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ABSTRACT Intracellular symmetry breaking plays a key role in wide range of biological processes, both in single cells and in
multicellular organisms. An important class of symmetry-breaking mechanisms relies on the cytoplasm/membrane redistribution
of proteins that can autocatalytically promote their own recruitment to the plasmamembrane. We present an analytical construc-
tion and a comprehensive parametric analysis of stable localized patterns in a reaction-diffusion model of such a mechanism in a
spherical cell. The constructed patterns take the form of high-concentration patches localized into spherical caps, similar to the
patterns observed in the studies of symmetry breaking in single cells and early embryos.
Many important processes in cell and developmental
biology are controlled by highly nonuniform intracellular
distributions of protein concentrations and enzymatic activ-
ities (1,2). Examples include polarized patterns of mem-
brane localization observed in studies of mating responses
in yeast (3–7) and early embryogenesis in Caenorhabditis
elegans (8–10). In both cases, patterns take the form of a
localized cap on a cell membrane and play an instructive
role, leading to the formation of a budding protrusion in
yeast and asymmetric localization of cell determinants in
the C. elegans embryo, respectively.

The formation of such cap-like patterns can rely on auto-
catalytic membrane recruitment of a diffusible cytoplasmic
protein. The molecular and cellular bases for this mecha-
nism have been established in several cases, motivating
an impressive number of mathematical models that are be-
ing used to explore the quantitative requirements for the
formation of robust localized patterns (5,8,11–18). The
simplest of such models has a single chemical species
that interconverts between membrane and cytoplasmic
states (13,14,17). One critical aspect is that self-promoted
membrane recruitment can give rise to bistability, whereby
the membrane can be in two states with very different
levels of accumulated protein. This is the model considered
in this Letter (Fig. 1).

In the system under consideration, the species with con-
centration C moves freely with diffusivity DC in the cell
interior and reversibly binds to the cell membrane. The
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cell interior and the membrane are denoted by U and vU,
respectively. The dissociation-rate constant is denoted by
kd. The membrane-bound species, with surface density B,
has diffusivity DB and promotes its own recruitment to the
membrane. This is described by making the forward-bind-
ing rate a sigmoidal function of protein concentration at
the membrane. The binding rate is modeled as a sum of
two terms: the first term describes constitutive binding;
the second term reflects autocatalytic recruitment, which
follows a Hill-like dependence. These are characterized by
the rate constant kb, constitutive rate b, threshold value G,
and cooperativity parameter n. The joint dynamics of the
cytoplasmic and membrane species in a spherical cell of
radius r is then governed by the following equations:
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In these equations, bn is the outward unit normal to vU ¼
rS2, V2 is the spherical Laplacian in U, and V2

rS2
is the Lap-

lace-Beltrami operator on vU:

V2
rS2

¼ 1

r2sinq

v

vq

�
sinq

v

vq

�
þ 1

r2sin2q

v2

vf2
; (4)

mailto:muratov@njit.edu
mailto:stas@princeton.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2018.05.033&domain=pdf
https://doi.org/10.1016/j.bpj.2018.05.033


FIGURE 1 (A) Schematic of a spherical cell. (B) The membrane association and dissociation processes are shown. (C) The function

modeling the autocatalytic membrane recruitment is shown. To see this figure in color, go online.

FIGURE 2 Snapshots of cell surface concentration from a repre-

sentativenumerical solutionofEq.7witha¼1,b¼0.1,g¼0.3,d2¼
0.05, and n ¼ 20. To see this figure in color, go online.
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where q ˛ [0, p] and f ˛ [0, 2p] are the angular variables
of the standard spherical coordinates.

This model and many of its relatives considered in the
context of cell polarization belong to a broad class of
reaction-diffusion systemswith spatially segregated compart-
ments of different dimensionality (15,18–22). In combination
with diffusion on the membrane, autocatalytic membrane
recruitment can result in the formation and progressive expan-
sion of a domain with high membrane concentration (11,13–
20,23,24). However, it is counteracted by totalmass conserva-
tion and fast cytoplasmic diffusion (12–14). For a proper
choice of model parameters, localized accumulation on the
membrane depletes concentration in the cytoplasm and can
stabilize the expanding domain, resulting in a stable pattern.

Because the total amount of protein in the system is con-
stant, the membrane and bulk protein concentrations are glob-
ally coupled by mass conservation. Although the general
phenomenology associated with the formation of localized
patterns in globally coupled reaction-diffusion problems is
well understood (19,20,23), the number of results in the
context of intracellular symmetry breaking is very limited
(4,16,24). In fact, all existing analytical results are limited to
one-dimensional ‘‘cells’’ and are based on ad hoc descriptions
of nonlocal coupling of membrane dynamics by cytoplasmic
diffusion (12–14,17,25).Here,we report exact analytical solu-
tions for the spherical cap patterns constructed in the regimeof
large cytoplasmic diffusion that properly take into account the
three-dimensional geometry of the cell.

We start by considering the conservation equation for the
total amount of a protein, which is not synthesized or
degraded but only redistributed between cytoplasm and
membrane (5,12,13):Z

U

C dV þ
Z
vU

B dS ¼ 4

3
pr3C0; (5)

where C0 is the total amount of protein in the cell divided
by cell volume. Because cytoplasmic diffusivity is typically
much larger than membrane diffusivity, the cytoplasmic
concentration may be assumed to be uniform throughout
the cell (see Supporting Materials and Methods for further
discussion):

C ¼ C0 � 3

4pr3

Z
vU

B dS: (6)

Upon substitution of this expression into Eq. 1, our model
is reduced to a single equation for themembrane species (26).
This equation is rendered dimensionless by the following
transformations: thkdt and uhkdB=ðkbC0Þ. This leads to
the following problem for the spatiotemporal dynamics of
the dimensionless cell surface concentration, u¼ u (q, f, t):
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¼ d2V2
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þ
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FIGURE 3 (A) Construction of spatially nonuniform steady states. The graphical solution of Eq. 11, for a ¼ 1, b ¼ 0.1, g ¼ 0.25, and

d ¼ 0.3, reveals three roots (top panel), giving rise to three different spatial profiles (bottom panel). (B) Two-dimensional cuts

through the four-dimensional domain of model parameters that support the formation of stable localized patterns for b ¼ 0.1

are shown. The boundaries of the cusps correspond to the extrema of the g(hc) function; this function becomes monotonic at

the tip of the cusp (inset). Here, the inset shows g(hc) for b ¼ 0.1, a ¼ 1, and d ¼ {0.1, 0.25, 0.5, 1, 2}. To see this figure in color,

go online.
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The rescaled problem has five dimensionless groups:
n and b are inherited directly from the original model;
ghkdG=ðkbC0Þ is the dimensionless threshold for the
membrane recruitment nonlinearity; d2hDB=ðkdr2Þ is the
ratio of characteristic times for dissociation from the mem-
brane and surface diffusion; and finally, ah3kb=ð2kdrÞ
may be interpreted as the ratio of the maximal fluxes to
and from the cell membrane and quantifies the strength
of the global coupling essential for the formation of local-
ized patterns.

We started our analysis of this problem by solving it
numerically using a spectral discretization implemented
in the Chebfun package (27,28). In all cases, the system
converged to one of two types of behaviors: uniform
steady state profiles and nonuniform axisymmetric cap-
like patterns. Fig. 2 shows the snapshots from a represen-
tative numerical solution that eventually converges to such
a pattern. Our numerical experiments indicate that such
solitary caps, although placed at different locations on
the surface, are the only spatially nonuniform attractors
of Eq. 7.

The axial symmetry of the cap-like patterns allows us to
reduce the dimensionality of the problem. Without loss of
generality, we may place the cap center at the North Pole
of the sphere and focus only on the f-independent solutions.
Furthermore, when the membrane-recruitment nonlinearity
is sharp ðn[ 1Þ, it can be approximated by the Heaviside
function. Using a common coordinate transformation,
h ¼ �cosq ˛ [�1,1], we obtain the following ordinary dif-
ferential equation for the axially symmetric steady state so-
lution u ¼ uðhÞ:
28 Biophysical Journal 115, 26–30, July 3, 2018
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This equation is piecewise linear, which greatly simplifies
the analysis of localized patterns. One can readily check that
this equation may have at most two spatially uniform stable
steady states, in which the membrane concentration is either
above or below the threshold value:

u� ¼ b

1þ 2ab
and uþ ¼ 1þ b

1þ 2að1þ bÞ :

In addition to these uniform steady states, we found
patterned solutions that correspond to spherical caps. In
constructing these solutions, we assumed that they decrease
monotonically from h¼ �1 to h¼ 1, crossing the threshold
at some value of the longitudinal coordinate: uðhcÞ ¼ g. In
other words, the autocatalytic membrane recruitment is
‘‘on’’ for h < hc and ‘‘off’’ for h > hc. As shown in the
Supporting Material, such steady states can be found
analytically in terms of the Legendre function Pm(h), where
m ¼ ð1=2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d�2

p
� 1Þ:

uðh> hcÞ ¼ ðg� bkÞ PmðhÞ
PmðhcÞ

þ bk (9)

and
uðh<hcÞ ¼ ðg� ð1þ bÞkÞ Pmð�hÞ
Pmð�hcÞ

þ ð1þ bÞk; (10)
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To evaluate these expressions, onemust find the position hc
where uðhcÞ ¼ g. This position can be found from the dimen-
sionless form of the conservation law for the total amount of
protein, leading to the following implicit function that relates
hc to the dimensionless parameters of the problem:
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:

(11)

Graphical analysis of this equation reveals that it can have

up to three roots, corresponding to three different values of
hc for which uðhcÞ ¼ g (Fig. 3). Each of these values gives
rise to a different spatially nonuniform steady state. In
particular, in the biologically significant regime of d � 1,
there exists one solution in the form of a large spherical
cap, for which

gðhcÞx
2bþ 1

2ð1þ að2bþ 1þ hcÞÞ
; (12)
FIGURE 4 Directed control of pattern formation by a transient

unidirectional flow. The system starts from a uniform ‘‘off’’

steady state. The flow is from the South to North Pole. a ¼ 1,

b ¼ 0.1, g ¼ 0.35, and d2 ¼ 0.05. See the Supporting Materials

and Methods for details. To see this figure in color, go online.
and twosmall sphericalcapsolutions, forwhich
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2c

p � d

whenever g˛
2bþ 1

2 1þ 2a bþ 1ð Þð Þ;
2bþ 1

2 1þ 2abð Þ
� �

. Stability

analysis of these solutions (see Supporting Materials and
Methods) shows that for d � 1, a spherical cap solution is
stable if and only if a>ac, where

acx
d

2ð2bþ 1Þ�1� h2
c

�3=2 : (13)

According to this formula, for all d sufficiently small and

g in the above range, the small-cap solutions are linearly un-
stable, whereas the large cap is linearly stable. We note that,
as expected, the stable solutions constructed analytically
above persist in the problem with n finite, even for n z 5.

Equation 11 may be used to delineate the four-dimen-
sional domain of parameters a, b, g, and d that can support
states with broken symmetry. Fig. 3 shows a series of two-
dimensional cuts through this domain, computed at a con-
stant value of constitutive membrane recruitment and four
different strengths of the global coupling parameter. For
each of these cuts, the localized patterns exist in a cusp-
like region that is characterized by an upper limit for dimen-
sionless surface diffusivity d. Beyond this value, the right-
hand side of Eq. 11 becomes a single-valued function of
gc (see the inset of Fig. 3 B), which corresponds to the disap-
pearance of stable patterns. Our analysis also reveals how
reducing the strength of global coupling moves the system
outside of the domain corresponding to the symmetry-
broken stable steady states.

Our results provide insights into the parametric depen-
dence and robustness of the localized patterns. For instance,
changes in the cell radius affect two dimensionless groups:
the dimensionless-cell-surface diffusivity, d � 1/r, and the
strength of global coupling, a � 1/r. Because the existence
of patterned states is promoted by small values of surface
diffusivity and strong global coupling, patterned states are
realized for an intermediate range of cell sizes (see Fig. S2).

Further research is required to understand how cells can
not only form the localized patterns but also direct them to
specific positions. Studies in the early C. elegans embryo
suggest that such control may be provided by cortical flows
that transiently localize the diffusible species at a specific
location on the cell membrane (1,8,10). Our model can be
readily modified to account for such flows. As an illustration,
Fig. 4 shows the results of a numerical experiment in which a
model cell starts from a steady state in which most of the pro-
tein is cytoplasmic. A transient unidirectional flow then cre-
ates a region of high membrane concentration, triggering the
formation of a self-sustained localized pattern.

An additional layer of control may be provided by varia-
tions in the curvature of the cell surface. Our preliminary
simulations in spheroid geometries indicate that large spher-
ical cap solutions persist under perturbations of spherical
symmetry but at the same time are guided to specific
Biophysical Journal 115, 26–30, July 3, 2018 29
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locations by variations of curvature. Analyzing the effects of
such variations, which can be either static or dynamic,
should provide additional insights into the mechanisms of
intracellular symmetry breaking (1,2).
SUPPORTING MATERIAL

Supporting Materials and Methods and three figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(18)30672-6.
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