 1, 6 > 0 and k € R be such that (2|k|+6)* < 2(Q —1). Then
there exists m € A such that

E(m) = inf E().

mecA

Bernand-Mantel, M and Simon, 2020

Nl/ll complete asymptotic description in the conformal limit



Film of finite thickness — skyrmion tulbes?

how to define a skyrmion solution for 2 = R* x [0,6] C R? ?

dimension mismatch! m : R? x [0,6] — S?

INn the albsence of stray field effects the non-dimensionalized energy Is

5 5
E(m) = /O . Vm(z,y, 2)|*dx dy dz + B/O [Rz(l +my(z,y, 2)) drdydz

—|_Oé/ |mL(xayaO)’2dIdy_2>‘ mJ_(I7y70) va(CC,y,O) dﬂfdy
R2 R2

can define the degree on slices: d(z) = deg(m(-, z), R?) m(oo) = (0,0, —1)
if dz) =1 and q, 3, A = 0, then the minimizers are the BP profiles indep. of z

what if only d(0) = 1 is forced”? No existence!




Non-existence of minimizers

mpeg

- consider test configurations Mmg:
E(mR) = ClR + CgﬁRB + CgO&Rz — C4)\R
hence
E(mg) — 0 as R—0

- but dropping |[m| = 1 for z > O we have

\12%4

m W,
Bm) = [ KI{ tanb(3]K]) — ]} fn0) 55 > 0 Q\\%}, @
R NN
whenever |[A| < 1 (Note: otherwise ill-posed)
R

=> the minimum is not attained! < >

new definition of a skyrmion is needed
N J




