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Reduced model for precessional switching of thin-film nanomagnets under the influence
of spin torque
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We study the magnetization dynamics of thin-film magnetic elements with in-plane magnetization subject to
a spin current flowing perpendicular to the film plane. We derive a reduced partial differential equation for the
in-plane magnetization angle in a weakly damped regime. We then apply this model to study the experimentally
relevant problem of switching of an elliptical element when the spin polarization has a component perpendicular
to the film plane, restricting the reduced model to a macrospin approximation. The macrospin ordinary differential
equation is treated analytically as a weakly damped Hamiltonian system, and an orbit-averaging method is used
to understand transitions in solution behaviors in terms of a discrete dynamical system. The predictions of our
reduced model are compared to those of the full Landau-Lifshitz-Gilbert-Slonczewski equation for a macrospin.
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I. INTRODUCTION

Magnetization dynamics in the presence of spin-transfer
torques is a very active area of research with applications to
magnetic memory devices and oscillators [1-3]. Some basic
questions relate to the types of magnetization dynamics that
can be excited and the time scales on which the dynamics oc-
curs. Many of the experimental studies of spin-transfer torques
are on thin-film magnetic elements patterned into asymmetric
shapes (e.g., an ellipse) in which the demagnetizing field
strongly confines the magnetization to the film plane. Analytic
models that capture the resulting nearly in-plane magnetization
dynamics (see, e.g., [4-8]) can lead to new insights and guide
experimental studies and device design. A macrospin model
that treats the entire magnetization of the element as a single
vector of fixed length is a starting point for most analyses.

The focus of this paper is on a thin-film magnetic element
excited by a spin-polarized current that has an out-of-plane
component. This out-of-plane component of spin polarization
can lead to magnetization precession about the film normal or
magnetization reversal. The former dynamics would be desired
for a spin-transfer torque oscillator, while the latter dynamics
would be essential in a magnetic memory device. A device
in which a perpendicular component of spin polarization is
applied to an in-plane magnetized element was proposed in
Ref. [9] and has been studied experimentally [10—12]. There
have also been a number of models that have considered the
influence of thermal noise on the resulting dynamics, e.g., on
the rate of switching and the dephasing of the oscillator motion
[13-15].

Here we consider a weakly damped asymptotic regime of
the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation for
a thin-film ferromagnet, in which the oscillatory nature of the
in-plane dynamics is highlighted.

In this regime we derive a reduced partial differential
equation (PDE) for the in-plane magnetization dynamics
under applied spin torque, which is a generalization of the
underdamped wavelike model due to Capella, Melcher, and
Otto [8]. We then analyze the solutions of this equation under
the macrospin (spatially uniform) approximation, and discuss
the predictions of such a model in the context of previous
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numerical studies of the full LLGS equation [16]. In particular,
we identify the mechanisms for nonswitching, switching, and
precession within this model, and the transitions between the
three behaviors as the spin-current parameters are varied.

The rest of this article is organized as follows. In Sec. IT we
perform an asymptotic derivation of the reduced underdamped
equation for the in-plane magnetization dynamics in a thin-film
element of arbitrary cross section, by first making a thin-film
approximation to the LLGS equation, then a weak-damping
approximation. In Sec. III we then further reduce to a
macrospin ordinary differential equation (ODE) by spatial
averaging of the underdamped PDE, and restrict to the
particular case of a soft elliptical element. A brief parametric
study of the ODE solutions is then presented, varying the
spin-current parameters. In Sec. IV we make an analytical
study of the macrospin equation using an orbit-averaging
method to reduce to a discrete dynamical system, and compare
its predictions to the full ODE solutions. In Sec. V we
seek to understand transitions between the different solution
trajectories (and thus predict current-parameter values when
the system will either switch or precess), and the mechanism by
which these occur, by studying the discrete dynamical system
derived in Sec. I'V. Section VI is devoted to a comparison of the
predictions of the macrospin model with those of the reduced
PDE model derived in Sec. II, in a simplified setting. Finally,
we summarize our findings in Sec. VIIL.

II. REDUCED MODEL

We consider adomain Q C R? occupied by a ferromagnetic
film with cross-section D C R? and thicknessd, i.e., Q2 = D x
(0,d). Under the influence of a spin-polarized electric current
applied perpendicular to the film plane, the magnetization
vector m = m(r,?), with |m| = 1 in © and O outside, satisfies
the LLGS equation (in SI units)

om
or
in ©, with dm/on = (n- V)m = 0 on 92, where n is the
outward unit normal to 9€2. In the above, o > 0 is the Gilbert
damping parameter, y is the gyromagnetic ratio, g is the

om
= —yuom X Hegr + om X o + TsTT (D
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ol 5m is the effective

permeability of free space, Heyr = —
magnetic field, and

E(m) = f(AIVmI2 + K ®(m) — jgMHey - m) d’r

V. m@V - mr
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is the micromagnetic energy with exchange constant A,
anisotropy constant K, crystalline anisotropy function &,
external magnetic field Hgy, and saturation magnetization
M;. Additionally, the Slonczewski spin-transfer torque tsrr
is given by

nyhj
2deM;

TSTT = — m x m x p, 3)
where j is the density of current passing perpendicularly
through the film, e is the elementary charge (positive), p
is the spin-polarization direction, and n € (0,1] is the spin-
polarization efficiency.

We now seek to nondimensionalize the above system. Let

0= 2A 0— 2K heo — Hex )
= [L()MSZ’ = MOMsz , ext — M, .
We then rescale space and time as
t
r—fr, t— &)

y/'L()My '

obtaining the nondimensional form

om B+ om 5 ©)
— =-mx mx — — fmxmxp,
ot eft T ot P
where heg = Her/ M, and
nhj
= — 7
p 2depoM? ™

is the dimensionless spin-torque strength.
Since we are interested in thin films, we now assume that
m is independent of the film thickness. Then, after rescaling

E — poM2de*E, (8)

we have hgg ~ —g—m, where E is given by a local energy
functional defined on the (rescaled) two-dimensional domain

D (see, e.g., Ref. [17]):

E(m) ~ %/(IVmI2 + Q®(m) — 2hey - m)d’r
D

1 1
-I—mE/Dmidzr—}-ESHHM/BD(m-n)st, 9)

inwhichnowm : D — S%,m | isits out-of-plane component,
8 = d /¢ is the dimensionless film thickness, and A = d/L <
1 (where L is the lateral size of the film) is the film’s aspect
ratio. The effective field is given explicitly by

her = Am — %vmdnm) e +he  (10)
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and m satisfies Eq. (6) in D with the boundary condition

om 1
— = ——4|InA|(m - n)[n — (m - n) m] (11)
on 2

on dD.
We now parametrize m in terms of spherical angles as

m = (—sin6 cos ¢, cos 6 cos ¢, sin @), (12)

and the current polarization direction p in terms of an in-plane
angle v and its out-of-plane component p, as

1
p:—
Jy1+rt

Writing 8, = 8/4/1 + pi, after some algebra, one may then
write Eq. (6) as the system

(—sinyr, cosy,p). (13)

b 1

ar cos ¢
+ B«[pL cos¢p — sing cos(@ — V)], (14)

20
hetr - my + occosqbg

200 ad .
o5 = by my bl +fusin@ —9), (15)

where my = 90m/060 and my = 9m/d¢ for m given by (12).
Again, since we are working in a soft thin film, we assume ¢ <
1 and that the out-of-plane component of the effective field in
Eq. (10) is dominated by the term hes - €, >~ —m | = — sin ¢.
Note that this assumes that the crystalline anisotropy and
external field terms in the out-of-plane directions are relatively
small, so we assume the external field is only in-plane, though
it is still possible to include a perpendicular anisotropy simply
by renormalizing the constant in front of the m, term in heg.
We then linearize the above system in ¢, yielding

0 % e pipi—peoso -yl (16
3 — 350 7Y%, B:lpL — ¢ cos Yl (16)

—%§=¢+mmw—w>

a
+¢(—hy sind + h, cos9)+oz8—(f, (17)

where h, =h.s-e, and hy, =hy-e,, and £(0) is E(m)
evaluated at ¢ = 0.

We now note that the last two terms in (17) are negligible
relative to ¢ whenever |h,|,|h,| and « are small, which is true
of typical clean thin-film samples of sufficiently large lateral
extent. Neglecting these terms, one has

L B B
e RS T + BilpL — ¢ cos(®@ — )], (18)
a0 .

—= = Busin@ —¥) +¢. (19)

Then, differentiating (19) with respect to ¢t and using the result
along with (19) to eliminate ¢ and from (18), we find a
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second-order in time equation for 6:

%0 96
= FYe) + E[a + 284 cos(6 — )]
8 2 .
+ ) + BipL + B sin(0 — ) cos(® — ¥), (20)
where, explicitly, one has
8E -
9= —AO + %CD’(Q) + hey - (cos 8, sin0), 2D

and ®(0) = ®[m(6)]. In turn, from the boundary condition on
m in (11), we can derive the boundary condition for 6 as

1
n-vVo = 2—5| In A| sin(6 — @) cos(6 — @), (22)
g

where ¢ is the angle parametrizing the normal n to 9D via
n = (—singp, cos ).

The model comprised of (20)—(22) is a damped-driven
wavelike PDE for 6, which coincides with the reduced
model of Ref. [8] for vanishing spin-current density in an
infinite sample. This constitutes our reduced PDE model
for magnetization dynamics in thin-film elements under the
influence of out-of-plane spin currents. It is easy to see that all
of the terms in (20) balance when the parameters are chosen
S0 as to satisfy

V4
Be~ piL~a~ Q" ~ [hey'? ~ 7 ol (23)

This shows that it should be possible to rigorously obtain the
reduced model in (20)—(22) in the asymptotic limit of L — 0o
and o, By, p1, Q,|hext|,§ — 0 jointly, so that (23) holds.

III. MACROSPIN SWITCHING

In this section we study the behavior of the reduced model
(20)—(22) in the approximation that the magnetization is
spatially uniform on an elliptical domain, and compare the
solution phenomenology to that found by simulating the LLGS
equation in the same physical situation, as studied in Ref. [16].

A. Derivation of macrospin model

Integrating equation (20) over the domain D and using the
boundary condition (22), we have

320 90
/D (m + E[a + 28, cos(6 — )]

+ Bupy + BZsin(0 — ) cos(d — ¥)

0

+3&>’(e) + hey - (cOSO, sin9)> d’r

1
= —34] lnkl'/ sin(6 — @) cos(0 — p)ds. (24)
2 aD

Assume now that 6 does not vary appreciably across the
domain D, which makes sense in magnetic elements that are
not too large. This allows us to replace 6(r,?) by its spatial
average 0(t) = I_IlJI [, 0(x,1)d*r, where | D| stands for the area
of D in the units of £2. Denoting time derivatives by overdots,
and omitting the bar on & for notational simplicity, this spatial
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averaging leads to the following ODE for 6(¢):
6 + 0la + 2B, cos(6 — )] + B2 sin(@ — V) cos(@ — )

+BipL + %é/(G) + hey - (cos 8, sin6)

S|Ini| .
= sin 26 cos(2p)ds
47| D] aD
8/ InA|
4| D|

cos29/ sin(2p) ds. (25)
aD

Next, we consider a particular physical situation in which
to study the macrospin equation, motivated by previous work
[10,11]. AsinRefs. [14—16], we consider an elliptical thin-film
element (recall that lengths are now measured in the units of
£):

x2 2
D= {(x,y) : ;Jrly)—z < 1}, (26)

with no in-plane crystalline anisotropy, Q = 0, and no external
field, hey, = 0. We take the long axis of the ellipse to be aligned
with the e, direction, i.e., b > a, with the in-plane component
of current polarization also aligned along this direction, i.e.,
taking ¥ = 0. One can then compute the integral over the
boundary in Eq. (25) explicitly, leading to the equation

6 + 0(c + Bs cos 0)
+ Asinfcosf + B2sinfcosf + B.p. =0, (27)

where we introduced the geometric parameter 0 < A < 1
obtained by an explicit integration:

7 preos?t —a?sin?t

Vb2 cos? T + a?sin? T

_ 8|Inal

_ olinA| dr. 28
27%ab J, ’ 28)

This may be computed in terms of elliptic integrals, though
the expression is cumbersome so we omit it here. Importantly,
up to a factor depending only on the eccentricity the value of
A is given by
A d 1 L 29)
~ —1n—.
L d

For example, for an elliptical nanomagnet with dimensions
100 x 30 x 2.5 nm (similar to those considered in Ref. [16]),
this yields A ~ 0.1.

It is convenient to rescale time by /A and divide through
by A, yielding

. 1 .
60+ —0(ax+20Acosb)
VA

+ sinfcos@ +op, +o2Asinfcosd =0, (30)

where we introduced o = f,/A. We then apply this ODE to
model the problem of switching of the thin-film elements,
taking the initial in-plane magnetization direction to be static
and aligned along the easy axis, antiparallel to the in-plane

component of the spin-current polarization. Thus, we take
0(0) =, 6(0)=0, 31

and study the resulting initial value problem.
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FIG. 1. Solutions of macrospin equation (30) for « = 0.01, A = 0.1. In (a), p, = 0.2, ¢ = 0.03: decaying solution; in (b), p; = 0.2,
o = 0.06: limit cycle solution [the initial conditions in (a) and (b) are 8(0) = 3.5, to better visualize the behavior]. In (c), p, = 0.3, 0 = 0.08:

switching solution; in (d), p; = 0.6, 0 = 0.1: precessing solution.

We note that, apart from its greater simplicity, Eq. (30)
differs from the usual Stoner-Wohlfarth equation in the way
the material and geometric parameters enter into the equation.
In particular, a logarithmic dependence of the effective shape
anisotropy constant on the element’s aspect ratio changes the
relative strength of the shape anisotropy in ultrathin films
and is an important physical effect, see Eq. (29). Notice that
the latter was not taken into account in the earlier studies of
Refs. [14-16] based on the Stoner-Wohlfarth model.

B. Solution phenomenology

Let us briefly investigate the solution phenomenology as the
dimensionless spin-current parameters ¢ and p, are varied,
with the material parameters « and A fixed. We take all
parameters to be constant in time for simplicity. We find,
by numerical integration, four types of solution to the initial
value problem defined above. The sample solution curves are
displayed in Fig. 1. The first [Fig. 1(a)] occurs for small values

of o, and consists simply of oscillations of 6 around a fixed
point close to the long axis of the ellipse, which decay in
amplitude towards the fixed point, without switching.

Second [Fig. 1(b)], still below the switching threshold,
the same oscillations about the fixed point can reach a finite
fixed amplitude and persist without switching. This behavior
corresponds to the onset of relatively small amplitude limit-
cycle oscillations around the fixed point.

Third [Fig. 1(c)], increasing either o, p, or both, we obtain
switching solutions. These have initial oscillations in 6 about
the fixed point near m, which increase in amplitude, and
eventually cross the short axis of the ellipse at & = 7 /2. Then
6 oscillates about the fixed point near 0, and the oscillations
decay in amplitude toward the fixed point.

Finally [Fig. 1(d)], further increasing o and p, we obtain
precessing solutions. Here the initial oscillations about the
fixed point near m quickly grow to cross /2, after which 6
continues to decrease for all 7, the magnetization making full
precessions around the out-of-plane axis.
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IV. HALF-PERIOD ORBIT-AVERAGING APPROACH

We now seek to gain some analytical insight into the
transitions between the solution types discussed above. We do
this by averaging over half-periods of the oscillations observed
in the solutions to generate a discrete dynamical system which
describes the evolution of the energy of a solution 6(¢) on
half-period time intervals.

First, we observe that in the relevant parameter regimes
the reduced equation (30) can be seen as a weakly perturbed
Hamiltonian system. We consider both @ and A small, with
o < /A, and assume o ~ /A and op, < 1. The arguments
below can be rigorously justified by considering, for example,
the limit A — 0 while assuming that « = O(A) and that the
values of o and p are fixed. This limit may be achieved in the
original model by sending jointly d — 0 and L — oo, while
keeping [17]

Ld L
The last condition ensures the consistency of the assumption
that 6 does not vary appreciably throughout D.

Introducing w(t) = 6(t), (30) can be written to leading order

as

. J0H oH
6="1"1 o=-21 (33)
ow a0
where we introduced
H=14+V(®), V@©) =1isin?0+opi6. (34

At the next order, the effects of finite « and A appear in
the first-derivative term in (30), while the other forcing term
is still higher order. The behavior of (30) is therefore that
of a weakly damped Hamiltonian system with Hamiltonian
‘H, with the effects of « and o serving to slowly change the
value of H as the system evolves. Thus, we now employ the
technique of orbit averaging to reduce the problem further to
the discrete dynamics of H(#), where the discrete time steps are
equal (to the leading order) to half-periods of the underlying
Hamiltonian dynamics (which thus vary with H).

Let us first compute the continuous-in-time dynamics of H.
From (34),

H = wlo+ V'), (35)

which vanishes to leading order. At the next order, from (30),
one has
. a)z
H = —ﬁ(a + 20 A cos ). (36)
We now seek to average this dynamics over the Hamiltonian
orbits. The general nature of the Hamiltonian orbits is either
oscillations around a local minimum of V(0) (limit cycles) or
persistent precessions. If the local minimum of V is close to
an even multiple of 7, H cannot increase, while if it is close
to an odd multiple then H can increase if o is large enough.
This is due solely to the change of sign of the dampinglike
spin-torque term in these regions associated with the chosen
spin-polarization direction.
The switching process involves moving from the oscillatory
orbits close to one of these odd minima, up the energy
landscape, then jumping to oscillatory orbits around the
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neighboring even minimum, and decreasing in energy towards
the new local fixed point. The transition to precession, on
the other hand, occurs when the trajectory escapes its initial
potential well (an odd multiple of ) with enough energy
to leapfrog the next potential well (even multiple), and
thus maintain enough energy to continue to precess. These
mechanisms are discussed further in the following sections.

Continuing with the averaging procedure, we focus first on
the oscillatory orbits. We may define their half-periods as

0
nm=/-ﬁ, 37)
0 0

where 0 and 07 are the roots of the equation V(0) = H to
the left and right of the local minimum of V(6) about which
0(t) oscillates. To compute this integral, we assume that 6(f)
follows the Hamiltonian trajectory:

6 =+2[H - V(). (38)
We then define the half-period average of a function f(6(¢))
as

1 L f0)do
T(H) Jo- V2IH=V©O)]

which agrees with the time average over half-period to the

leading order. Note that this formula applies irrespectively of

whether the trajectory connects 6* to 6 or 6 to 6*. Applying
this averaging to H, we then have

(f

(39)

o

{)= ——— 0,H)do, 40
(") =—7ap /. x@1 (40)

where we defined

(¢ 4+ 20 A cosO)/2[H — V(0)]
VA '

If the value of H is such that either of the roots 6} no longer
exist, this indicates that the system is now on a precessional
trajectory. In order to account for this, we can define the period
on a precessional trajectory instead as

x(0.H) = (41)

e de

rao= [ 5. “2)
0(‘-7[ 0

where 0¢ is a local maximum of V(6). On the precessional

trajectories, we then have

Oc

{)= ——— 0,H)do. 43
") =—~Fap J, . x@M 43)

In order to approximate the ODE solutions, we now decompose
the dynamics of H into half-period time intervals. We thus take,
at the nth time step, H,, = H(t,), ty,+1 = t, + T(H,), and

RGH)
x(0,H,)do, 44)
0* (Hyn)

Hn-H = Hn -

if H, corresponds to a limit cycle trajectory. The same
discrete map applies to precessional trajectories, but with the
integration limits replaced with ¢ — m and 6, respectively.
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FIG. 2. Switching solution (blue line) and its discrete approximation (green circles). Parameters: « = 0.01, A = 0.1, p; = 0.3,0 = 0.08.
(a)The solution 6(z). (b) The trajectory for this solution in the -0 plane. The red line in (b) shows V (0).

A. Modeling switching with discrete map

In order to model switching starting from inside a well of
V(0), we can iterate the discrete map above, starting from an
initial energy Hy. We choose Hj by choosing a static initial
condition #(0) = 0y close to an odd multiple of & (let us
assume without loss of generality that we are close to ),
and computing Hy = V (6p).

On the oscillatory trajectories, the discrete map then
predicts the maximum amplitudes of oscillation [0} (H,)] at
each time step, by locally solving H,, = V(0) for each n. After
some number of iterations, the trajectory will escape the local
potential well, and one or both roots of H, = V(6) will not
exist. Due to the positive average slope of V (6) the most likely
direction for a trajectory to escape the potential well is 6 < 0
(“downhill”). Assuming this to be the case, at some time step
ty, it will occur that the equation Hy = V(6) has only one
root § = 07 > m, implying that the trajectory has escaped the
potential well, and will proceed on a precessional trajectory in
a negative direction past 6 = /2 towards 8 = 0.

To distinguish whether a trajectory results in switching or
precession, we then perform a single half-period step on the
precessional orbit from 6¢ to 6 — 7, and check whether H <
V(B¢ — m): if this is the case, the trajectory moves back to the
oscillatory orbits around the well close to 8 = 0, and decreases
in energy towards the fixed point near 6 = 0, representing
switching. If however H > V(6 — ) after the precessional
half-period, the solution will continue to precess.

In Fig. 2 we display the result of such an iterated application
of the discrete map, for the same parameters as the switching
solution given in Fig. 1(c). In Fig. 2(a) the continuous curve
represents the solution to (30), and the points are the predicted
peaks of the oscillations, from the discrete map (44). Figure
2(b) shows the energy of the same solution as a function of
6. Again the blue curve gives H(t) for the ODE solution,
the green points are the prediction of the iterated discrete
map, and the red curve is V(0). The discrete map predicts
the switching behavior quite well, only suffering some error
near the switching event, when the change of H is significant
on a single period.

B. Modeling precession

Here we apply the discrete map to a precessional solution—
one in which the trajectory, once it escapes the potential well
near 7, does not get trapped in the next well, and continues to
rotate. Figure 3(a) displays such a solution 6(¢) and its discrete
approximation, and Fig. 3(b) displays the energy of the same
solution. Again, the prediction of the discrete map is excellent.

An important point to note here is that whether a trajectory
switches or precesses after escaping its initial potential well
depends only on the details of the half-period during which
it escapes. In particular, the resulting trajectory after escape
depends on the value of H,, at the start of this half-period and
on the “slope” of the ratchet potential [as can be seen in Figs.
2(b) and 3(b)]. We will use this fact in the following section
to obtain analytical predictions of the transitions between the
different types of trajectory as the parameters are varied.

V. TRANSITIONS IN TRAJECTORIES

In this section we seek to understand the transitions between
the trapping, switching, and precessional regimes as the current
parameters o and p, are varied.

A. Escape transition

First, let us consider the transition from states which are
trapped in a single potential well, such as those in Figs. 1(a) and
1(b), to states which can escape and either switch or precess.
Effectively, the absolute threshold for this transition is for the
value of H to be able to increase for some value 6 close to the
minimum of V(8) near . Thus, we consider the equation of
motion (36) for H, and wish to find parameter values such that
‘H > 0 for some 0 near 7. This requires that

2
)
——(a 4+ 20Acosb) < 0.
VA
Assuming that w # 0, we can see that the optimal value of 6 to
hope to satisfy this condition is & = 7, yielding a theoretical
minimum o = o, for the dimensionless current density for

(45)
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FIG. 3. Precessing solution (blue line) and its discrete approximation (green circles). Parameters: « = 0.01, A = 0.1, p; = 0.6, =0.1.
(a) The solution 8(t). (b) The trajectory for this solution in the -6 plane. The red line in (b) shows V (9).

motion to be possible, with

o

=K (46)

GS
This is similar to the critical switching currents derived
in previous work [14]. We then require o > o, for the
possibility of switching or precession. Note that this estimate
is independent of the value of p .

B. Switching-precessing transition

We now consider the transition from switching to preces-
sional states. This is rather sensitive and there is not in general
a sharp transition from switching to precession. It is due to the
fact that for certain parameters, the path that the trajectory takes
once it escapes the potential well depends on how much energy
ithas as it does so. In fact, for a fixed o, A, and values of o > o,
we can separate the (o, p )-parameter space into three regions:
(i) after escaping the initial well, the trajectory always falls
into the next well, and thus switches; (ii) after escaping, the
trajectory may either switch or precess depending on its energy
as it does so (and thus depending on its initial condition); (iii)
after escaping, the trajectory completely passes the next well,
and thus begins to precess.

We can determine in which region of the parameter space
a given point (o, p, ) lies by studying the discrete map (44)
close to the peaks of V(6). Assume that the trajectory begins
at 6(0) = m, and is thus initially in the potential well spanning
the interval /2 < 6 < 37/2. Denote by 6¢ the point close to
0 = /2 at which V() has a local maximum. It is simple to
compute

T .
> + 2 sin” (2op.).
Moreover, it is easy to see that all other local maxima of V(6)
are given by 6 = 6¢ + km, for k € Z.

We now consider trajectories which escape the initial well
by crossing 6¢. These trajectories have, for some value of the
time step n while still confined in the initial well, an energy

Oc = (47)

value H, in the range

Hiap < Hp < V(6c + 1), (48)

where we define Hyap to be the value of H, such that
the discrete map (44) gives H,+1 = V(6¢c). We thus have
Hpt+1 > V(Oc). In order to check whether the trajectory
switches or precesses, we then compute H,,,, and compare
it to V(¢ —m). We may then classify the trajectories
as switching if H,,1» — V(6¢c — ) < 0, and precessional if
Hypyo — V(Oc — ) > 0.

Figure 4 displays aplotof H,, — V(6¢ + ) against H,, > —
V(6¢c — m). The blue line shows the result of applying the

Switch Precess

0.031

0.021

~0.05 | | | 1 | |
-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

H, — V(9('+7T)

I I I
0.02 0.03 0.04 0.05

FIG. 4. Precession vs switching prediction from the discrete map.
Parameters: « = 0.01, A =0.1, p, =0.35, 0 = 0.08. Values of
‘H, — V(6c + m) to the left of the dashed line switch after the next
period, the trajectory becoming trapped in the well around 6 = 0.
Values to the right begin to precess, and converge to a precessional
fixed point of the discrete map.
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FIG. 5. Macrospin solution phase diagrams for « = 0.01, A = 0.1: (a) The result of iterating the discrete map (30) with initial energy
‘H,, = V() corresponding to the initial condition (31); (b) the result of a direct numerical solution of the macrospin ODE (30) with initial
condition (31). Dark regions to the left of the figures indicates solutions which do not escape their initial potential well, and the vertical dashed
white line shows the computed value of the minimum current required to escape, o, = «/(2A). The black bands represent solutions which
decay, like in Fig. 1(a), while the dark gray bands represent limit cycle solutions like in Fig. 1(b). In the rest of the figures, the green points
indicate switching in the negative direction like in Fig. 1(c), gray indicate switching in the positive direction, and white indicates precession
like in Fig. 1(d). The solid black curves are the analytic predictions of boundaries of the regions (as indicated in the figure) by using the discrete
map, and the dashed line is the prediction of the boundary below which switching in the positive direction is possible.

discrete map, while the red line is the identity line. Values of
H,, — V(6¢c + m) which are inside the range specified in (48)
are thus on the negative x-axis here. We can classify switching
trajectories as those for which the blue line lies below the x
axis, and precessing trajectories as those which lie above. In
Fig. 4 the parameters are such that both of these trajectory types
are possible, depending on the initial value of H,,, and thus this
set of parameters are in region (ii) of the parameter space. We
note that, since the curve of blue points and the identity line
intersect for some large enough value of H, this figure implies
that if the trajectory has enough energy to begin precessing,
then after several precessions the trajectory will converge to
one which conserves energy on average over a precessional
period (indicated by the arrows). In region (i) of the parameter
space, the portion of the blue line for H, — V(6c + ) <0
would have H,,» — V(08¢ — ) < 0, while in region (iii), they
would all have H, 4, — V(¢ — m) > 0.

We can classify the parameter regimes for which switching
in the opposite direction (i.e., 6 switches from m to 2m)
is possible in a similar way. It is not possible to have
a precessional trajectory moving in this direction (6 > 0),
though.

We may then predict, for a given point (o, p, ) in parameter
space, by computing relations similar to that in Fig. 4, which
region that point is in, and thus generate a theoretical phase
diagram. We note that this method provides an almost entirely
analytical way [one only has to compute two integrals: one at
either end of the range (48)] to predict in which region of the
phase diagram a given point lies. Additionally, it highlights the
physical mechanism behind the existence of region (ii), where
one cannot reliably say whether a given set of parameters will
lead to switching or precession. Namely, that in this region,

the end result of the trajectory depends only on the amount
of energy (the value of ) it has on the oscillation period
during which it leaves the initial potential well. Moreover,
this value depends sensitively on the initial condition of the
magnetization vector (or, for a fixed initial condition, on
the parameter values chosen). In region (i), the slope of the
potential is shallow enough relative to the current density
that the trajectory cannot fully escape and enter precession.
Conversely in region (iii) the opposite is true and the steepness
of the potential relative to current density is such that when the
trajectory escapes the initial well, it has far too much energy
to possibly drop into the next well.

In Fig. 5 we display the phase diagram in the (o,p))
-parameter space, showing the end results of solving the ODE
(30) [Fig. 5(b)] and of simply iterating the discrete map (44)
[Fig. 5(a)] as a background color, together with predictions of
the bounding curves of the three regions of the space, made
using the procedure described above, in Fig. 5(a). The analytic
predictions of the discrete map predict the behavior of the
iterated map very well, and provide useful estimates on the
different regions of parameter space. The predictions do not
match perfectly with the ODE solutions, but the diagrams
have qualitatively the exact same structure, and are actually
quantitatively fairly close. In particular, we note that the region
where downhill switching reliably occurs [the portion of region
(i) above the dashed black line] is estimated quite well. We
would also note that we would expect the predictions of
the discrete map to improve if the values of A and o were
decreased. Finally, we see that the uncertainty of switching
vs precession in region (ii) is displayed by the direct ODE
solutions, with the end result of the trajectories depending
sensitively on the parameter values.

144425-8



REDUCED MODEL FOR PRECESSIONAL SWITCHING OF ...

PHYSICAL REVIEW B 94, 144425 (2016)

4 ©

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400

t

600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

t

FIG. 6. Switching solutions for full PDE model (20)—(22) in a strip geometry with assumed 1D variations, for three different strip widths.
Parameters d = 2.5 nm, £ = 5 nm, @ = 0.01, 8, = 0.01, p; = 0.2. (a) Width L = 30 nm; (b) width L = 60 nm; (c¢) width L = 90 nm. The
blue curves display the magnetization angle 6, averaged across the strip width, as functions of time. The green curves show the values of 0 at
the boundary. The red curves show the values of 0 at the center of the strip.

VI. SWITCHING SIMULATIONS FOR PDE

In order to investigate the influence of the boundary
condition (22) and possible spatial inhomogeneities in the
magnetization on the dynamics, as well as to further validate
our macrospin approximation, we now study the full PDE
system (20)—(22) in a strip geometry, assuming that spatial
variations only occur across the width of the strip. This can
be seen as a caricature that captures the behavior of the
magnetization in an ellipse of a sufficiently large aspect ratio.
The current polarization direction is along the axis of the strip.

In Fig. 6 we display three different solutions of (20)—(22)
in strips of increasing width. The blue curves display the
magnetization angle 0, averaged across the strip width, as
functions of time. The green curves show the values of 9 at
the boundary, which deviate most from the average across the
width. The red curves show the values of 6 at the center of the
strip. The deviations from spatially uniform magnetizations
increase as the width of the strip increases. However, the
deviations are still quite small up to a strip width of 90 nm
(18 exchange lengths). The macrospin approximation is thus

400
300
200
100 »
-5 0 5
x

o

FIG. 7. Spatial variations in 6 in PDE solutions for strip of width
90 nm. The other parameters are as in Fig. 6. Color represents the
values of 9(x,1).

well justified even in fairly large samples when the geometry
is sufficiently anisotropic.

In Fig. 7 we display the nature of the spatial deviations in 6.
We observe that, effectively, the boundary condition results in
a weak pinning effect on the magnetization near the boundary,
resulting in smaller oscillations close to the boundary and
larger ones in the bulk. Thus, the points of 8(x) which deviate
the most from the average, as plotted in Fig. 6, are typically
the boundary values.

The simulations presented in this section have shown
that the spatial variations in 6(x,f) that occur during a
switching process typically display a certain structure, where
the amplitude of the oscillations in magnetization leading up to
the switching event grow faster in the bulk of the material, with
the boundary conditions serving to provide a weak pinning
effect which slows the average growth of the oscillations.
This apparent spatial structure does not qualitatively affect the
nature of the switching process overall, with the solutions in
Fig. 6 looking very similar to macrospin switching solutions,
even for samples of relatively large width.

VII. DISCUSSION

We have derived an underdamped PDE model for mag-
netization dynamics in thin films subject to perpendicular
applied spin-polarized currents, valid in the asymptotic regime
of small @ and A, corresponding to weak damping and strong
penalty for out-of-plane magnetizations. We have examined
the predictions of this model applied to the case of an
elliptical film under a macrospin approximation by using an
orbit-averaging approach. We found that they qualitatively
agree quite well with previous simulations using full LLGS
dynamics [16], as well as simulations of our derived PDE
model.

The benefits of our reduced model are that they should
faithfully reproduce the oscillatory nature of the in-plane
magnetization dynamics, reducing computational expense
compared to full micromagnetic simulations. In particular,
in sufficiently small and thin magnetic elements the problem
further reduces to a single second-order scalar equation.

Restricting this further to a macrospin approximation
allows for further analytical study of the behavior, while
maintaining a good qualitative agreement with the nature of the
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full PDE dynamics. The orbit-averaging approach taken here
enables the analytic investigation of the transition from switch-
ing to precession via a simple discrete dynamical system,
which highlights the mechanisms for switching and precession
in terms of the parameter-dependent potential function V(9).
The regions in parameter space where either switching or
precession are predicted, as well as an intermediate region
where the end result depends sensitively on initial conditions. It
may be possible to further probe this region by including either
spatial variations in the magnetization (which, in an earlier
study [16] were observed to simply slow down the dynamics

PHYSICAL REVIEW B 94, 144425 (2016)

and increase the size of the switching region) and doing a
full numerical investigation of the phase diagram similar to
Fig. 5 for our derived PDE model (20)—(22), or by including
thermal noise which could result in a phase diagram predicting
switching probabilities at a given temperature, or both.
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