
One-dimensional domain walls in thin film 
ferromagnets: an overview 

Cyrill B. Muratov


Department of Mathematical Sciences 
New Jersey Institute of Technology 

supported by NSF via DMS-0908279, DMS-1313687, DMS-1614948 and DMS-1908709.



In collaboration with:

Valeriy 
Slastikov Matteo 

Novaga

Antonio 
Capella Massimiliano 

Morini

Giovanni 
Di Fratta

Theresa  
Simon

Anne 
Bernand-Mantel

Xiaodong 
Yan

Oleg  
Tretiakov

Jonathan 
Robbins

Florian 
Nolte

Nicholas 
Dubicki

Filipp 
Rybakov

Vyacheslav 
Osipov

Milena 
Chermisi

Ross 
Lund

Gabriel 
Chaves

Hans 
Knüpfer

Antonin 
Monteil

Alexander 
Kolesnikov

Eric 
Vanden Eijnden



Postdocs

Valeriy 
Slastikov Matteo 

Novaga

Antonio 
Capella Massimiliano 

Morini

Giovanni 
Di Fratta

Theresa  
Simon

Xiaodong 
Yan

Oleg  
Tretiakov

Jonathan 
Robbins

Florian 
Nolte

Nicholas 
Dubicki

Filipp 
Rybakov

Vyacheslav 
Osipov

Milena 
Chermisi

Ross 
Lund

Gabriel 
Chaves

Hans 
Knüpfer

Antonin 
Monteil

Alexander 
Kolesnikov

Anne 
Bernand-Mantel

Eric 
Vanden Eijnden



PhD students

Valeriy 
Slastikov Matteo 

Novaga

Antonio 
Capella Massimiliano 

Morini

Giovanni 
Di Fratta

Theresa  
Simon

Xiaodong 
Yan

Oleg  
Tretiakov

Jonathan 
Robbins

Florian 
Nolte

Nicholas 
Dubicki

Filipp 
Rybakov

Vyacheslav 
Osipov

Milena 
Chermisi

Ross 
Lund

Gabriel 
Chaves

Hans 
Knüpfer

Antonin 
Monteil

Alexander 
Kolesnikov

Anne 
Bernand-Mantel

Eric 
Vanden Eijnden



Magnetism and magnets

images borrowed from: 
Tom Whyntie, (2016), zenodo.com 

mammothmemory.net

- spins act as tiny magnetic dipoles 
- quantum-mechanical interaction between spins: exchange 
- in transition metals below the critical temperature, exchange results in local 

spin alignment into the ferromagnetic state 
-  magnetic field mediates long-range attraction/repulsion between magnets

?



J. McCord, J. Phys. D: Appl. Phys. 48, 333001 (2015) 

Magnetic 
domains

- stray field 
frustrates the 
ferromagnetic 
order 

- gives rise to a 
great variety of 
spin textures 

- principle of pole 
avoidance 

- out-of-plane 
magnetization: 

   more complicated 



Micromagnetic modeling framework

continuum mesoscopic theory
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equation when higher derivatives of the solution are considered, and the second derivative of 
the solution indeed blows up at the film edge.

After establishing existence and regularity of the edge domain wall profiles, we investigate 
two specific regimes where we can provide refined information about the properties of the 
energy minimizing solutions of the Euler–Lagrange equation; see theorems 3 and 4. The first 
regime that we consider is the regime of relatively small magnetostatic energy, which cor-
responds to very thin films. In this regime we show that all minimizers of the energy (24) are 
close to the standard local Néel wall-type profile. The second regime is the regime in which 
the boundary tangent and the easy axis directions are nearly parallel. In this case we show that 
there is a unique minimizer of the energy in (24), and this minimizer is close to the uniform 
state. We corroborate our analytical findings and provide more information about the profiles 
of edge domain walls, using 1D numerical simulations that employ the method from [36].

Our paper is organized as follows. In section 2, starting from the full 3D micromagnetic 
model we derive a variational model for edge domain walls that we intend to investigate in 
this paper. Section 3 is devoted to a rigorous formulation of the problem and includes the 
statements of the main results about existence, regularity and the qualitative features of edge 
domain walls. In sections 4–7 we prove the main theorems formulated before in section 3. In 
section 8, we present the results of numerical simulations, compare them with our analytical 
findings and discuss open problems. Finally, in appendix we provide a rigorous derivation of 
the 1D micromagnetic energy in magnetic strips under natural assumptions on the 1D mag-
netization profile.

2. Model

Consider a uniaxial ferromagnet occupying a domain Ω ⊂ R3, with the easy axis oriented 
along the second coordinate direction. Then the micromagnetic energy associated with the 
magnetization state of the sample reads, in the SI units [22, 29]:

E(M) =
A

M2
s

∫

Ω
|∇M|2 d 3 r +

K
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(M2
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3 )d
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R3
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8 π|r − r′| d 3 r d 3 r′.

 

(1)

Here M = (M1 , M2 , M3 ) is the magnetization vector that satisfies |M| = Ms in Ω and M = 0 
in R3 \ Ω, the positive constants Ms, A and K are the saturation magnetization, exchange 
constant and the anisotropy constant, respectively, H is an applied external field, and µ0 is 
the permeability of vacuum. In (1), the terms in the order of appearance are the exchange, 
crystalline anisotropy, Zeeman and stray field terms, respectively, and ∇ · M is understood 
distributionally.

In this paper, we are interested in the situation in which Ω is a flat ultra-thin film domain, i.e. 
we have Ω = D × (0, d), where D ⊂ R2  is a planar domain specifying the film shape and d is 
the film thickness of a few nanometers. In this case the magnetization is expected to be essen-
tially independent from the third coordinate, and the full 3D micromagnetic energy admits a 
reduction to an energy functional that depends only on the average of the magnetization over the 
film thickness (see, e.g. [27, lemma 3]; for an analytical treatment in a closely related context, 
see [26, 35]). Therefore, we introduce an ansatz M(x1, x2, x3) = Ms(m(x1, x2), 0)χ(0,d)(x3), 
where m : R2 → R2 is a 2D in-plane magnetization vector satisfying |m| = 1 in D and |m| = 0 
outside D, and χ(0,d) is the characteristic function of (0, d). Next, we define the exchange 
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statics:  
the observed magnetization patterns are local or global energy minimizers 
dynamics:  
the Landau-Lifshitz-Gilbert equation (in the Landau-Lifshitz form) 

stochasticity can be added  
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Stray field energy

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VARIATIONAL PRINCIPLES OF MICROMAGNETICS 3581

cromagnetic energy associated with the magnetization state of a ferromagnetic sample
occupying three-dimensional bounded domain ⌦ (⌦ ⇢ R3) is [7, 32, 38]
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where M = (M1,M2,M3) is the magnetization vector that satisfies |M| = Ms in ⌦
and M = 0 in R3

\⌦ (i.e., outside the domain ⌦), the positive constants Ms, A, and K

are the saturation magnetization and exchange and anisotropy constants, respectively,
Ha is the applied magnetic field, and µ0 is the permeability of vacuum. Here we use
the standard notation |rM|

2 = |rM1|
2+ |rM2|

2+ |rM3|
2 for the Euclidean norm of

gradients of vectorial quantities. All physical quantities are assumed to be in SI units.
The demagnetizing field Hd is determined via the magnetic induction B = Ba +Bd,
where Ba = µ0Ha is the induction in the absence of the ferromagnet due to permanent
external field sources, and

Bd = µ0(Hd +M).(1.2)

The pair (Hd,Bd) solves the following system obtained from the time-independent
Maxwell’s equations:

divBd = 0, curlHd = 0,(1.3)

where we noted that by definition divBa = 0 in R3. In (1.1), the terms in the order
of appearance are the exchange, Eex, magnetocrystalline anisotropy, Ea, stray field,
Es, and Zeeman, EZ, energies, respectively.

There exist several well-known representations of the stray field energy employed
in the analysis of the micromagnetic energy [9]. Using (1.3), one can introduce the
magnetic scalar potential Ud : R3

! R associated with the demagnetizing field, such
that Hd = �rUd, and Ud satisfies the following equation in the sense of distributions:

�Ud = divM,(1.4)

and vanishes at infinity. The stray field energy can be rewritten in terms of Ud as [9]
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reflecting its nonlocal and singular nature. Note that since M has a jump at the
boundary of domain ⌦, its divergence divM has a singularity and, therefore, must be
understood in a formal sense through its Fourier symbol.

Another way to represent the stray field energy is to employ the magnetic vector
potential A satisfying B = curlA = curl (Aa + Ad), where Aa and Ad are the
contributions associated with Ba and Bd, respectively. The magnetic vector potential
is unobservable and not uniquely defined due to gauge invariance. However, this
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cromagnetic energy associated with the magnetization state of a ferromagnetic sample
occupying three-dimensional bounded domain ⌦ (⌦ ⇢ R3) is [7, 32, 38]
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the standard notation |rM|

2 = |rM1|
2+ |rM2|

2+ |rM3|
2 for the Euclidean norm of

gradients of vectorial quantities. All physical quantities are assumed to be in SI units.
The demagnetizing field Hd is determined via the magnetic induction B = Ba +Bd,
where Ba = µ0Ha is the induction in the absence of the ferromagnet due to permanent
external field sources, and

Bd = µ0(Hd +M).(1.2)

The pair (Hd,Bd) solves the following system obtained from the time-independent
Maxwell’s equations:

divBd = 0, curlHd = 0,(1.3)

where we noted that by definition divBa = 0 in R3. In (1.1), the terms in the order
of appearance are the exchange, Eex, magnetocrystalline anisotropy, Ea, stray field,
Es, and Zeeman, EZ, energies, respectively.

There exist several well-known representations of the stray field energy employed
in the analysis of the micromagnetic energy [9]. Using (1.3), one can introduce the
magnetic scalar potential Ud : R3

! R associated with the demagnetizing field, such
that Hd = �rUd, and Ud satisfies the following equation in the sense of distributions:

�Ud = divM,(1.4)

and vanishes at infinity. The stray field energy can be rewritten in terms of Ud as [9]

Es(M) =
µ0

2

Z

⌦
M ·rUd d

3
r =

µ0

2

Z

R3

|rUd|
2
d
3
r.(1.5)

Using the fundamental solution of the Laplace equation in R3, one can also rewrite
the stray field energy in the following way:

Es(M) =
µ0

8⇡

Z

R3

Z

R3

divM(r) divM(r0)

|r� r0|
d
3
r d

3
r
0
,(1.6)

reflecting its nonlocal and singular nature. Note that since M has a jump at the
boundary of domain ⌦, its divergence divM has a singularity and, therefore, must be
understood in a formal sense through its Fourier symbol.

Another way to represent the stray field energy is to employ the magnetic vector
potential A satisfying B = curlA = curl (Aa + Ad), where Aa and Ad are the
contributions associated with Ba and Bd, respectively. The magnetic vector potential
is unobservable and not uniquely defined due to gauge invariance. However, this
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cromagnetic energy associated with the magnetization state of a ferromagnetic sample
occupying three-dimensional bounded domain ⌦ (⌦ ⇢ R3) is [7, 32, 38]

E(M) =
A
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Hd ·M d

3
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⌦
Ha ·M d

3
r,

(1.1)

where M = (M1,M2,M3) is the magnetization vector that satisfies |M| = Ms in ⌦
and M = 0 in R3

\⌦ (i.e., outside the domain ⌦), the positive constants Ms, A, and K

are the saturation magnetization and exchange and anisotropy constants, respectively,
Ha is the applied magnetic field, and µ0 is the permeability of vacuum. Here we use
the standard notation |rM|

2 = |rM1|
2+ |rM2|

2+ |rM3|
2 for the Euclidean norm of

gradients of vectorial quantities. All physical quantities are assumed to be in SI units.
The demagnetizing field Hd is determined via the magnetic induction B = Ba +Bd,
where Ba = µ0Ha is the induction in the absence of the ferromagnet due to permanent
external field sources, and

Bd = µ0(Hd +M).(1.2)

The pair (Hd,Bd) solves the following system obtained from the time-independent
Maxwell’s equations:

divBd = 0, curlHd = 0,(1.3)

where we noted that by definition divBa = 0 in R3. In (1.1), the terms in the order
of appearance are the exchange, Eex, magnetocrystalline anisotropy, Ea, stray field,
Es, and Zeeman, EZ, energies, respectively.

There exist several well-known representations of the stray field energy employed
in the analysis of the micromagnetic energy [9]. Using (1.3), one can introduce the
magnetic scalar potential Ud : R3

! R associated with the demagnetizing field, such
that Hd = �rUd, and Ud satisfies the following equation in the sense of distributions:

�Ud = divM,(1.4)

and vanishes at infinity. The stray field energy can be rewritten in terms of Ud as [9]

Es(M) =
µ0

2

Z

⌦
M ·rUd d

3
r =

µ0

2

Z

R3

|rUd|
2
d
3
r.(1.5)

Using the fundamental solution of the Laplace equation in R3, one can also rewrite
the stray field energy in the following way:

Es(M) =
µ0

8⇡

Z

R3

Z
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divM(r) divM(r0)

|r� r0|
d
3
r d

3
r
0
,(1.6)

reflecting its nonlocal and singular nature. Note that since M has a jump at the
boundary of domain ⌦, its divergence divM has a singularity and, therefore, must be
understood in a formal sense through its Fourier symbol.

Another way to represent the stray field energy is to employ the magnetic vector
potential A satisfying B = curlA = curl (Aa + Ad), where Aa and Ad are the
contributions associated with Ba and Bd, respectively. The magnetic vector potential
is unobservable and not uniquely defined due to gauge invariance. However, this
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cromagnetic energy associated with the magnetization state of a ferromagnetic sample
occupying three-dimensional bounded domain ⌦ (⌦ ⇢ R3) is [7, 32, 38]

E(M) =
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(1.1)

where M = (M1,M2,M3) is the magnetization vector that satisfies |M| = Ms in ⌦
and M = 0 in R3

\⌦ (i.e., outside the domain ⌦), the positive constants Ms, A, and K

are the saturation magnetization and exchange and anisotropy constants, respectively,
Ha is the applied magnetic field, and µ0 is the permeability of vacuum. Here we use
the standard notation |rM|

2 = |rM1|
2+ |rM2|

2+ |rM3|
2 for the Euclidean norm of

gradients of vectorial quantities. All physical quantities are assumed to be in SI units.
The demagnetizing field Hd is determined via the magnetic induction B = Ba +Bd,
where Ba = µ0Ha is the induction in the absence of the ferromagnet due to permanent
external field sources, and

Bd = µ0(Hd +M).(1.2)

The pair (Hd,Bd) solves the following system obtained from the time-independent
Maxwell’s equations:

divBd = 0, curlHd = 0,(1.3)

where we noted that by definition divBa = 0 in R3. In (1.1), the terms in the order
of appearance are the exchange, Eex, magnetocrystalline anisotropy, Ea, stray field,
Es, and Zeeman, EZ, energies, respectively.

There exist several well-known representations of the stray field energy employed
in the analysis of the micromagnetic energy [9]. Using (1.3), one can introduce the
magnetic scalar potential Ud : R3

! R associated with the demagnetizing field, such
that Hd = �rUd, and Ud satisfies the following equation in the sense of distributions:

�Ud = divM,(1.4)

and vanishes at infinity. The stray field energy can be rewritten in terms of Ud as [9]

Es(M) =
µ0

2

Z

⌦
M ·rUd d

3
r =

µ0

2

Z
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|rUd|
2
d
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r.(1.5)

Using the fundamental solution of the Laplace equation in R3, one can also rewrite
the stray field energy in the following way:

Es(M) =
µ0

8⇡

Z

R3

Z
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divM(r) divM(r0)

|r� r0|
d
3
r d

3
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0
,(1.6)

reflecting its nonlocal and singular nature. Note that since M has a jump at the
boundary of domain ⌦, its divergence divM has a singularity and, therefore, must be
understood in a formal sense through its Fourier symbol.

Another way to represent the stray field energy is to employ the magnetic vector
potential A satisfying B = curlA = curl (Aa + Ad), where Aa and Ad are the
contributions associated with Ba and Bd, respectively. The magnetic vector potential
is unobservable and not uniquely defined due to gauge invariance. However, this
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cromagnetic energy associated with the magnetization state of a ferromagnetic sample
occupying three-dimensional bounded domain ⌦ (⌦ ⇢ R3) is [7, 32, 38]

E(M) =
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(1.1)

where M = (M1,M2,M3) is the magnetization vector that satisfies |M| = Ms in ⌦
and M = 0 in R3

\⌦ (i.e., outside the domain ⌦), the positive constants Ms, A, and K

are the saturation magnetization and exchange and anisotropy constants, respectively,
Ha is the applied magnetic field, and µ0 is the permeability of vacuum. Here we use
the standard notation |rM|

2 = |rM1|
2+ |rM2|

2+ |rM3|
2 for the Euclidean norm of

gradients of vectorial quantities. All physical quantities are assumed to be in SI units.
The demagnetizing field Hd is determined via the magnetic induction B = Ba +Bd,
where Ba = µ0Ha is the induction in the absence of the ferromagnet due to permanent
external field sources, and

Bd = µ0(Hd +M).(1.2)

The pair (Hd,Bd) solves the following system obtained from the time-independent
Maxwell’s equations:

divBd = 0, curlHd = 0,(1.3)

where we noted that by definition divBa = 0 in R3. In (1.1), the terms in the order
of appearance are the exchange, Eex, magnetocrystalline anisotropy, Ea, stray field,
Es, and Zeeman, EZ, energies, respectively.

There exist several well-known representations of the stray field energy employed
in the analysis of the micromagnetic energy [9]. Using (1.3), one can introduce the
magnetic scalar potential Ud : R3

! R associated with the demagnetizing field, such
that Hd = �rUd, and Ud satisfies the following equation in the sense of distributions:

�Ud = divM,(1.4)

and vanishes at infinity. The stray field energy can be rewritten in terms of Ud as [9]

Es(M) =
µ0

2

Z

⌦
M ·rUd d

3
r =

µ0

2

Z

R3

|rUd|
2
d
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r.(1.5)

Using the fundamental solution of the Laplace equation in R3, one can also rewrite
the stray field energy in the following way:

Es(M) =
µ0

8⇡

Z
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Z

R3

divM(r) divM(r0)

|r� r0|
d
3
r d

3
r
0
,(1.6)

reflecting its nonlocal and singular nature. Note that since M has a jump at the
boundary of domain ⌦, its divergence divM has a singularity and, therefore, must be
understood in a formal sense through its Fourier symbol.

Another way to represent the stray field energy is to employ the magnetic vector
potential A satisfying B = curlA = curl (Aa + Ad), where Aa and Ad are the
contributions associated with Ba and Bd, respectively. The magnetic vector potential
is unobservable and not uniquely defined due to gauge invariance. However, this
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potential is contained in the momentum operator for a charged particle and, therefore,
plays a crucial role in the description of superconductivity and the Ehrenberg–Siday–
Aharonov–Bohm e↵ect underlying the method of electron holography [40]. In the
Coulomb gauge one sets divAa = divAd = 0, leading to the following equation for
Ad understood in the sense of distributions [9]:

curl (curlAd) = ��Ad = µ0 curlM,(1.7)

where we used the identity r(divA) � curl (curlA) = �A. In a similar way to
the use of magnetostatic potential Ud, we can rewrite the demagnetizing field Hd =
µ
�1
0 curlAd �M to represent the stray field energy as

Es(M) =
1

2

Z

⌦

�
µ0|M|

2
�M · curlAd

�
d
3
r =

1

2µ0

Z

R3

|curlAd � µ0M|
2
d
3
r.(1.8)

Again, using the fundamental solution of the Laplace equation in R3 we obtain another
representation of the stray field energy:

Es(M) =
1

2
µ0M

2
s |⌦|�

µ0

8⇡

Z

R3

Z

R3

curlM(r) · curlM(r0)

|r� r0|
d
3
r d

3
r
0
,(1.9)

where |⌦| is the volume of ⌦. Note that since M has a jump at the boundary of
domain ⌦, curlM has a singularity and, therefore, must again be understood in a
formal sense through its Fourier symbol.

The multiscale complexity of the micromagnetic energy allows for a variety of
distinct regimes characterized by di↵erent relations between material and geometrical
parameters, and makes the micromagnetic theory very rich and challenging [16, 32].
One of the most powerful analytical approaches to study the equilibria of the micro-
magnetic energy is the investigation of its �-limits in various asymptotic regimes. To
achieve this, one needs to obtain asymptotically matching lower and upper bounds for
the micromagnetic energy. Typically, the construction of the upper bounds is done
using appropriate test functions; the lower bound constructions are more di�cult and
require a careful analysis of the specific problem under consideration. We point out,
however, that in the case of the stray field energy, even constructing the upper bounds
might present a significant challenge due to the nonlocal and singular behavior of the
demagnetizing field Hd.

In this paper, we revisit the variational formulation associated with the micro-
magnetic energy, emphasizing the treatment of the stray field energy to obtain e�cient
upper and lower bounds. To this aim, we formulate three distinct variational princi-
ples for local minimizers of the micromagnetic energy. The first variational principle
can be stated as a minimax problem for the magnetization M and the scalar potential
U . Specifically, for M fixed, the stray field energy may be expressed as

Es(M) = max
U2H̊1(R3)

µ0

Z

R3

✓
M ·rU �

1

2
|rU |

2

◆
d
3
r(1.10)

and, therefore, yields convenient lower bounds on the stray field energy via the use
of test functions for U (recall that H̊1(R3) denotes the space of functions whose first
derivatives are square integrable; see section 2 for the precise definitions of the function
spaces).

The second variational principle is a joint minimization problem for the magneti-
zation M and the vector potential A subject to the Coulomb gauge (divA = 0) with
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potential is contained in the momentum operator for a charged particle and, therefore,
plays a crucial role in the description of superconductivity and the Ehrenberg–Siday–
Aharonov–Bohm e↵ect underlying the method of electron holography [40]. In the
Coulomb gauge one sets divAa = divAd = 0, leading to the following equation for
Ad understood in the sense of distributions [9]:

curl (curlAd) = ��Ad = µ0 curlM,(1.7)

where we used the identity r(divA) � curl (curlA) = �A. In a similar way to
the use of magnetostatic potential Ud, we can rewrite the demagnetizing field Hd =
µ
�1
0 curlAd �M to represent the stray field energy as

Es(M) =
1

2

Z

⌦

�
µ0|M|

2
�M · curlAd

�
d
3
r =

1

2µ0

Z

R3

|curlAd � µ0M|
2
d
3
r.(1.8)

Again, using the fundamental solution of the Laplace equation in R3 we obtain another
representation of the stray field energy:

Es(M) =
1

2
µ0M

2
s |⌦|�

µ0

8⇡

Z

R3

Z

R3

curlM(r) · curlM(r0)

|r� r0|
d
3
r d

3
r
0
,(1.9)

where |⌦| is the volume of ⌦. Note that since M has a jump at the boundary of
domain ⌦, curlM has a singularity and, therefore, must again be understood in a
formal sense through its Fourier symbol.

The multiscale complexity of the micromagnetic energy allows for a variety of
distinct regimes characterized by di↵erent relations between material and geometrical
parameters, and makes the micromagnetic theory very rich and challenging [16, 32].
One of the most powerful analytical approaches to study the equilibria of the micro-
magnetic energy is the investigation of its �-limits in various asymptotic regimes. To
achieve this, one needs to obtain asymptotically matching lower and upper bounds for
the micromagnetic energy. Typically, the construction of the upper bounds is done
using appropriate test functions; the lower bound constructions are more di�cult and
require a careful analysis of the specific problem under consideration. We point out,
however, that in the case of the stray field energy, even constructing the upper bounds
might present a significant challenge due to the nonlocal and singular behavior of the
demagnetizing field Hd.

In this paper, we revisit the variational formulation associated with the micro-
magnetic energy, emphasizing the treatment of the stray field energy to obtain e�cient
upper and lower bounds. To this aim, we formulate three distinct variational princi-
ples for local minimizers of the micromagnetic energy. The first variational principle
can be stated as a minimax problem for the magnetization M and the scalar potential
U . Specifically, for M fixed, the stray field energy may be expressed as

Es(M) = max
U2H̊1(R3)

µ0

Z

R3

✓
M ·rU �

1

2
|rU |

2

◆
d
3
r(1.10)

and, therefore, yields convenient lower bounds on the stray field energy via the use
of test functions for U (recall that H̊1(R3) denotes the space of functions whose first
derivatives are square integrable; see section 2 for the precise definitions of the function
spaces).

The second variational principle is a joint minimization problem for the magneti-
zation M and the vector potential A subject to the Coulomb gauge (divA = 0) with
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potential is contained in the momentum operator for a charged particle and, therefore,
plays a crucial role in the description of superconductivity and the Ehrenberg–Siday–
Aharonov–Bohm e↵ect underlying the method of electron holography [40]. In the
Coulomb gauge one sets divAa = divAd = 0, leading to the following equation for
Ad understood in the sense of distributions [9]:

curl (curlAd) = ��Ad = µ0 curlM,(1.7)

where we used the identity r(divA) � curl (curlA) = �A. In a similar way to
the use of magnetostatic potential Ud, we can rewrite the demagnetizing field Hd =
µ
�1
0 curlAd �M to represent the stray field energy as

Es(M) =
1

2
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⌦
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µ0|M|

2
�M · curlAd

�
d
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r =
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2µ0

Z

R3

|curlAd � µ0M|
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r.(1.8)

Again, using the fundamental solution of the Laplace equation in R3 we obtain another
representation of the stray field energy:

Es(M) =
1

2
µ0M

2
s |⌦|�
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Z

R3
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curlM(r) · curlM(r0)

|r� r0|
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0
,(1.9)

where |⌦| is the volume of ⌦. Note that since M has a jump at the boundary of
domain ⌦, curlM has a singularity and, therefore, must again be understood in a
formal sense through its Fourier symbol.

The multiscale complexity of the micromagnetic energy allows for a variety of
distinct regimes characterized by di↵erent relations between material and geometrical
parameters, and makes the micromagnetic theory very rich and challenging [16, 32].
One of the most powerful analytical approaches to study the equilibria of the micro-
magnetic energy is the investigation of its �-limits in various asymptotic regimes. To
achieve this, one needs to obtain asymptotically matching lower and upper bounds for
the micromagnetic energy. Typically, the construction of the upper bounds is done
using appropriate test functions; the lower bound constructions are more di�cult and
require a careful analysis of the specific problem under consideration. We point out,
however, that in the case of the stray field energy, even constructing the upper bounds
might present a significant challenge due to the nonlocal and singular behavior of the
demagnetizing field Hd.

In this paper, we revisit the variational formulation associated with the micro-
magnetic energy, emphasizing the treatment of the stray field energy to obtain e�cient
upper and lower bounds. To this aim, we formulate three distinct variational princi-
ples for local minimizers of the micromagnetic energy. The first variational principle
can be stated as a minimax problem for the magnetization M and the scalar potential
U . Specifically, for M fixed, the stray field energy may be expressed as

Es(M) = max
U2H̊1(R3)

µ0

Z

R3

✓
M ·rU �

1

2
|rU |

2

◆
d
3
r(1.10)

and, therefore, yields convenient lower bounds on the stray field energy via the use
of test functions for U (recall that H̊1(R3) denotes the space of functions whose first
derivatives are square integrable; see section 2 for the precise definitions of the function
spaces).

The second variational principle is a joint minimization problem for the magneti-
zation M and the vector potential A subject to the Coulomb gauge (divA = 0) with
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maximize in U at fixed M, then minimize in M

another representation:
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potential is contained in the momentum operator for a charged particle and, therefore,
plays a crucial role in the description of superconductivity and the Ehrenberg–Siday–
Aharonov–Bohm e↵ect underlying the method of electron holography [40]. In the
Coulomb gauge one sets divAa = divAd = 0, leading to the following equation for
Ad understood in the sense of distributions [9]:

curl (curlAd) = ��Ad = µ0 curlM,(1.7)

where we used the identity r(divA) � curl (curlA) = �A. In a similar way to
the use of magnetostatic potential Ud, we can rewrite the demagnetizing field Hd =
µ
�1
0 curlAd �M to represent the stray field energy as
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Again, using the fundamental solution of the Laplace equation in R3 we obtain another
representation of the stray field energy:
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µ0M
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r d
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r
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where |⌦| is the volume of ⌦. Note that since M has a jump at the boundary of
domain ⌦, curlM has a singularity and, therefore, must again be understood in a
formal sense through its Fourier symbol.

The multiscale complexity of the micromagnetic energy allows for a variety of
distinct regimes characterized by di↵erent relations between material and geometrical
parameters, and makes the micromagnetic theory very rich and challenging [16, 32].
One of the most powerful analytical approaches to study the equilibria of the micro-
magnetic energy is the investigation of its �-limits in various asymptotic regimes. To
achieve this, one needs to obtain asymptotically matching lower and upper bounds for
the micromagnetic energy. Typically, the construction of the upper bounds is done
using appropriate test functions; the lower bound constructions are more di�cult and
require a careful analysis of the specific problem under consideration. We point out,
however, that in the case of the stray field energy, even constructing the upper bounds
might present a significant challenge due to the nonlocal and singular behavior of the
demagnetizing field Hd.

In this paper, we revisit the variational formulation associated with the micro-
magnetic energy, emphasizing the treatment of the stray field energy to obtain e�cient
upper and lower bounds. To this aim, we formulate three distinct variational princi-
ples for local minimizers of the micromagnetic energy. The first variational principle
can be stated as a minimax problem for the magnetization M and the scalar potential
U . Specifically, for M fixed, the stray field energy may be expressed as

Es(M) = max
U2H̊1(R3)

µ0

Z

R3

✓
M ·rU �

1

2
|rU |

2

◆
d
3
r(1.10)

and, therefore, yields convenient lower bounds on the stray field energy via the use
of test functions for U (recall that H̊1(R3) denotes the space of functions whose first
derivatives are square integrable; see section 2 for the precise definitions of the function
spaces).

The second variational principle is a joint minimization problem for the magneti-
zation M and the vector potential A subject to the Coulomb gauge (divA = 0) with
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the stray field energy expressed as

Es(M) = min
A2H̊1(R3;R3)

divA=0

1

2µ0

Z

R3

|curlA� µ0M|
2
d
3
r(1.11)

and is useful in constructing upper bounds for the stray field energy via suitable test
functions for A.

Finally, we introduce the third variational principle closely linked to the second
one that amounts to a joint minimization for the magnetization M and the vector
potential A in the absence of the constraint on divA. It allows us to express the
stray field energy in the form

Es(M) =
1

2
µ0M

2
s V + min
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Z
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✓
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2µ0
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�M · curlA

◆
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3
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This formula gives a novel representation of the magnetostatic energy, which is par-
ticularly convenient both for obtaining localized upper bounds for the micromagnetic
energy and the numerical implementation of the stray field.

The variational principle in (1.10) leading to (1.5) is well known. In the context
of micromagnetics, where one needs to minimize the energy in (1.1) with respect to M
with Hd determined by the unique solution of (1.3), it results in a minimax problem
in terms of the pair (M, U). As such, this minimax principle has not been precisely
formulated in the literature, although it has long existed in the micromagnetics folklore
(see, e.g., [9, 10, 34]). Here we establish the validity of this variational principle under
minimal assumptions that arise naturally in the context of micromagnetics.

Similarly, the minimization principles for the micromagnetic energy, in which the
stray field energy is expressed through (1.11) or (1.12) appeared in some form in
the engineering literature in the context of finite element discretization of the mag-
netostatic problems for ferromagnets. Specifically, the energy functional in (1.11)
appeared in [5], and the associated problem is an extension of the well-known varia-
tional principles for Maxwell’s equations [36, 42]. In [9, 12, 15, 50], the minimization
principles rely on local constitutive relationships between the magnetic induction and
the magnetic field, which in the context of micromagnetics may be obtained by first
minimizing the micromagnetic energy written in terms of the pair (M,A) with re-
spect to M, provided the exchange energy is neglected [34, 45, 46]. However, in the
full micromagnetics formulation the exchange energy plays a crucial role and, there-
fore, the variational formulation must include a joint minimization of E in (M,A).
Note that while in the case of (1.11) the minimization in A requires an additional
constraint in the form of the Coulomb gauge, the minimization in (1.12) is uncon-
strained and automatically enforces the Coulomb gauge for the minimizers. In fact,
if one were to minimize the expression in (1.12) within the class in (1.11), one would
simply recover the problem in (1.11), since for divA = 0 the two energies coincide,
as can be easily seen via an integration by parts [23]. On the other hand, the absence
of the divergence-free constraint, first noted in [12], makes the formulation in (1.12)
clearly more attractive than that in (1.11) and opens up a way for an e�cient numer-
ical treatment of minimizers of the micromagnetic energy. In this paper, we put the
above variational principles on a rigorous footing under natural assumptions.

Finally, we illustrate the usefulness of our results for analytical studies of micro-
magnetics by applying the obtained variational principles to the problem of finding
the �-limit of the micromagnetic energy in curved thin ferromagnetic shells. These
problems are interesting due to intrinsic symmetry-breaking mechanisms coming from
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the stray field energy expressed as

Es(M) = min
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and is useful in constructing upper bounds for the stray field energy via suitable test
functions for A.

Finally, we introduce the third variational principle closely linked to the second
one that amounts to a joint minimization for the magnetization M and the vector
potential A in the absence of the constraint on divA. It allows us to express the
stray field energy in the form
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This formula gives a novel representation of the magnetostatic energy, which is par-
ticularly convenient both for obtaining localized upper bounds for the micromagnetic
energy and the numerical implementation of the stray field.

The variational principle in (1.10) leading to (1.5) is well known. In the context
of micromagnetics, where one needs to minimize the energy in (1.1) with respect to M
with Hd determined by the unique solution of (1.3), it results in a minimax problem
in terms of the pair (M, U). As such, this minimax principle has not been precisely
formulated in the literature, although it has long existed in the micromagnetics folklore
(see, e.g., [9, 10, 34]). Here we establish the validity of this variational principle under
minimal assumptions that arise naturally in the context of micromagnetics.

Similarly, the minimization principles for the micromagnetic energy, in which the
stray field energy is expressed through (1.11) or (1.12) appeared in some form in
the engineering literature in the context of finite element discretization of the mag-
netostatic problems for ferromagnets. Specifically, the energy functional in (1.11)
appeared in [5], and the associated problem is an extension of the well-known varia-
tional principles for Maxwell’s equations [36, 42]. In [9, 12, 15, 50], the minimization
principles rely on local constitutive relationships between the magnetic induction and
the magnetic field, which in the context of micromagnetics may be obtained by first
minimizing the micromagnetic energy written in terms of the pair (M,A) with re-
spect to M, provided the exchange energy is neglected [34, 45, 46]. However, in the
full micromagnetics formulation the exchange energy plays a crucial role and, there-
fore, the variational formulation must include a joint minimization of E in (M,A).
Note that while in the case of (1.11) the minimization in A requires an additional
constraint in the form of the Coulomb gauge, the minimization in (1.12) is uncon-
strained and automatically enforces the Coulomb gauge for the minimizers. In fact,
if one were to minimize the expression in (1.12) within the class in (1.11), one would
simply recover the problem in (1.11), since for divA = 0 the two energies coincide,
as can be easily seen via an integration by parts [23]. On the other hand, the absence
of the divergence-free constraint, first noted in [12], makes the formulation in (1.12)
clearly more attractive than that in (1.11) and opens up a way for an e�cient numer-
ical treatment of minimizers of the micromagnetic energy. In this paper, we put the
above variational principles on a rigorous footing under natural assumptions.

Finally, we illustrate the usefulness of our results for analytical studies of micro-
magnetics by applying the obtained variational principles to the problem of finding
the �-limit of the micromagnetic energy in curved thin ferromagnetic shells. These
problems are interesting due to intrinsic symmetry-breaking mechanisms coming from
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Bloch wall solution

one-dimensional transition profile in a bulk material Bloch, 1932

ansatz: 
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devices.16,17,38,39 However, no direct quantification of the extent to
which a superconducting layer is affected by these stray fields, are
available in the literature. Some earlier reports have, however, mea-
sured the stray field of magnetic thin films using electro-optic stud-
ies,18 photo-emission electron microscopy,19 magnetic force micro-
scope (MFM),20 quantitative MFM,21 and magnetic transmission
X-ray microscopy.22

In superconducting-spintronics devices, the domain structure
and hence the stray field of domain walls may be modified below
the superconducting transition temperature. In such embedded
magnetic layers, there is no direct way of quantifying the stray
magnetic field. However, the effects of such stray fields on vari-
ous superconducting multilayer structures have been explored in
the literature. Steiner et al.23 studied the role of stray fields in an
exchange-biased system of the type Fe/Nb/Co/CoO and in Fe/Nb
bilayers. Hu et al.24 reported the stray field and the supercon-
ducting surface spin valve effect in La0.7Ca0.3MnO3/YBa2Cu3O7−δ
bilayers. Curran et al.16 have imaged the stray fields at the sur-
face of Nb/Ni multilayer samples at various temperatures using the
High resolution scanning Hall microscopy (SHM). Yang et al.25
have reported the modulation of superconductivity by the stray
field of Bloch walls in Nb/Y3Fe5O12 hybrids. In this context, we
have quantified the stray field of Néel domain walls and Bloch
domain walls of nickel films in Nb/Ni bilayer stripes below the
superconducting transition temperature. For this purpose, we have
carefully measured the resistive transition temperatures of litho-
graphically patterned narrow channels of Nb/Ni bilayers, as a func-
tion of an in-plane applied magnetic field. We observed a system-
atic variation of suppression in the low field Tc of Nb/Ni stripes
as a function of the thickness of the underlying Ni layer. The
observed suppression of Tc gives a direct measure of the strength
of domain wall stray field, using the standard BCS type H-T phase
diagram. The strength of the out-of-plane stray field of Bloch
domain walls was found to be much larger compared to Néel
domain walls in the buried nickel film, below the superconducting
transition.

A series of Nb-Ni bilayer thin films was prepared at room tem-
perature in a vacuum chamber with base pressure in the range of
10−9 mbar, using dc-magnetron sputtering of high purity (99.999%)
niobium and nickel targets on cleaned Si-SiO2 substrates. The thick-
ness of the bottom nickel layer was varied from 20 nm to 100 nm
with steps of 20 nm, while the thickness of the top niobium layer
was kept fixed at 55nm±5nm which is above the coherence length of
niobium (∼40nm)40 in all cases. Films were then patterned into nar-
row stripes of width 3 micron using a combination of electron beam
lithography, reactive ion etching and chemical etching techniques.
Nb layer, outside the track region was etched with a 100 watt CF4
plasma in an Oxford RIE system. The Ni layer was etched chemically
with a dilute commercial Nichrome etchant from Aldrich. Transi-
tion temperatures were found by electrical transport measurements
performed in a standard four probe geometry. Superconducting
transition temperatures were measured in the presence of an in-
plane applied magnetic field along the width of the stripe. For each
measurement, the films were saturated by applying a field of 4000 Oe
and then ramped to the measurement field value at a temperature of
5K. Magnetization measurements were performed in a SQUIDmag-
netometer with magnetic field applied parallel to the plane of the
films.

FIG. 1. Schematic view of magnetization rotation in a Néel wall and Bloch wall
between two domains in a stripe geometry. The dashed arrows show the axis of
rotation of magnetization. An overlying superconducting layer, as shown here in
the S-F bilayer stripe geometry, would directly sense the out-of-plane stray field of
the walls.

Fig. 1 shows the typical magnetization rotation configuration of
domain walls in the Bloch and Néel wall regimes. Due to the nature
of rotation of moment in the domain wall, in the Bloch domain
walls one would expect more out-of-plane stray field compared to
the Néel wall. In an S-F bilayer stripe geometry, the superconduct-
ing film in the long striped region of the pattern would be maximally
affected by the out of plane stray fields of the domain walls in the
underlying ferromagnetic film. Depending on the film thickness, any
ferromagnetic film may have Néel domain walls or Bloch domain
walls as shown in Fig. 1. Typically, the domain wall energy per unit
area (the sum of anisotropy, exchange and stray field energy den-
sities) gradually decreases with increasing film thickness for Bloch
walls, whereas for Néel walls the domain wall energy increases with
increasing film thickness. Therefore, below a certain threshold value
of film thickness (where the Néel wall and Bloch wall energy densi-
ties match), Néel walls become energetically favorable, whereas at a
higher thickness, Bloch walls are preferred energetically.26–28 It has
been predicted theoretically that the crossover thickness in nickel
films is about 50 nm.29,30 These domain walls have a different out of
plane component of the stray field.

In order to look at the domain structures and to check the out-
of-plane stray field component as a function of thickness of the mag-
netic layer, we have performed 3D micro-magnetic simulations31
on Nickel films. For these simulations, the x and y dimensions of
the samples were kept fixed as 2 µm and 1 µm, respectively. The z
dimension was varied from 20 nm to 100 nm for different samples.
Here, x-axis refers to the direction along the length of stripes, y-axis
refers to the direction along the width of the stripes and z-axis refers
to the axis transverse to the sample plane. The cell size for simu-
lation was kept as (10, 10, 10) nm in (x, y, z) directions. Magnetic
field was directed along the width (y axis) of the stripe in the plane
of the film. The values of saturation moment, anisotropy constant,
and the exchange constant for the simulations of magnetization in
Ni films were taken from the literature.32,33 Fig. 2(a) and 2(b) show
the micromagnetic 3D OOMMF simulation images of nickel stripe
of 20 nm and 100 nm thickness. The simulations were performed for
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open question: is the Bloch profile the unique wall solution in 3D?

an example of a magnetic De Giorgi conjecture



Bloch to Néel transition
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devices.16,17,38,39 However, no direct quantification of the extent to
which a superconducting layer is affected by these stray fields, are
available in the literature. Some earlier reports have, however, mea-
sured the stray field of magnetic thin films using electro-optic stud-
ies,18 photo-emission electron microscopy,19 magnetic force micro-
scope (MFM),20 quantitative MFM,21 and magnetic transmission
X-ray microscopy.22

In superconducting-spintronics devices, the domain structure
and hence the stray field of domain walls may be modified below
the superconducting transition temperature. In such embedded
magnetic layers, there is no direct way of quantifying the stray
magnetic field. However, the effects of such stray fields on vari-
ous superconducting multilayer structures have been explored in
the literature. Steiner et al.23 studied the role of stray fields in an
exchange-biased system of the type Fe/Nb/Co/CoO and in Fe/Nb
bilayers. Hu et al.24 reported the stray field and the supercon-
ducting surface spin valve effect in La0.7Ca0.3MnO3/YBa2Cu3O7−δ
bilayers. Curran et al.16 have imaged the stray fields at the sur-
face of Nb/Ni multilayer samples at various temperatures using the
High resolution scanning Hall microscopy (SHM). Yang et al.25
have reported the modulation of superconductivity by the stray
field of Bloch walls in Nb/Y3Fe5O12 hybrids. In this context, we
have quantified the stray field of Néel domain walls and Bloch
domain walls of nickel films in Nb/Ni bilayer stripes below the
superconducting transition temperature. For this purpose, we have
carefully measured the resistive transition temperatures of litho-
graphically patterned narrow channels of Nb/Ni bilayers, as a func-
tion of an in-plane applied magnetic field. We observed a system-
atic variation of suppression in the low field Tc of Nb/Ni stripes
as a function of the thickness of the underlying Ni layer. The
observed suppression of Tc gives a direct measure of the strength
of domain wall stray field, using the standard BCS type H-T phase
diagram. The strength of the out-of-plane stray field of Bloch
domain walls was found to be much larger compared to Néel
domain walls in the buried nickel film, below the superconducting
transition.

A series of Nb-Ni bilayer thin films was prepared at room tem-
perature in a vacuum chamber with base pressure in the range of
10−9 mbar, using dc-magnetron sputtering of high purity (99.999%)
niobium and nickel targets on cleaned Si-SiO2 substrates. The thick-
ness of the bottom nickel layer was varied from 20 nm to 100 nm
with steps of 20 nm, while the thickness of the top niobium layer
was kept fixed at 55nm±5nm which is above the coherence length of
niobium (∼40nm)40 in all cases. Films were then patterned into nar-
row stripes of width 3 micron using a combination of electron beam
lithography, reactive ion etching and chemical etching techniques.
Nb layer, outside the track region was etched with a 100 watt CF4
plasma in an Oxford RIE system. The Ni layer was etched chemically
with a dilute commercial Nichrome etchant from Aldrich. Transi-
tion temperatures were found by electrical transport measurements
performed in a standard four probe geometry. Superconducting
transition temperatures were measured in the presence of an in-
plane applied magnetic field along the width of the stripe. For each
measurement, the films were saturated by applying a field of 4000 Oe
and then ramped to the measurement field value at a temperature of
5K. Magnetization measurements were performed in a SQUIDmag-
netometer with magnetic field applied parallel to the plane of the
films.

FIG. 1. Schematic view of magnetization rotation in a Néel wall and Bloch wall
between two domains in a stripe geometry. The dashed arrows show the axis of
rotation of magnetization. An overlying superconducting layer, as shown here in
the S-F bilayer stripe geometry, would directly sense the out-of-plane stray field of
the walls.

Fig. 1 shows the typical magnetization rotation configuration of
domain walls in the Bloch and Néel wall regimes. Due to the nature
of rotation of moment in the domain wall, in the Bloch domain
walls one would expect more out-of-plane stray field compared to
the Néel wall. In an S-F bilayer stripe geometry, the superconduct-
ing film in the long striped region of the pattern would be maximally
affected by the out of plane stray fields of the domain walls in the
underlying ferromagnetic film. Depending on the film thickness, any
ferromagnetic film may have Néel domain walls or Bloch domain
walls as shown in Fig. 1. Typically, the domain wall energy per unit
area (the sum of anisotropy, exchange and stray field energy den-
sities) gradually decreases with increasing film thickness for Bloch
walls, whereas for Néel walls the domain wall energy increases with
increasing film thickness. Therefore, below a certain threshold value
of film thickness (where the Néel wall and Bloch wall energy densi-
ties match), Néel walls become energetically favorable, whereas at a
higher thickness, Bloch walls are preferred energetically.26–28 It has
been predicted theoretically that the crossover thickness in nickel
films is about 50 nm.29,30 These domain walls have a different out of
plane component of the stray field.

In order to look at the domain structures and to check the out-
of-plane stray field component as a function of thickness of the mag-
netic layer, we have performed 3D micro-magnetic simulations31
on Nickel films. For these simulations, the x and y dimensions of
the samples were kept fixed as 2 µm and 1 µm, respectively. The z
dimension was varied from 20 nm to 100 nm for different samples.
Here, x-axis refers to the direction along the length of stripes, y-axis
refers to the direction along the width of the stripes and z-axis refers
to the axis transverse to the sample plane. The cell size for simu-
lation was kept as (10, 10, 10) nm in (x, y, z) directions. Magnetic
field was directed along the width (y axis) of the stripe in the plane
of the film. The values of saturation moment, anisotropy constant,
and the exchange constant for the simulations of magnetization in
Ni films were taken from the literature.32,33 Fig. 2(a) and 2(b) show
the micromagnetic 3D OOMMF simulation images of nickel stripe
of 20 nm and 100 nm thickness. The simulations were performed for
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Figure 8.8 Comparison of Bloch wall, left, with charged surfaces on the external 
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]

E(M) = A
M2

s

∫

Ω×(0,d)
|∇M|2 d3r + K

M2
s

∫

Ω×(0,d)
|M⊥ |2 d3r − µ0

∫

Ω×(0,d)
M · H d3r

+ µ0

∫

R3

∫

R3

∇ · M(r)∇ · M(r′)
8π |r − r′|

d3r d3r′ + Dd
M2

s

∫

Ω
(M̄∥∇ · M̄⊥ − M̄⊥ · ∇M̄∥) d2r. (2.1)

Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
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as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
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∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.
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element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
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∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.

2. Model
We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.
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We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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Here we wrote M = (M⊥ , M∥), where we defined M⊥ ∈ R2 and M∥ ∈ R to be the components of the
magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
form, we took into account that it arises as a contribution from the interface between the magnetic
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
m0

∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.
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(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
H = H(x , y , z) is the applied magnetic field and D is the DMI constant, following the standard
convention to write D in the units of energy per unit area. In writing the DMI term in this specific
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the constructions for the full two-dimensional problem. Our one-dimensional results confirm the
physical intuition of [19] for a slightly reduced range of the DMI constants.

We then investigate the full two-dimensional energy in the regime of large domains and small
applied fields, using methods of Γ -convergence. After a rescaling, this amounts to a study of the
asymptotic behaviour of the energy Eε(m) in (4.2) as ε → 0. We note that our original problem is
vectorial, constrained (|m(x )| = 1), and the energy contains linear gradient terms in the interior,
as well as boundary terms (after integration by parts), both coming from DMI. Even though the
original problem is vectorial—and these are notoriously difficult phase transition problems—we
show that one can reduce our problem to a scalar setting by decoupling the behaviour of the
normal magnetization component m∥, preferring to be equal to ± 1, and the in-plane component
m⊥ , preferring to be 0, outside the transition layer and proving that the optimal configuration
of m⊥ is a function of m∥ and the layer orientation. This non-trivial observation significantly
simplifies the analysis of the problem and allows us to use the methods developed in [38,40]
to obtain the Γ -limit of the family of micromagnetic energies. The rest of the proof follows the
pattern of the gradient theory of phase transitions [37], with some modifications to account for
the vectorial and constrained nature of the problem.

With the above tools, we obtain the Γ -limit, given by (4.3), of the family of energies in (4.2) with
respect to the L1 convergence of mε

∥. The limit energy is geometric, and its minimizers determine
the locations of the chiral domain walls, which are now curves separating the regions in which
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∥ changes sign. As a consequence, we also obtain an asymptotic characterization of the energy
minimizers of Eε as ε → 0. Our main result, stated in theorem 4.1, indicates that the presence of
DMI significantly modifies the magnetization behaviour in ultrathin magnetic films by creating
both interior and edge chiral domain walls.

The paper is organized as follows. In §2, we introduce the basic micromagnetic modelling
framework. In §3, we present the solution of the one-dimensional global energy minimization
problem for both the interior and boundary chiral domain walls. Then, in §4, we investigate
the full two-dimensional energy (2.2) in the regime of large domains and small applied fields
and study the behaviour of the family of micromagnetic energies in (4.2) in the limit as ε → 0.
Finally, in §5, we summarize our findings and discuss several additional modelling aspects of our
problem, together with some possible extensions of our analysis.
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We start by considering a ferromagnetic film of thickness doccupying the spatial domain Ω ×
(0, d) ⊂ R3, where Ω ⊆ R2 is a two-dimensional domain specifying the shape of the ferromagnetic
element. Within the micromagnetic framework [34], the magnetization in the sample is described
by the vector M = M(x , y , z) of constant length |M| = Ms, where Ms is referred to as the saturation
magnetization. The micromagnetic energy in the presence of an out-of-plane uniaxial anisotropy
and an interfacial DMI may be written in the SI units in the form [12,13,18]
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magnetization vector M that are perpendicular and parallel to the material easy axis (the z-axis),
respectively, and introduced M̄ which is the trace of M on Ω × {0}. In (2.1), A is the exchange
stiffness, K is the magnetocrystalline anisotropy constant, M has been extended by zero outside
the sample and ∇ · M is understood distributionally in R3, µ0 is the permeability of vacuum,
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by Eqs. (17)–(19). Substituting these expressions into
Eq. (53), we obtain
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In particular, since we are in the regime of small applied
fields the equilibrium tilt angle is linear in h:
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This formula is one of the main findings of our paper.
We note that the expression in Eq. (55) formally co-

incides with the formula for the contact angle of a triple
junction between three distinct phases11. Nevertheless,
in addition to the contribution of the di↵erence of line
tensions �0

edge ± �1
edgeh associated with the two edges,

the formula also contains a contribution �1
wall due to

anisotropy of the line tention of Dzyaloshinskii wall.

B. The h ⇠  ⌧ 1 regime

In this regime, the explicit expressions for �wall(↵) is
given by Eq. (41). At the same time, recalling that the
expression for �±

edge in Eq. (17) remains valid also for

 ⌧ 1 and that �1
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Note that the second term in Eq. (57) is a small pertur-
bation for the first term, which is a convex even function
of � approaching infinity as � ! ±⇡

2 . Therefore, the
minimum in Eq. (57) is attained for |�| ⌧ 1.

To proceed further, we expand the right-hand side of
Eq. (57) in Taylor series in � up to second order and keep
only the leading terms in h and . The result is

E(m�� )

w
' 4
p

Q � 1 � 2⇡h�p
4h2 + 2(Q � 1)

+ 2�2
p

Q � 1. (58)

Minimizing this expression in � yields the equilibrium tilt
angle

� ' ⇡h

2
p

(Q � 1)(4h2 + 2(Q � 1))
. (59)

This formula is another main finding of our paper. As
expected, the title angle in Eq. (59) goes to zero as h ! 0.
Moreover, for h ⌧  ⌧ 1 we obtain an interesting result:

� ' ⇡h

2(Q � 1)
h ⌧ , (60)

i.e., the equilibrium tilt angle becomes independent of
the DMI strength. In fact, this is in agreement with the
prediction of Eq. (56) for vanishingly small .

Similarly, when  ⌧ h ⌧ 1, we find another surprising
result:

� ' ⇡

4
p

Q � 1
 ⌧ h, (61)

i.e., the equilibrium tilt angle becomes independent of the
applied field. This indicates that for moderate values of
the DMI strength the measured tilt angle may be used to
directly assess the value of the interfacial DMI constant
experimentally.

VI. COMPARISON WITH THE NUMERICS

To validate the conclusions of our analysis, we per-
formed three types of numerical tests. For the mate-
rial parameters, we chose those of 0.6 nm-thick mono-
layer of Co with A = 10�11J/m, K = 1.26 ⇥ 106 J/m3,
Ms = 1.09 ⇥ 106 A/m. The representative values of the
DMI strength and applied field are D = 1 mJ/m2 and
µ0H = 100 mT, respectively12.

We begin by comparing the tilted Dzyaloshinskii do-
main wall profiles from the two-dimensional numerical
results obtained, using Mumax3 with the local approxi-
mation to the stray field (as in Eq. (5)), with the one-
dimensional domain wall profiles m

↵ minimizing E↵ in
Eq. (21). In the Mumax3 simulations, we used a con-
servative discretization step �x = 1 nm. To obtain the
one-dimensional profiles m

↵ minimizing E↵, we solved
Eqs. (22)–(24) by writing m

↵ in polar coordinates for ✓
and �:

m
↵ = (sin ✓ cos �, sin ✓ sin �, cos ✓), (62)

and solving the following evolution problem:

✓t = ✓⇠⇠ �
�
�2

⇠ + Q � 1
�
sin ✓ cos ✓ + h cos ✓ sin �

� �⇠ sin(� � ↵) sin2 ✓, (63)

�t = �⇠⇠ + 2✓⇠�⇠ cot ✓ + h csc ✓ cos �

+ ✓⇠ sin(� � ↵), (64)

until a steady state was reached. The equations above
correspond to an overdamped Landau-Lifshitz-Gilbert
equation, and their steady states solve Eqs. (23) and (23)
upon substitution into Eq. (62). Also, in terms of ✓ and

exchange length                         

44 CHAPTER 2. SINGULAR PATTERNS IN THIN-FILM MICROMAGNETICS

field

m : Ω → S2.

Let us assume that the sample is a cylinder, i.e.,

Ω = Ω′ × (0, t)

where Ω′ is the cross section of the sample of diameter ℓ and t is the thickness of the cylinder

(see Figure 2.1). According to micromagnetics, stable magnetizations in Ω are described by (local)

tȍ’ t

l

x3

x1
x2

Figure 2.1: A ferromagnetic sample.

minimizers of the energy functional defined as:

E3D(m) = d2

∫

Ω
|∇m|2 dx + Q

∫

Ω
ϕ(m) dx +

∫

R3

|∇U |2 dx − 2

∫

Ω
Hext · m dx. (2.1)

In the following we explain the four components of the micromagnetic energy E3D.

• The first term, called exchange energy is due to short range interactions of spins and favors

parallel alignment of neighboring spins. The constant d is the exchange length and corresponds to

an intrinsic parameter of the material of the order of nanometers.

• The second term in (2.1) represents the anisotropy energy that penalizes certain magnetization

axes. The anisotropy energy density ϕ is a nonnegative function with symmetry properties inherited

from the crystalline lattice. The preferred directions of magnetization are the zeros of ϕ. Typically,

we have uniaxial or multi-axial anisotropy (e.g., ϕ(m) = 1−m2
1 that favors the direction (±1, 0, 0))

and surface anisotropy (e.g., ϕ(m) = m4
3 where the easy plane is the horizontal one). The quality

factor Q is a second intrinsic parameter of the material that measures the strength of the anisotropy

energy relative to the stray-field. According to the values of Q, we distinguish two classes of

materials: soft materials if Q < 1 and hard materials if Q > 1.

• The third term of E3D is the stray-field energy and is created by long range interactions between

electron spins modelled by the static Maxwell equation. More precisely, the stray-field potential

U : R3 → R is determined by

∆U = ∇ ·
(

m1Ω

)

in R3, (2.2)

i.e.,

∫

R3

∇U ·∇ζ dx =

∫

Ω
m ·∇ζ dx, ∀ζ ∈ C∞

c (R3).

By the electrostatic analogy, two types of charges generate the potential U : volume charges with

density given by the divergence of m in the interior of the sample Ω and surface charges represented

by the normal component of the magnetization on the boundary of Ω. Therefore, this nonlocal

term favors domain patterns that achieve flux closure.

easy axis

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1 ⌦ = R2

0 < r < L � lnL ⌧ 1

E(M) =
A

M2
s

Z

⌦⇥(0,d)
|rM|2 d3r + K

M2
s

Z

⌦⇥(0,d)
|M?|2d3r � µ0

Z

⌦⇥(0,d)
M ·H d3r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r0)

8⇡|r� r0| d3r d3r0 +
Dd

M2
s

Z

⌦

⇣
Mkr ·M? �M? ·rMk

⌘
d2r

E(m) =

Z

T`

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

+
1

2⇡�

Z

T`

Z

R2

 
1

|r� r0| �
1p

|r� r0|2 + �2
� 2⇡�(2)(r� r

0)�

!
mk(r)mk(r

0) d2r d2r0

+�

Z

T`

Z

R2

K�(|r� r
0|)r ·m?(r)r ·m?(r

0) d2r d2r0

`ex =

s
2A

µ0M2
s

, � =
d

`ex

E(m) =

Z

T`

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

� �

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3 d2r d2r0 +
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r0)

|r� r0| d2r d2r0

1

4⇡

Z

R2

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3 d2r d2r0  1

⇡
ln

✓
L

r

◆Z

R2

|rmk| d2r + r

Z

R2

|rmk|2d2r + ⇡L

E(m) '
Z

⌦

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

� �

2⇡
lnL

Z

R2

|rmk| d2r

m =
1

�

Z �

0
m(·, z)dz ⌦ = T`  = 0 h = 0

Theorem 1. Let � < �0 and Q < Q0. Then there exists C > 0 depending only on �0 and Q0 such
that

|E(m)� E(m)|  C�

Z

T`⇥(0,�)
|rm|2d3r.

1

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1 ⌦ = R2

0 < r < L � lnL ⌧ 1

E(M) =
A

M2
s

Z

⌦⇥(0,d)
|rM|2 d3r + K

M2
s

Z

⌦⇥(0,d)
|M?|2d3r � µ0

Z

⌦⇥(0,d)
M ·H d3r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r0)

8⇡|r� r0| d3r d3r0 +
Dd

M2
s

Z

⌦

⇣
Mkr ·M? �M? ·rMk

⌘
d2r

E(m) =

Z

T`

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

+
1

2⇡�

Z

T`

Z

R2

 
1

|r� r0| �
1p

|r� r0|2 + �2
� 2⇡�(2)(r� r

0)�

!
mk(r)mk(r

0) d2r d2r0

+�

Z

T`

Z

R2

K�(|r� r
0|)r ·m?(r)r ·m?(r

0) d2r d2r0

`ex =

s
2A

µ0M2
s

, � =
d

`ex
M? Mk

E(m) =

Z

T`

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

� �

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3 d2r d2r0 +
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r0)

|r� r0| d2r d2r0

1

4⇡

Z

R2

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3 d2r d2r0  1

⇡
ln

✓
L

r

◆Z

R2

|rmk| d2r + r

Z

R2

|rmk|2d2r + ⇡L

E(m) '
Z

⌦

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

� �

2⇡
lnL

Z

R2

|rmk| d2r

m =
1

�

Z �

0
m(·, z)dz ⌦ = T`  = 0 h = 0

Theorem 1. Let � < �0 and Q < Q0. Then there exists C > 0 depending only on �0 and Q0 such
that

|E(m)� E(m)|  C�

Z

T`⇥(0,�)
|rm|2d3r.

1

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1 ⌦ = R2

0 < r < L � lnL ⌧ 1

E(M) =
A

M2
s

Z

⌦⇥(0,d)
|rM|2 d3r + K

M2
s

Z

⌦⇥(0,d)
|M?|2d3r � µ0

Z

⌦⇥(0,d)
M ·H d3r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r0)

8⇡|r� r0| d3r d3r0 +
Dd

M2
s

Z

⌦

⇣
Mkr ·M? �M? ·rMk

⌘
d2r

E(m) =

Z

T`

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

+
1

2⇡�

Z

T`

Z

R2

 
1

|r� r0| �
1p

|r� r0|2 + �2
� 2⇡�(2)(r� r

0)�

!
mk(r)mk(r

0) d2r d2r0

+�

Z

T`

Z

R2

K�(|r� r
0|)r ·m?(r)r ·m?(r

0) d2r d2r0

`ex =

s
2A

µ0M2
s

, � =
d

`ex
M? Mk

E(m) =

Z

T`

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

� �

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3 d2r d2r0 +
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r0)

|r� r0| d2r d2r0

1

4⇡

Z

R2

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3 d2r d2r0  1

⇡
ln

✓
L

r

◆Z

R2

|rmk| d2r + r

Z

R2

|rmk|2d2r + ⇡L

E(m) '
Z

⌦

�
|rm|2 + (Q� 1)|m?|2 � 2h ·m+ 

�
mkr ·m? �m? ·rmk

� 
d2r

� �

2⇡
lnL

Z

R2

|rmk| d2r

m =
1

�

Z �

0
m(·, z)dz ⌦ = T`  = 0 h = 0

Theorem 1. Let � < �0 and Q < Q0. Then there exists C > 0 depending only on �0 and Q0 such
that

|E(m)� E(m)|  C�

Z

T`⇥(0,�)
|rm|2d3r.

1

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r � µ0

Z

⌦⇥(0,d)

M ·H d
3
r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

d = 0.5÷ 5 nm L = 50÷ 500 nm

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r

0
)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r
0
|)r ·m?(r)r ·m?(r

0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

m = (m
0
,m3)

m
0
= (m1,m2)

� ! 0

1

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r � µ0

Z

⌦⇥(0,d)

M ·H d
3
r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

d = 0.5÷ 5 nm L = 50÷ 500 nm

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r

0
)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r
0
|)r ·m?(r)r ·m?(r

0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

m = (m
0
,m3)

m
0
= (m1,m2)

� ! 0

1

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r � µ0

Z

⌦⇥(0,d)

M ·H d
3
r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

d = 0.5÷ 5 nm L = 50÷ 500 nm

A = 1.4⇥ 10
�11

J/m Ms = 1.4⇥ 10
6
A/m K = 1⇥ 10

5
J/m

3
`ex = 3.37 nm

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r

0
)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r
0
|)r ·m?(r)r ·m?(r

0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

1

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r � µ0

Z

⌦⇥(0,d)

M ·H d
3
r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

d = 0.5÷ 5 nm L = 50÷ 500 nm

A = 1.4⇥ 10
�11

J/m Ms = 1.4⇥ 10
6
A/m K = 1⇥ 10

5
J/m

3
`ex = 3.37 nm

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r

0
)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r
0
|)r ·m?(r)r ·m?(r

0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

1

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r � µ0

Z

⌦⇥(0,d)

M ·H d
3
r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

d = 0.5÷ 5 nm L = 50÷ 500 nm

A = 1.4⇥ 10
�11

J/m Ms = 1.4⇥ 10
6
A/m K = 1⇥ 10

5
J/m

3
`ex = 3.37 nm

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r

0
)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r
0
|)r ·m?(r)r ·m?(r

0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

1

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r � µ0

Z

⌦⇥(0,d)

M ·H d
3
r

+ µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

d = 0.5÷ 5 nm L = 50÷ 500 nm

A = 1.4⇥ 10
�11

J/m Ms = 1.4⇥ 10
6
A/m K = 1⇥ 10

5
J/m

3
`ex = 3.37 nm

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0

 = 0 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r

0
)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r
0
|)r ·m?(r)r ·m?(r

0
) d

2
r d

2
r
0

E(m) '

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r ·m?(r)r ·m?(r
0
)

|r� r0|
d
2
r d

2
r
0
�

�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0
))

2

|r� r0|3
d
2
r d

2
r
0

1

consider a ferromagnetic film(1 + ↵
2
)
@M

@t
= ��0

✓
M⇥He↵ +

↵

Ms
M⇥M⇥He↵

◆
,

@M

@n

����
@⌦

= 0.

E(M) =
A

M2
s

Z

⌦⇥(0,d)

|rM|
2
d
3
r +

K

M2
s

Z

⌦⇥(0,d)

�(M?) d
3
r

� µ0

Z

⌦⇥(0,d)

M ·H d
3
r + µ0

Z

R3

Z

R3

r ·M(r)r ·M(r
0
)

8⇡|r� r0|
d
3
r d

3
r
0

⌦ ⇢ R3
M : ⌦ ! R3

|M| = Ms He↵ = �
1

µ0

�E

�M

E1d(M) =

Z 1

�1

✓
A

M2
s

|M
0
|
2
+

K

M2
s

(M
2
1 +M

2
3 ) +

µ0

2
|Hd|

2

◆
dx

M0(x) = Ms(0, cos ✓(x), sin ✓(x)) r ·M0(x) = 0 ) Hd = 0

A✓
00
�K sin ✓ cos ✓ = 0 ✓(�1) = ⇡ ✓(+1) = 0

✓ = arccos(tanh(x/L)) L =

r
K

A
E1d(M0) = 4

p

AK

M = Msm m : R ! S2

|m|
2
= 1 ) m

2
2|m

0
2|

2
= (m1m

0
1 +m3m

0
3)

2
 (m

2
1 +m

2
3)(|m

0
1|

2
+ |m

0
3|

2
)

1



Need reduced micromagnetic models

analytically, the full 3D problem poses a formidable challenge:
- vectorial 
- nonlinear     
- nonlocal 
- multiscale 
- topological constraints 
need a simplified model which is valid for the relevant parameter range 
and still captures quantitatively the physical features of the system 

Solution: introduce reduced thin film models that are amenable to analysis

Use the tools from rigorous asymptotic analysis of calculus of variations



Dimension reduction

assume the magnetization                      does not vary significantly across the 
film thickness, measure lengths in the units of     , scale energy by

d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms
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2

saturation magnetization, exchange sti↵ness, anisotropy
constant, applied magnetic field and the DMI strength.
As usual, µ0 is the permeability of vacuum. In the stray
field term, the vector field M(r) is extended by zero out-
side ⌦, and r ·M is understood distributionally (i.e., in-
cludes the contributions of boundary charges). Since the
considered DMI is due to interfacial e↵ects, its contribu-
tion to the energy is via a surface integral over the bottom
film surface @⌦0 corresponding to an interface between
the ferromagnet and a heavy metal, and M = (M?, Mk)
is the value of M on @⌦0. However, using the standard
convention, we normalize the DMI strength parameter D
to a unit volume of the ferromagnet.

Assume that the external applied field is in the film
plain and is normal to the strip axis, i.e., H = Hŷ, where
ŷ is the unit vector in the direction of the y-axis. As-
sume also that the film is much thinner than the exchange
length `ex =

p
2A/(µ0M2

s ), so that the magnetization in
⌦ is constant along the film thickness. Measuring lengths
in the units of `ex and setting M(x, y, z) = Msm(x, y)
with |m| = 1 in ⌦, we can rewrite the energy, to the
leading order6 in d/`ex, in the units of Ad as

E(m) '
Z l/2

�l/2

Z w/2

�w/2

n
|rm|2 + (Q � 1)|m?|2 � 2hŷ · m?

+ 
�
mkr · m? � m? · rmk

� o
dy dx. (2)

Here we defined m? 2 R2 and mk 2 R to be the respec-
tive in-plane and out-of-plane components of the unit
magnetization vector m, introduced the dimensionless
parameters

Q =
2K

µ0M2
s

,  = D

s
2

µ0M2
s A

, h =
H

Ms
, (3)

and defined the rescaled nanostrip dimensions l = L/`ex

and w = W/`ex. In Eq. (3), Q > 1 is the material’s
quality factor yielding PMI,  is the dimensionless DMI
strength, which without loss of generality, may be as-
sumed positive, and h is the dimensionless applied field
strength.

We are interested in the case of long nanostrips corre-
sponding to l � w. Note that when l ! 1, the energy
in Eq. (2) diverges even if h = 0 because of the pres-
ence of edge domain walls giving O(l) contribution to the
energy7,8. Therefore, in order to pass to the limit l ! 1
we need to subtract from E the contribution of the one-
dimensional ground state energy e0(h, w) = min E0(m),
where

E0(m) =

Z w/2

�w/2

n
|m0|2 + (Q � 1)|m?|2 � 2hŷ · m?

+ 
⇣
(ŷ · m0

?)mk � (ŷ · m?)m0
k

⌘ o
dy. (4)

The precise functional form of e0(h, w) is the subject of
Sec. III.

Putting everything together, we now write the expres-
sion for the energy that describes a Dzyaloshinskii do-
main wall running across the nanostrip as

E(m) =

Z 1

�1

Z w/2

�w/2

n
|rm|2 + (Q � 1)|m?|2�

� 2hŷ · m? � w�1e0(h, w)

+ 
�
mkr · m? � m? · rmk

� o
dy dx. (5)

This formula forms the basis for all of the analysis
throughout the rest of the paper.

III. EDGE DOMAIN WALLS

We next focus on the minimizers of E0 from Eq. (4) in
the case of w � 1 and  below the threshold of the onset
of helicoidal structures corresponding to x-independent
ground state magnetization configurations. From the
physical considerations (for a rigorous mathematical jus-
tification in the case h = 0, see Ref. [8]), it is clear that
in these states the magnetization vector will rotate in the
yz-plane. Hence, introducing the ansatz:

m(y) = (0, sin ✓(y), cos ✓(y)), (6)

into (4), we rewrite E0(m) as

E0(m) =

Z w/2

�w/2

n
|✓0|2 + (Q � 1) sin2 ✓

�2h sin ✓ + ✓0
o

dy. (7)

The corresponding Euler-Lagrange equation associated
with E0 is

✓00 � (Q � 1) sin ✓ cos ✓ + h cos ✓ = 0, (8)

with boundary conditions

✓0
⇣

± w

2

⌘
= �

2
. (9)

Notice that (8) and (9) obey the following symmetry re-
lation which leaves the energy E0 unchanged:

✓ ! ⇡ � ✓, y ! �y. (10)

Introducing

✓h = arcsin

✓
h

Q � 1

◆
, (11)

we first note that when w ! 1, we should have ei-
ther ✓ ! ✓h or ✓ ! ⇡ � ✓h, corresponding to the
two monodomain ground states in the extended film for
0  h < Q � 1. In view of the symmetry in (10), it is
enough to consider only the former case.

In computing the minimal value e0(h, w) of E0 for w �
1 one needs to take into account the contributions of the
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a reduction to an energy functional that depends only on the average of the magnetization over
the film thickness (see, e.g., [26, Lemma 3]; for an analytical treatment in a closely related context,
see [25, 34]). Therefore, we introduce an ansatz M(x1, x2, x3) = Ms(m(x1, x2), 0)�(0,d)(x3), where
m : R2

! R2 is a two-dimensional in-plane magnetization vector satisfying |m| = 1 in D and
|m| = 0 outside D, and �(0,d) is the characteristic function of (0, d). Next, we define the exchange
length `, the Bloch wall thickness L and the thin film parameter ⌫ [35]:

` =

s
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s
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r
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K
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2
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AK
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and note that the above ansatz is relevant when d . ` [12, 16, 17, 26, 35]. Then, measuring the
energy in the units of 2Ad and lengths in the units of L, we obtain the following expression for the
energy as a function of m [18]:
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where � = d/L is the dimensionless film thickness,

K�(r) =
1

2⇡�

(
ln

 
� +

p
�2 + r2

r

!
�

r
1 +

r2

�2
+

r

�

)
, (4)

and we set H = K/(µ0Ms)(h, 0) for h : R2
! R2, assuming that the applied field lies in the film

plane. More explicitly, assuming that @D is of class C2, we have
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where n is the outward unit normal vector to @D, and we took into account that the distributional
divergence of m is the sum of the absolutely continuous part in D and a jump part on @D.

We now consider the thin film limit introduced in [35] by sending � to zero with ⌫ and D fixed.
Observe that when � is small, we have
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Therefore, when m does not vary appreciably on the scale of �, to the leading order we have
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Since the last term in (7) blows up as � ! 0, unless m · n = 0 a.e. on @D, in the limit we recover
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Reduced thin film energy
regime           :                                             Taylor-expand in Fourier spaced = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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the expression for the stray field energy is rigorously justified via Γ-expansion 
Knüpfer, M, Nolte, 2019

for bounded 2D samples, extra boundary terms appear Di Fratta, M, Slastikov 
(in preparation) 
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proper definition of the non-local terms is via Fourier:
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under the assumptions d . `ex and ⌦ being much larger than `ex. Under the condition
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where H̊1(R2; S2) denotes the space of unit length vector fields in R3 with square integrable
gradient, and the first condition in (1.15) is consistent with the requirement m(r) ! �z
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Asymptotic development

regime           :                                            d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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the difference between the energies is lower order in d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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Soft thin films 

regime           ,                   ,                    :                          d = 0.6 nm L ⇠ 100 nm `ex = 3.66 nm Q = 1.67 m = M/Ms m = (m?,mk) � ⌧ 1
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length ℓ, the Bloch wall width L, and the thin film parameter ν measuring the relative strength 
of the magnetostatic energy [36]:

ℓ =

√
2 A

µ0 M2
s

, L =

√
A
K

, ν =
µ0 M2

s d
2
√

AK
, (2)

and note that the above ansatz is relevant when d ! ℓ [13, 17, 18, 27, 36]. Then, measuring 
the energy in the units of 2Ad  and lengths in the units of L, we obtain the following expression 
for the energy as a function of m [19 ]:
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1
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d 2 r +
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2

∫

R2

∫

R2
Kδ(|r − r′|)∇ · m(r)∇ · m(r) d 2 r d 2 r′,

 (3)
where δ = d/L is the dimensionless film thickness,

Kδ(r) =
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2 πδ

{
ln

(
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√
δ2 + r2

r

)
−
√

1 +
r2

δ2 +
r
δ

}
, (4)

and we set H = K/(µ0Ms)(h, 0) for h : R2 → R2 , assuming that the applied field lies in the 
film plane. More explicitly, assuming that ∂D is of class C2, we have
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(5)

where n is the outward unit normal vector to ∂D, and we took into account that the distribu-
tional divergence of m is the sum of the absolutely continuous part in D and a jump part on 
∂D.

We now consider the thin film limit introduced in [36] by sending δ to zero with ν and D 
fixed. Observe that when δ is small, we have

Kδ(r) ≃
1

4 πr
and

∫

∂D
Kδ(|r − r′|) d H1 (r′) ≃ 1

2 π
ln δ−1 . (6)

Therefore, when m does not vary appreciably on the scale of δ, to the leading order we have 
E(m) ≃ Eδ(m), where

Eδ(m) =
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 (7)
Since the last term in (7) blows up as δ → 0, unless m · n= 0 a.e. on ∂D, in the limit we 
recover

E0 (m) =
1
2
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(8)

R G Lund et alNonlinearity 31 (2018) 728

thin film parameter

in the whole plane:

Q =
2K

µ0M
2
s

h =
H

Ms
`ex =

s
2A

µ0M
2
s

� =
d

`ex

Q = O(�2) m = (m1,m2, 0)

E(m) ' 1

2

Z

R2

⇣
|rm|2 + (m1 � h1)

2 + 2h2(1�m2)
⌘
d
2
r

+
⌫

8⇡

Z

R2

Z

R2

r ·m(r)r ·m(r)

|r� r0| d
2
r d

2
r
0

3

Q =
2K

µ0M
2
s

h =
H

Ms
`ex =

s
2A

µ0M
2
s

� =
d

`ex

Q = O(�2) m = (m1,m2, 0) m : R2 ! S1

E(m) ' 1

2

Z

R2

⇣
|rm|2 + (m1 � h1)

2 + 2h2(1�m2)
⌘
d
2
r

+
⌫

8⇡

Z

R2

Z

R2

r ·m(r)r ·m(r)

|r� r0| d
2
r d

2
r
0

3

Q =
2K

µ0M
2
s

h =
H

Ms
`ex =

s
2A

µ0M
2
s

� =
d

`ex

Q = O(�2) |h| = O(�2) m = (m1,m2, 0) m : R2 ! S1

E(m) ' 1

2

Z

R2

⇣
|rm|2 + (m1 � h1)

2 + 2h2(1�m2)
⌘
d
2
r

+
⌫

8⇡

Z

R2

Z

R2

r ·m(r)r ·m(r)

|r� r0| d
2
r d

2
r
0

3



Uncharged Néel walls

z

x

y

360−degree wall180−degree wall

θ = 0

θ = π
b)

θ = π

θ = 0

θ = 2 π

x

y
z

d

c)

ξ

θ

hs

d

a)

−1
 10 0−10−20

 7

 6

 5

 4

 3

 2

 1

 0

 20

Figure 5: Two main domain wall types in thin uniaxial ferromagnetic films: the 180
�

wall (Néel

wall with no applied field) (a); the 360
�

wall oriented normally to the direction of the easy axis (the

y-axis) (b); the winding angle ✓ and the stray field hs in a 360
�

wall (c). In (c), the wall profile for

(b) is computed with no applied field and ⌫ = 10 [28].

1.5 Reduced models of two-dimensional domain walls

Based on a good understanding of one-dimensional domain wall profiles in uniaxial materials
established under previous award, we will proceed to the asymptotic analysis of the domain
walls viewed as co-dimension one objects (curves) in the film plane. Mathematically, this
idea can be made precise by studying �-convergence of the micromagnetic energy in suitable
limits [6, 11, 67]. We note that this and the related approach of matching upper and lower
bounds on energy have been recently applied to the Néel walls in soft ferromagnetic thin
films of finite spatial extent [11, 115–118]. Using these ideas, De Simone, Knüpfer and Otto
proved that in a certain sense the one-dimensional Néel wall is globally stable with respect to
two-dimensional perturbations, a result that was further refined in [117]. These techniques
were further extended by Ignat and Knüpfer to 360� walls [101]. Also, Ignat undertook a
study of �-convergence of the one-dimensional micromagnetic energy describing Néel walls
in the presence of applied field and proved that in a suitable limit the energy �-converges
to a constant times the number of jumps in the piecewise-constant function describing the
limit angles.

From our analysis in [62] one should expect the Néel walls to enjoy a significant degree
of stability in two dimensions. The answer to a similar question about 360� walls is less
obvious. This is because, in contrast to the Néel walls, whose orientation is rigidly fixed
to coincide with the easy axis, one-dimensional 360� walls may make an arbitrary non-
zero angle with the easy axis. One would, therefore, expect that the �-limit of the energy
associated with 360� walls may be significantly di↵erent from that for the Néel walls. From
our earlier numerical studies in [28], we found that the energy of the one-dimensional 360�

wall depends rather strongly on the wall orientation (similar conclusion were made in [101]).
Therefore, we conjecture that in an appropriate limit the micromagnetic energy �-converges
to an anisotropic perimeter functional, with the anisotropy determined by the energy of
the one-dimensional wall profile of di↵erent orientations. To be more precise, consider the
following family of functionals obtained from (5) with uniaxial anisotropy:

E
"[✓] :=

Z

R2

✓
"

2
|r✓|2 + 1

2"
sin2

✓

◆
⌘

"
d

2
r +

⌫

4

Z

R2

r · (⌘"m) (��)�1/2 r · (⌘"m) d2
r, (11)

where ⌘
"(r) is a mollification (on O(") length scale) of the characteristic function of the

bounded domain D ⇢ R2. By the usual Modica-Mortola trick [119, 120], sequences with

11

two basic charge-free wall types with zero applied field:

Note: other wall types are possible with non-zero in-plane field Ignat and Moser, 2017
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Fig. 1. Domain structure in a 5.5 monolayer cobalt single 
crystal film. The size of the imaged area is 100× 100~,m 2. 
The arrows indicate the magnetization orientation within the 
domains. The disturbances in the lower left do not affect the 
large grey domain, whilst the white/black boundary is pinned 
to one of these. 

gin state is created by the onset of ferromag- 
netism at a particular film thickness. 

constants [12], that the shape anisotropy is re- 
sponsible for turning the easy axes from the { 111} 
directions (found with the measurements  of the 
anisotropy constants) into the {110} in-plane di- 
rections. We believe the same mechanism to act 
in the ultrathin films as discussed in more depth 
elsewhere [13]. Further evidence for this sugges- 
tion can be inferred from spin-polarized photo- 
emission experiments [14]. From the shape of 
hysteresis loops the author deduces an out-of- 
plane anisotropy contribution (besides the shape 
anisotropy), that is tilted against the surface nor- 
real. In the light of the "thick" film results this 
finding seems reasonable, if one attributes the 
(conjectured) out-of-plane anisotropy contribu- 
tion to the {111} direction, i.e. the easy axes of 
fcc cobalt. Thus this result might give a further 
evidence for the validity of the proposed mecha- 
nism. That mechanism, on the other hand, con- 
firms again the influence of the demagnetizing 
field on the easy axes and domain structure in the 
ultrathin cobalt films. 

3.3. Domain structures in demagnetized films 

3.2. Easy axes of magnetization 

The single domain state breaks up into a mul- 
tidomain configuration by demagnetizing the films 
in a magnetic ac-field. Qualitatively the same 
structures have been obtained with the ac-fields 
acting perpendicular and parallel to the film 
plane, in the latter case with the field along a 
[100] direction. With the multidomain structure 
the orientation of the spontaneous magnetization 
of the domains has been determined by means of 
the vector analysis of the electron spin polariza- 
tion [6]. No perpendicular magnetization could be 
observed, in agreement  with previous studies [9, 
10]. In the film plane the domains are magnetized 
parallel to the {110} directions, as can be seen in 
fig. 1 for a 5.5 monolayer thick film. The {110} 
in-plane easy axes were also found for "thick" 
films, d>_ 100,~ [11]. With those films it was 
evident from measurements  of the anisotropy 

Domain images of a 9 monolayer thick Co film 
are shown in figs. 2 and 3. A large fraction of the 
film ( =  1.2×  1.2 mm 2) is to be seen in fig. 2, 
yielding a survey of the domain pattern. Fig. 3 
shows an enlarged section of the domain struc- 
ture of fig. 2. Two main features of the domain 
structures in ultrathin Co films can be easily 
identified with these images. Firstly, large do- 
mains with lateral expansions in the range of 
some hundred microns are predominantly found 
(see fig. 2). Secondly, the shape of the domains 
are very irregular (see figs. 2 and 3), although the 
easy axes exhibit a four-fold symmetry. Both 
properties have been found for all films studied, 
with thicknesses ranging from 3-19.5 monolayers. 

One might conjecture that the magnetic do- 
main structure reflects substrate topological fea- 
tures. To prove this supposition the surface 
topology was studied with a scanning tunneling 
microscope [15]. Large terraces with lateral ex- 
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symmetrical domain structure found with "thick" 
(d > 100.&) Co films [11], although the same easy 
axes of magnetization are found. This disagree- 
ment demonstrates that in spite of an equivalence 
on the scale determining the anisotropy, the large 
scale micromagnetic behaviour might be com- 
pletely different and most probably the related 
macroscopic properties. Therefore one might ex- 
pect to find a likely explanation for the difference 
with help of the micromagnetic equations (incor- 
porating the magnetostatic field energy contribu- 
tion). Namely the estimation of the wall energy in 
ultrathin films is very instructive [17]. It turns out 
that the magnetostatic energy contribution to the 
total wall energy is negligibly small in ultrathin 
films. The wall energy and wall width is deter- 
mined by the balance of the exchange and 
anisotropy interaction. One important conse- 
quence of the vanishing magnetostatic energy 
contribution has been pointed out recently [13]. 
As exchange and anisotropy energies are not 
related to any orientation of the wall, the wall is 
not fixed to any direction by these interactions. 
Due to the negligibly small magnetostatic energy 
contribution poles may be created across a wall 
without any substantial increase of the total wall 
energy. Magnetic poles are created if the normal 
(to the wall) components of the magnetization are 
not continuous across the wall. This is completely 
different for "thick" film and bulk ferromagnets. 
As the magnetostatic energy is dominant in these 
samples poles are avoided (pole avoidance princi- 
ple [18]). Thus the walls are aligned with respect 
to the magnetization of the adjacent domains, the 
walls are kept straight and the domain pattern 
exhibits some symmetry depending on the easy 
axes symmetry. In ultrathin films however, mag- 
netic poles may be created, the pole avoidance 
principle is no more strictly valid, and the wall 
orientation is not fixed to distinct directions. Thus 
the wall orientation may be affected by other 
properties, yielding the roughening of the domain 
walls in ultrathin films. 

Some mechanisms have been proposed as driv- 
ing forces for the formation of irregular bound- 

Fig. 5. Detail of the magnetic domain structure in a 3.5 
monolayer Co tilm (size 25 × 25 p.m2). The width of the tram 
sition w~ries strongly along the boundary. In some sections it 
seems to split into two walls with a domain within. 

aries [13], including magnetostrictive as well as 
configurational entropy contributions to the wall 
energy. Moreover, one may think of pinning of 
the wall at distinct topographical structures of the 
substrate like the ones seen with the STM. From 
several features of the domain structure, e.g. cou- 
pled walls (see fig. 3) or long (compared to the 
terrace dimensions) straight wall section (figs. 3 
and 4) or the width of the transition (fig. 5), onc 
might deduce, that wall pinning at such structures 
is of minor importance. A further "topographical" 
structure might be generated by inhomogenities 
in the film thickness. Thickness variations of up 
to three layers may occur an a lateral scale which 
is small compared to the probe size (~  1 mm) of 
the MEED and Auger experiment. Wall pinning 
caused by varying film thicknesses might happcn 
and cannot be ruled out as long as the spatial 
distribution of the thickness variations is un- 
known. Finally, one may consider flux closure 
configurations to be responsible for the irregular- 
ity. As is well known from calculations of Ndel- 
wall structures in films and at surfaces [19, 20] the 

Figure 1: (a) Typical 360� domain walls observed by magnetic force microscopy in a glass/Ta(10
nm)/NiFe(7.2 nm)/FeMn(8.0 nm)/Ta(5 nm) sandwich: Symbols C and CC represent closed domain walls
whose magnetization rotates clockwise and counter clockwise from outside to inside the closed domain,
respectively; symbol L represents a line type wall (from Ref. [16]). (b) A typical MRAM cell design (from
Ref. [1]).

view, see [10]). The topological degree of a winding domain wall is simply the winding number of the
magnetization (i.e. the number of rotations of the magnetization vector in the film plane) across the wall.
Therefore, describing the motion and interaction of these topological patterns is an interesting problem in
the theory of energy-driven pattern formation [60]. This problem is complicated by the nonlinear, nonlocal,
and anisotropic nature of these patterns in thin ferromagnetic films (see [41,64,65,73,78] for related studies).

2 Results from prior work
Despite the widespread appearance of winding domain walls and their role in magnetization reversal in
thin ferromagnetic films [13, 14, 16, 53, 100, 107], to the best of our knowledge there have not been any
systematic studies of this type of domain walls to date (see [55] for an early investigation). In particular,
even the question whether 360� walls are stable stationary states or long-lived metastable structures in the
absence of the applied field has not been resolved until now. Recently, in a joint work with V. V. Osipov, we
undertook the first detailed investigation of 360� wall solutions and their role in magnetization reversal [88],
using a reduced model of thin film ferromagnetics introduced by us earlier in [87] (see also [2, 12, 40, 42, 62,
73, 76]). Below we briefly summarize the results of that work as well as those of [84].

Stable 360� walls in uniaxial films. We were able to establish numerically the existence and stability of
360� walls in uniaxial materials with or without the applied field, and studied the properties of the wall
solutions. Figure 2(a) shows the schematics of a 360� wall which is oriented normally to the easy direction
(the y-axis). This figure illustrates how the magnetization vector m = (� sin ✓, cos ✓,0) rotates clockwise
when y changes from negative to positive values. Note that for this wall orientation, the wall variable �,
i.e., the variable, such that ✓ = ✓(�), coincides with the y variable. The normal and tangential components
of the magnetization in the solution, m� = cos ✓ and m� = sin ✓, respectively, are shown in Fig. 2. One
can see from the behavior of m�(�) in Fig. 2(b) that the wall core carries a net dipole moment, which is
responsible for the wall stability in the absence of the applied field [88]. The winding angle ✓ and the stray
field hs are also shown in Fig. 2(c) (see [88] for more details). We investigated stability of the 360� solutions
for various orientations via one- and two-dimensional time-dependent simulations. In particular, we found
that a critical demagnetizing field is required to break up a 360� wall, indicating that these walls are really
stable, not metastable objects.

2

a) b) c)

Figure 1: Magnetic domains and domain walls in soft ferromagnetic thin films. In (a), 90
�

walls

separate domains of 4 distinct magnetization orientations, and in (b) a 180
�

wall separates the

domains of opposite orientations in thin cobalt films (from [21]). In (c), various 360
�

walls in

exchange-biased permalloy films are shown (from [22]). Di↵erent shades of gray indicate di↵erent

directions of magnetization, shown by the arrows. See [21, 22] for further experimental details.

which the advantages of MRAM outweigh their current low storage density and high energy
consumption [24]. The di�culty in achieving a competitive MRAM design has to do with
the conflicting requirements to the MRAM cell that stores the bit of information. On one
hand, the cell has to be su�ciently small (on deep sub-micrometer scale) in order to deliver
storage density comparable to that available from the current semiconductor technologies
(up to 500 Gb/in2). On the other hand, the size of the cell has to be su�ciently large to
ensure the lifetime of a stored bit on the time scale in excess of 10 years in the presence of
thermal noise. Similarly, as the cell gets smaller, the current densities required to switch
the magnetization configuration encoding the bit by the Oersted field become progressively
higher, requiring higher power and generating more heat. A recent trend in the MRAM
cell development has been to employ spin-transfer torque (STT) from spin-polarized current
injected into the storage layer to accomplish magnetization reversal, which, however, has a
rather non-trivial e↵ect on the magnetization dynamics [13, 14,25,26].

In view of these conflicting requirements, a careful optimization of the MRAM cell pa-
rameters is necessary in order for the MRAM technology to become competitive with other
available computer memory technologies. Therefore, a successful design of the MRAM cell
is impossible without mathematical modeling and computational studies of the device pro-
totypes. This, in turn, requires models that incorporate diverse physical processes operating
on very disparate spatial and time scales and posing significant challenges for their studies.
This proposal will address these challenges. The principal goals of the present proposal are:

- To develop realistic reduced models of magnetization dynamics in thin ferromagnetic
films and e�cient numerical algorithms for their simulations.

- To apply these models and algorithms to the studies of optimal design characteristics
of MRAM cells based on ferromagnetic nanorings.

- To develop analysis tools for the asymptotic description of di↵erent types of domain
walls in thin ferromagnetic films.

More specifically, we will develop reduced micromagnetic models that describe the dynamics
of in-plane magnetizations in thin ferromagnetic films of varying thickness and shape that
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at zero field, 1D minimizers first studied by Melcher in a closely related model
Garcia-Cervera, 1999; Melcher, 2003; see also Garcia-Cervera, 2004; Capella, Melcher and Otto, 2007 
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Figure 5: Two main domain wall types in thin uniaxial ferromagnetic films: the 180⇥ wall (Néel
wall with no applied field) (a); the 360⇥ wall oriented normally to the direction of the easy axis (the
y-axis) (b); the winding angle � and the stray field hs in a 360⇥ wall (c). In (c), the wall profile for
(b) is computed with no applied field and ⇥ = 10 [28].

1.5 Reduced models of two-dimensional domain walls

Based on a good understanding of one-dimensional domain wall profiles in uniaxial materials
established under previous award, we will proceed to the asymptotic analysis of the domain
walls viewed as co-dimension one objects (curves) in the film plane. Mathematically, this
idea can be made precise by studying �-convergence of the micromagnetic energy in suitable
limits [6, 11, 67]. We note that this and the related approach of matching upper and lower
bounds on energy have been recently applied to the Néel walls in soft ferromagnetic thin
films of finite spatial extent [11, 115–118]. Using these ideas, De Simone, Knüpfer and Otto
proved that in a certain sense the one-dimensional Néel wall is globally stable with respect to
two-dimensional perturbations, a result that was further refined in [117]. These techniques
were further extended by Ignat and Knüpfer to 360⇥ walls [101]. Also, Ignat undertook a
study of �-convergence of the one-dimensional micromagnetic energy describing Néel walls
in the presence of applied field and proved that in a suitable limit the energy �-converges
to a constant times the number of jumps in the piecewise-constant function describing the
limit angles.

From our analysis in [62] one should expect the Néel walls to enjoy a significant degree
of stability in two dimensions. The answer to a similar question about 360⇥ walls is less
obvious. This is because, in contrast to the Néel walls, whose orientation is rigidly fixed
to coincide with the easy axis, one-dimensional 360⇥ walls may make an arbitrary non-
zero angle with the easy axis. One would, therefore, expect that the �-limit of the energy
associated with 360⇥ walls may be significantly di⇤erent from that for the Néel walls. From
our earlier numerical studies in [28], we found that the energy of the one-dimensional 360⇥

wall depends rather strongly on the wall orientation (similar conclusion were made in [101]).
Therefore, we conjecture that in an appropriate limit the micromagnetic energy �-converges
to an anisotropic perimeter functional, with the anisotropy determined by the energy of
the one-dimensional wall profile of di⇤erent orientations. To be more precise, consider the
following family of functionals obtained from (5) with uniaxial anisotropy:

E�[⇥] :=

⇤

R2

�
⌅

2
|⇧⇥|2 + 1

2⌅
sin2 ⇥

⇥
�� d2r +

⇤

4

⇤

R2

⇧ · (��m) (�⇥)�1/2 ⇧ · (��m) d2r, (11)

where ��(r) is a mollification (on O(⌅) length scale) of the characteristic function of the
bounded domain D ⇤ R2. By the usual Modica-Mortola trick [119, 120], sequences with
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Fig. 5. The profile of the Neél wall at ⇤ = 250 obtained using Zolotarev optimal
grid. Results of the numerical solution of (30) with h� = 0.02, h0 = h�, ⇥ = 1012,
n = 8, m = 513, b = 0.4. (a) The angle variable �. (b) The stray field h.

4.3 Two-dimensional simulations

In this section, we extend the approach of Sec. 4.2 to two-dimensional films.
Here we consider a finite rectangular sample in free space, and, hence, need
also to take into account boundary e�ects. This, however, is easily done by
combining the optimal grids in both x, y- and z-directions [34]. This is illus-
trated in Fig. 6. Similarly to the one-dimensional case, the material is broken
up into square cells, and the magnetization is represented by the grid points
in the centers of these cells (squares). The potential nodes (circles) are placed
at the vertices of the material cells. The xy-grid is then extended into free
space by using the steps of the optimal grid in one (either x or y) or both
directions in the xy-plane. The full three-dimensional grid is then taken to be
a Cartesian product of the the xy-plane grid just described and the optimal
grid in z [34].

The solution is then computed as follows. First, the magnetic charges at the
potential nodes are computed by approximating �⌅·m obtained from �, using
a pair of centered di�erences along the diagonals of the cells (two thin lines in
Fig. 6 for a representative node). To account for the boundary of the material,
we assume that m = 0 in the fictitious cells immediately outside the film, this
generates surface charges at the film boundary. Once the charges are obtained,
the problem for the potential u is solved using CG as before, and then the
gradient of the potential is computed, again, using centered di�erences in the
directions of the diagonals of the square. The field, in turn, is used to do a
time step to evolve �.

We performed a series of fully resolved simulations and recovered a number of
well-known domain structures [1], which further corroborates the validity of
our method. First, we considered a sample that is elongated in the direction
of the easy axis, and set ⇥ = 10 to make the e�ect of the stray field more
significant (this would correspond, e.g., to an ultra-thin 2 nm-thick permalloy
film for the parameters of [29]). We discretized the film on a 33⇤ 65 uniform
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The micromagnetic structure of 180'-domain walls in ultrathin cobalt films, grown on Cu(100), has
been investigated by means of SEMPA. The comparison of our experimental data with one-
dimensional micromagnetic calculations demonstrates that the magnetostatic energy has a pronounced
inAuence on the domain-wall structure, even in the monolayer thickness range. Discrepancies between
experimental observations and the one-dimensional model may be explained by a two-dimensional in-
plane structure of the domain walls.

The recent development of the scanning electron micro-
scope with spin-polarization analysis of the secondary
electrons (SEMPA) (Ref. I) has opened up a new branch
of micromagnetic investigations, i.e., the experimental ob-
servation of domain structures in magnetic monolayer
films, grown on nonmagnetic substrates. The do-
main-structure investigations have shown that the domain
pattern in ultrathin magnetic films are very complex. The
domains are characterized by a very irregular shape even
in cobalt films grown on Cu(100) with cubic in-plane
magnetocrystalline anisotropy. ' Recently, similar
domain structures have been found in ultrathin cobalt
films with uniaxial in-plane anisotropy. Thus domains
with irregular shape seem to be a typical feature of ul-
trathin cobalt films in contradiction to the highly symme-
trical domain structure found in thicker films or bulk ma-
terial. As the domain shape is determined by domain
walls and their minimum energy configuration, the
domain-wall fine structure in ultrathin films is of essential
importance for the understanding of the domain structure.
In this paper, we present an experimental study of the

magnetization distribution within domain walls in ul-
trathin films. The experimental data are compared with
numerical calculations, based on a one-dimensional mi-
cromagnetic description. Domain walls and their special

behavior at surfaces and in thin films have been investi-
gated theoretically and experimentally. ' ' The experi-
mental studies, however, were limited to films of a few
100-A thickness (so called "thin films" ), due to the limita-
tions of the techniques' ' " which have been used for in-
vestigations of domain walls previously. An important re-
sult of the theoretical studies for very small film
thicknesses has been that the Neel-wall fine structure is
well described by a one-dimensional model, where the
magnetization orientation is only a function of one space
variable. ' ' ' Thus it is also reasonable to consider the
magnetization within ultrathin films as homogeneous
throughout the film, i.e., a one-dimensional description of
the walls seems to be appropriate.
Figure 1 shows an experimental line scan across a

180 -domain wall, measured for a 5.5-monolayer cobalt
film on Cu(100). In this plot the polarization, indicating
the magnetization component parallel to the domain mag-
netization, is shown as a function of the lateral position.
The experimental curve (x in Fig. I) is characterized by
a sharp core area, which represents a rapid rotation of the
magnetization vector in the center of the wall. Remark-
able features of this domain-wall profile are the long tails
on either side of the center part. The lateral extension of
these outer segments of the wall is surprisingly large, i.e.,
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one also has a balance Ld/ℓ2 ∼ 1 for many materials [30]. In this situation the dimensionless
parameter

ν = 4πM2
s d

KL
= Ld

ℓ2
= d

ℓ
√

Q
, (3)

which is referred to as the thin film parameter [17], becomes a single measure of the strength
of the magnetostatic interaction relative to both anisotropy and exchange.

The reduced thin film energy is formally obtained from the full micromagnetic energy in
(1) by assuming that M does not vary in the direction of e3 (the direction normal to the film),
setting the component of M along e3 to zero and passing to the limit Q → 0 and d → 0
jointly, subject to ν = O(1) fixed, after rescaling lengths with L [17] (see also [9]). Assuming
further that Hext = e1hK/Ms , after a suitable rescaling we arrive at the following reduced
energy functional:

E(m) = 1
2

∫

R2
|∇m|2 d2r +

1
2

∫

R2
(m · e1 − h)2 d2r

+
ν

8π

∫

R2

∫

R2

∇ · m(r)∇ · m(r′)

|r − r′|
d2r d2r ′, (4)

where nowm : R2 → S1 is the unit vector in the direction of the magnetization in the film plane.
Note that the assumptions on M used in this derivation are justified by the strong penalization
of the variations of M across the normal direction to the film by the exchange energy and by
the strong penalization of the normal component of M by the shape anisotropy [2]. Also, up
to a constant factor the last term in (4) is simply the square of the homogeneous H−1/2-norm
of ∇ · m in R2 [9].

The reduced energy in (4) is the starting point of the analysis of the rest of our paper.
Without loss of generality we may assume that h ! 0. Also note that for h ! 1 the
energy in (4) admits a unique global minimum m = e1 and no Néel walls are, therefore,
possible in this situation. For h ∈ [0, 1), on the other hand, there are two global minimizers
m± = (h, ±

√
1 − h2) corresponding to the two monodomain states. In the following, we

will always assume that h is in this non-trivial range, in which Néel walls connecting the two
states appear. Let us point out that at the same time we do not allow the external field to have
a component in the direction of the easy axis, since in this case only one monodomain state
exists as the global minimizer of the energy. Under an applied field in the direction of the
easy axis Néel walls begin to move, invading the domain with higher energy density by the
domain with the lower energy density [2, 23]. Similarly, the considered wall orientation along
the easy axis is the only one that makes the stray-field energy of a one-dimensional profiles
finite. When the wall makes a non-zero angle with the easy axis (compare with [31]), it carries
a net magnetic charge, which makes the associated magnetostatic potential for the wall in the
whole of R2 infinite.

3. Variational formulation and statement of the main result

We now turn to the study of one-dimensional Néel wall profiles. For that we assume that m
varies only along e1 and compute the energy of such a configuration per unit length of the wall.
It is convenient to introduce the new variable ϑ = ϑ(x) which gives the angle that the vector
m makes with e2 in the counter-clockwise direction as a function of the coordinate along e1.
Thus, setting

m(x) = (− sin ϑ(x), cosϑ(x)) ∈ S1 (5)

One-dimensional Néel walls under applied external fields 2939

for every x ∈ R, we can rewrite the one-dimensional version of the functional in (4) in terms
of the angle variable ϑ to obtain the one-dimensional Néel wall energy (see [17]):

E(ϑ; R) := 1
2

∫

R

{
|ϑx |2 + (sin ϑ − h)2 +

ν

2
sin ϑ

(
− d2

dx2

)1/2

sin ϑ
}

dx

= 1
2

∫

R

(
|ϑx |2 + (sin ϑ − h)2

)
dx +

ν

8π

∫

R

∫

R

(
sin ϑ(x) − sin ϑ(y)

)2

(x − y)2
dx dy, (6)

where, as usual, (−d2/dx2)1/2 denotes the square root of the one-dimensional negative
Laplacian (a linear operator whose Fourier symbol is |k|), and, furthermore, we used the
identity [31, 32]

(
− d2

dx2

)1/2

u(x) = 1
π

−
∫

R

u(x) − u(y)

(x − y)2
dy, (7)

for every x and, say, every u ∈ C∞
c (R), where −

∫
stands for the principal value of the integral.

We wish to study the minimizers of the energy in (6) among the profiles that connect the
two distinct minima of the energy at x = ± ∞. To this end, we need to introduce a suitable
admissible class of functions which yields minimizers with the desired properties. We propose
to minimize E(ϑ; R) over the admissible class

A := {ϑ ∈ H 1
loc(R) : ϑ − ηh ∈ H 1(R)}, (8)

where ηh ∈ C∞(R; [0,π ]) is a fixed non-increasing function such that, setting

θh := arcsin h ∈
[
0,

π

2

)
, (9)

we have ηh = π − θh in (−∞, −1) and ηh = θh in (1, +∞). We point out that the definition
of A does not depend on the choice of ηh: If η̃h ∈ C∞(R; [0, 1]) is a different non-increasing
function, i.e., η̃h ̸= ηh, satisfying η̃h = π − θh in (−∞, −1) and η̃h = θh in (1, +∞), then

A = {ϑ̃ ∈ H 1
loc(R) : ϑ̃ − η̃h ∈ H 1(R)}. (10)

Indeed, any ϑ ∈ A satisfies also ϑ − η̃h ∈ H 1(R) for η̃h − ηh ∈ H 1(R); vice versa, for the
same reason any ϑ̃ ∈ H 1

loc(R) with ϑ̃ − η̃h ∈ H 1(R) belongs to A. Note that our choice of
the admissible class A fixes the rotation sense of the Néel wall, and the wall of the opposite
rotation sense may be obtained from the minimizer over A by a reflection about x = 0.

It is easy to see that the Euler–Lagrange equation associated with the functional in (6) is
given by

− ϑxx + cosϑ sin ϑ − h cosϑ +
ν

2
cosϑ

(
− d2

dx2

)1/2

sin ϑ = 0, (11)

with the boundary conditions at infinity

lim
x→+∞

ϑ(x) = θh, lim
x→−∞

ϑ(x) = π − θh. (12)

The main result of this paper is the following.

Theorem 1 (existence, uniqueness, regularity, strict monotonicity and decay of Néel
walls). For every ν > 0 and every h ∈ [0, 1) there exists a minimizer of E(ϑ; R) in (6)
over A in (8), which is unique (up to translations), strictly decreasing with range equal to
(θh,π − θh) and is a smooth solution of (11) that satisfies the limit conditions given in
(12). Moreover, if ϑ (0): R → (θh,π − θh) is the minimizer of E in the class A satisfying
ϑ (0)(0) = π

2 , then ϑ (0)(x) = π − ϑ (0)(−x), and there exists a constant c > 0 such that
limx→+∞ x2(ϑ (0)(x) − θh) = c.
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Indeed, any ϑ ∈ A satisfies also ϑ − η̃h ∈ H 1(R) for η̃h − ηh ∈ H 1(R); vice versa, for the
same reason any ϑ̃ ∈ H 1

loc(R) with ϑ̃ − η̃h ∈ H 1(R) belongs to A. Note that our choice of
the admissible class A fixes the rotation sense of the Néel wall, and the wall of the opposite
rotation sense may be obtained from the minimizer over A by a reflection about x = 0.

It is easy to see that the Euler–Lagrange equation associated with the functional in (6) is
given by
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The main result of this paper is the following.
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uniqueness in the class of monotone decreasing profiles M and Yan, 2016

open question: does uniqueness hold in 2D (even in a periodic setting)?

Theorem (existence, uniqueness, regularity, strict monotonicity and decay) For
every ⌫ > 0 and every h 2 [0, 1) there exists a minimizer of E(#;R) over A, which is
unique (up to translations), strictly decreasing with range equal to (#h, ⇡�#h) and is
a smooth solution of the Euler-Lagrange equation that satisfies the limit conditions.
Moreover, if #(0) is the minimizer of E in the class A satisfying #

(0)(0) = ⇡
2 , then

#
(0)(x) = ⇡�#

(0)(�x), and there exists a constant c > 0 such that #(0)(x) ' cx
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x ! +1.
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Z 1
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�
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#
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dx+
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dx dy

4

for a result in this direction, see  De Simone, Knüpfer and Otto, 2006

compare with Palatucci, Savin and Valdinoci, 2013



Multiscale structure of the tail
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Fig. 6. The tail of the Neél wall at m = 250 obtained in the simulation of Fig. 5, replotted in log-linear (a) and log-log (b) scales. In (b), the
dotted line shows algebraic decay !1/x2.

Fig. 7. The schematics of the in-plane discretization for two-dimensional rectangular film. The circles (s) show potential nodes, the
crosses (·) the derivative nodes, the squares (h) the magnetization nodes, and the filled circles (d) the charge nodes. The shaded region
shows the magnetic film.
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delicate analysis of decay: write the ELE as
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Step 4: uniqueness (up to translations). It is clear that in view of the translational invariance the
function ϑ (x0)(x) = ϑ (0)(x−x0) with any x0 ∈ R still belongs to A and satisfies ϑ (x0)(x0) = π

2 .
To conclude, we have to show that every minimizers of E in A is of the form ϑ (0)(x − x0) for
some x0 ∈ R. Our argument is related to the strict convexity of the integrand in (6) written as
a function of u = sin ϑ and its derivative noted in [23].

We employ the strict monotonicity of minimizers, which implies that for every minimizer
there is a unique point at which ϑ = π

2 . Let ϑ (1) and ϑ (2) be two different minimizers,
which, after a suitable translation, satisfy ϑ (1)(0) = π

2 and ϑ (2)(0) = π
2 . Define ϑ̃(x) :=

arcsin ( sin ϑ (1)(x)+sin ϑ (2)(x)
2 ) for x ! 0 and ϑ̃(x) := π − arcsin ( sin ϑ (1)(x)+sin ϑ (2)(x)

2 ) for x < 0 (the
function sin ϑ̃ is symmetric decreasing by step 1). We claim that for all x ̸= 0 we have

(
ϑ̃x

)2 =
(
ϑ (1)

x cos ϑ (1) + ϑ (2)
x cos ϑ (2)

)2

4 − (sin ϑ (1) + sin ϑ (2))2
"

(
ϑ (1)

x

)2 +
(
ϑ (2)

x

)2

2
. (63)

Once the claim is proved, we get that ϑ̃x ∈ L2(R) and, hence, ϑ̃ ∈ A. Moreover,
since the anisotropy and the stray-field terms in the energy are quadratic in sin ϑ , we get
E(ϑ̃, R) < 1

2 [E(ϑ (1), R) + E(ϑ (2), R)], which contradicts the minimality of ϑ (1) and ϑ (2).
Let us come to the proof of (63). Observe that by two-dimensional Cauchy–Schwarz

inequality
(
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x cos ϑ (1) + ϑ (2)
x cos ϑ (2)

)2

4 − (sin ϑ (1) + sin ϑ (2))2
"

((
ϑ (1)

x

)2 +
(
ϑ (2)

x

)2
) (

cos2 ϑ (1) + cos2 ϑ (2)
)

4 − (sin ϑ (1) + sin ϑ (2))2
. (64)

On the other hand, we have

2 cos2 ϑ (1) + 2 cos2 ϑ (2)

4 − (sin ϑ (1) + sin ϑ (2))2
= 4 − 2 sin2 ϑ (1) − 2 sin2 ϑ (2)

4 − (sin ϑ (1) + sin ϑ (2))2

" 4 − sin2 ϑ (1) − sin2 ϑ (2) − 2 sin ϑ (1) sin ϑ (2)

4 − (sin ϑ (1) + sin ϑ (2))2
= 1. (65)

Combing (65) with (64) then yeilds (63).

Step 5: decay. We claim that by the results of the previous steps the unique minimizer ϑ (0) of
E in A satisfies the assumptions of lemma 5 with α = 1

2 . Indeed, ϑ (0) is a smooth decreasing
solution of (11) satisfying (12) with all derivatives vanishing at infinity and obeying the required
symmetry property. Furthermore, since u = sin ϑ (0) − h ∈ L2(R) is symmetric decreasing,
by an elementary property of monotone functions (see, e.g., [35, lemma A.IV]) we have that
u(x) " |x|−1/2∥u∥L2(R). Therefore, the conclusions of lemma 5 apply to ϑ (0). We now claim
that this, in turn, implies the same kind of estimates for ρ(x) − θh, where ρ is defined by (13)
with ϑ = ϑ (0). Indeed, since ux = ϑ (0)

x cos ϑ (0) and uxx = ϑ (0)
xx cos ϑ (0) − (ϑ (0)

x )2 sin ϑ (0), the
estimates for the derivatives follow from (36), and to obtain the estimate for (−d2/dx2)1/2ρ,
one can use (42) with u replaced by ρ.

We now rewrite (11) in the following form:

L(ρ(x) − θh) = f (x), f (x) := f1(x) + f2(x) + f3(x), (66)

where

L := − d2

dx2
+

1
2
ν cos2 θh

(
− d2

dx2

)1/2

+ cos2 θh (67)

is a linear operator that can be viewed as a map from H 2(R) to L2(R), and

f1(x) := cos θh(cos θh − cos ρ(x))(ρ(x) − θh)

+ cos ρ(x)(cos θh(ρ(x) − θh) − sin ρ(x) + sin θh), (68)
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⇢� ✓h = L�1f(x) = 2|#0(0)|G(x) +

Z
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see [36]). However, since the computations in this case become exceedingly tedious and the
precise behaviour of the solutions at infinity may be needed, we have not pursued this question
any further in this paper. Nevertheless, establishing such a uniqueness result would be helpful
for interpreting the results of the numerical solution of (11) as the Néel wall profiles.

It would also be interesting to see if the one-dimensional Néel wall profiles considered in
this paper are the only minimizers (or even critical points) of the two-dimensional thin film
energy in (4) with respect to perturbations with compact support that have the asymptotic
behaviour given by (12). We note that in the case ν = 0 this problem reduces to the famous
problem of De Giorgi, whose solution in two space dimensions is now well understood [37]
(see also [38] for a recent overview). Whether such a result remains valid in the presence of a
non-local term (ν > 0) remains to be seen (one result in this direction was obtained in [24]).
Let us note that while for the local problem a continuous family of solutions obtained by
rotations of the one-dimensional profile exists, in the non-local problem the orientation of the
wall is expected to be fixed by the condition that the net charge across the wall be zero. The
latter only allows walls that are parallel to the easy axis.
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Appendix.

The following lemma establishes the basic properties of the fundamental solution for the
operator L (see also [16, section 5.1]).

Lemma A.1. Let G(x) be the fundamental solution for the operator L defined in (67 ). Then

G(x) = 2ν

π

∫ ∞

0

te−t |x| cos θh

ν2t2 cos2 θh + 4(t2 −1)2
dt. (A.1)

In particular, G ∈ C∞(R\{0}) ∩ Lip(R) ∩ L∞(R) ∩ L1(R), G > 0, G(x) = G(−x), and

G(x) = ν

2π cos2 θh

|x|−2 + O(|x|−4). (A.2)

Proof. The proof is a simple application of Fourier transform and contour integration
techniques, which we present here for completeness. Observe first that the Fourier transform
Ĝ(k) =

∫
R e−ikxG(x) dx of G(x) is well-defined and is given by

Ĝ(k) = 1

|k|2 + 1
2ν cos2 θh|k| + cos2 θh

. (A.3)

Interpreting |k| =
√

k2 as an analytic function of k in the complex plane with a branch cut
on the imaginary axis, i.e., defining

√
(x + iy)2 = |x| + iy sgn x for x ̸= 0, we can write the

formula for inverting the Fourier transform of G as

G(x) = 1
2π

∫

R

eikx

k2 + 1
2ν cos2 θh

√
k2 + cos2 θh

dk, (A.4)

and treat it as an integral along the real axis in the complex plane. In particular, G(x) is even,
and in the following it suffices to consider only x ! 0.
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4. Some auxiliary lemmas

We start with a few preliminary considerations and lemmas. Let ϑ ∈ A. By Morrey’s
theorem (see [33, theorem 11.34]), ϑ − ηh ∈ C1/2(R) and ϑ − ηh → 0 as x → ± ∞;
that is, ϑ ∈ C(R) ∩ L∞(R) and satisfies (12). Furthermore, assuming in addition that
ϑ(R) ⊂ [θh, π − θh] and E(ϑ, R) < +∞, and defining ρ: R → [θh,

π
2 ] by

ρ(x) :=

⎧
⎪⎨

⎪⎩

ϑ(x) if ϑ(x) ∈
[
θh,

π

2

]
,

π − ϑ(x) if ϑ(x) ∈
(π

2
, π − θh

]
,

(13)

for every x ∈ R, we have sin ρ = sin ϑ , and since the map ϑ '→ ρ is Lipschitz, we also have
|ϑx | = |ρx | almost everywhere on R. Thus

+ ∞ > E(ϑ, R) = E(ρ, R) = 1
2

∫

R
|ρx |2 dx +

1
2

∫

R
(sin ρ − h)2 dx +

ν

4
∥ sin ρ∥2

H̊ 1/2(R)

! 1
2

∫

R
|ρx |2 dx +

ch

4

∫

R

(
ρ − θh

)2 dx +
ν

4
∥ sin ρ∥2

H̊ 1/2(R)

! ch

4

∥∥ρ − θh

∥∥2
H1

+
ν

4
∥ sin ρ∥2

H̊ 1/2(R)
, (14)

where ch := cos2
(

π
4 + θh

2

)
> 0 for all θh < π

2 . In the above inequality, we used the fact that,
since ρ(R) ⊂ [θh,

π
2 ], θh ∈ [0, π

2 ), and sin z ! z/
√

2 for all z ∈ [0, π
4 ], we have

sin ρ − h = sin ρ − sin θh = 2 cos
(

ρ + θh

2

)
sin

(
ρ − θh

2

)
!

√
ch√
2

(ρ − θh). (15)

Lemma 2 (restriction of rotations). Let ϑ ∈ A such that E(ϑ) < +∞. Then there exists
ϑ̃ ∈ A such that ϑ̃(R) ⊂ [θh, π − θh] and E(ϑ̃) " E(ϑ), with strict inequality unless
ϑ(R) ⊂ [θh, π − θh].

Proof.
Step 1. We show first that there exists ϑτ ∈ A such that ϑτ (R) ⊂ [0, π ], sin ϑτ = | sin ϑ |,
and E(ϑτ ) " E(ϑ). Let ϑτ : R → [0, π ] be defined by

ϑτ (x) :=
{
ϑ(x) − 2kπ if ϑ(x) ∈ [2kπ, (2k + 1)π),

2kπ − ϑ(x) if ϑ(x) ∈ [(2k − 1)π, 2kπ),
(16)

for every x ∈ R. The definition is well-posed since {[2kπ, (2k + 1)π), [(2k − 1)π, 2kπ) :
k ∈ Z} is a partition of R. Notice that ϑτ is obtained by means of a translation by − 2kπ

in each interval of the form [2kπ, (2k + 1)π), and by means of a reflection with respect
to the origin and a translation by 2kπ in each interval of the form [(2k − 1)π, 2kπ). By
construction, ϑτ ∈ [0, π ] and sin ϑ " | sin ϑ | = sin ϑτ so that ∥ sin ϑ∥L2(R) = ∥ sin ϑτ∥L2(R)

and −h
∫

R sin ϑτ dx " −h
∫

R sin ϑ dx, implying that
∫

R(sin ϑτ − h)2 dx "
∫

R(sin ϑ − h)2 dx.

Furthermore, since the map ϑ '→ ϑτ is Lipschitz, we also have
∫

R ϑ2
x dx =

∫
R

(
ϑτ

x

)2 dx.
The conclusion now comes from the fact that

∫

R
u

(
− d2

dx2

)1/2

u dx = 1
2π

∫

R

∫

R

(
u(x) − u(y)

)2

(x − y)2
dx dy

! 1
2π

∫

R

∫

R

(
|u(x)| − |u(y)|

)2

(x − y)2
dx dy =

∫

R
|u|

(
− d2

dx2

)1/2

|u| dx.

(17)

Theorem (existence, uniqueness, regularity, strict monotonicity and decay) For
every ⌫ > 0 and every h 2 [0, 1) there exists a minimizer of E(#;R) over A, which is
unique (up to translations), strictly decreasing with range equal to (#h, ⇡�#h) and is
a smooth solution of the Euler-Lagrange equation that satisfies the limit conditions.
Moreover, if #(0) is the minimizer of E in the class A satisfying #

(0)(0) = ⇡
2 , then

#
(0)(x) = ⇡�#

(0)(�x), and there exists a constant c > 0 such that #(0)(x) ' cx
�2 as

x ! +1.

E�(#) =
1

2

Z 1

�1

�
|#|2 + sin2

#
�
dx+

⌫

8⇡

Z 1

�1

Z 1

�1

(sin(#(x)� �)� sin(#(y)� �))2

(x� y)2
dx dy

G(x)
⌫�1' 2

⇡⌫ cos2 ✓h
ln

✓
⌫

|x|

◆

4
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Figure 5: Two main domain wall types in thin uniaxial ferromagnetic films: the 180
�

wall (Néel

wall with no applied field) (a); the 360
�

wall oriented normally to the direction of the easy axis (the

y-axis) (b); the winding angle ✓ and the stray field hs in a 360
�

wall (c). In (c), the wall profile for

(b) is computed with no applied field and ⌫ = 10 [28].

1.5 Reduced models of two-dimensional domain walls

Based on a good understanding of one-dimensional domain wall profiles in uniaxial materials
established under previous award, we will proceed to the asymptotic analysis of the domain
walls viewed as co-dimension one objects (curves) in the film plane. Mathematically, this
idea can be made precise by studying �-convergence of the micromagnetic energy in suitable
limits [6, 11, 67]. We note that this and the related approach of matching upper and lower
bounds on energy have been recently applied to the Néel walls in soft ferromagnetic thin
films of finite spatial extent [11, 115–118]. Using these ideas, De Simone, Knüpfer and Otto
proved that in a certain sense the one-dimensional Néel wall is globally stable with respect to
two-dimensional perturbations, a result that was further refined in [117]. These techniques
were further extended by Ignat and Knüpfer to 360� walls [101]. Also, Ignat undertook a
study of �-convergence of the one-dimensional micromagnetic energy describing Néel walls
in the presence of applied field and proved that in a suitable limit the energy �-converges
to a constant times the number of jumps in the piecewise-constant function describing the
limit angles.

From our analysis in [62] one should expect the Néel walls to enjoy a significant degree
of stability in two dimensions. The answer to a similar question about 360� walls is less
obvious. This is because, in contrast to the Néel walls, whose orientation is rigidly fixed
to coincide with the easy axis, one-dimensional 360� walls may make an arbitrary non-
zero angle with the easy axis. One would, therefore, expect that the �-limit of the energy
associated with 360� walls may be significantly di↵erent from that for the Néel walls. From
our earlier numerical studies in [28], we found that the energy of the one-dimensional 360�

wall depends rather strongly on the wall orientation (similar conclusion were made in [101]).
Therefore, we conjecture that in an appropriate limit the micromagnetic energy �-converges
to an anisotropic perimeter functional, with the anisotropy determined by the energy of
the one-dimensional wall profile of di↵erent orientations. To be more precise, consider the
following family of functionals obtained from (5) with uniaxial anisotropy:

E
"[✓] :=

Z

R2

✓
"

2
|r✓|2 + 1

2"
sin2

✓

◆
⌘

"
d

2
r +

⌫

4

Z

R2

r · (⌘"m) (��)�1/2 r · (⌘"m) d2
r, (11)

where ⌘
"(r) is a mollification (on O(") length scale) of the characteristic function of the

bounded domain D ⇢ R2. By the usual Modica-Mortola trick [119, 120], sequences with
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minimize

over

|M| = Ms

µ < 0 µ > 0 µ⇤ = 1
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⇢n � ✓h * v weakly in H1(R) and sin ⇢n � h * u weakly in H1/2(R)

⇢n ! ⇢ uniformly in [�k, k], where ⇢ := v + ✓h
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⇢� ✓h = L�1f(x) = 2|#0(0)|G(x) +

Z

R
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Z
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B@2
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d sin ✓t
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1� sin2 ✓t

(✓1x cos ✓1 � ✓2x cos ✓2)

1
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2
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Z

R

(t✓1x cos ✓1 + (1� t) ✓2x cos ✓2)
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2

(1� sin ✓t)2
dx+

Z

R
(sin ✓1 � sin ✓2)

2 dx

+
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Z

R

Z

R

((sin ✓1 (x)� sin ✓1 (y))� (sin ✓2 (x)� sin ✓2 (y)))
2

(x� y)2
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Figure 1: 360� walls on a thin film without any applied external field. The walls are
pinned by defects of the substrate. One observes that the width of the wall depends
on the angle between the orientation of the wall and the easy axis (taken from [13])

configurations at the nanoscale in the form of domain walls, vortices, monopoles,
or even skyrmions. All these configurations are known as “topological defects” as
their stability can be traced to topological arguments[4]. This latter property make
these “topological defects” suitable candidates for storing information in magnetic
devices [23]. Topological defects in the magnetization field are characterized by
its topological degree or winding number[4]. In two dimensions there exists non-
trivial topological configurations knows as skyrmions, characterised by an integer
topological degree. In the case of one dimensional profiles in the space the winding
number of a domain wall is well defined and given by

w =
1

2⇡

Z 1

�1
@x✓ dx

where x is a position co-ordinate parallel to the transition direction and ✓ is the
angle with respect to the easy axis. In terms of this winding number one dimen-
sional domain walls are classified [3] as follows: the value w = ±1/2 describe a
domain wall that winds halfway round a circle in spin space whilst the sign of w

determines whether that winding is clockwise or anti-clockwise in direction. This
kind of transition in thin films describe a 180�-Néel. One dimensional 360� domain
walls carry a winding number of ±1 and in this sense they are sometimes regarded
as the simplest one-dimensional magnetic skyrmion. In principle higher integer
winding number configurations are also possible but regarding its existence and
stability as minimizers of the micromagnetic energy only partial results are avail-
able (see [14, 15]). Despite its broad appearance in many situation 360� and higher
winding number magnetic domain walls have not been thoroughly investigated as
the 180�-Néel wall counterpart [3, 21, 14, 15].

3

Figure 1: 360� Néel walls in a 10 nm thick permalloy film without an applied magnetic field. The
walls are pinned by defects in the film. One observes that the width of the wall depends on the
angle between the orientation of the wall and the easy axis (reproduced from [18])

topological degree is simply the winding number of the domain wall:

w =
1

2⇡

Z 1

�1
@x✓ dx, (1.1)

where x is the coordinate along the transition direction and ✓ is the angle between the magnetization
vector and a reference axis. In terms of this winding number, one-dimensional domain walls are
classified as follows: the value w = ±1/2 describes a domain wall that winds halfway around the
unit circle, whilst the sign of w determines whether that winding is clockwise or counter-clockwise
[7]. This kind of transition in thin films describes a 180� Néel wall. One-dimensional 360� domain
walls carry a winding number w = ±1, and in this sense they are sometimes regarded as the
simplest one-dimensional magnetic skyrmions [7, 37, 39]. In principle, higher integer winding
number configurations are also possible, but regarding their existence and stability as minimizers
of the micromagnetic energy only partial results are available [31, 19, 20]. Despite their broad
appearance in many situation, 360� and higher winding number magnetic domain walls have not
been thoroughly investigated, in contrast to their 180� Néel wall counterpart.

The aim of this paper is two-fold. First, we contribute to the study of existence and structure
of topologically constrained one-dimensional magnetic domain walls in thin films, with particular
attention to 360� domain walls. Second, we are interested to gain insights into how the energy
landscape of the variational problem changes as a consequence of the interaction between the non-
local part of the energy functional and its nonlinear character with the topological constraint given
by the winding number.

Notation. Throughout the paper, we say that a constant C is universal if it does not depend on
any parameter or variable of the problem. The notation a . b means that there exists a universal
constant C > 0 such that a  Cb and a'b is a shorthand for both a . b and b . a. We also use
⇡, / and ' for numerical rounding or in heuristic arguments.
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Theorem (existence of 360� domain wall minimizers). Let � 2 [0, ⇡2 ]. Then the
following holds:

(i) If � = 0, then the infimum of E� is not attained in A.

(ii) If � 2 (0, ⇡2 ), then there is ⌫0 = ⌫0(�) > 0 such that for every ⌫ 2 (0, ⌫0) there
exist a minimizer of E� over A.

(iii) If � = ⇡
2 , then for every ⌫ > 0 there exist a minimizer of E� over A.
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existence not a priori clear: no solutions for 𝜈 = 0! 
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Four-fold anisotropy
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bulk cubic crystals exhibit 4-fold magnetocrystalline anisotropy
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Fig. 1. Domain structure in a 5.5 monolayer cobalt single crystal film. The size of the imaged area is 100× 100~,m 2. The arrows indicate the magnetization orientation within the domains. The disturbances in the lower left do not affect the large grey domain, whilst the white/black boundary is pinned to one of these. 

gin state is created by the onset of ferromag- netism at a particular film thickness. 

constants [12], that the shape anisotropy is re- sponsible for turning the easy axes from the { 111} directions (found with the measurements  of the anisotropy constants) into the {110} in-plane di- rections. We believe the same mechanism to act in the ultrathin films as discussed in more depth elsewhere [13]. Further evidence for this sugges- tion can be inferred from spin-polarized photo- emission experiments [14]. From the shape of hysteresis loops the author deduces an out-of- plane anisotropy contribution (besides the shape anisotropy), that is tilted against the surface nor- real. In the light of the "thick" film results this finding seems reasonable, if one attributes the (conjectured) out-of-plane anisotropy contribu- tion to the {111} direction, i.e. the easy axes of fcc cobalt. Thus this result might give a further evidence for the validity of the proposed mecha- nism. That mechanism, on the other hand, con- firms again the influence of the demagnetizing field on the easy axes and domain structure in the ultrathin cobalt films. 

3.3. Domain structures in demagnetized films 3.2. Easy axes of magnetization 

The single domain state breaks up into a mul- tidomain configuration by demagnetizing the films in a magnetic ac-field. Qualitatively the same structures have been obtained with the ac-fields acting perpendicular and parallel to the film plane, in the latter case with the field along a [100] direction. With the multidomain structure the orientation of the spontaneous magnetization of the domains has been determined by means of the vector analysis of the electron spin polariza- tion [6]. No perpendicular magnetization could be observed, in agreement  with previous studies [9, 10]. In the film plane the domains are magnetized parallel to the {110} directions, as can be seen in fig. 1 for a 5.5 monolayer thick film. The {110} in-plane easy axes were also found for "thick" films, d>_ 100,~ [11]. With those films it was evident from measurements  of the anisotropy 

Domain images of a 9 monolayer thick Co film are shown in figs. 2 and 3. A large fraction of the film ( =  1.2×  1.2 mm 2) is to be seen in fig. 2, yielding a survey of the domain pattern. Fig. 3 shows an enlarged section of the domain struc- ture of fig. 2. Two main features of the domain structures in ultrathin Co films can be easily identified with these images. Firstly, large do- mains with lateral expansions in the range of some hundred microns are predominantly found (see fig. 2). Secondly, the shape of the domains are very irregular (see figs. 2 and 3), although the easy axes exhibit a four-fold symmetry. Both properties have been found for all films studied, with thicknesses ranging from 3-19.5 monolayers. One might conjecture that the magnetic do- main structure reflects substrate topological fea- tures. To prove this supposition the surface topology was studied with a scanning tunneling microscope [15]. Large terraces with lateral ex- 
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symmetrical domain structure found with "thick" (d > 100.&) Co films [11], although the same easy axes of magnetization are found. This disagree- ment demonstrates that in spite of an equivalence on the scale determining the anisotropy, the large scale micromagnetic behaviour might be com- pletely different and most probably the related macroscopic properties. Therefore one might ex- pect to find a likely explanation for the difference with help of the micromagnetic equations (incor- porating the magnetostatic field energy contribu- tion). Namely the estimation of the wall energy in ultrathin films is very instructive [17]. It turns out that the magnetostatic energy contribution to the total wall energy is negligibly small in ultrathin films. The wall energy and wall width is deter- mined by the balance of the exchange and anisotropy interaction. One important conse- quence of the vanishing magnetostatic energy contribution has been pointed out recently [13]. As exchange and anisotropy energies are not related to any orientation of the wall, the wall is not fixed to any direction by these interactions. Due to the negligibly small magnetostatic energy contribution poles may be created across a wall without any substantial increase of the total wall energy. Magnetic poles are created if the normal (to the wall) components of the magnetization are not continuous across the wall. This is completely different for "thick" film and bulk ferromagnets. As the magnetostatic energy is dominant in these samples poles are avoided (pole avoidance princi- ple [18]). Thus the walls are aligned with respect to the magnetization of the adjacent domains, the walls are kept straight and the domain pattern exhibits some symmetry depending on the easy axes symmetry. In ultrathin films however, mag- netic poles may be created, the pole avoidance principle is no more strictly valid, and the wall orientation is not fixed to distinct directions. Thus the wall orientation may be affected by other properties, yielding the roughening of the domain walls in ultrathin films. 
Some mechanisms have been proposed as driv- ing forces for the formation of irregular bound- 

Fig. 5. Detail of the magnetic domain structure in a 3.5 monolayer Co tilm (size 25 × 25 p.m2). The width of the tram sition w~ries strongly along the boundary. In some sections it seems to split into two walls with a domain within. 

aries [13], including magnetostrictive as well as configurational entropy contributions to the wall energy. Moreover, one may think of pinning of the wall at distinct topographical structures of the substrate like the ones seen with the STM. From several features of the domain structure, e.g. cou- pled walls (see fig. 3) or long (compared to the terrace dimensions) straight wall section (figs. 3 and 4) or the width of the transition (fig. 5), onc might deduce, that wall pinning at such structures is of minor importance. A further "topographical" structure might be generated by inhomogenities in the film thickness. Thickness variations of up to three layers may occur an a lateral scale which is small compared to the probe size (~  1 mm) of the MEED and Auger experiment. Wall pinning caused by varying film thicknesses might happcn and cannot be ruled out as long as the spatial distribution of the thickness variations is un- known. Finally, one may consider flux closure configurations to be responsible for the irregular- ity. As is well known from calculations of Ndel- wall structures in films and at surfaces [19, 20] the 

Figure 1: (a) Typical 360� domain walls observed by magnetic force microscopy in a glass/Ta(10
nm)/NiFe(7.2 nm)/FeMn(8.0 nm)/Ta(5 nm) sandwich: Symbols C and CC represent closed domain walls
whose magnetization rotates clockwise and counter clockwise from outside to inside the closed domain,
respectively; symbol L represents a line type wall (from Ref. [16]). (b) A typical MRAM cell design (from
Ref. [1]).

view, see [10]). The topological degree of a winding domain wall is simply the winding number of the
magnetization (i.e. the number of rotations of the magnetization vector in the film plane) across the wall.
Therefore, describing the motion and interaction of these topological patterns is an interesting problem in
the theory of energy-driven pattern formation [60]. This problem is complicated by the nonlinear, nonlocal,
and anisotropic nature of these patterns in thin ferromagnetic films (see [41,64,65,73,78] for related studies).
2 Results from prior work
Despite the widespread appearance of winding domain walls and their role in magnetization reversal in
thin ferromagnetic films [13, 14, 16, 53, 100, 107], to the best of our knowledge there have not been any
systematic studies of this type of domain walls to date (see [55] for an early investigation). In particular,
even the question whether 360� walls are stable stationary states or long-lived metastable structures in the
absence of the applied field has not been resolved until now. Recently, in a joint work with V. V. Osipov, we
undertook the first detailed investigation of 360� wall solutions and their role in magnetization reversal [88],
using a reduced model of thin film ferromagnetics introduced by us earlier in [87] (see also [2, 12, 40, 42, 62,
73, 76]). Below we briefly summarize the results of that work as well as those of [84].
Stable 360� walls in uniaxial films. We were able to establish numerically the existence and stability of
360� walls in uniaxial materials with or without the applied field, and studied the properties of the wall
solutions. Figure 2(a) shows the schematics of a 360� wall which is oriented normally to the easy direction
(the y-axis). This figure illustrates how the magnetization vector m = (� sin ✓, cos ✓,0) rotates clockwise
when y changes from negative to positive values. Note that for this wall orientation, the wall variable �,
i.e., the variable, such that ✓ = ✓(�), coincides with the y variable. The normal and tangential components
of the magnetization in the solution, m� = cos ✓ and m� = sin ✓, respectively, are shown in Fig. 2. One
can see from the behavior of m�(�) in Fig. 2(b) that the wall core carries a net dipole moment, which is
responsible for the wall stability in the absence of the applied field [88]. The winding angle ✓ and the stray
field hs are also shown in Fig. 2(c) (see [88] for more details). We investigated stability of the 360� solutions
for various orientations via one- and two-dimensional time-dependent simulations. In particular, we found
that a critical demagnetizing field is required to break up a 360� wall, indicating that these walls are really
stable, not metastable objects.

2

a) b) c)

Figure 1: Magnetic domains and domain walls in soft ferromagnetic thin films. In (a), 90� walls

separate domains of 4 distinct magnetization orientations, and in (b) a 180� wall separates the

domains of opposite orientations in thin cobalt films (from [21]). In (c), various 360� walls in

exchange-biased permalloy films are shown (from [22]). Di↵erent shades of gray indicate di↵erent

directions of magnetization, shown by the arrows. See [21, 22] for further experimental details.

which the advantages of MRAM outweigh their current low storage density and high energy
consumption [24]. The di�culty in achieving a competitive MRAM design has to do with
the conflicting requirements to the MRAM cell that stores the bit of information. On one
hand, the cell has to be su�ciently small (on deep sub-micrometer scale) in order to deliver
storage density comparable to that available from the current semiconductor technologies
(up to 500 Gb/in2). On the other hand, the size of the cell has to be su�ciently large to
ensure the lifetime of a stored bit on the time scale in excess of 10 years in the presence of
thermal noise. Similarly, as the cell gets smaller, the current densities required to switch
the magnetization configuration encoding the bit by the Oersted field become progressively
higher, requiring higher power and generating more heat. A recent trend in the MRAM
cell development has been to employ spin-transfer torque (STT) from spin-polarized current
injected into the storage layer to accomplish magnetization reversal, which, however, has a
rather non-trivial e↵ect on the magnetization dynamics [13, 14,25,26].In view of these conflicting requirements, a careful optimization of the MRAM cell pa-
rameters is necessary in order for the MRAM technology to become competitive with other
available computer memory technologies. Therefore, a successful design of the MRAM cell
is impossible without mathematical modeling and computational studies of the device pro-
totypes. This, in turn, requires models that incorporate diverse physical processes operating
on very disparate spatial and time scales and posing significant challenges for their studies.
This proposal will address these challenges. The principal goals of the present proposal are:- To develop realistic reduced models of magnetization dynamics in thin ferromagnetic

films and e�cient numerical algorithms for their simulations.
- To apply these models and algorithms to the studies of optimal design characteristics
of MRAM cells based on ferromagnetic nanorings.

- To develop analysis tools for the asymptotic description of di↵erent types of domain
walls in thin ferromagnetic films.

More specifically, we will develop reduced micromagnetic models that describe the dynamics
of in-plane magnetizations in thin ferromagnetic films of varying thickness and shape that

2

118 

tt.P. O~79en / Ma~cnetic domain ~'tructure in ultrathin cobalt [fhns 

Fig. 1. Domain structure in a 5.5 monolayer cobalt single 

crystal film
. The size of the imaged area is 100× 100~,m 2. 

The arrows indicate the magnetization orientation within the 

domains. The disturbances in the lower left do not affect the 

large grey domain, whilst the white/black boundary is p
inned 

to one of th
ese. 

gin state is created by the onset of ferromag- 

netism at a particular film
 thickness. 

constants [12], that the shape anisotropy is re- 

sponsible for turning the easy axes from the { 111} 

directions (found with the measurements  of the 

anisotropy constants) into the {110} in-plane di- 

rections. We believe the same mechanism to act 

in the ultrathin film
s as discussed in more depth 

elsewhere [13]. Further evidence for this sugges- 

tion can be inferred from spin-polarized photo- 

emission experiments [14]. From the shape of 

hysteresis loops the author deduces an out-of- 

plane anisotropy contrib
ution (besides the shape 

anisotropy), that is tilte
d against the surface nor- 

real. In the light of the "thick" film
 results this 

finding seems reasonable, if one attrib
utes the 

(conjectured) out-of-plane anisotropy contrib
u- 

tion to the {111} direction, i.e. the easy axes of 

fcc cobalt. Thus this result might give a further 

evidence for the validity of the proposed mecha- 

nism. That mechanism, on the other hand, con- 

firm
s again the influence of the demagnetizing 

field on the easy axes and domain structure in the 

ultrathin cobalt film
s. 

3.3. Domain stru
ctures in demagnetized film

s 

3.2. Easy axes of magnetization 

The single domain state breaks up into a mul- 

tidomain configuration by demagnetizing the film
s 

in a magnetic ac-field. Qualitatively the same 

structures have been obtained with the ac-fields 

acting perpendicular and parallel to the film
 

plane, in the latter case with the field along a 

[100] direction. With the multidomain structure 

the orientation of th
e spontaneous magnetization 

of th
e domains has been determined by means of 

the vector analysis of the electron spin polariza- 

tion [6]. N
o perpendicular magnetization could be 

observed, in agreement  with previous studies [9, 

10]. In
 the film

 plane the domains are magnetized 

parallel to the {110} directions, as can be seen in 

fig. 1 for a 5.5 monolayer thick film
. The {110} 

in-plane easy axes were also found for "thick" 

film
s, d>_ 100,~ [11]. With those film

s it was 

evident from measurements  of the anisotropy 

Domain images of a 9 monolayer thick Co film
 

are shown in figs. 2 and 3. A large fraction of th
e 

film
 (=  1.2×  1.2 mm 2) is to be seen in fig. 2, 

yielding a survey of the domain pattern. Fig. 3 

shows an enlarged section of the domain struc- 

ture of fig. 2. Two main features of the domain 

structures in ultrathin Co film
s can be easily 

identifie
d with these images. Firstly, large do- 

mains with lateral expansions in the range of 

some hundred microns are predominantly found 

(see fig. 2). Secondly, the shape of the domains 

are very irre
gular (see figs. 2 and 3), although the 

easy axes exhibit a four-fo
ld symmetry. Both 

properties have been found for all film
s studied, 

with thicknesses ranging from 3-19.5 monolayers. 

One might conjecture that the magnetic do- 

main structure reflects substrate topological fea- 

tures. To prove this supposition the surface 

topology was studied with a scanning tunneling 

microscope [15]. Large terraces with lateral ex- 

120 

tt.P. Oepen / Magnetic domain structure in ultrathin cobalt .///m
s 

symmetrical domain structure found with "thick" 

(d > 100.&) Co film
s [1

1], although the same easy 

axes of magnetization are found. This disagree- 

ment demonstrates that in spite of an equivalence 

on the scale determining the anisotropy, the large 

scale micromagnetic behaviour might be com- 

pletely different and most probably the related 

macroscopic properties. Therefore one might ex- 

pect to find a likely explanation for th
e difference 

with help of th
e micromagnetic equations (incor- 

porating the magnetostatic field energy contrib
u- 

tion). Namely the estimation of the wall energy in 

ultrathin film
s is very instructive [17]. It turns out 

that the magnetostatic energy contrib
ution to the 

total wall energy is negligibly small in ultrathin 

film
s. The wall energy and wall width is deter- 

mined by the balance of the exchange and 

anisotropy interaction. One important conse- 

quence of the vanishing magnetostatic energy 

contrib
ution has been pointed out recently [13]. 

As exchange and anisotropy energies are not 

related to any orientation of th
e wall, the wall is 

not fixed to any direction by these interactions. 

Due to the negligibly small magnetostatic energy 

contrib
ution poles may be created across a wall 

without any substantial increase of th
e total wall 

energy. Magnetic poles are created if th
e normal 

(to the wall) c
omponents of the magnetization are 

not continuous across the wall. This is completely 

different for "thick" film
 and bulk ferromagnets. 

As the magnetostatic energy is d
ominant in these 

samples poles are avoided (pole avoidance princi- 

ple [18]). Thus the walls are aligned with respect 

to the magnetization of the adjacent domains, the 

walls are kept straight and the domain pattern 

exhibits some symmetry depending on the easy 

axes symmetry. In ultrathin film
s however, mag- 

netic poles may be created, the pole avoidance 

principle is no more strictly valid, and the wall 

orientation is not fix
ed to distinct directions. Thus 

the wall orientation may be affected by other 

properties, yielding the roughening of the domain 

walls in ultrathin film
s. 

Some mechanisms have been proposed as driv- 

ing forces for the formation of irre
gular bound- 

Fig. 5. Detail of the magnetic domain stru
cture in a 3.5 

monolayer Co tilm
 (size 25 × 25 p.m2). The width of the tram 

sitio
n w~ries s

trongly along the boundary. In some sections it 

seems to split in
to two walls w

ith a domain within. 

aries [13], including magnetostrictive as well as 

configurational entropy contrib
utions to the wall 

energy. Moreover, one may think of pinning of 

the wall at distinct topographical structures of the 

substrate like the ones seen with the STM. From 

several features of the domain structure, e.g. cou- 

pled walls (see fig. 3) or long (compared to the 

terrace dimensions) straight wall section (figs. 3 

and 4) or the width of th
e transition (fig. 5), onc 

might deduce, that wall pinning at such structures 

is of minor im
portance. A further "topographical" 

structure might be generated by inhomogenities 

in the film
 thickness. Thickness variations of up 

to three layers may occur an a lateral scale which 

is small compared to the probe size (~  1 mm) of 

the MEED and Auger experiment. Wall pinning 

caused by varying film
 thicknesses might happcn 

and cannot be ruled out as long as the spatial 

distribution of the thickness variations is un- 

known. Finally, one may consider flux closure 

configurations to be responsible for th
e irregular- 

ity. As is well known from calculations of Ndel- 

wall structures in film
s and at surfaces [19, 20] the 

Figure 1: (a) Typical 360� domain walls
observed by magnetic

force microscopy in a glass/Ta(10

nm)/NiFe(7.2 nm)/FeMn(8.0 nm)/Ta(5 nm) sandwich: Symbols C and CC represent closed domain walls

whose magnetization rotates clockwise and counter clockwise from outside to inside the closed domain,

respectively; symbol L represents a line type wall (fro
m Ref. [16]). (b) A typical MRAM cell design (fro

m

Ref. [1]).

view, see [10]). The topological degree of a winding domain wall is simply the winding number of the

magnetization (i.e. the number of rotations of the magnetization vector in the film plane) across the wall.

Therefore, describing the motion and interaction of these topological patterns is an interesting problem in

the theory of energy-driven pattern formation [60]. This problem is complicated by the nonlinear, nonlocal,

and anisotropic nature of these patterns in thin ferromagnetic films (see [41,64,65,73,78] for related studies).

2 Results from prior work

Despite the widespread appearance of winding domain walls and their role in magnetization reversal in

thin ferromagnetic films [13, 14, 16, 53, 100, 107], to the best of our knowledge there have not been any

systematic studies of this type of domain walls to date (see [55] for an early investigation). In particular,

even the question whether 360� walls are stable stationary states or long-lived metastable structures in the

absence of the applied field has not been resolved until now. Recently, in a joint work with V. V. Osipov, we

undertook the first detailed investigation of 360� wall solutions and their role in magnetization reversal [88],

using a reduced model of thin film ferromagnetics introduced by us earlier in [87] (see also [2, 12, 40, 42, 62,

73, 76]). Below we briefly summarize the results of that work as well as those of [84].

Stable 360� walls in uniaxial films. We were able to establish numerically the existence and stability
of

360� walls in uniaxial materials with or without the applied field, and studied the properties of the wall

solutions. Figure 2(a) shows the schematics of a 360� wall which is oriented normally to the easy direction

(the y-axis). This figure illustrates how the magnetization vector m =
(� sin ✓, cos ✓,0) rotates clockwise

when y changes from negative to positive values. Note that for this wall orientation, the wall variable �,

i.e., the variable, such that ✓ =
✓(�), coincides with the y variable. The normal and tangential components

of the magnetization in the solution, m�
=

cos ✓ and m � =
sin ✓, respectively, are shown in Fig. 2. One

can see from the behavior of m�(�) in Fig. 2(b) that the wall core carries a net dipole moment, which is

responsible for the wall stability
in the absence of the applied field [88]. The winding angle ✓ and the stray

field hs are also shown in Fig. 2(c) (see [88] for more details). We investigated stability
of the 360� solutions

for various orientations via one- and two-dimensional time-dependent simulations. In particular, we found

that a critic
al demagnetizing field is required to break up a 360� wall, indicating that these walls are really

stable, not metastable objects.
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Theorem (90�-walls: existence, uniqueness, regularity and strict monotonicity).
For � = �⇡/4 and each ⌫ > 0, there exists a minimizer of the energy E�(✓) over
the admissible class A⇡/2. The minimizer is unique (up to translations), strictly
decreasing with range equal to (0, ⇡/2), and is a smooth solution of the EL equation
satisfying the limit conditions

lim
x!+1

✓(x) = 0, lim
x!�1

✓(x) = ⇡/2.

Moreover, if ✓min : R ! (0, ⇡/2) is the minimizer of E�⇡/4(✓) over A⇡/2 satisfying
✓min(0) = ⇡/4, then ✓min(x) = ⇡/2� ✓min(�x).
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obtained from the full micromagnetic energy by restricting to profiles which depend only on 
one spatial variable [26, 27]. The same functional was studied by Melcher, who restricted 
the admissible magnetization configurations to those constrained to the film plane, and estab-
lished symmetry and monotonicity of minimizers connecting the two optimal directions [28]. 
Uniqueness of the Néel wall profile and its linearized stability with respect to one-dimensional 
perturbations was treated by Capella, Otto and Melcher [29]. Stability of geometrically 
constrained Néel walls with respect to large two-dimensional perturbations has been demon-
strated asymptotically in [35]. Most recently a comprehensive study of Néel walls under the 
influence of applied magnetic fields was undertaken by Chermisi and Muratov [30]. They 
proved existence, uniqueness, strict monotonicity and smoothness of the wall profile along 
with estimates for its asymptotic decay.

To summarize, in ultrathin uniaxial films the magnetization is effectively constrained to 
lie completely in the film plane, and one encounters 180! Néel walls as the optimal transition 
layer profiles connecting the two uniform states. These are now well understood. Beyond that, 
it is possible to observe stable winding domain walls, in which the magnetization makes a 
number of full 360! rotations (most often just one, though more are possible) [36–38]. This 
type of domain walls has received recent theoretical attention in [39, 40]. A reproducible way 
to inject 360° walls into ferromagnetic nanowires and successful manipulation of such domain 
walls were recently demonstrated experimentally in [41, 42].

In fourfold films with in-plane magnetizations, we can make the following analogies with 
the uniaxial case. In fourfold materials, the 90!-walls are expected to exist as optimal profiles 
connecting two adjacent minima of the potential Φ (e.g. e1+  and e2+ ). This is analogous to 
the 180! Néel walls in uniaxial materials. For a 180!-wall in a fourfold material, the mag-
netization has to connect two nonadjacent minima of Φ while passing directly through a third 
somewhere in between (i.e. connect e1+  and e1− , while passing through e2+ ). Moreover, this 
should occur without the wall simply splitting into two separate 90!-walls. This is analogous 
to the 360!-walls in uniaxial materials.

In this article we extend the methods contained in previous work concerning 180! and 360! 
domain walls in uniaxial materials to the setting of fourfold materials, and prove existence 
results for both 90! and 180! walls in these materials. These walls, despite some apparent anal-
ogies with those found in uniaxial films, have not been previously investigated theoretically.

1.1. Reduced model for one-dimensional domain walls

Since stationary solutions of (5) coincide with critical points of (6), in order to study stationary 
one-dimensional domain wall profiles, we now seek to derive a 1D variational problem from 
(6) which is appropriate to capture such profiles via minimization.

In what follows we explicitly restrict to stationary profiles, x x t x xm m, , ,1 2 1 2( ) ( )= . It is con-
venient to introduce the in-plane magnetization angle : 2 →θ R R via

m e esin cos .1 2θ θ= − + (8)

We now assume a one-dimensional profile x x,1 2( ) ( )θ θ ξ=  varying only along the direction 
e e ecos sin1 2β β= +ξ ; we refer to the angle β as the wall orientation. With these assump-
tions, the LLG equation (5) for a stationary 1D profile x( )θ  reduces to

θ θ ν θ β θ β= − + + − − −
⎛
⎝⎜

⎞
⎠⎟x

0
1
4

sin 4
2

co s
d

d
sin ,xx

2

2

1/2

( ) ( ) (9)
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Theorem (90�-walls: existence, uniqueness, regularity and strict monotonicity).
For � = �⇡/4 and each ⌫ > 0, there exists a minimizer of the energy E�(✓) over
the admissible class A⇡/2. The minimizer is unique (up to translations), strictly
decreasing with range equal to (0, ⇡/2), and is a smooth solution of the EL equation
satisfying the limit conditions

lim
x!+1

✓(x) = 0, lim
x!�1

✓(x) = ⇡/2.

Moreover, if ✓min : R ! (0, ⇡/2) is the minimizer of E�⇡/4(✓) over A⇡/2 satisfying
✓min(0) = ⇡/4, then ✓min(x) = ⇡/2� ✓min(�x).

Theorem (180�-walls: existence, regularity and strict monotonicity). For � = 0
and each ⌫ > 0, there exists a minimizer of the energy E�(✓) over the admissible
class A⇡. The minimizer is strictly decreasing with range equal to (0, ⇡), and is a
smooth solution of the EL equation satisfying the limit conditions

lim
x!+1

✓(x) = 0, lim
x!�1

✓(x) = ⇡.

Moreover, if ✓min : R ! (0, ⇡) is the minimizer of E0(✓) over A⇡ satisfying ✓min(0) =
⇡/2, then ✓min(x) = ⇡ � ✓min(�x).
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Figure 2. Computed 1D 180° wall profiles for ν = 1, 5  and 50. Upper panels show the 
wall profiles near the transition layer. Lower panels show the corresponding decay in 
the tails, plotted in log–log coordinates. Red line segments in the lower panels indicate 
an algebraic decay of /θ∼ x1 2.

Figure 3. C-state (panel (a)) and S-state (panel (b)). Domain size in both panels is 
= =L L8, 16x y , with ν = 5.

R G Lund and C B Muratov Nonlinearity 29 (2016) 1716

ν = 10 
Lx=32, Ly=64
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with admissible configurations m ∈ H1(D; S1) satisfying the Dirichlet boundary condition 
m = st on ∂D, where t is the positively oriented unit tangent vector to ∂D and s : ∂D → {−1, 1}. 
In fact, since the normal component of the trace of m belongs to H1/2(∂D;R2), the function s 
is necessarily constant on each connected component of ∂D. Note that this creates a topologi-
cal obstruction in the case when D is simply connected, giving rise to boundary vortices at 
the level of Eδ [27, 28, 34]. At the same time, it is clear that for suitable multiply connected 
domains the considered admissible class is non-empty. A canonical example of the latter is an 
annulus (for a physics overview, see [25]). In the absence of crystalline anisotropy and applied 
field, the ground state of the magnetization in an annulus is easily seen to be a vortex state. 
However, this result no longer holds in the presence of crystalline anisotropy, since the latter 
does not favor alignment of m with the boundaries. In large annuli, this would lead to the for-
mation of a boundary layer, in which the magnetization rotates from the direction tangential to 
the boundary to the direction of the easy axis. We call such magnetization configurations edge 
domain walls (for similar objects in a different micromagnetic context, see [37]).

Focusing on 1D transition profiles in the vicinity of the boundary, we now consider D to be 
a strip of width w oriented at an angle β ∈ [0,π/2 ] with respect to the easy axis (see figure 2). 
We define

x = x1 cosβ + x2 sinβ (9)

to be the variable in the direction normal to the strip axis. Then, with the applied field h set 
to zero, the energy of a magnetization configuration m = m(x) per unit length of the strip is 
equal to (see appendix)

Eβ,w(m) =
1
2

∫ w

0

(
|m ′

1 |2 + |m ′
2 |2 + m 2

1
)

d x +
ν

4 π

∫ w

0

∫ w

0
ln |x − y|−1 m ′

β(x)m
′
β(y) d x d y,

 (10)

Figure 2. Illustration of the strip geometry.
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a smooth solution of the Euler-Lagrange equation that satisfies the limit conditions.
Moreover, if #(0) is the minimizer of E in the class A satisfying #

(0)(0) = ⇡
2 , then

#
(0)(x) = ⇡�#

(0)(�x), and there exists a constant c > 0 such that #(0)(x) ' cx
�2 as

x ! +1.

E�(#) =
1

2

Z 1

�1

�
|#|2 + sin2

#
�
dx+

⌫

8⇡

Z 1

�1

Z 1

�1

(sin(#(x)� �)� sin(#(y)� �))2

(x� y)2
dx dy

G(x)
⌫�1' 2

⇡⌫ cos2 ✓h
ln

✓
⌫

|x|

◆

x1, x2 #(x1) =
3⇡

4
#(x2) =

⇡

4
m� = m1 cos � +m2 sin �

E(#) � ⌫

2⇡

Z x1

0

Z 1

x2

(cos#(x)� cos#(y))2

(x� y)2
dx dy � ⌫

2⇡

Z x1

0

Z 1

x2

dx dy

(x� y)2
=

⌫

⇡
ln

✓
x2

x2 � x1

◆

Theorem (existence of 360� domain wall minimizers). Let � 2 [0, ⇡2 ]. Then the
following holds:

(i) If � = 0, then the infimum of E� is not attained in A.

(ii) If � 2 (0, ⇡2 ), then there is ⌫0 = ⌫0(�) > 0 such that for every ⌫ 2 (0, ⌫0) there
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Theorem (90�-walls: existence, uniqueness, regularity and strict monotonicity).
For � = �⇡/4 and each ⌫ > 0, there exists a minimizer of the energy E�(✓) over
the admissible class A⇡/2. The minimizer is unique (up to translations), strictly
decreasing with range equal to (0, ⇡/2), and is a smooth solution of the EL equation
satisfying the limit conditions

lim
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Edge walls
the issue persists even without domain walls in the bulk
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including strong in-plane uniaxial anisotropy with no applied field (see figure 1) and no crys-
talline anisotropy with strong in-plane applied field (results not shown). Numerical simula-
tions suggest that away from the side edges the domain walls have essentially 1D profiles. 
Therefore, in order to investigate these profiles it is enough to model their behavior, employ-
ing a simplified 1D micromagnetic energy capturing the essential features of the wall profiles. 
Such a description is expected to be appropriate for strips of soft ferromagnetic materials 
whose thickness does not exceed significantly the exchange length and whose width is much 
larger than the Néel wall width.

The goal of this paper is to understand the formation of edge domain walls viewed as global 
energy minimizers of a reduced 1D micromagnetic energy. We begin our analysis by deriving 
a 1D energy functional describing edge domain walls (see (15)). Since we are specifically 
interested in 1D domain wall profiles, we consider the problem on an unbounded domain con-
sisting of a ferromagnetic film occupying a half-plane times a fixed interval with small thick-
ness. However, this setup makes the energy of the wall infinite due to inconsistency between 
the preferred magnetization directions at the film edge and inside the film (see section 3). 
Therefore, in order to have a well defined minimization problem, we need to renormalize the 
1D energy per unit edge length in a suitable way (see (24)). We show existence of a minimizer 
for this energy, using standard methods of the calculus of variations; see theorem 1. The main 
difficulty lies in dealing with nonlocal magnetostatic energy term and identifying the proper 
space where the minimization problem makes sense. We continue our analysis by deriving 
the Euler–Lagrange equation characterizing the profile of the edge domain wall; see theorem 
2. This seemingly straightforward task, however, requires a rather careful and proper dealing 
with the nonlocal energy term. The main difficulty is related to the fact that we only have 
rather limited regularity of the energy minimizing solutions a priori. The information about 
further regularity is usually recovered through the use of the Euler–Lagrange equation and 
a bootstrap argument. As this information is not yet available, we need to carefully analyze 
the nonlocal term using methods from fractional Sobolev spaces and recover a weak form 
of the Euler–Lagrange equation. After deriving the Euler–Lagrange equation, we can prove 
higher regularity of the solutions using an adaptation of the standard elliptic regularity tech-
niques. However, due to the difficulties arising in dealing with nonlocality we can only show 
the C2 regularity of solutions. Further application of the bootstrap argument is then hindered 
by the lack of integrability of the contribution of the nonlocal term to the Euler–Lagrange 

Figure 1. A magnetization configuration containing edge domain walls in a strip 
obtained from micromagnetic simulations of a 20.7 µm ×5.2 µm ×4 nm permalloy 
sample with vertical uniaxial anisotropy and no applied field (for further details, see 
section 8). The colourmap corresponds to the angle between the magnetization vector 
(also shown by arrows) and the y-axis. Inside the dashed box (i.e. far from the side 
edges) the edge wall profiles are essentially 1D.
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with admissible configurations m ∈ H1(D; S1) satisfying the Dirichlet boundary condition 
m = st on ∂D, where t is the positively oriented unit tangent vector to ∂D and s : ∂D → {−1, 1}. 
In fact, since the normal component of the trace of m belongs to H1/2(∂D;R2), the function s 
is necessarily constant on each connected component of ∂D. Note that this creates a topologi-
cal obstruction in the case when D is simply connected, giving rise to boundary vortices at 
the level of Eδ [27, 28, 34]. At the same time, it is clear that for suitable multiply connected 
domains the considered admissible class is non-empty. A canonical example of the latter is an 
annulus (for a physics overview, see [25]). In the absence of crystalline anisotropy and applied 
field, the ground state of the magnetization in an annulus is easily seen to be a vortex state. 
However, this result no longer holds in the presence of crystalline anisotropy, since the latter 
does not favor alignment of m with the boundaries. In large annuli, this would lead to the for-
mation of a boundary layer, in which the magnetization rotates from the direction tangential to 
the boundary to the direction of the easy axis. We call such magnetization configurations edge 
domain walls (for similar objects in a different micromagnetic context, see [37]).

Focusing on 1D transition profiles in the vicinity of the boundary, we now consider D to be 
a strip of width w oriented at an angle β ∈ [0,π/2 ] with respect to the easy axis (see figure 2). 
We define

x = x1 cosβ + x2 sinβ (9)

to be the variable in the direction normal to the strip axis. Then, with the applied field h set 
to zero, the energy of a magnetization configuration m = m(x) per unit length of the strip is 
equal to (see appendix)

Eβ,w(m) =
1
2

∫ w

0

(
|m ′

1 |2 + |m ′
2 |2 + m 2

1
)

d x +
ν

4 π

∫ w

0

∫ w

0
ln |x − y|−1 m ′

β(x)m
′
β(y) d x d y,

 (10)

Figure 2. Illustration of the strip geometry.
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where mβ = eβ · m, with eβ = (cosβ, sinβ), provided that

mβ(0) = mβ(w) = 0. (11)

The energy in (10) may also be rewritten using the operator 
(
− d2

dx2

)
1/2 (acting from H1(R) to 

L2(R) and understood via Fourier space, see appendix)

Eβ,w(m) =
1
2

∫ w

0

(
|m ′

1 |2 + |m ′
2 |2 + m 2

1
)

d x +
ν

4

∫ ∞

−∞
mβ

(
− d 2

d x2

)1 /2

mβ d x.

 (12)
Another useful representation of the energy in (10) that expresses the double integral in terms 
of mβ rather than its derivative is (see appendix)

Eβ,w(m) =
1
2

∫ w

0

(
|m ′

1 |2 + |m ′
2 |2 + m 2

1
)

d x +
ν

8 π

∫ ∞

−∞

∫ ∞

−∞

(mβ(x)− mβ(y))2

(x − y)2 d x d y.

 (13)
Lastly, we express the energy in (13) in terms of the angle θ between m and the easy axis in 
the counter-clockwise direction:

m = (− sin θ, cos θ). (14)

With a slight abuse of notation, we get that the energy associated with m is given by

Eβ,w(θ) =
1
2

∫ w

0

(
|θ′|2 + sin2 θ

)
d x +

ν

8 π

∫ ∞

−∞

∫ ∞

−∞

(sin(θ(x)− β)− sin(θ(y)− β))2

(x − y)2 d x d y,

 (15)
where we set θ(x) = β , for all x ̸∈ (0, w). The energy functional in (15) is the starting point of 
our analysis throughout the rest of this paper. In particular, it is straightforward to show that 
minimizers of (15) exist among all θ − β ∈ H1

0(0, w), are smooth in the interior and satisfy 
the Euler–Lagrange equation

0 =
d 2 θ

d x2 − sin θ cos θ − ν

2
cos(θ − β)

(
− d 2

d x2

)1 /2

sin(θ − β) x ∈ (0, w),

 

(16)

where [15]
(
− d 2

d x2

)1 /2

u(x) =
1
π

∫
−

∞

−∞

u(x)− u(y)
(x − y)2 d y, (17)

and here and everywhere below 
∫
−  denotes the principal value of the integral. Notice that the 

Euler–Lagrange equation in (16) coincides with the one for the classical problem of the Néel 
wall [10].

3. Statement of results

We now turn to the problem of our main interest in this paper, which is to characterize a single 
edge domain wall. For this purpose, we would like to send the parameter w to infinity and 
obtain an energy minimizing profile θ(x) solving (16) for all x > 0 and satisfying θ(0) = β 
(also setting θ(x) = β  for all x < 0 in the definition of the last term in (16)). We note that for 
the problem on the semi-infinite domain with β ∈ [0,π/2 ] the boundary condition at x = 0 is 
equivalent to that in (11) because of the reflection symmetry, which makes the energy invari-
ant with respect to the transformation
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edge domain wall carries a net magnetic charge spread over a region of width of order 1 near 
the edge. Therefore, the self-interaction energy per unit length of a single edge domain wall 
diverges logarithmically with w, as can be seen by examining the argument in (22). Thus, in 
order to concentrate on a single edge domain wall, we need to appropriately renormalize the 
wall energy by ‘subtracting’ the infinite self-interaction energy of a single wall. To this end, 
we introduce a smooth cutoff function ηβ : R → [0,β] that satisfies ηβ(x) = β when x ! 0, 
ηβ(x) = 0 when x ! 1, and η′β(x) ! 0 for all x ∈ R, and formally subtract its contribution 
from the integrand in the last term in (15). This produces the following renormalized energy

Eβ(θ) :=
1
2

∫ ∞

0

(
|θ′|2 + sin2 θ

)
d x

+
ν

8 π

∫ ∞

−∞

∫ ∞

−∞

(sin(θ(x)− β)− sin(θ(y)− β))2 − (sin(ηβ(x)− β)− sin(ηβ(y)− β))2

(x − y)2 d x d y,

 (23)
which is clearly finite when θ = ηβ. Notice that ηβ(x) mimics the edge domain wall profile 
near the edge and thus has the same leading order self-energy as the edge wall, which is what 
motivates its introduction in (23).

Care is needed in defining a suitable admissible class of functions θ(x) in order to make 
the last term in (23) meaningful, as the integrand there may not be in L1(R2). The latter is 
related to the logarithmic divergence at infinity of the respective integrals mentioned earlier. 
Therefore, we rewrite the energy Eβ(θ) in an equivalent form for smooth functions θ(x) satis-
fying θ(x) = β  for all x < 0 and θ(x) = πn for some n ∈ Z and all x > R ≫ 1:

Eβ(θ) =

∫ ∞

0

(
1
2
|θ′|2 + 1

2
sin2 θ +

ν

4 π
· sin

2 (θ − β)− sin2 (ηβ − β)

x

)
d x

+
ν

8 π

∫ ∞

0

∫ ∞

0

(sin(θ(x)− β)− sin(θ(y)− β))2

(x − y)2 d x d y

− ν

8 π

∫ ∞

0

∫ ∞

0

(sin(ηβ(x)− β)− sin(ηβ(y)− β))2

(x − y)2 d x d y,

 

(24)

as can be verified by a direct computation. We observe that this energy is well-defined, pos-
sibly taking value +∞, on the admissible class

A :=
{
θ ∈ C

(
R+
)

: θ − β ∈ H̊ 1
0 (R+)

}
. (25)

Indeed, the last term in (24) is independent of θ and finite (see lemma 5). Therefore, the 
main difficulty with the definition of Eβ comes from the last term in the first line of (24). 
Nevertheless, as we show in lemma 6, the integrand in the first line of (24) may be bounded 
from below by an integrable function that does not depend on θ. This makes the definition of 
Eβ in (24) meaningful.

We are now in the position to state our existence result for the edge domain walls, viewed 
as minimizers of the 1D energy Eβ in (24) over the admissible class A in (25).

Theorem 1. For each β ∈ (0,π/2 ] and each ν > 0, there exists θ ∈ A  such that 
Eβ(θ) = inf θ̃∈A E(θ̃). Furthermore, we have θ ∈ L∞(R+) and limx→∞ θ(x) = θ∞ for some 
θ∞ ∈ πZ.

We remark that the minimizers obtained in theorem 1 do not depend on the specific choice 
of ηβ. Indeed, denoting by Eβ(θ, ηβ) the value of the energy for a given θ and ηβ, we have for 

any θ and η(1,2)
β  such that E(θ, η(1,2)

β ) < +∞:
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Eβ(θ, η(2 )
β )− Eβ(θ, η(1 )

β ) =
ν

4 π

∫ ∞

0

sin2 (η(2 )
β − β)− sin2 (η(1 )

β − β)

x
d x

+
ν

8 π

∫ ∞

0

∫ ∞

0

(sin(η(1 )
β (x)− β)− sin(η(1 )

β (y)− β))2 − (sin(η(2 )
β (x)− β)− sin(η(2 )

β (y)− β))2

(x − y)2 d x d y,

 (26)

which is a constant independent of θ. In particular, minimizers of Eβ(·, η(1 )
β ) over A coincide 

with those of Eβ(·, η(2 )
β ).

The result in theorem 1 should be contrasted with that for the case ν = 0 discussed at the 
beginning of this section. For the latter, for all β ∈ (0,π/2 ) we have existence of a unique 
minimizer in A, which is monotone decreasing and converging to zero exponentially at infin-
ity. In the case ν > 0, on the other hand, our result does not exclude a possibility of wind-
ing near the film edge, expressed in the fact that one may have θ → πn for some n ̸= 0 as 
x → +∞. Similarly, neither uniqueness nor monotonicity of the energy minimizing profile 
are guaranteed a priori, and the decay at infinity is expected to follow a power law (see [10 ] 
and section 8  below).

We now turn to the questions of further regularity and the Euler–Lagrange equation satis-
fied by the minimizers obtained in theorem 1. Formally, the Euler–Lagrange equation associ-
ated with (24 ) coincides with (16) for all x ∈ R+ (again, extending θ to θ(x) = β  for x < 0). 
However, care needs to be exercised once again, since the function sin(θ − β) no longer 

belongs to L2(R), so the standard approach to the definition of 
(
− d2

dx2

)1/2
 via Fourier space 

no longer applies directly. Nevertheless, we show that (16) still holds for the minimizers, pro-

vided that one uses the integral representation in (17) as the definition for 
(
− d2

dx2

)1/2
. The latter 

is meaningful whenever θ is smooth, and we have explicitly

θ′′(x) = sin θ(x) cos θ(x) +
ν

2 π
· sin(θ(x)− β) cos(θ(x)− β)

x

+
ν

2 π
cos(θ(x)− β)

(∫
−

∞

0

sin(θ(x)− β)− sin(θ(y)− β)

(x − y)2 d y
)

∀x > 0.

 (27)
This picture is made precise in the following theorem.

Theorem 2. For each β ∈ (0,π/2 ] and each ν > 0, let θ be a minimizer from theorem 1 . 
Then θ ∈ C2 (R+) ∩ C1(R+) ∩ W1,∞(R+) and (27 ) holds. In addition, we have |θ′(0)| = sinβ 
and limx→0+ |θ′′(x)| = ∞.

We remark that the last statement in theorem 2 prevents the minimizer in theorem 1 to be 
smooth up to x = 0, in contrast with the case ν = 0 (see (19 )). In turn, because of the presence 
of the nonlocal term in (27) further regularity of the minimizer for x > 0 cannot be established 
by a standard bootstrap argument. A further study of higher regularity of the domain wall 
profiles in the film interior would require a finer simultaneous treatment of the exchange and 
stray field terms and goes beyond the scope of the present paper.

We end with a consideration of two parameter regimes in which further information can be 
obtained about the detailed structure of the energy minimizing profiles. In both these regimes 
the nonlocal term in the equation may be viewed as a perturbation. The first is the regime 
when β ∈ (0,π/2 ) is arbitrary, but ν is sufficiently small depending on β. Then we have the 
following result about the behavior of minimizers.
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Further remarks

given 𝜈 > 0, for all 0 < β ≤ β0(𝜈) the minimizer is unique and goes to zero
=> no winding for all β ≪ 1
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method to compute the stray field, extending θ by its boundary value to x < 0. The details of 
the numerical method can be found, once again, in [36]. The domain wall profiles are then 
identified with the steady states of (90) reached as t → ∞.

We collect the results of our numerical solution of the above problem for a range of physi-
cally relevant values of β and ν in figures 3 and 4. The upper panels (a)–(c) of figure 3 show 
the profiles of edge domain walls with β equal to π/2 (red curves), π/4 (green curves) and 
π/8 (blue curves). The lower panels show the same profiles in log–log coordinates, with the 
dashed lines indicating 1/x decay. Each pair of panels corresponds to a different value of ν: 
ν = 1 in panels (a) and (d); ν = 10 in panels (b) and (e); ν = 50 in panels (c) and (f). In all the 
simulations, a discretization step ∆x = 0.125 was used near the edge on a non-uniform grid 
with a stretch factor b = 20 [36] and terminating at x ≃ 6 × 103. A 16-node optimal geomet-
ric grid was used in the transverse direction to compute the stray field [23, 36].

For 0 < β ! π/2 the obtained domain wall profiles exhibit monotonic decay from θ = β at 
x = 0 to θ = 0 at x = +∞. Thus, qualitatively the profiles are similar to those in (19) corre-
sponding to the case ν = 0. This is in agreement with the predictions of theorems 3 and 4 for 
the cases ν ! 1 and β ! π

2 , respectively. At the same time, one can see from figures 3(b) and 
(c) that as the value of ν is increased, the profiles develop a multiscale structure, whereby an 
inner core forms near the edge on the O(ν) length scale for ν ≫ 1, followed by either an expo-
nential (β = π/2) or an algebraic (β ̸= π/2) tail. Heuristically, this scaling may be derived 
by balancing the anisotropy and the stray field terms in (27). A structure similar to this was 
reported previously for Néel walls at large values of ν [19, 20, 22, 33, 36]. Notice that all the 
profiles are regular and exhibit a finite slope near the edge, in agreement with theorem 2.

Focusing on the decay of the domain wall profiles, we observe that even though the overall 
shape of the profile may be qualitatively similar to that in (19), they exhibit slow algebraic 
decay for all β ̸= π/2, even for small values of ν, see figures 3(d)–(f). In all those cases, 
the profiles exhibit a decay rate proportional to 1/x, which can be explained by the fact that 

Figure 3. Computed boundary wall profiles for β = π/2,π/4,π/8 . In panels (a) and 
(d), ν = 1; in panels (b) and (e), ν = 10; in panels (c) and (f), ν = 50. The upper panels 
(a)–(c) show the computed profiles for the given values of β and ν. The lower panels 
(d)–(f) show the same profiles in log–log coordinates, with the dashed lines indicating 
the 1/x decay.
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Monotonicity? Winding?
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there is a build-up of magnetic charge near the material edge, which results in a stray field 
decaying like 1/x away from the edge. This should be contrasted to the asymptotic 1/x2 decay 
observed in Néel walls [10]. At the same time, for the special value of β = π/2 the decay 
becomes exponential, which can also be seen directly from (27). Indeed, when β = π/2, the 
cos(θ(x)− β) factor multiplying the contribution of the stray field vanishes as x → +∞, 
making the anisotropy term dominate at large values of x and, therefore, resulting in exponen-
tial decay.

We note that the domain wall profiles obtained by us numerically in figure 3 are not guar-
anteed to be those corresponding to the global energy minimizers in theorem 1. Instead, they 
may correspond only to local energy minimizers. In fact, neither monotonicity, nor unique-
ness of the energy minimizing edge domain wall profiles are known a priori, in contrast to 
the Néel walls in the bulk of the material [10, 38]. In order to assess whether other types of 
local minimizers may exist in the problem under consideration, we performed further numer-
ical studies of solutions of (90)–(92) by considering values of β outside the interval (0,π/2 ]. 
The obtained stationary solutions for ν = 10 are shown in figure 4. All these solutions decay 
to zero as x → ∞, indicating a nontrivial winding (i.e. a variation of θ by more than π/2) 
in each one for β ̸∈ [0,π/2 ]. We emphasize that these domain wall profiles are stabilized by 
nonlocal effects, since in the absence of stray field, i.e. when ν = 0, such solutions do not 
exist. At the same time, the solutions with winding appear to have higher energy than the 
corresponding ones in figure  3 for the same value of ν, indicating that the global energy 
minimizers do not exhibit winding. Furthermore, for −π < β < −π/2 the solutions exhibit 
overshoot and a  non-monotone decay to zero as x → +∞, see figure 4(c). Thus, monotonicity 
of the initial data in (92) is not preserved under (90). Let us also mention that we tried differ-
ent non-monotone initial conditions, but did not obtain any other solutions than those shown 
in figure 4. However, monotone solutions with larger winding were observed numerically for 
still larger values of β. According to our numerics, it appears that edge domain wall solutions 
with arbitrarily large winding are possible.

To conclude, we note that an a priori lack of monotonicity is an obstacle for proving the 
precise asymptotic decay of the profiles, using the methods of [10]. A broader question of 
interest is whether the 1D domain wall profiles in theorem 1 are also minimizers, in some 
suitable sense, of the 2D micromagnetic energy in (8). It is well known that magnetic domains 
often exhibit spatially modulated exit structures near the material boundary [22], and spatially 
periodic and more complicated 2D edge domains have been observed experimentally in thin 
films with strong in-plane crystalline anisotropy [11].

Figure 4. Edge domain walls exhibiting winding and lack of monotonicity obtained by 
solving (90) for ν = 10 and different values of β. In (a), β = −π/2,π/2, 3π/2, 5π/2. 
In (b), β = −3π/4,π/4, 5π/4, 9π/4. In (c), the non-monotone decay in the tails of the 
solutions for β = −5π/8 (red), β = −3π/4 (green) and β = −7π/8 (blue) at large x 
is emphasized.
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Charged walls in strips

Morini, M, Novaga and Slastikov, 2021

2 DOMAIN WALLS IN FERROMAGNETIC STRIPS
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Figure 1. Domain wall profiles in the numerical simulations of amorphous cobalt nanos-

trips: (a) vortex head-to-head wall in a 100 nm wide and 5 nm thick strip; (b) symmetric

transverse head-to-head wall in a 50 nm wide and 2 nm thick strip; (c) asymmetric head-

to-head wall in a 400 nm wide and 5 nm thick strip; (d) a winding transverse domain

wall in a 400 nm wide and 5 nm thick strip. The material parameters are: exchange

constant A = 1.4 ⇥ 10�11 J/m, saturation magnetization Ms = 1.4 ⇥ 106 A/m, and

zero magnetocrystalline anisotropy or applied magnetic field [44]. For this material, the

exchange length is `ex = 3.37 nm.

sti↵ness, Ms is the saturation magnetization and µ0 is vacuum permeability [29]). Depending on the film

thickness, one observes two basic types of walls – the transverse and the vortex wall – for thinner and

thicker films, respectively. This picture was first established numerically by McMichael and Donahue via

micromagnetic simulations [49], and later corroborated by Kläui et al. through experimental studies in

ferromagnetic nanorings [34, 43] (for reviews, see [33, 64]). Furthermore, as was shown numerically by

Nakatani, Thiaville and Miltat [54], there exist at least two types of transverse domain walls: symmetric

and asymmetric walls. Finally, winding domain walls in which the magnetization rotates by a 360-degree

angle in the film plane are also known to exist in ferromagnetic nanostrips [32, 40, 67]. These types of

domain wall profiles, obtained numerically using the method from [51], are illustrated in Fig. 1.

Figure. Domain wall profiles
in the numerical simulations of
amorphous cobalt nanostrips: (a)
vortex head-to-head wall in a 100
nm wide and 5 nm thick strip;
(b) symmetric transverse head-to-
head wall in a 50 nm wide and
2 nm thick strip; (c) asymmet-
ric head-to-head wall in a 400 nm
wide and 5 nm thick strip; (d) a
winding transverse domain wall in
a 400 nm wide and 5 nm thick
strip. The material parameters
are: exchange constant A = 1.4⇥
10�11 J/m, saturation magnetiza-
tionMs = 1.4⇥106 A/m, and zero
magnetocrystalline anisotropy or
applied magnetic field.

6

vortex wall

symmetric 
 wall

asymmetric 
 wall

winding wall



Head-to-head walls

reduced two-dimensional thin film energy

cutoff function at the edge of the unit strip  Σ = (-∞, +∞)×(0,1):
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l (⌃; S1) : rm 2 L2(⌃;R2), m2 2 L2(⌃)
 

Theorem (existence of 180� walls) Let � > 0 and k 2 N. Then there exists "0 > 0
such that for all " 2 (0, "0) there exists a minimizer m = (cos ✓, sin ✓) of E" over
all m 2 M such that limx!+1 ✓(x, ·) = 0 and limx!�1 ✓(x, ·) = k⇡ if and only if
k = 1.
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