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Topological spin textures
spin spirals and chiral domain walls from Dzyaloshinskii-Moriya interaction (DMI):
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When the DM interaction is comparably small or the ani-
sotropy energy
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plays a significant role a system can also form an inhomogeneous 
spin spiral, where the variation of the angle between adjacent 
spins depends on the quantization axis. In an extreme case this 
may lead to collinear magnetic domains which are separated by 
walls with unique rotational sense due to the DM interaction, i.e. 
chiral domain walls. This means that a pair of domain walls will 
always fulfill a 360° rotation of the magnetization as the walls 
must have the same rotational sense. If in such a case the domains 
are ferromagnetic also contributions from the dipolar energy
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need to be considered for the magnetic properties of the 
system.

Higher-order Heisenberg interactions are typically 
neglected but recently it has been shown that they can become 
important and contribute to the energy landscape and ground 
state formation [15, 19]. In the extended Heisenberg model 
the next higher-order interactions are the biquadratic and four-
spin interactions, which involve two and four nearest neigh-
bors, respectively, as is obvious from their Hamiltonians:
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In the Heisenberg model spin spirals (single- ⃗Q  states) are 
degenerate with superpositions of symmetry-equivalent spin 
spirals (multi- ⃗Q  states); however, the higher order interac-
tions can lift this degeneracy and depending on the sign of the 
interaction favor one over the other state [16].

3. Chirality and topological protection

A phenomenological view of the symmetry of spin spirals 
helps to understand the DM related selection rules from 

Moriya [20, 21]. Figure 5 sketches helical (left) and cycloi-
dal (right) spin spirals. Whereas helical spirals can exist 
with two opposite rotational senses, there is only one type 
of cycloidal spiral possible (the ones shown in figure 5 can 
be transformed into each other by rotation and translation). 
However, such a cycloidal spiral can be placed onto a sur-
face (dark blue plane in figure  5) in two different ways, 
i.e. due to the breaking of the inversion symmetry of the 
environment two distinct rotational senses of cycloidal 
spin spirals are generated. Looking at the yellow ribbons 
symbolizing the different spirals it becomes evident that 
the two helical spirals (with or without surface) are mirror 
images of each other, meaning that they are degenerate in 
energy. Contrary to that, the two cycloidal spirals on the 
surface cannot be linked by any symmetry operation, prov-
ing the possibility to have different energy, i.e. one rota-
tional sense is favored due to the DM-interaction and the 
other one does not occur as it possesses higher energy. The 
same arguments also hold for domain walls induced by the 

Figure 3. The DM interaction favors a 90° rotation between 
adjacent spins and the rotational sense is determined by the sign 
of the DM vector.

Figure 4. The two-dimensional Brillouin-zone of a hexagonal 
lattice. The red line indicates a typical cut for the calculation of 
the spin spiral dispersion, where the angle φ between adjacent 
spins ranges from 0° at the Γ -point (ferromagnetic FM) via 120° 
at the K -point (Néel state) to 180° for the M -point (row-wise 
antiferromagnetic order RWA).

= 0° 120° 180°
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Figure 5. Sketch of helical (left) and cycloidal (right) spin spirals, 
where the propagation direction is perpendicular to or within the 
plane of the spin rotation, respectively. While the helical spin spirals 
are degenerate in energy even when they are on a surface (dark blue 
plane), the cycloidal spin spirals can have a different energy due 
to the DM interaction, i.e. one cycloidal spin spiral can be favored 
while the other one has a higher energy on the surface.
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the field grow (shrink). Thus, the direction of ms can be identi-
fied for all domains. On the tip side, sweeping the field causes 
mt to increasingly rotate into the perpendicular direction. 
Consequently, the in-plane domain wall contrast gradually 
disappears and is eventually replaced by an out-of-plane con-
trast, allowing to image the domains rather than the domain 
walls, figures 9(c) and (d). The large domains with ms being 
parallel to the field appear bright whereas residual domains, 
being shrunken to mere lines and with ms being antiparallel 
to the field, appear dark. This observation can be generalized 
such that for the tip-sample combination in our experiment, at 
the given bias voltage, bright colors (high dI/dU signal) indi-
cate a parallel alignment of ms and mt while dark (low dI/dU 
signal) corresponds to an antiparallel alignment. Applying this 
result to the measurement shown in figure 8(a) one can iden-
tify the direction of ms also for the domain walls. Combining 
the knowledge from these two experiments (figures 8 and 9) 
we can conclude that the Fe DL exhibits only right-rotating 
Néel-type walls ↑ →↓(  and ↓←↑ ) [29, 34].

This experimental finding of cycloidal walls with unique 
rotational sense immediately suggests that the DM interaction 
is the relevant factor determining the rotational sense of the 
walls, see section 3. Indeed, starting from phenomenological 
DM vectors [20] Monte-Carlo simulations showed that the 
unique rotational sense can be explained as a consequence 
of the DM interaction [36]. By density functional theory 
(DFT) combined with micromagnetic calculations the DM 
vector was determined from first principles [37]. The mag-
netic ground state was predicted to be ferromagnetic although 
within numerical accuracy a non-collinear spin spiral ground 
state could not be ruled out. However, two domains of opposite 

magnetization induced in this system by appropriate boundary 
conditions were found to be separated by right-rotating Néel-
type domain walls extending along the [110] axis, in agree-
ment with the experiment [29].

It appears to be an academic question whether this spin 
configuration of the extended Fe DL should be classified as an 
inhomogeneous spin spiral or a periodic arrangement of chiral 

Figure 8. Spin-polarized dI/dU maps of the Fe DL on W(1 1 0) (red 
areas correspond to DL and black to other Fe thickness); B indicates 
the in-plane orientations of the external magnetic field B = 150 mT 
which aligns the tip magnetization. (a), (b) Domain walls show up 
in the DL as black and white lines along the [110] direction; they 
invert the contrast from (a) to (b). (c), (d) Vanishing domain wall 
contrast. Tunnel parameters: U = + 0.55 V, I = 0.5 nA (all images 
taken from [29]).
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Figure 9. Spin-polarized dI/dU maps of the Fe DL on W(1 1 0) 
measured for variable field values B applied normal to the surface, 
as indicated in (a)–(d). The domains parallel to B grow while 
antiparallel domains shrink. The tip magnetization (and hence the 
magnetic sensitivity) is gradually rotated from in-plane to out-of-
plane due to the applied magnetic field. Tunnel parameters:  
U = + 0.55 V, I  = 0.5 nA (all images taken from [29]).
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Figure 10. Chiral domain walls in Fe DL wires on W(1 1 0). 
(a) Spin-polarized dI/dU map. The density of domain walls 
decreases with decreasing DL wire width while the chirality is 
preserved. Tunnel parameters: U = + 0.7 V, I = 0.3 nA, T = 14 K.  
(b) Schematic side view of two right rotating domain walls.
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which is magnetized mostly in-plane; the arrow indicates the 
tip magnetization, which was derived from the analysis of the 
magnetic contrast. As in SP-STM the magnetic contrast reflects 
the projection of tip and sample magnetization this leads to a 
bright-to-dark gradient of a skyrmion along the tip magnetiza-
tion axis. From this image it is apparent, that all skyrmions have 
the same rotational sense not only within one island, but also 
in independent islands, as is expected from the directionality 
imposed by the DM interaction. The spin spiral is now inhomo-
geneous due to the applied magnetic field, but also here one can 
see the unique rotational sense which is identical to that of the 
skyrmions. When the lines of the spin spiral run parallel to the 
tip magnetization axis the magnetic contrast vanishes (see left 
end of top island).

7.  3. Writing and deleting single magnetic skyrmions

While in previous studies the samples were in the thermo-
dynamic ground state, for PdFe the ratio between the energy 
barrier separating two topologically distinct states and the mea-
surement temperature is much larger. This can be exploited to 
study ground state properties at slightly higher temperature, i.e. 

about T  >  8 K, or to trap the magnetic configuration in a meta-
stable state for lower temperatures. This can be understood e.g. 
for the transition between skyrmions (S  =  1) and the ferromag-
netic state (S  =  0) within a simple two state model, see sketch 
in figure 21(a): when the magnetic field is increased, the energy 
of the skyrmion state rises and the ferromagnetic state becomes 
the lower energy state. When the system is in the ferromagnetic 
state and the magnetic field is lowered at reduced temperature, 
then the energy barrier cannot be overcome and the ferro-
magnetic state is preserved to smaller magnetic field values, 
even though the topologically protected skyrmion has a lower 
energy, see top sketch in figure 21(a). It has been found, that the 
energy barrier between the two states can be overcome not only 
by thermal excitation, but also the tunnel electrons can induce 
a transition between the topologically distinct states. Note that 
the potential landscape is asymmetric, as the two states are not 
linked by a symmetry operation, and different attempt frequen-
cies and lifetimes of the two states are likely.

The telegraph noise in figures 21(b)–(d) demonstrates the 
switching between the presence of a skyrmion (S = 1) and 
its absence (S = 0) for different parameters at the same sam-
ple position. While the power of the injected tunnel current 
is identical for all three traces, the response of the system is 
very different: for (b) the switching takes place at a time scale 
of several seconds and the histogram to the right shows that 
the skyrmion state is slightly favored. In (c) the magnetic field 
is increased, which leads to a shift of the population of the 
states towards the ferromagnetic state, as expected. However, a 

Figure 19. SP-STM measurements of the PdFe bilayer on 
Ir(1 1 1) in dependence on an external magnetic field at T = 8 K. 
(a) B = 0 T: spin spiral state, (b) B = 1.4 T: hexagonal skyrmion 
lattice, (c) B = 2 T: ferromagnetic phase. (d) Sketch of the different 
magnetic phases (all taken from [4]).

Figure 20. SP-STM measurements of the PdFe bilayer on Ir(1 1 1) 
at T = 8 K. (a) B = 0 T: the spin spiral state in the PdFe wire and 
island is visible together with the nanoskyrmion lattice in the Fe 
ML on Ir(1 1 1) [15], (b) B = − 1 T: coexistence of spin spiral and 
skyrmions with unique rotational sense, the tip magnetization 
direction is indicated by the arrow (for both: gray-scale of the layers 
adjusted separately for better visibility of the magnetic state).
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(b)
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distance d from its centre for several magnetic field values.
We relate the degree of non-collinearity in the centre of a skyrmion
with the angle αc between a central atom and its neighbouring
spins, and find that αc scales linearly with B (inset of Fig. 3a).
Figure 3b displays spectra taken at the centre of one skyrmion at
different applied fields, as indicated, together with reference
spectra of the FM background. One can clearly see a systematic
shift of the higher-energy peak with the applied field. The
peak shift ΔE with respect to the peak of the FM state is roughly
linear with αc (inset of Fig. 3b), which corroborates our proposal
of an effect of the local magnetic non-collinearity on the
electronic properties. The laterally resolved dI/dU maps at the FM
peak energy in Fig. 3c show how the maximum of non-collinearity
moves from the rim of the skyrmion to its centre with
increasing magnetic field, in agreement with the skyrmion profiles
in Fig. 3a.

For the FM state, the experimental dI/dU spectra (Figs 2d
and 3b) are in good agreement with the vacuum LDOS calculated
by density functional theory (DFT)10 (Fig. 4a). The vacuum
LDOS is typically dominated by states close to the !Γ point. A
detailed analysis of the spin-resolved band structure and LDOS
(Supplementary Sections 2 and 3) reveals that the sharp peak at
about +0.9 eV stems from the minority d states, whereas the
step-like LDOS of the majority spin channel is caused by bands
of s and p character.

In a non-collinear spin structure, there is a mixing between the
two spin channels that results in a change of the band structure
and the LDOS29. This is seen in DFT calculations for the spin
spiral phase (Supplementary Sections 2 and 3), which are in agree-
ment with the corresponding experimental data (Supplementary
Section 4). To capture the key physics of this band mixing for
two-dimensional (2D) localized skyrmions and to include the
skyrmion profiles12 (Fig. 3a) we use a tight-binding (TB)
model. The corresponding Hamiltonian at every atom site is
given by

H0 =
ϵ↑ 0
0 ϵ↓

( )
(1)

where ϵ↑, ϵ↓ are the on-site energies of the two states. Based on
DFT for the FM state, we describe the electronic states of PdFe/
Ir(111), which dominate the vacuum LDOS, by using a majority
band with a hopping parameter t↑ = −0.5 eV, and a minority band
with t↓ = +0.09 and ϵ↑ − ϵ↓ = 3.1 eV, as depicted in green and
red in Fig. 4b. The corresponding spin-resolved LDOS in the
vacuum for the FM state is qualitatively very similar to that
obtained by DFT calculations10 (compare Fig. 4a,c) and a
similar agreement is obtained for the spin spiral states
(Supplementary Section 3). The non-collinearity within the
skyrmion leads to a mixing between the majority and the
minority spin channels and the hopping between adjacent
atomic sites can be described by the matrix

V(αij) =
t↑ cos(αij /2) −t↑↓ sin(αij /2)
t↓↑ sin(αij /2) t↓cos(αij /2)

( )
(2)

where αij is the angle between the spins on neighbouring sites i
and j and t↑↓ = −t↓↑ describes the nearest-neighbour hopping
matrix element between the two states.

Before solving this TB model for a realistic skyrmion profile,
it is instructive to study the effect of the spin mixing in a simpli-
fied way. We assume that the matrix V(αij) is the same for all
atom sites by fixing all αij to the same angle α and thus obtain a
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Figure 2 | Individual skyrmions in PdFe/Ir(111). a, Sketch of a magnetic skyrmion; cones represent the magnetization direction. b, Perspective view of
an STM constant-current image, colour-coded with the dI/dU signal; yellow areas indicate PdFe and red circular entities are magnetic skyrmions;
Pd is in a hexagonal close-packed stacking arrangement on the face-centred cubic stacked Fe on Ir (B = +1.8 T, U = +0.7 V, I = 1 nA, T = 8 K). c, Closer
view dI/dU map of two skyrmions; the inset presents a profile along the arrow (B = −2.5 T, U = +0.7 V, I = 1 nA, T = 4 K). d, dI/dU tunnel spectra in
the centre of a skyrmion (red) and outside the skyrmion in the FM background (black) (B = −2.5 T, T = 4 K; stabilization parameters, U = −1 V, I = 1 nA).
a.u., arbitrary units.
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Figure 3 | Magnetic field-dependent properties of an individual skyrmion.
a, Skyrmion profiles for different magnetic field values, plotted as polar angle
θ of the magnetization versus distance from the skyrmion centre (obtained
from fits to spin-polarized STM measurements12). Inset: evolution of the
angle between a central spin of a skyrmion and its neighbours, αc, with the
external magnetic field B. b, dI/dU tunnel spectra measured with a W tip
in the centre (Sk) and outside (FM) of an individual skyrmion at different
magnetic field values (T=8 K; stabilization parameters U=−0.3 V, I=0.2 nA).
Inset: evolution of the energy shift of the high-energy peak with respect to
the FM state, ΔE, as a function of the angle between spins in the centre of
the skyrmion, αc (see the inset in a for the relation between αc and B).
c, Corresponding laterally resolved dI/dU maps (U=+0.7 V, I= 1 nA, T= 8 K).
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 on Ir(111)
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx −  mx∂xmz + mz∂ymy −  my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
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The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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Figure 4. (a) The potential energy for d = D = 2. (b) The vor-
tex excitation. (c) The hedgehog or monopole excitation for
d = D = 3. (Adapted from Ref. [2].)

in different regions of space, subject to the all-important
constraint that the field vary smoothly from place to
place. The defect in this case is known as a vortex, an
example of which is shown in Figure 4(b). The vortex has
a core at its centre and has a field that swirls around the
core.3

An important point about the vortex is that there are
lots of very similar structures we can make, for exam-
ple, by globally rotating all of the arrows by some fixed
angle. In fact, from the point of view of topology, each of
these excitations is equivalent. The quantity that defines
the topological properties of the vortex is its integerwind-
ing number w. This quantity counts the number of times
the arrows rotate through 2π radians as we follow a cir-
cle around the vortex core. The diagram shows a w = 1
vortex, since the arrows make a complete rotation as we
follow a circle around the vortex core. It is possible to
make vortices with w = 2. In contrast to a w = 1 object,
a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.

In the three-dimensional case of D = 3, d = 3 we
have a configuration called a hedgehog (or monopole)
shown in Figure 4(c). Here the winding number is given
by considering the 3D field φ(x1, x2), where x1 and x2
are coordinates allowing us to locate points on a closed
surface (conventionally we choose angles x1 = θ and

Figure 5. The stereographic projection (denoted P ) squashes
the hedgehog into D = 2, where it becomes a skyrmion. The left-
hand version is aNéel skyrmion; the right-hand version,where the
spins have been combed over (denotedR), is a Bloch skyrmion.
(Based on a figure from Ref. [22].)

x2 = ϕ, for example), and we evaluate the integral

w = 1
4π

∫
dx1dx2 φ̂ ·

(
∂φ̂

∂x1
× ∂φ̂

∂x2

)

, (3)

where φ̂ = φ/|φ| is the normalised (unit) field andwhere
the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an infinite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the fields never become uniform. The first term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an infinite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Specifically, Derrick investigated static
field configurations as they are scaled up and down in
their spatial size. If a field configuration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the field configuration has no such
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Topological what?

topology is a branch of mathematics that deals with properties of objects 
that are preserved under continuous deformations (homotopies) 

in the context of ferromagnetism, the object is the magnetization field:
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into the space of 3D vectors
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Topological what?

- need to specify the source manifold  Ω  where the magnetization M lives
- need to specify the target manifold = the range of allowed values of M
- need to specify the notion of continuity between different M fields

once the above are fixed, need to identify the homotopy invariants  S(M)

all of the above are model-specific!
Example:                                                                           winding Néel wall

continuity:

homotopy invariant = winding number (topological degree) of M
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Micromagnetics of thin films (3D)

statics:

Here                                                                             in   Ω,    H ≥ 0
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.
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physical intuition of [19] for a slightly reduced range of the DMI constants.
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applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin

 
�1

wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:

� '
4h arccos

⇣


2
p

Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and

- anisotropy constant
- saturation magnetization
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin

 
�1

wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:

� '
4h arccos

⇣


2
p

Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and

- DMI strength                                  applied field strength 
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin

 
�1

wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:

� '
4h arccos

⇣


2
p

Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain

E(m�� )

w
' �0

wall

cos �
+ h(2�1

edge � �1
wall) tan �. (54)

Minimizing this expression yields the unique equilibrium
tilt angle

� = arcsin

 
�1

wall � 2�1
edge

�0
wall

h

!
. (55)

In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:

� '
4h arccos

⇣


2
p

Q�1

⌘

4(Q � 1) � ⇡
p

Q � 1
. (56)

This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
edge = O(3), one can see that the

contribution of �+
edge � ��

edge in Eq. (53) is negligible.
Thus, to the leading order we arrive at

E(m�� )

w
' 4

p
Q � 1

cos �

� ⇡

s

2 +

✓
 tan � +

2hp
Q � 1 cos �

◆2

. (57)

Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and
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10�11J/m, K = 1.25 ⇥ 106 J/m3, Ms = 1.09 ⇥ 106

A/m. The representative values of the DMI strength
and applied field are D = 1 mJ/m2 and µ0H = 100 mT,
respectively2.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
simulations,15 obtained using Mumax3 within the lo-
cal approximation of the magnetostatic energy16 (as in
Eq. (5)), with the 1D domain wall profiles m↵ minimiz-
ing E↵ in Eq. (21). In the micromagnetic simulations,
we used a conservative discretization step of 1 nm in x-y
plane. To obtain the one-dimensional profiles m

↵ min-
imizing E↵, we solved Eqs. (22)–(24) by writing m

↵ in
polar coordinates for ✓ and �:

m
↵ = (sin ✓ cos�, sin ✓ sin�, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2
⇠ +Q� 1

�
sin ✓ cos ✓ + h cos ✓ sin�

� �⇠ sin(�� ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos�

+ ✓⇠ sin(�� ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and
� the wall energy is

E↵(m
↵) =

Z 1

�1

✓
✓2⇠ + �2

⇠ sin
2 ✓ + (Q� 1) sin2 ✓

� 2h sin ✓ sin�+
h2

Q� 1
+ ✓⇠ cos(�� ↵)

� �⇠ sin(�� ↵) cos ✓ sin ✓

◆
d⇠. (65)

The parameters at the beginning of this section cor-
respond to the dimensionless parameters Q = 1.674,
 = 0.366 and h = 0.073. For these parameters, we car-
ried out Mumax314 simulations in a 800 nm ⇥ 400 nm
strip, which corresponds to w = 109 � 1, and obtained
the magnetization profile with the tilt angle � = 11.2�.
We then solved Eqs. (63) and (64) with ↵ = 11.2� and
obtained the optimal one-dimensional wall profile m

↵.
The result of the two-dimensional computation is com-
pared with the one-dimensional profile in Fig. 4, which
plots the z-component of the two-dimensional profile m

along the x-axis alongside with the corresponding section
of the optimal profile m�↵ obtained from m

↵. One can
see an almost perfect agreement between the full two-
dimensional simulation result and the theoretical predic-
tion of Sec. IV. The same agreement is also observed
in the other two components of the magnetization (not
shown). This justifies the main premise of our theory
about the one-dimensional character of the interior wall
profiles.

FIG. 4: A one-dimensional y = 0 cut through the computed
two-dimensional profile m (red dots) vs. a one-dimensional
cut through the optimal profile m�↵ (blue line). See text for
details.

FIG. 5: The dependence �wall(↵) obtained from the numer-
ical minimization of E↵ (blue solid), the analytical expres-
sions in Eqs. (32) (red dashed) and Eqs. (41) (green dotted),
corresponding to the dimensionless parameters Q = 1.674,
 = 0.366 and h = 0.073.

To further test the conclusions of our theory, we com-
puted the energy �wall(↵) of the interior walls as a func-
tion of their orientation angle ↵ from the solutions of
Eqs. (63) and (64) for the considered values of the param-
eters. The result is plotted in Fig. 5, along with the ana-
lytical approximations given by Eqs. (32) and (41). One
can see that both analytical formulas give a fairly good
approximation to the exact interior wall energy �wall(↵)
for these parameters. The agreement becomes much bet-
ter for smaller values of h.
We used the interior wall energy �wall(↵) obtained nu-

merically to calculate the equilibrium tilt angle by mini-
mizing the energy in Eq. (53) numerically. This resulted
in a unique minimizing angle � = 11.1�, in excellent
agreement with the result of the full two-dimensional sim-
ulation. For comparison, the formulas in Eqs. (56) and
(59) yield � = 12.8� and � = 8.8�, respectively, still in a
good agreement with the two-dimensional result, which
is reasonable since both these formulas are at the limits
of their applicability for the considered parameters.
When h gets smaller, the agreement with the predic-

tions of the analytical theory becomes much better. We
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field

m : Ω → S2.

Let us assume that the sample is a cylinder, i.e.,

Ω = Ω′ × (0, t)

where Ω′ is the cross section of the sample of diameter ℓ and t is the thickness of the cylinder

(see Figure 2.1). According to micromagnetics, stable magnetizations in Ω are described by (local)

tȍ’ t

l

x3

x1
x2

Figure 2.1: A ferromagnetic sample.

minimizers of the energy functional defined as:

E3D(m) = d2

∫

Ω
|∇m|2 dx + Q

∫

Ω
ϕ(m) dx +

∫

R3

|∇U |2 dx − 2

∫

Ω
Hext · m dx. (2.1)

In the following we explain the four components of the micromagnetic energy E3D.

• The first term, called exchange energy is due to short range interactions of spins and favors

parallel alignment of neighboring spins. The constant d is the exchange length and corresponds to

an intrinsic parameter of the material of the order of nanometers.

• The second term in (2.1) represents the anisotropy energy that penalizes certain magnetization

axes. The anisotropy energy density ϕ is a nonnegative function with symmetry properties inherited

from the crystalline lattice. The preferred directions of magnetization are the zeros of ϕ. Typically,

we have uniaxial or multi-axial anisotropy (e.g., ϕ(m) = 1−m2
1 that favors the direction (±1, 0, 0))

and surface anisotropy (e.g., ϕ(m) = m4
3 where the easy plane is the horizontal one). The quality

factor Q is a second intrinsic parameter of the material that measures the strength of the anisotropy

energy relative to the stray-field. According to the values of Q, we distinguish two classes of

materials: soft materials if Q < 1 and hard materials if Q > 1.

• The third term of E3D is the stray-field energy and is created by long range interactions between

electron spins modelled by the static Maxwell equation. More precisely, the stray-field potential

U : R3 → R is determined by

∆U = ∇ ·
(

m1Ω

)

in R3, (2.2)

i.e.,

∫

R3

∇U ·∇ζ dx =

∫

Ω
m ·∇ζ dx, ∀ζ ∈ C∞

c (R3).

By the electrostatic analogy, two types of charges generate the potential U : volume charges with

density given by the divergence of m in the interior of the sample Ω and surface charges represented

by the normal component of the magnetization on the boundary of Ω. Therefore, this nonlocal

term favors domain patterns that achieve flux closure.
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Dimension reduction (3D to 2D)

assume the magnetization                      does not vary significantly across the 
film thickness, measure lengths in the units of     , scale energy by

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms

1

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms

1

2

saturation magnetization, exchange sti↵ness, anisotropy
constant, applied magnetic field and the DMI strength.
As usual, µ0 is the permeability of vacuum. In the stray
field term, the vector field M(r) is extended by zero out-
side ⌦, and r ·M is understood distributionally (i.e., in-
cludes the contributions of boundary charges). Since the
considered DMI is due to interfacial e↵ects, its contribu-
tion to the energy is via a surface integral over the bottom
film surface @⌦0 corresponding to an interface between
the ferromagnet and a heavy metal, and M = (M?, Mk)
is the value of M on @⌦0. However, using the standard
convention, we normalize the DMI strength parameter D
to a unit volume of the ferromagnet.

Assume that the external applied field is in the film
plain and is normal to the strip axis, i.e., H = Hŷ, where
ŷ is the unit vector in the direction of the y-axis. As-
sume also that the film is much thinner than the exchange
length `ex =

p
2A/(µ0M2

s ), so that the magnetization in
⌦ is constant along the film thickness. Measuring lengths
in the units of `ex and setting M(x, y, z) = Msm(x, y)
with |m| = 1 in ⌦, we can rewrite the energy, to the
leading order6 in d/`ex, in the units of Ad as

E(m) '
Z l/2

�l/2

Z w/2

�w/2

n
|rm|2 + (Q � 1)|m?|2 � 2hŷ · m?

+ 
�
mkr · m? � m? · rmk

� o
dy dx. (2)

Here we defined m? 2 R2 and mk 2 R to be the respec-
tive in-plane and out-of-plane components of the unit
magnetization vector m, introduced the dimensionless
parameters

Q =
2K

µ0M2
s

,  = D

s
2

µ0M2
s A

, h =
H

Ms
, (3)

and defined the rescaled nanostrip dimensions l = L/`ex

and w = W/`ex. In Eq. (3), Q > 1 is the material’s
quality factor yielding PMI,  is the dimensionless DMI
strength, which without loss of generality, may be as-
sumed positive, and h is the dimensionless applied field
strength.

We are interested in the case of long nanostrips corre-
sponding to l � w. Note that when l ! 1, the energy
in Eq. (2) diverges even if h = 0 because of the pres-
ence of edge domain walls giving O(l) contribution to the
energy7,8. Therefore, in order to pass to the limit l ! 1
we need to subtract from E the contribution of the one-
dimensional ground state energy e0(h, w) = min E0(m),
where

E0(m) =

Z w/2

�w/2

n
|m0|2 + (Q � 1)|m?|2 � 2hŷ · m?

+ 
⇣
(ŷ · m0

?)mk � (ŷ · m?)m0
k

⌘ o
dy. (4)

The precise functional form of e0(h, w) is the subject of
Sec. III.

Putting everything together, we now write the expres-
sion for the energy that describes a Dzyaloshinskii do-
main wall running across the nanostrip as

E(m) =

Z 1

�1

Z w/2

�w/2

n
|rm|2 + (Q � 1)|m?|2�

� 2hŷ · m? � w�1e0(h, w)

+ 
�
mkr · m? � m? · rmk

� o
dy dx. (5)

This formula forms the basis for all of the analysis
throughout the rest of the paper.

III. EDGE DOMAIN WALLS

We next focus on the minimizers of E0 from Eq. (4) in
the case of w � 1 and  below the threshold of the onset
of helicoidal structures corresponding to x-independent
ground state magnetization configurations. From the
physical considerations (for a rigorous mathematical jus-
tification in the case h = 0, see Ref. [8]), it is clear that
in these states the magnetization vector will rotate in the
yz-plane. Hence, introducing the ansatz:

m(y) = (0, sin ✓(y), cos ✓(y)), (6)

into (4), we rewrite E0(m) as

E0(m) =

Z w/2

�w/2

n
|✓0|2 + (Q � 1) sin2 ✓

�2h sin ✓ + ✓0
o

dy. (7)

The corresponding Euler-Lagrange equation associated
with E0 is

✓00 � (Q � 1) sin ✓ cos ✓ + h cos ✓ = 0, (8)

with boundary conditions

✓0
⇣

± w

2

⌘
= �

2
. (9)

Notice that (8) and (9) obey the following symmetry re-
lation which leaves the energy E0 unchanged:

✓ ! ⇡ � ✓, y ! �y. (10)

Introducing

✓h = arcsin

✓
h

Q � 1

◆
, (11)

we first note that when w ! 1, we should have ei-
ther ✓ ! ✓h or ✓ ! ⇡ � ✓h, corresponding to the
two monodomain ground states in the extended film for
0  h < Q � 1. In view of the symmetry in (10), it is
enough to consider only the former case.

In computing the minimal value e0(h, w) of E0 for w �
1 one needs to take into account the contributions of the
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a reduction to an energy functional that depends only on the average of the magnetization over
the film thickness (see, e.g., [26, Lemma 3]; for an analytical treatment in a closely related context,
see [25, 34]). Therefore, we introduce an ansatz M(x1, x2, x3) = Ms(m(x1, x2), 0)�(0,d)(x3), where
m : R2

! R2 is a two-dimensional in-plane magnetization vector satisfying |m| = 1 in D and
|m| = 0 outside D, and �(0,d) is the characteristic function of (0, d). Next, we define the exchange
length `, the Bloch wall thickness L and the thin film parameter ⌫ [35]:

` =

s
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µ0M2
s

, L =

r
A

K
, ⌫ =

µ0M2
s d

2
p
AK

, (2)

and note that the above ansatz is relevant when d . ` [12, 16, 17, 26, 35]. Then, measuring the
energy in the units of 2Ad and lengths in the units of L, we obtain the following expression for the
energy as a function of m [18]:
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where � = d/L is the dimensionless film thickness,

K�(r) =
1

2⇡�

(
ln

 
� +

p
�2 + r2

r

!
�

r
1 +

r2

�2
+

r

�

)
, (4)

and we set H = K/(µ0Ms)(h, 0) for h : R2
! R2, assuming that the applied field lies in the film

plane. More explicitly, assuming that @D is of class C2, we have
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where n is the outward unit normal vector to @D, and we took into account that the distributional
divergence of m is the sum of the absolutely continuous part in D and a jump part on @D.

We now consider the thin film limit introduced in [35] by sending � to zero with ⌫ and D fixed.
Observe that when � is small, we have
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Since the last term in (7) blows up as � ! 0, unless m · n = 0 a.e. on @D, in the limit we recover
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Reduced thin film energy (2D)
regime           :                                             Taylor-expand in Fourier spaced = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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the expression for the stray field energy is rigorously justified via a Γ-expansion 
Knüpfer, M, Nolte, 2019

for bounded 2D samples, extra boundary terms appear Di Fratta, M, Slastikov, 2021 
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proper definition of the non-local terms via Fourier:

Via m2
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2
? in ⌦ we can rewrite the first term as
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As the volume contribution |⌦| is a constant, we may drop it from the energy, which allows
us to replace ⌦ with R2 in the rest of the terms in the regime of the size of e⌦ being
much larger than `ex. The remaining Fourier terms then have the following real space
representation (after subtracting the limit at infinity for mk) [13, Theorems 5.9 and 7.12]:
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In total, we arrive at E(m) ⇡ E(m) with the following simplified energy
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under the assumptions d . `ex and ⌦ being much larger than `ex. Under the condition
m(r) ! �z as |r| ! 1, we furthermore consider the skyrmion number q(m) given by
[14,15]
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As argued in the main paper, we aim to minimize the energy in (1.13) over the set
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where H̊1(R2; S2) denotes the space of unit length vector fields in R3 with square integrable
gradient, and the first condition in (1.15) is consistent with the requirement m(r) ! �z

as |r| ! 1.
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Reduced thin film energy (1D)
energy per unit length:
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setting δ = 0 and a Néel profile
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360-degree wall
minimize in the homotopy class  {                     }
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Is the 360-degree wall “topologically protected”?
actually, that depends on what you mean!
Topological fact: the obtained Néel profile                                                
cannot be continuously deformed into the ferromagnetic state
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But why continuously?

In general, solutions of LLG may fail to be continuous — finite time blowup
However, in 1D a discontinuity formation costs infinite energy:
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=> here topology is controlled by energy    <=>    infinite energy barrier
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Is the 360-degree wall “topologically protected”?
but wait a minute! The profile is actually a map
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this map can be continuously deformed into the ferromagnetic state:

this transformation passes over a finite energy barrier



What is the “topological degree”?
actually, there are several notions of topological degree (or topological charge)

- the one just introduced is an example of the Kronecker index:
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- a deeper notion in topology is that of the Brouwer degree:

given                    differentiable, Ω, M compact oriented  n-dim manifolds

then if             is a regular point of F, i.e., if  

x = �

p
2 sin

�
✓
2

�p
2h+ (Q� 1) cos ✓ +Q� 1 tanh

�1

✓ p
2(h+Q�1) cos(

✓
2)p

2h+(Q�1) cos ✓+Q�1

◆

p
(h+Q� 1)(2h(1� cos ✓) + (Q� 1) sin

2
✓)

m : R ! S1
, m = (� sin ✓, cos ✓) m = (0, 1)

|m(x1)�m(x2)| 

Z x2

x1

|m
0
(x)|dx 

✓Z x2

x1

dx

Z x2

x1

|m
0
(x)|

2
dx

◆1/2


p
x2 � x1

✓Z

R
|m

0
|
2
dx

◆1/2

m : R ! S2
, m = (� sin ✓, 0, cos ✓)

F : ⌦ ! M, F,M p 2 M detDF 6= 0 8x 2 F
�1
(p)

3

x = �

p
2 sin

�
✓
2

�p
2h+ (Q� 1) cos ✓ +Q� 1 tanh

�1

✓ p
2(h+Q�1) cos(

✓
2)p

2h+(Q�1) cos ✓+Q�1

◆

p
(h+Q� 1)(2h(1� cos ✓) + (Q� 1) sin

2
✓)

m : R ! S1
, m = (� sin ✓, cos ✓) m = (0, 1)

|m(x1)�m(x2)| 

Z x2

x1

|m
0
(x)|dx 

✓Z x2

x1

dx

Z x2

x1

|m
0
(x)|

2
dx

◆1/2


p
x2 � x1

✓Z

R
|m

0
|
2
dx

◆1/2

m : R ! S2
, m = (� sin ✓, 0, cos ✓)

F : ⌦ ! M, F,M p 2 M detDF 6= 0 8x 2 F
�1
(p)

3

where DF is the Jacobi matrix of F in an oriented coordinate chart containing x
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Topological fact: if M is connected, the Brouwer degree does not depend on p.
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Magnetic skyrmions

maps                          with non-trivial topology

250 T. LANCASTER

Figure 4. (a) The potential energy for d = D = 2. (b) The vor-
tex excitation. (c) The hedgehog or monopole excitation for
d = D = 3. (Adapted from Ref. [2].)

in different regions of space, subject to the all-important
constraint that the field vary smoothly from place to
place. The defect in this case is known as a vortex, an
example of which is shown in Figure 4(b). The vortex has
a core at its centre and has a field that swirls around the
core.3

An important point about the vortex is that there are
lots of very similar structures we can make, for exam-
ple, by globally rotating all of the arrows by some fixed
angle. In fact, from the point of view of topology, each of
these excitations is equivalent. The quantity that defines
the topological properties of the vortex is its integerwind-
ing number w. This quantity counts the number of times
the arrows rotate through 2π radians as we follow a cir-
cle around the vortex core. The diagram shows a w = 1
vortex, since the arrows make a complete rotation as we
follow a circle around the vortex core. It is possible to
make vortices with w = 2. In contrast to a w = 1 object,
a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.

In the three-dimensional case of D = 3, d = 3 we
have a configuration called a hedgehog (or monopole)
shown in Figure 4(c). Here the winding number is given
by considering the 3D field φ(x1, x2), where x1 and x2
are coordinates allowing us to locate points on a closed
surface (conventionally we choose angles x1 = θ and

Figure 5. The stereographic projection (denoted P ) squashes
the hedgehog into D = 2, where it becomes a skyrmion. The left-
hand version is aNéel skyrmion; the right-hand version,where the
spins have been combed over (denotedR), is a Bloch skyrmion.
(Based on a figure from Ref. [22].)

x2 = ϕ, for example), and we evaluate the integral

w = 1
4π

∫
dx1dx2 φ̂ ·

(
∂φ̂

∂x1
× ∂φ̂

∂x2

)

, (3)

where φ̂ = φ/|φ| is the normalised (unit) field andwhere
the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an infinite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the fields never become uniform. The first term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an infinite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Specifically, Derrick investigated static
field configurations as they are scaled up and down in
their spatial size. If a field configuration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the field configuration has no such
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rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an infinite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the fields never become uniform. The first term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
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a   Néel-type skyrmion b   Bloch-type skyrmion

c   Skyrmion lattice in an Fe monolayer 
 on Ir(111)

d   Individual skyrmions in a PdFe 
 bilayer on Ir(111)

B 10 nm

and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx −  mx∂xmz + mz∂ymy −  my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 ×  S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z ×  u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx −  mx∂xmz + mz∂ymy −  my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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they are holomorphic or anti-holomorphic maps

specifically, all degree 1 minimizing maps are
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Belavin-Polyakov profiles

orientation preserving and minimize the exchange energy:
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equality achieved => every minimizer satisfies the Cauchy-Riemann equations
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f(z) is smooth and goes to infinity at infinity => it is a polynomial
f(z) is one-to-one  => 
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=> all sol’s are translations, dilations and in-plane rotations of the BP profile
topologically protected? yes: impossible to deform continuously to 

energy barrier? no: the minimum is degenerate
can be deformed to            almost everywhere without paying any energy!
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Skyrmions as strict degree 1 energy minimizers

exchange + anisotropy (and/or Zeeman):   let 

deg(m) =
1

2⇡

Z

R
✓
0
dx =

1

2⇡

Z 2⇡

0

deg(m,R, p(✓))d✓ = 1

m 7! (u, v) 2 R2 R2
[ {1} m(1) = (0, 0,�1)

m1 = �
2u

1 + u2 + v2
m2 = �

2v

1 + u2 + v2
m3 =

1� u
2
� v

2

1 + u2 + v2

N (m) =
1

4⇡

Z

R2

m ·

✓
@m

@x
⇥

@m

@y

◆
dx dy = sign det

✓
@(u, v)

@(x, y)

◆Z

R2

du dv

⇡(1 + u2 + v2)2
= 1

em(x, y, z) = m(x, y)e
�z

N (m) = �
1

4⇡

Z 1

0

Z

R2

@

@z

✓
em ·


@ em
@x

⇥
@ em
@y

�◆
dx dy dz

= �
3

4⇡

Z 1

0

Z

R2

det

✓
@(em1, em2, em3)

@(x, y, z)

◆
dx dy dz = �deg( em,R3

+)

m(r) =

✓
�

2r

1 + |r|2
,
1� |r|

2

1 + |r|2

◆
(u, v) = (x, y)

Z

R2

|rm|
2
d
2
r = 8⇡ + 4

Z

R2

(@xu� @yv)
2
+ (@yu+ @xv)

2

(1 + u2 + v2)2
d
2
r � 8⇡

w = u+ iv z = x+ iy ) w = f(z) analytic

f(z) = ⇢e
i✓
(z � z0) m⇢(r) = m0(⇢

�1
r)

E(m⇢) =

Z

R2

|rm0|
2
d
2
r + (Q� 1)⇢

4

deg(m) =
1

2⇡

Z

R
✓
0
dx =

1

2⇡

Z 2⇡

0

deg(m,R, p(✓))d✓ = 1

m 7! (u, v) 2 R2 R2
[ {1} m(1) = (0, 0,�1)

m1 = �
2u

1 + u2 + v2
m2 = �

2v

1 + u2 + v2
m3 =

1� u
2
� v

2

1 + u2 + v2

N (m) =
1

4⇡

Z

R2

m ·

✓
@m

@x
⇥

@m

@y

◆
dx dy = sign det

✓
@(u, v)

@(x, y)

◆Z

R2

du dv

⇡(1 + u2 + v2)2
= 1

em(x, y, z) = m(x, y)e
�z

N (m) = �
1

4⇡

Z 1

0

Z

R2

@

@z

✓
em ·


@ em
@x

⇥
@ em
@y

�◆
dx dy dz

= �
3

4⇡

Z 1

0

Z

R2

det

✓
@(em1, em2, em3)

@(x, y, z)

◆
dx dy dz = �deg( em,R3

+)

m(r) =

✓
�

2r

1 + |r|2
,
1� |r|

2

1 + |r|2

◆
(u, v) = (x, y)

Z

R2

|rm|
2
d
2
r = 8⇡ + 4

Z

R2

(@xu� @yv)
2
+ (@yu+ @xv)

2

(1 + u2 + v2)2
d
2
r � 8⇡

w = u+ iv z = x+ iy ) w = f(z) analytic

f(z) = ⇢e
i✓
(z � z0) m⇢(r) = m0(⇢

�1
r)

E(m⇢) =

Z

R2

|rm0|
2
d
2
r + (Q� 1)⇢

2

Z

R2

|m0,?|
2
d
2
r + 2h⇢

2

Z

R2

(1�m0,k)d
2
r

4
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goes back to Derrick, 1964; Pokhozhaev, 1965; Berestycki and Lions, 1983

exchange + anisotropy/Zeeman + DMI:
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choosing        as the Belavin-Polyakov profile, we find
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=> suggests existence of a global energy minimizer with non-trivial degree
Bogdanov and Yablonskii, 1989; Bogdanov, Kudinov and Yablonskii, 1989; Ivanov et al., 1990

rigorous proof for sufficiently small 𝜅 yields existence of a global energy
minimizer with degree 1, finite energy barrier

Melcher, 2014; Li and Melcher, 2018
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for bubble skyrmion, the stray field energy diverges with radius: 

hence

no hope to construct solutions as absolute minimizers 
with prescribed degree 

M, Simon, 2019
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Room-temperature skyrmions have also been found in magnetic 
bilayers (Figs. 4f, 5b), although generally with a larger diameter69,77–79. 
These efforts offer promising directions towards stack engineering of 
magnetic interactions to tune skyrmion properties in films for device  
applications80.

Detection and manipulation of chiral spin textures
Skyrmions in epitaxial films were first imaged using spin-polarized 
scanning tunnelling microscopy (SP-STM; Fig. 4d)61,62. Since then, they 
have been imaged in sputtered multilayer films using various magnetic 
microscopy techniques, including scanning transmission X-ray micros-
copy (STXM; Fig. 4g)67,68, photoemission electron microscopy (PEEM;  
Fig. 4f)78, spin-polarized low-energy electron microscopy (SPLEEM)77, 
and magneto-optical Kerr effect (MOKE) microscopy (Fig. 5b)69. 
Importantly, skyrmions can also be detected using a variety of thermo-
dynamic and transport techniques81. In particular, the Berry phase that 
is accumulated by electrons traversing the 2D spin texture of skyrmions 
results in an additional component in anomalous Hall effect measure-
ments, known as the topological Hall effect60,81. The Hall signal can be 
used to detect the presence of skyrmions and to address their motion 
in films and devices81,82. However, such Hall signatures of skyrmions 
have been detected thus far only in bulk crystal and films with intrinsic 

DMI81–83; these techniques remain to be established in multilayer films 
with interfacial DMI.

Magnetic skyrmions, owing to their small size and non-trivial topology, 
are attractive candidates for data storage in magnetic materials—provided 
that they can be nucleated, moved and read. Several nucleation techniques 
have been explored with micromagnetics simulations75,84. In SP-STM 
experiments on Fe/Pd bilayers (Fig. 5a), individual skyrmions were nucle-
ated and deleted using the current injected from the STM tip62. In other 
experiments, skyrmions have been created by applying field pulses68. A 
remarkable result in this regard is the recent demonstration of “blowing of 
skyrmion bubbles”69,85, generated by the current divergence out of a con-
striction (Fig. 5b). In future, skyrmions should be able to be moved with 
notable ease compared with, for example, domain walls82 by exploiting the 
SOT provided by the spin current75,86,87, which emerges naturally from the 
spin Hall effect of the neighbouring heavy metal layers. The dynamic prop-
erties of skyrmions have been explored using micromagnetics simulations 
and microscopy techniques in device configurations68,69. These works 
demonstrate that skyrmions can be manipulated with current and field 
pulses in lithographed geometric structures (Fig. 5b, c)68,69—techniques  
that can be incorporated in memory devices with relative facility.

These properties of magnetic skyrmions portend great potential 
towards realizing high-density and energy-efficient memory86,87. Several 

Figure 4 | Interfacial DMI and chiral spin textures. a, Anatomy of 
interfacial DMI from ab initio calculations. Bottom, Layer-resolved DMI 
in a Pt/Co bilayer. Top, distribution of SOC energies associated with the 
DMI in the interfacial Co layer. Inset, a schematic of DMI at the interface 
between a ferromagnetic metal with out-of-plane magnetization (Co, grey) 
and a strong SOC metal (Pt, blue). The DMI vector D12, associated with 
the triangle composed of two Co atoms and a Pt atom, is perpendicular to 
the plane of the triangle. S1,2, neighbouring spins. b, c, Schematics of the 
spin configuration in interfacial-DMI-induced chiral spin textures such as 
magnetic skyrmions (b) and chiral Néel domain walls (c), with the colour 
scale corresponding to the out-of-plane magnetization component. d, 
SP-STM imaging of an individual skyrmion (with a diameter of 8 nm at a 
field of 3.25 T) in a Fe/Pd bilayer on Ir(111), acquired in constant-current 
topographic mode, with an in-plane magnetized tip, with the modelled 
magnetization overlaid (arrows). e, Skyrmion stabilization in multilayers, 

illustrated using a multilayer stack of Ir/Co/Pt. The close-up of the trilayer 
shows DMI vectors (D12 and D34) at the top (Co/Ir) and bottom (Pt/Co) 
interfaces of Co. The effective DMI magnitude is enhanced by the same 
direction of D12 and D34 at the different interfaces. f, Room-temperature 
skyrmions in a Pt/Co/MgO multilayer in a lithographed 400 nm × 400 nm 
square, seen by XMCD-PEEM, with the magnetization profile along the 
red line shown below. g, Room-temperature skyrmions in (Ir/Co/Pt) × 10 
multilayers patterned into 300-nm-diameter disks (left) or 200-nm-wide 
tracks (right), seen by STXM. Panel a (main panel) adapted from ref. 72, 
American Physical Society. Panel a (inset) adapted from ref. 70, Nature 
Publishing Group. Panel d reproduced from ref. 62, American Association 
for the Advancement of Science. Panels e and g adapted from ref. 67, 
Nature Publishing Group. Panel f adapted from ref. 78, Nature Publishing 
Group.
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introduce:

why 16π? Topological lower bound:

allows to exclude splitting in the concentration compactness arguments

complete asymptotic description in the conformal limit
Bernand-Mantel, M and Simon, 2020
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Film of finite thickness — skyrmion tubes?

how to define a skyrmion solution for                                   ?
dimension mismatch!
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in the absence of stray field effects the non-dimensionalized energy is
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if d(z) = 1 and α, β, λ = 0, then the minimizers are the BP profiles indep. of z

what if only d(0) = 1 is forced? No existence!



Non-existence of minimizers

- consider test configurations        :
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- but dropping |m| = 1 for z > 0 we have
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whenever |λ| ≤ 1       (Note: otherwise ill-posed)
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new definition of a skyrmion is needed
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