An interplay between dimensionality and topology in thin ferromagnetic films

Cyrill B. Muratov

Department of Mathematical Sciences
New Jersey Institute of Technology
supported by NSF via DMS-0908279, DMS-1313687, DMS-1614948 and DMS-1908709.

Topological spin textures

spin spirals and chiral domain walls from Dzyaloshinskii-Moriya interaction (DMI):

Pd/Fe bilayer on $\operatorname{Ir}(111)$

K. von Bergmann et al., J. Phys.: Condens. Matter 26, 394002 (2014)
magnetic skyrmions:

Bloch-type skyrmion

Topological what?

topology is a branch of mathematics that deals with properties of objects that are preserved under continuous deformations (homotopies)
in the context of ferromagnetism, the object is the magnetization field:

$$
\mathrm{M}: \Omega \rightarrow \mathbb{R}^{3}
$$

magnetization field is a map from a domain occupied by the ferromagnet into the space of 3D vectors
a homotopy invariant is a characteristic of the magnetization field such that

$$
\begin{aligned}
& S\left(\mathbf{M}_{0}\right) \text { is true } \Rightarrow S\left(\mathbf{M}_{1}\right) \text { is true } \\
& \forall \varphi:[0,1] \times \Omega \rightarrow \mathbb{R}^{3} \text { continuous } \\
& \mathbf{M}_{t}(\mathbf{r})=\varphi(t, \mathbf{r})
\end{aligned}
$$

Topological what?

- need to specify the source manifold Ω where the magnetization \mathbf{M} lives
- need to specify the target manifold = the range of allowed values of \mathbf{M}
- need to specify the notion of continuity between different \mathbf{M} fields once the above are fixed, need to identify the homotopy invariants $S(\mathbf{M})$

all of the above are model-specific!

Example:
winding Néel wall

$$
\begin{array}{r}
\Omega=\mathbb{R} \cup\{\infty\} \quad|\mathbf{M}|=M_{s} \quad M_{2}=0 \\
\forall \varepsilon>0 \exists \delta>0:\left|t-t^{\prime}\right|<\delta \text { and } \\
\left|x-x^{\prime}\right|<\delta \text { or }|x|>\delta^{-1}, x^{\prime}=\infty \Rightarrow\left|\mathbf{M}_{t}(x)-\mathbf{M}_{t^{\prime}}\left(x^{\prime}\right)\right|<\varepsilon
\end{array}
$$

continuity:
homotopy invariant $=$ winding number (topological degree) of \mathbf{M}

$$
S(\mathbf{M})=\{\operatorname{deg}(\mathbf{M})=1\}:
$$

Micromagnetics of thin films (3D)

statics:

$$
\Omega=D \times(0, d), D \subset \mathbb{R}^{2}
$$

$$
\overline{\mathbf{M}}(x, y)=\mathbf{M}(x, y, 0)
$$

$$
\begin{aligned}
E(\mathbf{M})= & \frac{A}{M_{s}^{2}} \int_{\Omega}|\nabla \mathbf{M}|^{2} d^{3} r+\frac{K d}{M_{s}^{2}} \int_{D}\left|\overline{\mathbf{M}}_{\perp}\right|^{2} d^{2} r-\mu_{0} \int_{\Omega} M_{3} H d^{3} r \\
& +\mu_{0} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\nabla \cdot \mathbf{M}(\mathbf{r}) \nabla \cdot \mathbf{M}\left(\mathbf{r}^{\prime}\right)}{8 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r d^{3} r^{\prime}+\frac{D d}{M_{s}^{2}} \int_{D}\left(\bar{M}_{\|} \nabla \cdot \overline{\mathbf{M}}_{\perp}-\overline{\mathbf{M}}_{\perp} \cdot \nabla \bar{M}_{\|}\right) d^{2} r
\end{aligned}
$$

Landau and Lifshitz, 1935; Brown, 1963; Néel, 1954; Crépieux and Lacroix, 1998; M, Slastikov, 2016
Here $\mathbf{M}=\left(\mathbf{M}_{\perp}, M_{\|}\right), \quad \mathbf{M}_{\perp} \in \mathbb{R}^{2} \quad M_{\|} \in \mathbb{R} \quad|\mathbf{M}|=M_{\mathrm{s}} \quad$ in $\quad \Omega, \quad H \geq 0$
Parameters and their representative values:

- exchange constant $A=10^{-11} \mathrm{~J} / \mathrm{m}$
- anisotropy constant $K=1.25 \times 10^{6} \mathrm{~J} / \mathrm{m}^{3}$
- saturation magnetization $M_{s}=1.09 \times 10^{6} \mathrm{~A} / \mathrm{m}$
film thickness $d=0.5-5 \mathrm{~nm}$ lateral dimension:

$$
L=50-500 \mathrm{~nm}
$$

- DMI strength $D=1 \mathrm{~mJ} / \mathrm{m}^{2} \quad$ applied field strength $\mu_{0} H=100 \mathrm{mT}$

Dimension reduction (3D to 2D)

$$
\mathbf{m}=\left(\mathbf{m}_{\perp}, m_{\|}\right)
$$

assume the magnetization $\mathbf{m}=\mathbf{M} / M_{s}$ does not vary significantly across the film thickness, measure lengths in the units of $\ell_{e x}$, scale energy by $A d$

$$
\begin{aligned}
& E(\mathbf{m})=\int_{\mathbb{R}^{2}}\left\{|\nabla \mathbf{m}|^{2}+(Q-1)\left|\mathbf{m}_{\perp}\right|^{2}-2 \kappa \mathbf{m}_{\perp} \cdot \nabla m_{\|}-2 h\left(m_{\|}-1\right)\right\} d^{2} r \\
& +\frac{1}{2 \pi \delta} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left(\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}-\frac{1}{\sqrt{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}+\delta^{2}}}-2 \pi \delta^{(2)}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \delta\right) m_{\|}(\mathbf{r}) m_{\|}\left(\mathbf{r}^{\prime}\right) d^{2} r d^{2} r^{\prime} \\
& \\
& \quad+\delta \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} K_{\delta}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right) d^{2} r d^{2} r^{\prime}
\end{aligned}
$$

Here:

$$
Q=\frac{2 K}{\mu_{0} M_{s}^{2}} \quad \kappa=D \sqrt{\frac{2}{\mu_{0} M_{s}^{2} A}} \quad h=\frac{H}{M_{s}} \quad \ell_{e x}=\sqrt{\frac{2 A}{\mu_{0} M_{s}^{2}}} \quad \delta=\frac{d}{\ell_{e x}}
$$

$$
K_{\delta}(r)=\frac{1}{2 \pi \delta}\left\{\ln \left(\frac{\delta+\sqrt{\delta^{2}+r^{2}}}{r}\right)-\sqrt{1+\frac{r^{2}}{\delta^{2}}}+\frac{r}{\delta}\right\} \simeq \frac{1}{4 \pi r} \quad \delta \ll 1
$$

Reduced thin film energy (2D)

$$
\mathbf{m}=\left(\mathbf{m}_{\perp}, m_{\|}\right)
$$

regime $\delta \ll 1$:
Taylor-expand in Fourier space

$$
\begin{aligned}
E(\mathbf{m}) & \simeq \int_{\mathbb{R}^{2}}\left\{|\nabla \mathbf{m}|^{2}+(Q-1)\left|\mathbf{m}_{\perp}\right|^{2}-2 \kappa \mathbf{m}_{\perp} \cdot \nabla m_{\|}-2 h\left(m_{\|}-1\right)\right\} d^{2} r \\
& \left.+\frac{\delta}{4 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{2} r d^{2} r^{\prime}-\frac{\delta}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\left(m_{\|}(\mathbf{r})-m_{\|}\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime} \right\rvert\,
\end{aligned}
$$

M, Slastikov, 2016
the expression for the stray field energy is rigorously justified via a 「-expansion
Knüpfer, M, Nolte, 2019
for bounded 2D samples, extra boundary terms appear
Di Fratta, M, Slastikov, 2021
proper definition of the non-local terms via Fourier:

$$
\left.\begin{array}{l}
\frac{1}{2} \int_{\mathbb{R}^{2}}|\mathbf{k}|\left|\widehat{m}_{\|}(\mathbf{k})\right|^{2} \frac{d^{2} k}{(2 \pi)^{2}}=\frac{1}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\left(m_{\|}(\mathbf{r})-m_{\|}\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime},
\end{array}\right\} \begin{aligned}
& \text { surface } \\
& \text { charges }
\end{aligned}
$$

Reduced thin film energy (1D)

energy per unit length:

$$
\mathbf{m}=\left(m_{1}, m_{2}, m_{3}\right)
$$

$$
\begin{aligned}
E(\mathbf{m}) & \simeq \int_{\mathbb{R}}\left\{\left|m_{1}^{\prime}\right|^{2}+\left|m_{2}^{\prime}\right|^{2}+\left|m_{3}^{\prime}\right|^{2}+(Q-1)\left(m_{1}^{2}+m_{2}^{2}\right)-2 \kappa m_{1} m_{3}^{\prime}-2 h\left(m_{3}-1\right)\right\} d x \\
& +\frac{\delta}{4 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\left(m_{1}(x)-m_{1}\left(x^{\prime}\right)\right)^{2}}{\left(x-x^{\prime}\right)^{2}} d x d x^{\prime}-\frac{\delta}{4 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\left(m_{3}(x)-m_{3}\left(x^{\prime}\right)\right)^{2}}{\left(x-x^{\prime}\right)^{2}} d x d x^{\prime}
\end{aligned}
$$

setting $\delta=0$ and a Néel profile $\quad \mathbf{m}=\left(m_{1}, 0, m_{3}\right), \quad\left(m_{1}, m_{3}\right) \in \mathbb{S}^{1}$

$$
E(\mathbf{m})=\int_{\mathbb{R}}\left(\frac{\left|m_{3}^{\prime}\right|^{2}}{1-m_{3}^{2}}+(Q-1)\left(1-m_{3}^{2}\right)-2 \kappa m_{1} m_{3}^{\prime}-2 h\left(m_{3}-1\right)\right) d x
$$

winding number

$$
\operatorname{deg}(\mathbf{m})=\frac{1}{2 \pi} \int_{\mathbb{R}}\left(m_{1} m_{3}^{\prime}-m_{3} m_{1}^{\prime}\right) d x=\frac{1}{\pi} \int_{\mathbb{R}} m_{1} m_{3}^{\prime} d x \in \mathbb{Z}
$$

360-degree wall

minimize in the homotopy class $\{\operatorname{deg}(\mathbf{m})= \pm 1\}$

choosing $\quad m_{1}=-\sin \theta \quad m_{3}=\cos \theta \quad$ we get

$$
E(\mathbf{m})=\int_{\mathbb{R}}\left\{\left|\theta^{\prime}\right|^{2}+(Q-1) \sin ^{2} \theta+2 h(1-\cos \theta)\right\} d x-2 \pi \kappa \operatorname{deg}(\mathbf{m})
$$

where

$$
\operatorname{deg}(\mathbf{m})=\frac{1}{2 \pi} \int_{\mathbb{R}}\left(m_{1} m_{3}^{\prime}-m_{3} m_{1}^{\prime}\right) d x=\frac{1}{2 \pi} \int_{\mathbb{R}} \theta^{\prime} d x \in \mathbb{Z}
$$

since

$$
m_{3}(\infty)=1 \quad \Rightarrow \quad \theta(\pm \infty) \in 2 \pi \mathbb{Z}
$$

minimizer exists iff $\quad \operatorname{deg}(\mathbf{m})=\frac{1}{2 \pi}[\theta(+\infty)-\theta(-\infty)]= \pm 1, \quad Q>1, h>0$

$$
\text { implicitly } x=-\frac{\sqrt{2} \sin \left(\frac{\theta}{2}\right) \sqrt{2 h+(Q-1) \cos \theta+Q-1} \tanh ^{-1}\left(\frac{\sqrt{2(h+Q-1)} \cos \left(\frac{\theta}{2}\right)}{\sqrt{2 h+(Q-1) \cos \theta+Q-1}}\right)}{\sqrt{(h+Q-1)\left(2 h(1-\cos \theta)+(Q-1) \sin ^{2} \theta\right)}}
$$

Is the 360-degree wall "topologically protected"?

actually, that depends on what you mean!
Topological fact: the obtained Néel profile $\mathbf{m}: \mathbb{R} \rightarrow \mathbb{S}^{1}, \quad \mathbf{m}=(-\sin \theta, \cos \theta)$ cannot be continuously deformed into the ferromagnetic state $\mathbf{m}=(0,1)$

But why continuously?
In general, solutions of LLG may fail to be continuous - finite time blowup However, in 1D a discontinuity formation costs infinite energy:

$$
\begin{aligned}
\left|\mathbf{m}\left(x_{1}\right)-\mathbf{m}\left(x_{2}\right)\right| \leq \int_{x_{1}}^{x_{2}}\left|\mathbf{m}^{\prime}(x)\right| d x \leq & \left(\int_{x_{1}}^{x_{2}} d x \int_{x_{1}}^{x_{2}}\left|\mathbf{m}^{\prime}(x)\right|^{2} d x\right)^{1 / 2} \\
& \leq \sqrt{x_{2}-x_{1}}\left(\int_{\mathbb{R}}\left|\mathbf{m}^{\prime}\right|^{2} d x\right)^{1 / 2}
\end{aligned}
$$

=> here topology is controlled by energy <=> infinite energy barrier

Is the 360-degree wall "topologically protected"?

but wait a minute! The profile is actually a map

$$
\mathbf{m}: \mathbb{R} \rightarrow \mathbb{S}^{2}, \quad \mathbf{m}=(-\sin \theta, 0, \cos \theta)
$$

this map can be continuously deformed into the ferromagnetic state:
this transformation passes over a finite energy barrier

```
N JITT

\section*{What is the "topological degree"?}
actually, there are several notions of topological degree (or topological charge)
- the one just introduced is an example of the Kronecker index:
\[
\operatorname{deg}(\mathbf{m})=\frac{1}{2 \pi} \int_{\mathbb{R}}\left(m_{1} m_{3}^{\prime}-m_{3} m_{1}^{\prime}\right) d x
\]
- a deeper notion in topology is that of the Brouwer degree:
given \(F: \Omega \rightarrow M\) differentiable, \(\Omega, M\) compact oriented \(n\)-dim manifolds then if \(p \in M\) is a regular point of \(F\), i.e., if \(\operatorname{det} D F \neq 0 \quad \forall x \in F^{-1}(p)\)
\[
\operatorname{deg}(F, \Omega, p)=\sum_{x \in F^{-1}(p)} \operatorname{sign}(\operatorname{det} D F(x))
\]
where \(D F\) is the Jacobi matrix of \(F\) in an oriented coordinate chart containing \(x\)
Topological fact: if \(M\) is connected, the Brouwer degree does not depend on \(p\).

\section*{Example: one-to-one maps}
if \(F\) is one-to-one, then it is either orientation preserving or orientation reversing
\[
\operatorname{deg}(F, \Omega, p)=1 \quad \text { or } \quad \operatorname{deg}(F, \Omega, p)=-1
\]

Example: 360-degree Néel wall, \(\quad \Omega=\mathbb{R} \cup\{\infty\}, \quad M=\mathbb{S}^{1}\)
\(\theta\)

\[
\operatorname{deg}(\mathbf{m}, \mathbb{R} \cup\{\infty\}, p=\mathbf{m}(x))=\operatorname{sign} \theta^{\prime}(x)= \pm 1
\]

Note: \(\operatorname{deg}(\mathbf{m}) \neq 0 \quad \Rightarrow\) the map \(\mathbf{m}\) is onto \(<=>\) the image of \(\mathbf{m}\) is all of \(M\)

\section*{Brouwer degree for \(\mathbf{m}: \mathbb{R} \cup\{\infty\} \rightarrow \mathbb{S}^{1}\)}
degree 1 maps:


\[
\operatorname{deg}(\mathbf{m}, \mathbb{R} \cup\{\infty\}, p)=\sum_{x: \mathbf{m}(x)=p} \operatorname{sign} \theta^{\prime}(x)
\]
(by Area formula)
\(\operatorname{deg}(\mathbf{m})=\frac{1}{2 \pi} \int_{\mathbb{R}} \theta^{\prime} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{deg}(\mathbf{m}, \mathbb{R} \cup\{\infty\}, p(\theta)) d \theta=1\)
Warning: the degree of a map \(\mathbf{m}: \mathbb{R} \rightarrow \mathbb{S}^{2}\) is not defined!

\section*{Magnetic skyrmions}
maps \(\mathbf{m}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}\) with non-trivial topology
example: harmonic maps
\[
E(\mathbf{m})=\int_{\mathbb{R}^{2}}|\nabla \mathbf{m}|^{2} d^{2} r
\]
all minimizers with prescribed degree are known
after stereographic projection, reduces to harmonic maps from \(\mathbb{S}^{2}\) to \(\mathbb{S}^{2}\) they are holomorphic or anti-holomorphic maps
specifically, all degree 1 minimizing maps are
dilations, rotations and translations of:
\[
\mathbf{m}(\mathbf{r})=\left(-\frac{2 \mathbf{r}}{1+|\mathbf{r}|^{2}}, \frac{1-|\mathbf{r}|^{2}}{1+|\mathbf{r}|^{2}}\right)
\]

\section*{One-to-one maps from \(\mathbb{R}^{2} \cup\{\infty\}\) to \(\mathbb{S}^{2}\)}
introduce a stereographic projection \(\mathbf{m} \mapsto(u, v) \in \mathbb{R}^{2} \quad \mathbf{m}(\infty)=(0,0,-1)\)
\[
m_{1}=-\frac{2 u}{1+u^{2}+v^{2}} \quad m_{2}=-\frac{2 v}{1+u^{2}+v^{2}} \quad m_{3}=\frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}
\]
defines one-to-one maps from \(\mathbb{R}^{2} \cup\{\infty\}\) to \(\mathbb{R}^{2} \cup\{\infty\}: \quad(x, y) \mapsto(u, v) \in \mathbb{R}^{2}\)
topological charge (Kronecker index):
Brouwer degree \(= \pm 1\)
\[
\mathcal{N}(\mathbf{m})=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \mathbf{m} \cdot\left(\frac{\partial \mathbf{m}}{\partial x} \times \frac{\partial \mathbf{m}}{\partial y}\right) d x d y=\operatorname{sign} \operatorname{det}\left(\frac{\partial(u, v)}{\partial(x, y)}\right) \int_{\mathbb{R}^{2}} \frac{d u d v}{\pi\left(1+u^{2}+v^{2}\right)^{2}}= \pm 1
\]
more generally, an integer: defining \(\quad \widetilde{\mathbf{m}}(x, y, z)=\mathbf{m}(x, y) e^{-z} \quad\) we get
\[
\begin{aligned}
\mathcal{N}(\mathbf{m}) & =-\frac{1}{4 \pi} \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \frac{\partial}{\partial z}\left(\widetilde{\mathbf{m}} \cdot\left[\frac{\partial \widetilde{\mathbf{m}}}{\partial x} \times \frac{\partial \widetilde{\mathbf{m}}}{\partial y}\right]\right) d x d y d z \\
& =-\frac{3}{4 \pi} \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \operatorname{det}\left(\frac{\partial\left(\widetilde{m}_{1}, \widetilde{m_{2}}, \widetilde{m}_{3}\right)}{\partial(x, y, z)}\right) d^{3} r=\frac{3}{4 \pi} \operatorname{deg}(\mathbf{m}) \int_{B_{1}(0)} d^{3} \widetilde{m}=\operatorname{deg}(\mathbf{m})
\end{aligned}
\]

\section*{Belavin-Polyakov profiles}
\[
\mathbf{m}(\mathbf{r})=\left(-\frac{2 \mathbf{r}}{1+|\mathbf{r}|^{2}}, \frac{1-|\mathbf{r}|^{2}}{1+|\mathbf{r}|^{2}}\right)
\]
orientation preserving and minimize the exchange energy:
\[
\int_{\mathbb{R}^{2}}|\nabla \mathbf{m}|^{2} d^{2} r=8 \pi+4 \int_{\mathbb{R}^{2}} \frac{\left(\partial_{x} u-\partial_{y} v\right)^{2}+\left(\partial_{y} u+\partial_{x} v\right)^{2}}{\left(1+u^{2}+v^{2}\right)^{2}} d^{2} r \geq 8 \pi
\]
equality achieved => every minimizer satisfies the Cauchy-Riemann equations
\[
w=u+i v \quad z=x+i y \quad \Rightarrow \quad w=f(z) \text { analytic }
\]
\(f(z)\) is smooth and goes to infinity at infinity \(=>\) it is a polynomial
\[
f(z) \text { is one-to-one }=>f(z)=\rho e^{i \theta}\left(z-z_{0}\right)
\]
=> all sol's are translations, dilations and in-plane rotations of the BP profile topologically protected? yes: impossible to deform continuously to \(\mathbf{m}(\infty)\) energy barrier? no: the minimum is degenerate can be deformed to \(\mathbf{m}(\infty)\) almost everywhere without paying any energy!

\section*{Skyrmions as strict degree 1 energy minimizers}
exchange + anisotropy (and/or Zeeman): let \(\mathbf{m}_{\rho}(\mathbf{r})=\mathbf{m}_{0}\left(\rho^{-1} \mathbf{r}\right)\)
\[
E\left(\mathbf{m}_{\rho}\right)=\int_{\mathbb{R}^{2}}\left|\nabla \mathbf{m}_{0}\right|^{2} d^{2} r+(Q-1) \rho^{2} \int_{\mathbb{R}^{2}}\left|\mathbf{m}_{0, \perp}\right|^{2} d^{2} r+2 h \rho^{2} \int_{\mathbb{R}^{2}}\left(1-m_{0, \|}\right) d^{2} r
\]
achieves minimum when \(\rho \rightarrow 0 \quad \Rightarrow>\) no minimizer
goes back to Derrick, 1964; Pokhozhaev, 1965; Berestycki and Lions, 1983
exchange + anisotropy/Zeeman + DMI:
\[
E\left(\mathbf{m}_{\rho}\right)=\int_{\mathbb{R}^{2}}\left|\nabla \mathbf{m}_{0}\right|^{2} d^{2} r-2 \kappa \rho \int_{\mathbb{R}^{2}} \mathbf{m}_{0, \perp} \cdot \nabla m_{0, \|} d^{2} r+2 h \rho^{2} \int_{\mathbb{R}^{2}}\left(1-m_{0, \|}\right) d^{2} r
\]
choosing \(\mathbf{m}_{0}\) as the Belavin-Polyakov profile, we find \(\min E(\mathbf{m})<8 \pi\)
=> suggests existence of a global energy minimizer with non-trivial degree
Bogdanov and Yablonskii, 1989; Bogdanov, Kudinov and Yablonskii, 1989; Ivanov et al., 1990
rigorous proof for sufficiently small \(\kappa\) yields existence of a global energy
N JIT minimizer with degree 1, finite energy barrier

\section*{Admissible class?}
\[
\begin{aligned}
E(\mathbf{m}) & =\int_{\mathbb{R}^{2}}\left\{|\nabla \mathbf{m}|^{2}+(Q-1)\left|\mathbf{m}_{\perp}\right|^{2}-2 \kappa \mathbf{m}_{\perp} \cdot \nabla m_{\|}\right\} d^{2} r \\
& +\frac{\delta}{4 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\nabla \cdot \mathbf{m}_{\perp}(\mathbf{r}) \nabla \cdot \mathbf{m}_{\perp}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{2} r d^{2} r^{\prime}-\frac{\delta}{8 \pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{\left(m_{\|}(\mathbf{r})-m_{\|}\left(\mathbf{r}^{\prime}\right)\right)^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}} d^{2} r d^{2} r^{\prime}
\end{aligned}
\]
compact skyrmion


VS.

for bubble skyrmion, the stray field energy diverges with radius:
\[
E_{s}\left(\mathbf{m}_{R}\right) \sim-R \ln R
\]
hence \(\quad \mathbf{m}: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2}, \nabla \mathbf{m} \in L^{2}, \mathbf{m}_{\perp} \in L^{2} \nRightarrow E(\mathbf{m})>-\infty\)
no hope to construct solutions as absolute minimizers with prescribed degree

\section*{Compact skyrmions as local minimizers}
introduce:
\[
\mathcal{N}(\mathbf{m})=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \mathbf{m} \cdot\left(\partial_{1} \mathbf{m} \times \partial_{2} \mathbf{m}\right) d^{2} r
\]
\[
\mathcal{A}:=\left\{\mathbf{m} \in \dot{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{S}^{2}\right): \mathcal{N}(\mathbf{m})=1, \mathbf{m}+\mathbf{e}_{3} \in L^{2}\left(\mathbb{R}^{2}\right), \int_{\mathbb{R}^{2}}|\nabla \mathbf{m}|^{2} d^{2} r<16 \pi\right\}
\]
why \(16 \pi\) ? Topological lower bound: \(\mathbf{m} \in \stackrel{\circ}{H}^{1}\left(\mathbb{R}^{2} ; \mathbb{S}^{2}\right)\)
\[
\int_{\mathbb{R}^{2}}|\nabla \mathbf{m}|^{2} d^{2} r \geq 8 \pi|\mathcal{N}(\mathbf{m})|
\]
\[
|\nabla \mathbf{m}|^{2} \pm 2 \mathbf{m} \cdot\left(\partial_{1} \mathbf{m} \times \partial_{2} \mathbf{m}\right)=\left|\partial_{1} \mathbf{m} \mp \mathbf{m} \times \partial_{2} \mathbf{m}\right|^{2}
\]
allows to exclude splitting in the concentration compactness arguments

Theorem 1. Let \(Q>1, \delta>0\) and \(\kappa \in \mathbb{R}\) be such that \((2|\kappa|+\delta)^{2}<2(Q-1)\). Then there exists \(\mathbf{m} \in \mathcal{A}\) such that
\[
E(\mathbf{m})=\inf _{\widetilde{\mathbf{m}} \in \mathcal{A}} E(\widetilde{\mathbf{m}}) .
\]

\section*{Film of finite thickness - skyrmion tubes?}
how to define a skyrmion solution for \(\Omega=\mathbb{R}^{2} \times[0, \delta] \subset \mathbb{R}^{3}\) ? dimension mismatch!
\[
\mathbf{m}: \mathbb{R}^{2} \times[0, \delta] \rightarrow \mathbb{S}^{2}
\]
in the absence of stray field effects the non-dimensionalized energy is
\[
\begin{aligned}
E(\mathbf{m})= & \int_{0}^{\delta} \int_{\mathbb{R}^{2}}|\nabla \mathbf{m}(x, y, z)|^{2} d x d y d z+\beta \int_{0}^{\delta} \int_{\mathbb{R}^{2}}\left(1+m_{\|}(x, y, z)\right) d x d y d z \\
& +\alpha \int_{\mathbb{R}^{2}}\left|\mathbf{m}_{\perp}(x, y, 0)\right|^{2} d x d y-2 \lambda \int_{\mathbb{R}^{2}} \mathbf{m}_{\perp}(x, y, 0) \cdot \nabla m_{\|}(x, y, 0) d x d y
\end{aligned}
\]
can define the degree on slices: \(d(z)=\operatorname{deg}\left(\mathbf{m}(\cdot, z), \mathbb{R}^{2}\right) \quad \mathbf{m}(\infty)=(0,0,-1)\)
if \(d(z)=1\) and \(a, \beta, \lambda=0\), then the minimizers are the BP profiles indep. of \(z\)
what if only \(d(0)=1\) is forced? No existence!

\section*{Non-existence of minimizers}
\[
\widehat{\mathbf{m}}_{\mathbf{k}}(z)=\int_{\mathbb{R}^{2}} e^{-i \mathbf{k} \cdot \mathbf{r}} \mathbf{m}(\mathbf{r}, z) d^{2} r
\]
- consider test configurations \(\mathbf{m}_{R}\) :
\[
E\left(\mathbf{m}_{R}\right)=C_{1} R+C_{2} \beta R^{3}+C_{3} \alpha R^{2}-C_{4} \lambda R
\]
hence
\[
E\left(\mathbf{m}_{R}\right) \rightarrow 0 \quad \text { as } \quad R \rightarrow 0
\]
- but dropping \(|\mathbf{m}|=1\) for \(z>0\) we have
\[
E(\mathbf{m}) \geq \int_{\mathbb{R}^{2}}|\mathbf{k}|\{\tanh (\delta|\mathbf{k}|)-|\lambda|\}\left|\widehat{\mathbf{m}}_{\mathbf{k}}(0)\right|^{2} \frac{d^{2} k}{(2 \pi)^{2}} \geq 0
\]
whenever \(|\lambda| \leq 1 \quad\) (Note: otherwise ill-posed)
=> the minimum is not attained!
\(\mathbf{m}_{R}\)

```

