
Acoustic modes of a spherical thin-walled tank for liquid
propellant mass gauging: Theory and experiment

Cyrill B. Muratov,1,a) Joseph Rogers,2 and Michael Khasin3,b)

1Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
2KBRwyle LLC, National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035, USA
3National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035, USA

ABSTRACT:
Acoustic response of a thin-walled spherical flight tank filled with water is explored theoretically and experimentally

as a testbed for an application of Weyl’s law to the problem of mass-gauging propellants in zero-gravity in space.

Weyl’s law relates the mode counting function of a resonator to its volume and can be used to infer the volume of

liquid in a tank from the tank’s acoustic response. One of the challenges of applying Weyl’s law to real tanks is to

account for the boundary conditions which are neither Neumann nor Dirichlet. We show that the liquid modes in a

thin-walled spherical tank correspond to the spectrum of a slightly larger spherical tank with infinitely compliant

wall (Dirichlet boundary condition), where Weyl’s law can be applied directly. The mass of the liquid enclosed by

this “effective” tank’s wall is found to equal the actual mass of the liquid plus the mass of the wall. This finding is

generalized to thin-walled tanks and liquid configurations of arbitrary shapes and thus provides a calculable correc-

tion factor for the propellant mass inferred using Weyl’s law with Dirichlet boundary conditions.
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I. INTRODUCTION

Accurate assessment of the amount of available liquid

propellant in a tank—propellant mass gauging—in zero or

reduced gravity is a critical enabling technology for rocket

propulsion and in-space propellant storage required in the

next generation of space exploration missions.1,2 Gauging

the amount of available liquid in a tank in reduced gravity

poses fundamental technical challenges due to a variable

and unpredictable configuration of the liquid in the tank. For

Earth’s gravity and settled liquid conditions in general, a

range of mass gauging techniques are available.3–5

However, liquid mass gauging becomes a significant chal-

lenge under microgravity conditions where both the location

and the shape of the gas-liquid interface are unknown (see

Refs. 6–10 for some proposed approaches). These effects

result from the dominance of surface tension and capillary

forces in the absence of significant gravitational forces on

the liquid.5 In this regime, the shape of the gas-liquid inter-

face is dictated almost exclusively by the container geome-

try and the liquid-container wettability. Furthermore, the

mechanical equilibrium of the liquid may be close to neu-

tral, and small time-dependent perturbations can slowly, but

dramatically, change the observed liquid configuration over

time.5

Spectral mass gauging (SMG) is a promising non-

invasive acoustic technology for mass-gauging, proposed in

Ref. 9. SMG is based on an application of Weyl’s law11 to

the problem of mass-gauging. Generally, Weyl’s law

expresses the asymptotic behavior of the eigenvalues count-

ing function of the Laplacian operator in a bounded domain

with suitable boundary conditions.12 The asymptotic expres-

sion (see Sec. II) relates the counting function to the volume

of the domain. The SMG method relies on the ability to

actuate the first few thousands of vibration eigenmodes of

the liquid-filled tank by tapping on the tank’s wall from the

outside and to count the corresponding eigenfrequencies.9

By extracting the leading order high-frequency asymptotic

behavior of the measured counting function one can in prin-

ciple recover the liquid volume with arbitrary precision

from the known parameters of the liquid independently of

the shape of the liquid body in the tank or the shape of the

tank.

In application to the vibration spectrum of a chamber

Weyl’s law is valid for two extreme kinds of boundary condi-

tions: (i) pressure release boundary condition corresponding

to an infinitely compliant wall of the chamber (Dirichlet

boundary condition) or (ii) an infinitely rigid wall (Neumann

boundary condition). Weyl’s law for vibration spectra corre-

sponding to Neumann boundary condition were in the focus

of the early studies of the distribution of eigentones in rectan-

gular chambers in application to room acoustic.13–15 Recently

Weyl’s law was applied at NIST in metrological studies of

gas-filled pressure vessels,16 where the rigid wall boundary

condition was expected to be accurate.

The acoustic spectrum of a real liquid-filled tank is dif-

ferent from these two extreme cases due to the complicated
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interaction of the liquid inside the tank with the elastic

solid walls enclosing it. The goal of the present work is to

explore this interaction both theoretically and experimen-

tally in the context of SMG. In Sec. II, we briefly review

Weyl’s law and formulate a model of a thin-walled spheri-

cal tank. Section III is dedicated to calculating the tank’s

vibration spectrum. We note that vibration spectrum of a

gas-filled thick-walled pressure tank was calculated in Ref.

17 for a spherical geometry and in Ref. 18 for a quasi-

spherical tank. In Ref. 19 the model developed in Ref. 17

was applied to a liquid-filled thick-walled spherical pres-

sure vessel. Here, we focus on the essentially opposite limit

of a thin-walled liquid filled tank which is relevant for

applications to propellant tanks in space. In the obtained

spectrum, we distinguish between the shell modes, which

are localized in the vicinity of the wall, and the liquid

modes, which are delocalized throughout the bulk of the

liquid. We find that for sufficiently low frequencies (the

soft wall regime) the liquid modes can be represented as a

perturbation of the spectrum of a sphere with Dirichlet

boundary conditions, while for sufficiently high frequencies

(the rigid wall regime) they can be represented as a pertur-

bation of the spectrum of a sphere with Neumann boundary

conditions and quantify these perturbations. Section IV

presents experimental results for testing the acoustic spec-

trum of a thin-walled spherical titanium flight tank filled

with water. The agreement of the measured spectra to the

analytical predictions of Sec. III is found to be excellent

both for the shell modes and the liquid modes.

Our main theoretical finding in Sec. III in the con-

text of SMG is that in the first order of the small param-

eter, which is essentially the ratio of the wall mass to

the liquid mass in the tank, the spectrum in the soft wall

regime is equivalent to that of a spherical tank with a

perfectly compliant wall (Dirichlet boundary condition),

but having a larger radius. Accordingly, Weyl’s law can

be applied to accurately infer the volume of the tank by

correcting for this effective radius increase. Specifically,

we show in Sec. V that the mass of the liquid enclosed

in the larger “effective” tank simply equals the mass of

the liquid in the original tank plus the added mass of the

tank wall. Importantly, this result remains true for par-

tially filled thin-walled tanks of arbitrary shapes (see

Appendix C), namely, the added mass inferred from the

application of Weyl’s law to a thin-walled propellant

tank is equal to the mass of the tank wall in contact
with the liquid to the first order in the wall thickness.

The utility of this result is significant for in-space appli-

cations, since in zero gravity the propellant configuration

in a partially filled tank is not known, but the propellant

wets the tank walls completely and, therefore, is in con-

tact with the entire wall surface. In this situation, the

tank-wall correction is independent of the unknown pro-

pellant configuration and equal to the total mass of the

tank wall, which is generally known and can be taken

into account for the propellant mass inference. Section

VI summarizes our conclusions.

II. LIQUID VIBRATIONS WITHIN A SPHERICAL
ELASTIC SHELL

The idea behind the SMG method relies on the asymp-

totic behavior of the eigenvalue counting function of the

Laplacian operator in a bounded domain with suitable

boundary conditions (Weyl’s law), which can be expressed

in terms of the counting function N( f) of the eigenfrequen-

cies associated with the wave equation satisfied by the pres-

sure p in the liquid:

@2
t p ¼ c2

LDp in XL; (1)

where XL is the liquid-filled domain, cL is the speed of

sound in the liquid phase and D denotes the three-

dimensional Laplacian. The eigenfrequency counting func-

tion is defined as

Nðf Þ ¼
X1
k¼1

hð f � fkÞ; (2)

where hðtÞ is the Heaviside step function and fk are the

eigenfrequencies that satisfy

�c2
LDwk ¼ ð2pfkÞ2wk in XL; (3)

with the appropriate boundary conditions. The eigenfunction

wk is the normal mode associated with the kth eigenfre-

quency. Weyl’s Law11,12 states that the counting function

N( f) has the following asymptotic expansion:

Nðf Þ ¼ 4pVf 3

3c3
L

þ pAf 2

4c2
L

þ oðf 2Þ; f !1; (4)

where V is the volume of the space occupied by the liquid.

In the case of pressure release boundary condition corre-

sponding to the liquid-gas interfaces and a compliant tank

wall the value of A is equal to the negative total surface area

of @XL; for the rigid wall and a full tank the value of A
equals the total surface area of @XL. By extracting the lead-

ing order asymptotic behavior of the measured counting

function N(f) as f !1, one can, therefore, in principle

recover the liquid volume V with arbitrary precision from

the known parameters of the liquid independently of the

shape of XL.

In this section we derive a model describing the vibra-

tional modes of a liquid-filled spherical tank motivated by

the specifications of the test tank used at NASA Ames

Research Center to validate the SMG technique on the

ground. The latter consists of a titanium spherical shell of

inner radius R¼ 37.6 cm and wall thickness dw ¼ 1:27 mm.

The material parameters of pure titanium are mass density

qw ¼ 4506 kg/m3, Young modulus E ¼ 1:16� 1011 Pa, and

Poisson ratio r ¼ 0:32. The working liquid is water, whose

parameters are mass density qL ¼ 1000 kg/m3 and sound

speed cL¼ 1450 m/s. Our model neglects the irreversible

dissipation mechanisms or acoustic radiation and treats the

tank wall as an infinitesimally thin elastic shell.
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We begin by stating the acoustic equation for the liq-

uid.20 Let BR � R3 be a ball of radius R centered at the ori-

gin that is enclosed by an elastic shell. Introducing the

velocity potential u, we can write

@2
t u ¼ c2

LDu in BR: (5)

Turning to the boundary conditions, on @BR we introduce

the displacement f of the shell in the direction of the outer

normal to @BR. Noting that the rate of displacement coin-

cides with the normal liquid velocity, from the definition

v ¼ ru for the liquid velocity we obtain the kinematic

condition

@tf ¼ @nu on @BR; (6)

where @n denotes the derivative in the direction of the out-

ward normal to @BR. We also need to match the pressure

jump due to shell elasticity on both sides of @BR, assuming

zero pressure on the outer surface of the shell. Again, recall-

ing that the acoustic pressure in the liquid is given by

p ¼ �qL@tu and using the expression for the pressure differ-

ence across a thin elastic shell from Refs. 21 and 22 yields

qwdw@
2
t f ¼ �qL@tu� BD2

?f� R�1D?w on @BR; (7)

where D? is the Laplace-Beltrami operator on @BR, w is the

Airy stress function solving

D2
?w ¼ SR�1D?f (8)

and

B ¼ Ed3
w

12ð1� r2Þ ; S ¼ Edw (9)

are the bending and stretching stiffnesses, respectively.

Here, for simplicity we used the shallow shell approxima-

tion that should be appropriate for the high transverse wave

number regime we are interested in.

Eliminating the Airy stress w yields

qwdw@
2
t f ¼ �qL@tu� BD2

?f� SR�2f on @BR; (10)

which together with Eq. (6) specifies the boundary condi-

tions for Eq. (5). Dimensional analysis of Eq. (10) suggests

that bending and stretching terms dominate depending on

the scale ‘ of variation of f along @BR. For ‘� ‘wb, where

‘wb ¼ ðdwRÞ1=2 ¼ 2:2 cm, the bending term dominates,

while for ‘� ‘wb the stretching term dominates. Also, the

inertia of the wall dominates when qwdw � qL‘, i.e., when

‘� ‘wi ¼ qwdw=qL ¼ 6 mm.

III. HIGH FREQUENCY NORMAL MODES

In this section we use Eqs. (5), (6), and (10) to identify

the normal acoustic modes dominated by liquid and shell

vibrations. This is achieved by passing to time harmonic

equations with

uLðx; tÞ ¼ aðrÞe�ixtYnmðh;/Þ;
fðx; tÞ ¼ be�ixtYnmðh;/Þ;

(11)

where ðr; h;/Þ are spherical coordinates and Ynm are spheri-

cal harmonics with n ¼ 0; 1; 2;… and jmj � n. Substituting

this expression for u into Eq. (5) yields aðrÞ ¼ Ajnðxr=cLÞ,
where jn is the spherical Bessel function of the first kind,23

and we took into account boundedness of the solution at the

origin.

Turning to the boundary condition in Eq. (6), we find

that

cLb ¼ iAj0nðxR=cLÞ; (12)

and we note the expression for the derivative of jnðzÞ,23

j0nðzÞ ¼
njnðzÞ

z
� jnþ1ðzÞ: (13)

Using the second boundary condition in Eq. (7), we

obtain the characteristic equation determining the eigenfre-

quency x,

cLqLx
cLn

xR
� jnþ1ðxR=cLÞ

jnðxR=cLÞ

� ��1

¼ Bn2ðnþ 1Þ2

R4
þ S

R2
� qwdwx2: (14)

Introducing the dimensionless frequency parameter

k ¼ xR=cL, this equation can be written as

eþ n� kjnþ1ðkÞ
jnðkÞ

� ��1

¼ jn

k2
; (15)

where

e ¼ qwdw=ðqLRÞ; jn ¼
Edw

qLc2
LR

1þ n2ðnþ 1Þ2d2
w

12ð1� r2ÞR2

 !
(16)

are two dimensionless parameters characterizing the inertia

and the bending stiffness of the tank wall for a given mode,

respectively. For our tank filled with water we have

e � 0:015 and j0 � 0:18.

We denote the roots of Eq. (15) by kn;k, where the radial

wave number k ¼ 0; 1; 2;…; enumerates the distinct modes

associated with the azimuthal wave number n in the ascend-

ing order. Analysis of Eq. (15) in Appendix A shows the fol-

lowing property of the spectrum: 0 < kn;0 < a0n;1 and a0n;k
< kn;k < a0n;kþ1 for k � 1, where a0n;k denotes the kth zero of

j0nðzÞ, corresponding to the spectrum of a spherical tank with

infinitely rigid walls (Neumann boundary conditions).

Figure 1 illustrates this property by showing locations of the

roots kn;k and zeros a0n;k for n¼ 10, for parameters e � 0:015

and j0 � 0:18 corresponding to the water-filled tank.

We note one immediate important consequence of the

proved structure of the spectrum: since the spectrum corre-

sponding to the Neumann boundary conditions satisfies
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Weyl’s law [see Eq. (4)], the spectrum kn;k of a thin-walled

tank will also satisfy Weyl’s law to the leading Oð f 3Þ order

in frequency as f !1. Note that in Sec. V we show how

Weyl’s law may be applied to the spectrum of a thin-walled

water-filled tank to the sub-leading Oðf 2Þ order.

The structure of the spectrum simplifies under the

assumption k� n, for which a closed form asymptotic

expression may be derived. Using Eq. (9.1.73) in Ref. 23,

we find that jnþ1ðzÞ=jnðzÞ ’ z=ð2nþ 3Þ for z� n.

Therefore, solving Eq. (15) we obtain a unique mode

kn;0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi

njn

enþ 1

r
; kn;0 � n; (17)

where we noted that the obtained solution lies below a0n;1
’ nþ 1=2 by Eq. (10.1.59) of Ref. 23 and is, therefore, the

smallest for a given n. This expression is valid as long as

jn � nðenþ 1Þ in order to be consistent and breaks down

when jn ¼ nðenþ 1Þ. It is not difficult to see that the latter

equation has two positive roots n ¼ n6
c for all sufficiently

small dw=R, and Eq. (17) is thus valid when n�c � n� nþc
in this regime. Asymptotically, as dw=R! 0, i.e., in the

limit of a thin-walled tank, we have nþc ’ CR=dw, where the

dimensionless constant C only depends on the material

parameters and solves a cubic equation. Similarly, we have

n�c ’ ðE=qLc2
LÞðdw=RÞ as dw=R! 0. For the material

parameters of a water-filled titanium tank we find nþc
’ R=dw and n�c ’ 55dw=R. Therefore, in our water-filled

tank Eq. (17) is valid when 0:2� n� 300, i.e., Eq. (17) is

valid for all n� nþc .

The structure of the spectrum simplifies in the range of

validity of Eq. (17), where the spectrum can be separated

into two groups. The first is a branch given by the roots

kn;0, corresponding to the modes localized in the vicinity of

the wall. The localization length ln of these modes in

the radial direction from the wall can be estimated as

l�1
n 	 ðd=drÞlog ðjnðkn;0r=RÞÞjr¼R. Using approximation

j0nðzÞ � njnðzÞ=z valid for z� n, we find ln � R=n. Those

are evanescent modes, which will be termed shell modes, as

their presence is due to the elasticity of the shell. As follows

from Eq. (17), we have kn;0 ! 0 as dw=R! 0. Figure 2

shows the numerical solution of Eq. (15) for the shell modes

kn;0 in the water-filled tank. The expression in Eq. (17)

is shown to agree well with the exact solution for

n � nþc � 320. For n
 nþc ; kn;0 is seen to asymptotically

approach a0n;1.

The second group of solutions of Eq. (15) corresponds

to kn;k for k> 0, which will be termed liquid modes for the

reasons which will become clear below.

In Appendix B, we use perturbation theory to show that

the jn=k
2 term in Eq. (15) may be neglected in the calcula-

tion of kn;k for k> 0, provided jn � ð1� eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
. For

the parameters of the water-filled tank, we find that the latter

condition is satisfied for n� nþc . It means that the elasticity

terms do not affect the boundary conditions when n� nþc ,

and the liquid modes are effectively governed by the inertia

FIG. 1. (Color online) Plots of the left-

hand side (blue) and the right-hand

side (red) of Eq. (15) for n¼ 10,

e � 0:015 and j0 � 0:18, correspond-

ing to the water-filled tank. Their inter-

section shows locations of the roots

kn;k of Eq. (15). Stars denote the loca-

tions of a0n;k . It can be seen that 0

< kn;0 < a0n;1 and a0n;k < kn;k < a0n;kþ1

for k � 1, in agreement with the analy-

sis in Appendix A. Black dotted line

corresponds to eþ 1=n on the vertical

axis.

FIG. 2. (Color online) Numerical solu-

tion of Eq. (15) for the shell modes fre-

quencies kn;0 (red) in the water-filled

tank. Green circles (magnified in the

insert) correspond to kn;k with k> 0.

Solution of approximate Eq. (17)

(black) is shown to correspond well to

the exact solution for n � nc � 320, as

found from solving jnþc
¼ nþc ðenþc þ 1Þ

numerically. For n
 nþc ; kn;0 is seen

to asymptotically approach a0n;1 (blue).
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of the wall in the water-filled tank. As a result, the following

approximation for Eq. (15) holds:

eþ n� kjnþ1ðkÞ
jnðkÞ

� ��1

’ 0: (18)

Two limits of Eq. (18) are considered next: the soft wall

limit for k� e�1 and the rigid wall limit for k
 e�1. In

Appendix B, we show that in the soft wall limit we have

kn;k ’ an;kð1� eÞ; kn;k � e�1: (19)

We note that the condition kn;k � e�1 has a clear physical

meaning: the soft wall approximation is valid for sufficiently

long wave-lengths, such that the mass of the liquid per unit

area of the wall in a layer of one wavelength width is much

larger than the mass of the wall per unit area. In contrast to

the shell modes, kn;k for k> 0 have a non-singular limit as

the wall becomes infinitely thin: kn;k ! an;k as

e; jn 	 dw=R! 0. Since an;k give the spectrum of a liquid

sphere (with Dirichlet boundary conditions), this property

justifies using the term liquid modes for kn;k with k> 0. It is

important to note that in the first order in e the soft wall

approximation in Eq. (19) is equivalent to the spectrum

obtained for the Dirichlet boundary conditions for the

sphere of radius R0 ¼ R=ð1� eÞ. This follows immediately

from the expression for the spectrum fn;k ¼ kn;kcL=ð2pRÞ
¼ an;kð1� eÞcL=ð2pRÞ, corresponding to Eq. (19). The

implications of this observation will be explored in Sec. V.

In the limit of a rigid wall, the derivation in Appendix B

yields

kn;k ’ a0n;k þ
1

ea0n;k 1� nðnþ 1Þ
ða0n;kÞ2

 ! ;

kn;k 
 ð2eÞ�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eÞ�2 þ nðnþ 1Þ

q
: (20)

Note that in contrast to the soft wall limit kn;k � e�1, where

all the modes in the corresponding frequency range are

approximated well by those with the Dirichlet boundary

condition, the assumption kn;k 
 e�1 is no longer sufficient

and the rigid wall approximation breaks down for the modes

where kn;k 	 n.

Figure 3 demonstrates the high accuracy of the approxi-

mations in Eqs. (19) and (20) in their corresponding regions

of validity.

IV. MEASURING THE ACOUSTIC RESPONSE
OF A SPHERICAL TANK

This section presents data on acoustic spectra of the

spherical tank modeled above. The data were collected for

the water-filled (“full”) tank configuration. The spherical

tank is mounted as shown in Fig. 4(a). The hardware used

for the testing consisted of solenoid actuators and acceler-

ometers. The solenoids were mounted in frames to allow

easy attachment and relocation [Fig. 4(b)]. Varying the actu-

ation voltage to the solenoid from 6 to 18 V allowed various

strike forces to be applied. The accelerometers [Figs. 4(c),

4(d)] tested had a range of sensitivities from 100–1000 mV/

g (g¼ 9.8 m/s2). A National Instruments hardware interface

to a PC running an in-house developed LABVIEW routine

were used for data acquisition.

Acoustic response was actuated by a single ping by a

solenoid actuator to the tank wall. The time-series was col-

lected by the NI and imported to MATLAB where processing

of the data were performed to attenuate the shell modes and

FIG. 3. (Color online) Numerical solu-

tion of Eq. (15) for the shell modes kn;0

(magenta) and liquid modes kn;k (blue

circles) in the water-filled tank. Solutions

of approximate Eqs. (19) (a) and (20) (b)

are shown by red circles. They corre-

spond very well to the exact solution in

their regions of validity demarcated by

the dashed lines kn;k ¼ e�1 (a) and kn;k

¼ ð2eÞ�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eÞ�2 þ nðnþ 1Þ

q
(b).

FIG. 4. (Color online) Hardware used for acoustic testing of the spherical

tank: spherical titanium tank (a); solenoid actuator mounted on the tank

wall via a metal frame epoxied to the wall (b), accelerometer (c), and accel-

erometer stud expoxied to the tank wall (d). A National Instruments hard-

ware interface to a PC running an in-house developed LABVIEW routine were

used for data collection.
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compute the Fourier transform. Figure 5 shows the Fourier

amplitude spectrum of the acoustic response of the water-

filled tank to a single ping of an actuator. The red circles

correspond to the numerical solution of Eq. (15) for the liq-

uid modes. The magenta dots correspond to the theoretical

prediction for the first 50 shell modes where they have the

highest density, see Fig. 3. The shell modes at high wave-

numbers n have been effectively eliminated from the spectra

to facilitate liquid modes counting, using a pre-processing

approach described in Ref. 24. This approach is based on

the observation that damping rates of the shell modes are

much higher than damping rates of the liquid modes in a

given frequency interval due to the strong localization of the

shell modes near the wall. The damping rate scale separation

suggests a simple but efficient approach to eliminate the

shell-mode contribution to the tank acoustic spectrum via an

application of a time delay to the time-domain signal before

transforming to the frequency domain. The time delay leads

to an exponential suppression of the shell modes compared

to the liquid modes due to damping. The correspondence of

the experimental liquid-modes spectra to the theoretical pre-

dictions in Fig. 3 is excellent. The ð2nþ 1Þ-fold-degenerate

liquid modes corresponding to a given (n, k) pair are seen to

be split [subplot (c)], by an inevitable slight deviation of the

tank geometry from the ideal spherical symmetry.

V. CONVERGENCE OF THE THEORETICAL MODE
COUNTING FUNCTION TO WEYL’S LAW
ASYMPTOTICS

In Sec. II we found that the crossover from the soft wall

limit Eq. (19) to the rigid wall limit Eq. (20) occurs around

k 	 e�1. For the tested tank the corresponding frequency is

f 	 cL=ð2peRÞ � 40 kHz. Accordingly, in the range of fre-

quencies shown in Fig. 5 the soft wall approximation is

valid. As noted in the end of Sec. III, the soft wall approxi-

mation is equivalent, in the first order in e, to the spectrum

obtained for the Dirichlet boundary condition for the sphere

of radius R0 ¼ R=ð1� eÞ. Therefore, fitting the resulting

mode counting function N(f) to the Weyl’s law in Eq. (4) is

expected to predict the volume of that effective sphere,

V0 ¼ 4pR03

3
¼ V

ð1� eÞ3
: (21)

An interesting interpretation of that result is given by con-

sidering the mass of the liquid inferred from Eq. (21),

M0 ¼ qLV

ð1� eÞ3
� qLVð1þ 3eÞ ¼ M þMw;

Mw ¼ 4pR2qwdw:

(22)

It follows that fitting the mode counting function of the

spherical tank in the range of validity of Eq. (19) predicts an

effective mass of the liquid which is equal to the sum of the

actual mass of the liquid M and the mass of the tank’s wall

Mw—the tank wall correction.

Figure 6(a) depicts the counting functions for both the

spherical tank and the effective sphere. The correspondence

is excellent in the range f � 40 kHz, as predicted. Figure

6(b) shows the corresponding volumes inferred from the

counting functions using frequency-averaged Richardson

extrapolation25 to fit the counting functions to Weyl’s law,

Eq. (4). We see that a larger volume is predicted, given by

Eq. (21). Figure 6(c) shows the error in the mass inference

FIG. 5. (Color online) Fourier amplitude spectrum of the acoustic response of the water-filled tank to a single ping of a solenoid actuator (a). Red circles cor-

respond to the liquid modes and magenta dots to the shell modes given by Eq. (15). The dense conglomerate of modes at the lower end of the spectrum, sub-

plot (b), is associated with the shell modes for the azimuthal wave number n � 50, where their density is the highest, as predicted by the theory, see Fig. 3.

The predicted shell mode locations at high wavenumbers n are not shown. The splitting of the degenerate modes by a slight deviation of the tank geometry

from spherical symmetry is shown in subplot (c).
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which does not take the added mass into account, em

¼ ð1�Minf =MÞ � 100% and compares it with the error

obtained when the added mass of the wall is corrected for,

e0m ¼ ð1� ðMinf �MwÞ=MÞ � 100%. Here, Minf and M desig-

nate the inferred and the actual mass of the liquid, respec-

tively. We see that introducing the wall corrections brings

the error into the range of 60:5% at f � 15 kHz, corre-

sponding to N � 1000 modes.

Figure 7 shows the error in the mass inference with and

without the wall corrections for a broader range of frequen-

cies extending far beyond the region of validity of the soft-

wall approximation, Eq. (19). At f � 40 kHz, the error of

the wall-corrected inference increases with f, while the error

of the no-correction inference gradually decreases in the

rigid wall limit, f 
 cL=ð2pReÞ, as expected.

To summarize, fitting the mode counting function of the

spherical tank to Weyl’s law overestimates the mass of the

liquid by an amount equal to the mass of the tank wall,

which can be corrected for when the mass of the wall is

known. Although the foregoing calculations pertain to a

spherical tank, it can be shown (see Appendix C) that the

main result generalizes to thin-walled tanks and liquid con-

figurations of arbitrary shapes. Namely, the liquid modes

spectrum of a thin-walled tank is equivalent, in the first

order in wall effects, to the spectrum of an infinitesimally

thin-walled tank (Dirichlet boundary conditions) of a

slightly larger volume, with the added mass equal to the

mass of the tank wall in contact with the liquid. This result

is independent on the tank shape and liquid configuration.

Therefore, Weyl’s law for Dirichlet boundary conditions

can be applied to infer the mass of the liquid, using the wall

corrections equal to the mass of the wall in contact with the

liquid. Under the conditions of microgravity in space the

propellant typically wets the tank wall,26 and the wall cor-

rection equals the total mass of the tank wall, which is inde-

pendent of the liquid configuration and is generally known.

VI. CONCLUSIONS

In conclusion, we carried out a theoretical analysis of

the normal modes of a spherical thin-walled water-filled

tank. A distinction of shell vs liquid modes was made to

facilitate both theoretical and experimental analysis of the

spectrum. An experimental validation of the theory for

water-filled tank was demonstrated. The correspondence

between the experimental data and the theory is excellent.

We showed that in the soft wall limit the liquid modes of the

tank are identical, in the first order in a certain perturbation

parameter, to the spectrum of a sphere with Dirichlet bound-

ary conditions, having a slightly larger volume correspond-

ing to the mass of liquid equal to the mass of liquid in the

tank plus the mass of the tank’s wall. As a consequence, an

application of Weyl’s law to infer the mass of the liquid

contained in a thin-walled spherical tank from its acoustic

response gives an effective mass which is larger than the

actual mass of the liquid by the added mass equal to the

mass of the wall. This result is generalized to thin-walled

tanks and liquid configurations of arbitrary shapes, where

the wall corrections are shown to equal the mass of the tank

wall in contact with the liquid. This result has important

implications for propellant tanks in the microgravity condi-

tions in space, since typically the propellant wets the tank

FIG. 6. (Color online) (a) Liquid-modes counting function N(f), Eq. (15) (green) vs liquid-modes counting function N0ðf Þ, corresponding to an effective

sphere of radius R0 ¼ R=ð1� eÞ and Dirichlet BC (red). (b) The liquid volume inferred from the counting functions N(f) (green) and N0ðf Þ (red), using

Richardson’s extrapolation to fit the counting functions to Weyl’s law, Eq. (4). The dotted and dashed lines designate the tank volume and the volume of the

effective sphere, respectively. (c) The error in the mass inference from the counting function N(f) without the wall corrections (blue) and with the wall cor-

rections (red). The insert shows that introducing the wall corrections brings the error into the range of 60:5% at f � 15 kHz, corresponding to N � 1000

modes.
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wall, in which case the mass of the wall in contact with the

propellant equals the total mass of the wall. Although the

propellant configuration under microgravity conditions is

generally unknown, the tank wall total mass is known and

the wall correction can be readily made to infer the propel-

lant mass based on an application of Weyl’s law for

Dirichlet boundary conditions to the acoustic spectrum of

the tank.
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APPENDIX A: ANALYSIS OF THE ROOTS
OF THE CHARACTERISTIC EQUATION

Here, we present the details of the argument that shows

that there is exactly one root kn;k 2 ða0n;k; a0n;kþ1Þ of Eq. (15)

for every k ¼ 0; 1; 2;…, where a0n;k denotes the kth root of

j0nðzÞ, with the convention that a0n;0 ¼ 0.

Notice that Eq. (15) may be rewritten with the help of

Eq. (13) as

eþ jnðkÞ
kj0nðkÞ

¼ jn

k2
: (A1)

We claim that the left-hand side of Eq. (A1) is a monotoni-

cally increasing function of k for all k 6¼ a0n;k. To prove it,

we need to show that

�
kj2nðkÞ þ kj2

nþ1ðkÞ � ð2nþ 1ÞjnðkÞjnþ1ðkÞ
j2nðkÞ

¼ d

dk
kj0nðkÞ
jnðkÞ

� �
� 0; (A2)

whenever k 6¼ an;k, where an;k is the kth root of jnðzÞ. The

equality in Eq. (A2) follows from the differential equation

satisfied by jnðzÞ [see Eq. (10.1.1) in Ref. 23] and Eq. (13).

Let rnðkÞ ¼ jnþ1ðkÞ=jnðkÞ. Then the claim in Eq. (A2) is

equivalent to

1þ r2
nðkÞ �

2nþ 1

k
rnðkÞ � 0: (A3)

The latter is clearly true for k > nþ ð1=2Þ, as can be easily

seen by completing the square. Therefore, we now focus on

the range of k � nþ ð1=2Þ and begin by observing that

from the recurrence relation in Eq. (10.1.19) of Ref. 23 it

follows that Eq. (A3) is equivalent to

rnðkÞ � rn�1ðkÞ: (A4)

To verify the latter, we appeal to the continued fraction rep-

resentation of rnðzÞ given by Eq. (17.10.40) of Ref. 27,

rnðkÞ ¼
k

2nþ 3� k

2nþ 5� k
2nþ 7� � � � :

(A5)

By inspection, for k � nþ ð1=2Þ the inequality in Eq. (A4)

holds for every convergent of the continued fraction representa-

tions of rn and rn�1. Passing to the limit then yields the claim.

As a corollary to the inequality in Eq. (A4), we can

establish an explicit lower bound on the values of a0n;1. This

result follows from Eqs. (10.1.55)-(10.1.56) in Ref. 23,

which in the notation of this appendix read rnða0n;1Þ ¼ n=a0n;1
and rn�1ða0n;1Þ ¼ a0n;1=ðnþ 1Þ. Inserting those expressions

into Eq. (A4) yields

a0n;1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
: (A6)

In addition, since there is exactly one root kn;k 2 ða0n;k;
a0n;kþ1Þ, the inequality in Eq. (A6) implies that

kn;k >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
; k > 0: (A7)

APPENDIX B: VANISHING ELASTICITY LIMIT

Using Eq. (A7), we can derive a condition under which

the elasticity term jn=k
2 in Eq. (15) can be neglected for the

calculation of kn;k for k> 0. Let kð0Þn;k denote the solution of

FIG. 7. (Color online) The error in

mass inference using Richardson

extrapolation from the counting func-

tion N(f), without the wall corrections

(blue) and with the wall corrections

(red). The insert shows that introducing

the wall corrections brings the error

into the range of 60:5% at 15 kHz

� f � 40 kHz, corresponding well to

the soft wall intermediate asymptotic

regime f � cL=ð2pReÞ described by

Eq. (19). At higher frequencies,

f � cL=ð2pReÞ, the error with wall cor-

rections starts to increase, while the

error without the wall correction

decreases in absolute value gradually

reflecting a transition to the rigid wall

limit.
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eþ n� kjnþ1ðkÞ
jnðkÞ

� ��1

¼ 0; (B1)

and consider the term jn=k
2 in Eq. (15) as a perturbation to

Eq. (B1). In the first order in the perturbation we have

kn;k � kð0Þn;k ¼ kð1Þn;k , with the first order correction given by

kð1Þn;k ¼
jn

kð0Þn;k

� �2

dy

dk

� ��1����
k¼kð0Þ

n;k

; (B2)

where yðkÞ denotes the left-hand side of Eq. (B1). Since

jkn;kþ1 � kn;kj 	 ja0n;kþ1 � a0n;kj 	 1, the term jn=k
2 in Eq.

(15) can be neglected provided kð1Þn;k � 1, or

jn

kð0Þn;k

� �2
� dy

dk

� �����
k¼kð0Þ

n;k

: (B3)

The differentiation of the left-hand side of Eq. (B1) may

be performed using Eqs. (10.1.21) and (10.1.22) in Ref. 23 to

express the result as a function of rnðkÞ ¼ jnþ1ðkÞ=jnðkÞ.
Noting that rnðkð0Þn;kÞ ¼ ½nþ ð1=eÞ�=k

ð0Þ
n;k by Eq. (B1), we obtain

that Eq. (B3) is equivalent to

jn

kð0Þn;k

� �2
�

1� eþ e2 ðkð0Þn;kÞ
2 � nðnþ 1Þ

h i
kð0Þn;k

: (B4)

Finally, we use Eq. (A7) to derive a stronger smallness

condition

jn � ð1� eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
: (B5)

If Eq. (B5) is satisfied, then so is Eq. (B4), and it can be

expected that the elasticity term jn=k
2 introduces small cor-

rections to the roots of Eq. (15) and can be neglected in the

leading order of the perturbation theory.

We now focus on the limiting regimes for solutions of

Eq. (B1). In the limit k� e�1, we look for the solution in

the form kn;k ¼ an;k þ kð1Þn;k , where an;k is the kth zero of

jnðzÞ. Using the equivalent form

eþ jnðkÞ
kj0nðkÞ

¼ 0 (B6)

of Eq. (B1) with the above ansatz for kn;k and linearizing the

resulting equation in kð1Þn;k gives kð1Þn;k ¼ �ean;k, i.e.,

kn;k ’ an;kð1� eÞ; kn;k � e�1: (B7)

For Eq. (B7) to be self-consistent, the first order correction

term an;ke has to be much smaller than the spacing between

the subsequent zeros an;k, i.e., an;ke� jan;k � an;k61j 	 1.

Thus, we confirm the validity condition an;ke� 1 for the

approximation in Eq. (B7), which resolves an apparent con-

tradiction between the shrinkage of the distance between the

subsequent roots kn;k and kn;kþ1 by the factor ð1� eÞ

compared to the unperturbed roots an;k and an;kþ1, and the

fact that all roots kn;k are sandwiched between the zeros a0n;k
and a0n;kþ1 as proved in Appendix A.

In the opposite limit k
 e�1, we look for solution in

the form kn;k ¼ a0n;k þ kð1Þn;k , where a0n;k is the kth zero of

j0nðzÞ. We first rewrite Eq. (B6) in the form

j0nðkÞ
jnðkÞ

¼ �ðkeÞ�1: (B8)

In the leading order of ðkeÞ�1 � 1, Eq. (B8) yields

kð1Þn;k ¼ �
jnða0n;kÞ

ea0n;kj00nða0n;kÞ
: (B9)

Using the differential equation satisfied by jnðzÞ [see

Eq. (10.1.1) in Ref. 23] and the property j0nða0n;kÞ ¼ 0, we

have

j00nða0n;kÞ ¼ �jnða0n;kÞ 1� nðnþ 1Þ
ða0n;kÞ

2

 !
; (B10)

which yields

kð1Þn;k ¼
1

ea0n;k 1� nðnþ 1Þ
ða0n;kÞ

2

 ! : (B11)

Notice that by Eq. (A6) we have kð1Þn;k > 0 for all k � 1. Once

again, the validity condition for Eq. (B11) is kð1Þn;k

� ja0n;kþ1 � a0n;kj 	 1. Using Eq. (B11), it can be expressed

as follows:

kn;k 
 ð2eÞ�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eÞ�2 þ nðnþ 1Þ

q
: (B12)

We see that condition kn;k 
 e�1 is a necessary but not a

sufficient condition for the rigid wall (Neumann boundary

conditions) approximation. We note that in contrast to the

soft-wall limit kn;ke� 1, in which all modes in the fre-

quency range are approximated well by those corresponding

to the Dirichelet boundary condition, the rigid wall approxi-

mation breaks down for modes where kn;k 	 n.

Putting everything together, in the rigid wall limit we

obtain

kn;k ’ a0n;k þ
1

ea0n;k 1� nðnþ 1Þ
ða0n;kÞ

2

 ! ;

kn;k 
 ð2eÞ�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2eÞ�2 þ nðnþ 1Þ

q
:

(B13)

APPENDIX C: WALL CORRECTIONS. GENERAL CASE

Here, we consider a thin-walled tank and a liquid con-

figuration of arbitrary shape, where the liquid is in contact

with the wall all over its surface. Such liquid configurations

are expected to form under microgravity conditions in
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space, where the propellant wets the tank wall. To compute

the tank-wall correction, we use a first-order perturbation

theory in the shell effect. As we saw in Sec. III, the liquid

modes are described by Eq. (18), corresponding to the

boundary conditions in Eq. (10), where the B and S terms

are taken to be zero. In this approximation, the boundary

condition in Eq. (10) becomes

qwdw@
2
t f ¼ �qL@tu on @B: (C1)

Using Eq. (6), we can then shape the boundary conditions

Eq. (C1) into the following Robin boundary condition:

qwdw

qL

@nuþ u ¼ 0 on @B: (C2)

We are interested in the soft wall limit, when qwdwk=qL

� 1, where k is the magnitude of the wavevector corre-

sponding to the liquid mode. In this limit, the spectrum is a

perturbation to the spectrum associated with the Dirichlet

boundary condition. The physical interpretation of the con-

dition above is that the mass of the liquid contained in the

liquid layer of the wavelength width is much larger than the

weight of the wall per unit area. Using Eq. (9.2.25) from

Ref. 28, we obtain the following characteristic equation for

the spectrum of the Laplacian operator with the Robin

boundary condition, corresponding to a weak perturbation

of the Dirichlet boundary condition as in Eq. (C2):����ðk2 � k2
pÞdpq þ

qwdw

qL

k2

kpkq

ð
@B

@n
�/p@n/qds

���� ¼ 0; (C3)

where /q are the unperturbed Dirichlet eigenfunctions, bar

stands for complex conjugate and the integration is per-

formed over the tank wall in contact with the liquid. We

note that for wetting propellants in space the integration

runs over the entire wall. In the first order of the perturbation

theory, only the diagonal terms in the perturbation matrix in

Eq. (C3) should be considered, which leads to

k2
p ¼ ðkð0Þp Þ

2 � qwdw

qL

ð
@B

j@n/pj2ds; (C4)

corresponding to Eq. (19) above for the sphere.

Next, we consider a different perturbation theory, where

the boundaries of an infinitely thin-walled tank are perturbed

in such a way that the perturbed boundary corresponds to

@B and the unperturbed boundary to @B0. Since the walls are

infinitesimally thin, the Dirichlet boundary conditions are

taken. Using Eqs. (9.2.71), (9.2.49), and (9.2.51) from Ref.

28, we obtain the following expression for the first-order

perturbation of the liquid spectrum for the full tank:

k2
p � ðkð0Þp Þ

2 þ
ð
@B

ð@n/
0
pÞ/0pds ¼ 0; (C5)

where /0q are the unperturbed Dirichlet eigenfunctions, cor-

responding to the original boundary @B0, and the integration

is performed over the perturbed boundary @B. In the first

order in the perturbation of the boundary, we can write

/0p ¼ �ð@n/0pÞj@B0dr, where dr is the local distance between

@B0 and @B. In addition, in the first order of the perturbation

theory for the eigenvalues we can take ð@n/0pÞj@B0

¼ ð@n/0pÞj@B ¼ @n/pj@B in the integral in Eq. (C5). This

brings Eq. (C5) to the form

k2
p � ðkð0Þp Þ

2 �
ð
@B

j@n/pj2drds ¼ 0: (C6)

We consider the following specific perturbation of the

boundary: dr ¼ qwdw=qL. Using this perturbation, we can

cast Eq. (C6) into the following form:

ðk0Þ
p Þ

2 ¼ k2
p �

qwdw

qL

ð
@B

j@n/pj2ds; (C7)

where ðkð0Þp Þ2 is the liquid spectrum of the full infinitesi-

mally thin-walled tank (i.e., with the Dirichlet boundary

condition) with the boundary @B0 and k2
p is the spectrum of

the infinitely thin-walled tank with the boundary @B.

Therefore, k2
p in Eq. (C7) equals ðkð0Þp Þ2 in Eq. (C4). It fol-

lows that ðkð0Þp Þ2 in Eq. (C7) equals k2
p in Eq. (C4).

Accordingly, we obtain the following interpretation of the

perturbed spectrum k2
p in Eq. (C4): this spectrum is identical

(in the first order in the shell effect) to the unperturbed spec-

trum of the full infinitely thin-walled tank (i.e., with the

Dirichlet boundary condition) with a boundary @B0, such

that dr ¼ qwdw=qL. The effective mass of the liquid con-

tained inside the boundary @B0 is larger than the mass of the

liquid contained inside the boundary @B0 by the amount

dM ¼ qL

ð
@B

drds ¼ qL

ð
@B

qwdw

qL

ds ¼ qwdw

ð
@B

ds ¼ Mw;

(C8)

i.e., by the mass of the wall.
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