A GLOBAL VARIATIONAL STRUCTURE AND PROPAGATION
OF DISTURBANCES IN REACTION-DIFFUSION SYSTEMS OF
GRADIENT TYPE

C.B. MURATOV

Department of Mathematical Sciences
New Jersey Institute of Technology, Newark, NJ 07102

ABSTRACT. We identified a variational structure associated with traveling
waves for systems of reaction-diffusion equations of gradient type with equal
diffusion coefficients defined inside an infinite cylinder, with either Neumann
or Dirichlet boundary conditions. We show that the traveling wave solutions
that decay sufficiently rapidly exponentially at one end of the cylinder are
critical points of certain functionals. We obtain a global upper bound on the
speed of these solutions. We also show that for a wide class of solutions of
the initial value problem an appropriately defined instantaneous propagation
speed approaches a limit at long times. Furthermore, under certain assump-
tions on the shape of the solution, there exists a reference frame in which the
solution of the initial value problem converges to the traveling wave solution
with this speed at least on a sequence of times. In addition, for a class of solu-
tions we establish bounds on the shape of the solution in the reference frame
associated with its leading edge and determine accessible limiting traveling
wave solutions. For this class of solutions we find the upper and lower bounds
for the speed of the leading edge.

1. INTRODUCTION

In this paper, we study the following initial value problem
(11) up = Au + f(u)a u(:z:,O) = UO(x);

where u = u(z,t) e R™®, 2z € ¥ = Rx Q, O C R*! is a bounded domain with
smooth boundary, f : R™ — R™ is in C'°, with either Neumann or Dirichlet
boundary conditions

(1.2) (n-Vu)|ss, =0, or uls =0,

where n is the outward normal to 0X. This problem describes a reaction-diffusion
system with equal diffusion coefficients defined inside an n-dimensional cylinder X.
We assume that f(0) =0, so

(1.3) u=0

is a trivial solution of Egs. (1.1) and (1.2). Furthermore, we consider reaction-
diffusion systems of gradient type. That is, there exists a function V (u) such that
(1.4) f==-V,V, V:R* - R

Note that for the scalar case (m = 1) the system is automatically of gradient type.

As a special case, we also consider the problem in one space dimension. We will be
interested in the propagation of disturbances in these systems. More precisely, we
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will study the solutions of this initial value problem which decay exponentially to
zero at one or both ends of the cylinder.

This type of problems arises in a wide variety of applications. Specifically, the
scalar case arises in the problems of combustion, chemical reactions, population
dynamics, propagation of nerve impulses [1-4]. There, the scalar variable « may
play the role of temperature, concentration of chemical species, the membrane
voltage, etc. Specifically, the quintic Ginzburg-Landau equation

(1.5) up = Au+ pu £ u® — U,

where p is a parameter, often arises as an amplitude equation that describes large-
scale behavior of systems near a bifurcation point [1]. Other well-known examples
include the Nagumo equation of a nerve axon, for which f(u) = u(u—a)(1—u), with
0 < a < 1/2, or the Arrhenius nonlinearity f(u) = e™% (1—u), a > 0, for combustion
problems [4,5]. The vector case arises in the kinetics of phase transitions, in this
case u may stand for the magnetization or polarization vector [6-8]. For example, if
u; are the three components of the magnetization vector in a ferromagnetic crystal
with cubic symmetry near Curie temperature, and h; are the components of the
applied field, the kinetics of u may be described by the following Ginzburg-Landau
equation:

. 8u,
ot

(1.6) = gAu; + h; + au; — bu? — cu; Zu?,

i#]
where 7, g,a, b, c are coefficients. Alternatively, in one spatial dimension this equa-
tion with h =0, 7 =g =a=b=c =1 and m = 2 (or, equivalently, u complex)
is the Newell-Whitehead-Segel equation describing the Rayleigh-Bénard convection
near the onset [1].

A ubiquitous feature of the systems of this kind is that they are capable of sup-
porting traveling waves propagating with constant speed [1]. Numerical simulations
of various examples show that at long times a localized initial condition generically
evolves into these traveling waves. It is therefore important to understand the ap-
proach of the solutions of the initial value problem in Eq. (1.1) to the traveling
wave solutions and wave selection [1].

These topics have been investigated by a great number of authors. In their pi-
oneering work of 1937, Kolmogorov, Petrovsky, and Piskunov proved existence of
traveling wave solutions in scalar reaction-diffusion equations with certain types
of nonlinearities in one dimension [9]. Furthermore, they showed that an initial
condition in the form of a step function converges in shape to a particular travel-
ing wave solution at long times. Kanel’ extended these results to a more general
class of initial conditions in a different family of systems [10,11]. Fife and McLeod
studied bistable scalar reaction-diffusion systems in one dimension and proved ex-
istence and uniqueness of the traveling wave solutions in these systems [12]. They
further proved that an initial condition that looks like a front converges asymptoti-
cally to a single traveling wave solution, while a localized initial condition converges
to a pair of counter-propagating fronts. They also extended their results on exis-
tence of one-dimensional traveling waves to planar fronts in R™. Further existence
results for scalar one-dimensional problem were obtained by Aronson and Wein-
berger for a class of nonlinearities with linearly unstable equilibrium state u = 0,
and by Medvedev, Ono, and Holmes for the degenerate case [13,14] (see also [15]).
In another direction, Aronson and Weinberger used the comparison principle to
investigate the speed of propagation of disturbances in scalar reaction-diffusion
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equations [13,16]. They obtained asymptotic propagation speeds of certain classes
of the initial conditions, while not addressing the question of convergence.

For higher-dimensional scalar equations, Gardner studied existence of the travel-
ing wave solutions in the form of curved fronts on a strip [17]. Vega proved existence
of the traveling wave solutions in cylinders with Dirichlet boundary conditions [18].
The most general existence results for traveling waves in cylinders were obtained
by Berestycki, Larrouturou, Lions, and Nirenberg, who also considered the effect
of advective terms [19,20]. More recently, Volpert and Volpert proved existence
and stability of multidimensional traveling waves for monotone parabolic systems
of equations [21,22]. Heinze gave a proof of existence of the traveling wave solutions
in rather general scalar systems with bistable and combustion-type nonlinearities in
cylinders [23]. Convergence of the solutions of the initial value problem to traveling
waves in scalar reaction-diffusion equations in cylinders was shown under rather
general conditions by Roquejoffre, and for monotone systems in one dimension by
Roquejoffre, Terman, and Volpert [24-26].

In addition, the problem of traveling wave selection was considered in a number
of papers. Van Saarloos studied the problem of linear and nonlinear front selection
in the scalar equations in one space dimension [27,28] (see also [29]). More recently,
Brazhnik used the asymptotic theory of slightly curved fronts to construct geomet-
rically the solutions in the form of the V-shaped fronts, and Bonnet and Hamel
proved existence of such waves in a combustion model [30,31]. Numerical methods
for finding traveling wave solutions in cylinders were developed by Lord et al. [32].
This list of references is far from exhaustive, for example, see also [1,20,33-35].

Most of the works mentioned above rely heavily on the applications of the max-
imum principle and are, therefore, limited to scalar equations and monotone sys-
tems. A natural question that arises is whether there exists some unifying structure
within the framework of Eqgs. (1.1) — (1.4) that invariably leads to the formation
of traveling wave solutions of certain types. In this paper, we show that a com-
mon feature in this situation is the existence of a general variational structure. It
turns out that a large class of traveling wave solutions are critical points of certain
functionals. The key feature of these functionals is the fact that, in contrast to
Eq. (1.1), they are not invariant under translations of u. In fact, the functionals
involve exponentially weighted Sobolev norms. This may limit somewhat the use-
fulness of these functionals. Nevertheless, a number of general conclusions can be
made based on their certain special properties.

Let us give a brief summary of our paper here. In Sec. 2, we introduce a one-
parameter family of functionals and show the variational structure of the problem
in the reference frames moving with constant speeds. This leads to the need to
work with the exponentially weighted Sobolev norms. In the context of Eq. (1.1),
we introduce convenient families of functions that ensure that the solutions decay
exponentially, faster than a prescribed rate, at one end of the cylinder . In Sec. 2
we also derive a crucial inequality, which is an analogue to the Poincare inequality,
in Lemma 2.5.

In Sec. 3, we identify a class of the traveling wave solutions that are critical
points of the functionals in the family. We then establish a number of properties
of these so-called variational traveling waves. Our main result in this section is the
global upper bound on the speed of these traveling waves obtained in Theorem 3.7.
We also establish non-existence of the variational traveling waves of certain shapes,
including localized solitary waves, in Theorem 3.11. In addition, we discuss ways
to obtain lower bounds on the speeds of such waves.
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Then, in Sec. 4 we analyze propagation of disturbances in Eq. (1.1). We first
establish monotonicity of the functionals as functions of time evaluated at the
solutions of Eq. (1.1) in the reference frames moving with constant speeds. We
show that no disturbance that decay sufficiently rapidly at one end of the cylinder
can propagate with the speed greater than the global upper bound on the speed
of the variational traveling waves established in Sec. 3, see Theorem 4.2. We
then introduce the notion of a wave-like solution, which is a particular class of
solutions of Eq. (1.1). These solutions behave like traveling waves in a certain
sense. An important feature of these solutions is the fact that for each such solution
it is possible to introduce a function ¢(¢) with the meaning of the instantaneous
propagation speed, which turns out to be a monotonic function of time. This leads
to the conclusion, given in Theorem 4.7, that for wave-like solutions the speed ¢&(¢)
approaches a limit at long times. Then, in Theorem 4.8 we formulate sufficient
conditions for a wave-like solution to converge to a variational traveling wave at
least on a sequence of times. One crucial assumption of this theorem is about
the rate of exponential decay of the solution. Essentially, this theorem applies
if the solution remains sufficiently localized. Here we also discuss ways to show
convergence of the solutions to variational traveling waves for all times.

The second group of results of Sec. 4 has to do with a particular class of wave-like
solutions of Eq. (1.1). These solutions may not be realized in all reaction-diffusion
systems of gradient type. Let us point out that this class of solutions involves
all solutions in systems, in which the equilibrium state u = 0 is linearly stable.
In Theorem 4.11 we make conclusions about the motion of the leading edge of a
solution in this class and its shape. Here we obtain the lower bound on the average
speed of the leading edge. These results also allow to exclude certain kinds of the
traveling wave solutions as potential asymptotic states.

Finally, in Sec. 5 we give a few concrete applications of the obtained results, and
in Sec. 6 draw conclusions.

2. VARIATIONAL FORMULATION

Existence and uniqueness of solutions of Eq. (1.1) has been studied under very
general assumptions in great detail (see, for example, [34,36]). For smooth f(u) and
continuous ug(z) global existence of solutions is guaranteed by uniform boundedness
of u(z,t). Furthermore, due to the smoothing action of Eq. (1.1), its solutions are
smooth both in z and ¢ for all (z,t) € ¥ x RT. Moreover, in this situation all
the derivatives of u are uniformly bounded for all ¢ > tg with arbitrary tq > 0.
The uniform boundedness of solutions of Eq. (1.1) is apriorily guaranteed by the
existence of an invariant rectangle R = {u : a; < u; < b;} C R™, which has the

property
(2.1) v- f(u)lpr <0,

where v is the outward normal to the boundary OR [36]. This means that the
flow in R™ generated by the system of ordinary differential equations obtained
from Eq. (1.1) by setting the spatial derivatives to zero is into R. Note that for
gradient systems studied in this paper the existence of such an invariant rectangle
is guaranteed, if, for example, the function V' (u) (see Eq. (1.4)) is a monotonically
increasing function of |u;|, where u; are the components of u, for large enough |u;],
and hence has a global minimum. In the following, we will assume the existence of
an invariant rectangle and will consider only the solutions that remain in R.
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Let us denote the coordinate along the axis of the cylinder ¥ as z and the
perpendicular coordinate as y, so y € Q. Let us then fix a constant ¢ > 0 and go
to the reference frame traveling with constant speed ¢ in the direction of positive
z. In this frame let us define the coordinate &:

(2.2) E=z—ct.
Then, Eq. (1.1) in this reference frame becomes
(2.3) Up = uge + iju + cug + f(u).
It turns out that this equation can be formally recast in the variational form:
0P
2.4 = — _CE_C
( ) Ut € 5u )
where
1
(2.5) . [u(z,y,t)] = / e® (§VUT -Vu + V(u)) dzdy,
b

where we treat w and u” as the m-component column and row vectors, respectively,
and “” implies scalar product in R”. Sometimes for convenience we will denote
vlv = v? for v € R™. We will choose the additive constant in V such that V (0) = 0.
Thus, we have

(2.6) V(0) =0, V,V(0) =0,

since by assumption f(0) = 0 as well.
Let us give a formal derivation of Eq. (2.4) here. For u = u(¢,y,t) satisfying
Eq. (2.3) the first variation 6%, = §®.(u, du) of . is

0, = / et (ugT(Su§ + VyuT -0Vyu + VSV(Su) dédy
b

g=+oo
= (/ ecgugdu dy) ‘ +/ e(n -V, ul)du dédy
Q %

£=—co

(2.7) - /2 e (uge + Vzu + cug + f(u))T du dédy,

where we performed integration by parts. The second integral in the second line of
Eq. (2.7) vanishes because of the boundary conditions in Eq. (1.2). Assuming that
ou decays sufficiently rapidly as £ — 00, the first integral in Eq. (2.7) is also zero,
and we arrive at Eq. (2.4).

Note that the functional similar to ®. was identified by Fife and McLeod in their
study of convergence of the solutions of scalar bistable reaction-diffusion equations
to the traveling waves in [12] (see also [23,24,37]). However, only the situation
in which ¢ is the speed of the traveling wave was considered. We, on the other
hand, will allow ¢ to be an arbitrary constant and will therefore work with the
one-parameter family of functionals ®..

The variational structure represented by Eq. (2.4) is a fundamental property of
Eq. (1.1). Note, however, that in the definition of ®. in Eq. (2.5) there is a factor
e®® which diverges as z — +o00. Therefore, the functional ®.[u] may not be well-
defined for all solutions of Eq. (1.1), so one needs to specify the class of functions
for which the integral in Eq. (2.5) converges. Clearly, convergence of this integral
requires that u(z,y,t) decays exponentially as z — +oc. The following class of
functions will be appropriate for working with the functional ®..
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Definition 2.1. Let Q.(X) be the family of functions
Q(X)={uelC>®®):
(2.8) |D%u| < Mgy; €| D% < 0o, z — +00},

where « is the derivative multi-index, M = {M,}, and M, and X\ > § are some
positive constants.

One can see that Q.(X) determines a class of functions that decay exponentially
together with all their derivatives at plus infinity, with the rate greater than e ¢/2.
Note the obvious inclusion Q. (X) C Q.(X) for ¢’ > ¢, as well as the fact that if
u € Q.(X), then u € Q.4.(¥) for small enough € > 0. Also note that the members
of Q.(¥) lie in the exponentially weighted Sobolev spaces H!(X) with the norm

(2.9) ulli,e = [lullzz + |IVullL2,

where
(2.10)  ||ullze = / e“ulu dzdy, ||Vul|2: = / e*VuTl - Vu dzdy.
¢ p) ¢ p)

These spaces are intimately related with the functional ®. (see also [23,39,40]).

Definition 2.2. We will say that u € Q.(X,R"), if u € C®°(X x R"), u(-,t) €
Q.(X) and that for any T > 0 and o there exists a constant Cy such that |D%u(-,t)| <
Cae™™, A> £, forall0<t<T.

It is not difficult to see that the solutions of the initial value problem in Eq. (1.1)
with the initial data in Q.(X) should lie in Q.(¥, Rt). Indeed, setting u(z,y,t) =
eN't=2zy(z — 2Xt, y, t), we obtain for v

(2.11) vy = Av + g(v, z,1),

where g = e} Xt f(e=22=3’t) ig Lipschitz whenever u is in R. So, by standard
parabolic theory we obtain uniform bounds on v and its derivatives on arbitrary
finite time intervals, and hence the exponential estimates for u. More generally, one
should expect the solutions to be in Q.(X,R") for appropriately bounded initial
data for t > tg with arbitrary to > 0. In particular, this should be the case for the
initial data with compact support.

Since V is smooth and V(0) = V,V(0) = 0, for u € Q.(X) there exist constants
- and p4 such that
2V (u) 2V (u)

2.12 _ = min —~2 = .
(2.12) o =N M = max =

From the existence of p it is, in turn, clear that the functional ®. is well-defined
for all u € Q.(X). Let us point out the following obvious property of the functional
®. that has to do with the translational symmetry of the problem

Lemma 2.3. Let u € Q.(X). Then

(2.13) ®.[u(z — R,y)] = e“Bd, [u(z,v)].
This lemma also applies to the L2-norm. Also, from this lemma follows
Corollary 2.4. The sign of ®. is invariant with respect to translations.

Before concluding this section, let us derive an important inequality that relates
[u]|r2 and [|u;||z2. This inequality turns out to be crucial for the entire analysis
that follows.
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Lemma 2.5. Let u € Q.(X). Then
2
(2.14) — [ e“ulu dedy < | eulu, dzdy.
4 Js b
Proof. By Schwartz inequality
2
(2.15) (/ eczuTuzdzdy> < / e“uly dzdy/ e“ulu,dzdy.
® b ®
On the other hand, integrating by parts,

1
(2.16)/ e“ulu,dzdy = (—/ e““uly dy)
b 2 Ja

Since 2 is bounded and e®*uTu — 0 at z = Zoo, the surface term in the right-
hand side of Eq. (2.16) vanishes. Then, squaring both sides of this equation and
substituting it to Eq. (2.15), we obtain

2 2
(2.17) CZ (/ ulu dzdy) < / e“uly dzdy/ e““ulu,dzdy
by p> by

Now, canceling a factor of [, e®*u”u dzdy, we obtain Eq. (2.14). d

z=-+00 ¢
- = / e“ulu dzdy.
z=—00 2 b

3. TRAVELING WAVE SOLUTIONS

Now we are going to study the properties of the functional ®. and its critical
points. Let u(z,y,t) = @(z — ct,y) be a traveling wave solution with speed ¢. In
the reference frame moving with the wave (Eq. (2.2)) @ satisfies

(3.1) tge + Vi + clig + f(1) =0,

with the boundary conditions from Eq. (1.2). Note that existence of solutions of
Eq. (3.1) was proved in a variety of contexts [9-14,16-23] (see also discussion at the
end of this section). It is not difficult to see by repeating the steps of the derivation
of Eq. (2.7) that the following proposition holds.

Proposition 3.1. Letu € Q.(X) be a traveling wave solution with speed c. Then
for any v € C§°(X) we have

(3.2) 5®.(a,v) = 0.

In other words, some traveling wave solutions are critical points of the functional
®,.. Clearly, the converse is also true if @ € Q.(X) is a critical point of ®.. Note,
however, that the important point in this Proposition is that @ lies in H!(X).
Therefore, not all the traveling wave solutions are critical point of ®.. In order
to distinguish those traveling wave solutions which, in fact, are, it is convenient to
introduce the following

Definition 3.2. The solution @ of Eq. (3.1) is called a variational traveling
wave, if it has speed ¢ > 0 and lies in Q.(X).

Note that more generally variational traveling waves can be defined as those
solutions of Eq. (3.1) that lie in H}(X) N L*(X) [39,40]. In other words, only
bounded traveling wave solutions that decay sufficiently rapidly at plus infinity can
be variational traveling waves.

The fact whether @ lies in H!(X) is determined by the linearization of Eq. (3.1)
around zero (for examples, see Sec. 5). Suppose that @ ~ v(y)e ¢, where v :
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Q — R™, as £ - +00. Then \ satisfies the following eigenvalue problem (with the
appropriate boundary conditions) in Q:

(3.3) [_V?/ + H(0)Jv = A(A — ¢)v,
where H is the Hessian of V:
(3-4) H(u) = (Vy ® Vy)V.

Let us denote the spectrum of the operator on the left-hand side of this equation as
{vr}. Since Q is bounded, this spectrum is discrete. Also, since H is a symmetric
matrix, all v;’s are real. We need to look at the relationship between this spectrum
and A = A, for each k (see also [18,20]). This relationship is given by the following
quadratic equation:

(3.5) Ap—chp — v = 0.

We are only interested in the real positive solutions of this equation. Indeed, Re A
has to be positive in order for the solution to decay at £ = +oo. If A; is complex,
which corresponds to vy < —%, then Re Ay = 3, so @ only lies in H, L(X) with
¢’ < ¢. This is also true for a double real root, when v, = —%. Note that when
v < 0, the traveling wave solutions whose speed ¢ = 21/—v;, are sometimes referred
to as “marginal fronts” [1,27].

On the other hand, for real solutions of Eq. (3.5), which satisf —% <y <0
there are two solutions )\ki for each k, such that A, < § and )\k+ > 5. There-
fore, in this case @ can lie in H}(X) only if A = A{. Note that in this situation
there may exist continuous families of traveling wave solutions corresponding to A,
(sometimes called “linear fronts”), and solutions corresponding to /\;r with some
particular speeds (sometimes called “nonlinear fronts”) [1,28]. As can be seen from
the arguments above, only the latter can be the variational traveling waves. Note,
however, that these solutions play an important role for propagation of disturbances
in Eq. (1.1) (see below). Finally, for vy > 0 we have A, <0and A{ > ¢ > £, so the
traveling wave solution @ € H!(X) always. Note that this is the case when all the
eigenvalues of the matrix H(0) are positive, meaning that 4 = 0 is a locally stable
equilibrium point.

The variational formulation described above allows to make a number of general
conclusions about the variational traveling waves. We will need a few properties of
the functional ®. that have to do with these waves.

Proposition 3.3. Let @ be a variational traveling wave with speed c. Then
(3.6) . [a] =0.

Proof. 1In order for @ to be a critical point of the functional, ®. should not
change with infinitesimal translations of 4. By Lemma 2.3, this can only be the
case, if ®.[a] = 0. O

Another interesting property of the variational traveling waves has to do with
the rate of change of ®.[u] considered as a function of ¢/. Let us first prove the
following lemma.

Lemma 3.4. Let u € Q.(X) and 0 < ¢' < ", where ¢" > c¢ is sufficiently close
to c. Then ®.[u] is a smooth function of ¢'.

Proof. From the definition of ®., we have
qu)c’ [’LL]

(3.7) = /E rec't (%VUT -Vu + V(u)) dédy.
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Let us look at the first term in Eq. (3.7). For any k there exists a constant K such
that [£|Fes < Kpec's, ¢ > ¢, for all £ > 0. Therefore

/ FecEvyT . Vudgdy‘
)

0 +oo
(3.8) < M|Q|/ |€|Fec tde + Kk/ / e ¢Vul - Vudédy < oc.
—o0 QJo

With the help of Eq. (2.12), a similar estimate can be obtained for the second term
in Eq. (3.7). O

Let us now show the following property of ®. evaluated at a variational traveling
wave.

Proposition 3.5. Let u be a variational traveling wave with speed c. Then
O [u] is a strictly increasing function of ¢' in a small neighborhood of ¢' = c.

Proof. Integrating Eq. (3.7) with k = 1 by parts, we obtain

d®ofu] 1 e (lo-T o _) )£=+oo
o = (CI/Qge (ZVu Va+V(a))dy

£=—00
—é% [a] — % /E €e't (aloue + Vyal - Vya - al f(a)) dédy

- _%@d ] — %/82 £e€aT (n - V@) dédy

J% /)S €e”Cuf (—Tge + Vi + f(7)) dédy

(3.9) = 5Pl + 5 [ 6l (<ee + Via+ f(@) dedy

In arriving at the last line in Eq. (3.9) we used the fact that the integrals over 2 at
& = oo vanish due to decay of u, and the integrals over 0% vanish because of the
boundary conditions. Now, using Egs. (3.1) and (3.6) and evaluating the derivative
at ¢’ = ¢, we obtain

dd.[a 1 e T )
< ,[ ] = ——/ et uf (2uge + cug)dédy
c'=c CJs
1 §=tee
= (__ / {ecgugu5dy>‘ + - / euf ugdédy
CJa t(=—0 CJx
1
(3.10) == / e“a] ugdédy > 0.
P

Since, by Lemma 3.4, d®.[a]/dc' is a continuous function of ¢’ in a small neigh-
borhood of ¢, the functional ®.[u] is a strictly increasing function of ¢’ for fixed
u = 4, in that neighborhood. |
Note that from Propositions 3.5 and 3.3 follows that the functional &/ evaluated
on the variational traveling wave changes sign from negative to positive at ¢ = ¢
when the value of ¢ is increased, so c¢ is a simple zero of ®.[a].
We will need the following important lemma.

Lemma 3.6. Let u € Q.(X) with ¢ > cmax, where

— 2\/ —p—, p-< 0,
(3.11) Crmax = { 0, 0 >0
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and p— is defined in Eq. (2.12). Then there exists a constant K > 0 such that
(3.12) D [u] > K/ e“*Vul - Vudzdy > 0.
b

Proof. For pu_ > 0 the statement is obvious. So, suppose that p_ < 0.
According to Eq. (2.12) and Lemma 2.5, we have

1
D [u] > 5/ e (Vul' - Vu + p_u”u) dzdy
b

(3.13) > 1 (1 + 4“—_) / e*VuT - Vudzdy > 0,
2 c2 =
which has the form of Eq. (3.12). O
Note that sharper estimates are possible with more information about the shape
of the domain 2 for Dirichlet boundary conditions.
With the use of this lemma, we are ready to obtain one of the main results of this
paper that gives an upper bound for the speed of the variational traveling waves.

Theorem 3.7. Let u be a variational traveling wave with speed c. Then, ¢ <
Cmax, Where Ccmayx s given by Eq. (8.11).

Proof. To see this, let us assume that there exists a variational traveling wave
@ € Q.(X¥) with speed ¢ > ¢max- Then, by Proposition 3.3, ®.[a] = 0. But by
Lemma 3.6 this is impossible for any non-zero u. |

Corollary 3.8. If V(u) > 0 for all u € R, the variational traveling waves in R
do not exist.

In other words, the variational traveling waves can exist only if V (u) < 0 some-
where in R. This is a generalization of the well-known condition for the scalar
reaction diffusion equations in one dimension [34].

Note, however, that the class of the variational traveling waves may be rather
restrictive, since in general the solutions of Eq. (3.1) with speed ¢ may not neces-
sarily lie in H!(X) with the same c. Still, if these solutions decay exponentially at
plus infinity, it is possible to modify the variational formulation in such a way that
these solutions will be captured in that formulation. The main issue here is in the
translational invariance of the problem and the fact that &, is not translationaly
invariant. To circumvent it, we need to eliminate translations from the considera-
tion. Therefore, instead of looking for the critical points of the functional ®., we
may look for the critical points of the functional ®., where ¢ is another positive
constant, with respect to changes of the shape of the solution. That is, in finding
the critical points, we will not allow the variation du to contain the translational
mode. Then, we have the following

Proposition 3.9. Let 4 € Qu(X) be a traveling wave solution with speed c.
Then u must satisfy

(3.14) 0. (a,v) =0
for any v € C§°(X) subject to
(3.15) /E e“éafv dedy = 0.

Proof. This can be easily seen from the calculation similar to the one in Eq. (2.7)
and using the fact that one can now add an arbitrary multiple of u, to the bracket
in the right-hand of this equation. O

Of course, in this case Eq. (3.6) is no longer valid. Instead, we get
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Proposition 3.10. Let 4 € Q. (X) be a traveling wave solution with speed c.
Then
' ®.[a]
3.16 =c - —— .
(310 CT0 T e taTucdgdy

Proof. To see this, let us multiply Eq. (3.1) by ec’ga;r from the left and integrate
over X.. Integrating by parts, we obtain

0= /E &8 (af Tge + T Vil + Ul T + T (7)) dédy

1 , E=+o0 , g=+oo0
= (—/ e’ 5agﬂ§dy)‘ - (/ ech(a)dy)‘
2 Ja £=—o00 Q £=—o0
+ / etaf (n - V,a)dédy
)]

+ [[ofe (G- alac+evi@ - V,af - V,u) dedy
>

1 , §=+oo
=— (—/ etV a’ - Vyu d&dy)‘
2 Jo

g=—oo

/ 1 !
+/ et (5(2c — c)ug ue + %VyﬁT -Vyu + c’V(ﬁ)) dédy
)
(3.17) =c®ufu] + (c— ) /): eclﬁﬂgﬂgdfdgh

which is equivalent to Eq. (3.16). In writing these equations, we used the fact that
the surface terms in the integration by parts all vanish. |
This modified variational formulation allows to capture all the traveling wave
solutions that decay exponentially as & — +o0o0 by choosing sufficiently small values
of ¢!. Of course, one recovers Eq. (3.6) for ¢ = ¢'.
Proposition 3.10 allows to exclude a large class of shapes for potential traveling
wave solutions.

Theorem 3.11. There are no traveling wave solutions u € Qn(X), with some
¢ > 0, moving with speed ¢ > 0, which lie in H'(X).

Proof. The proof is obtained by taking the limit ¢’ — 0 in Eq. (3.16). Then,
the right-hand side of this equation goes to zero, leading to contradiction. |

Essentially, this Theorem shows that there are no traveling wave solutions which
are localized.

A natural question that arises is whether the critical points of ®, can actually
be minimizers. Clearly, variational traveling waves must be local minimizers of the
functional in order to be linearly stable. The answer to this question is positive.
In fact, under very general assumptions it is possible to use direct methods of
calculus of variations to prove existence of variational traveling waves which are
the minimizers of ®. (see also [23,40]). This proof will be presented elsewhere [39].
Let us comment here that it is easy to see from Proposition 3.10 that the nontrivial
global minimizers of ®. may exist only for a unique value of ¢ = ¢*. Indeed,
if there exist two minimizers u; and @s for ¢ = ¢; and ¢ = ¢y, lying in Q. , (%),
respectively, with ¢; < ¢z, then by Eq. (3.16) we have ®.,[a2] < 0, which is justified
since 4y € Q,, (X) also. But this contradicts Proposition 3.3 and the fact that
is the global minimizer, so the value of ¢* is unique.
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4. PROPAGATION OF DISTURBANCES

Now we are going to turn to studying the properties of the functional ®. evalu-
ated on the solutions of Eq. (1.1). We will assume that the solution u = u(z,y,t) of
Eq. (1.1) lies in Q.(¥,R"), so the functional ®.[u] is well-defined for all times. The
following property of ®, has already been anticipated in Eq. (2.4) and is a crucial
property of the dynamics.

Proposition 4.1. Letu € Q.(X,R") be a solution of Eq. (2.3). Then, ®.[u(-,t)]
is a mon-increasing function of time.

Proof. Let us look at the rate of change of ®.[u(-,t)], where u satisfies Eq. (2.3).
Integrating by parts and using Eq. (2.3), we obtain

dt

§=+o0
= (/ ecgugutdgdy)‘ +/ e“Cuy(n - Vyu)dédy
Q %

{=—00

= / et (u?ua + VyuT - Vyu, — fT(u)ut) dédy
>

_/ e (uge + cue + Vzu + f(u))Tutdgdy

b

(4.1) = —/ e“ul uydédy < 0.
b

This calculation is justified by the fact that for v € Q.(X, Rt) the integrals in
Eq. (4.1) converge uniformly on any finite interval of ¢. As usual, in arriving at this
expression we took into account that the surface integrals are equal to zero. This
means that in the reference frame moving with speed ¢ with respect to the cylinder
®.[u] is a non-increasing function of time. O

The existence of a monotonically decreasing functional ®.[u] for the dynamics
in the reference frame moving with speed c strongly suggest that under very gen-
eral assumptions the asymptotic solutions at long times should be the variational
traveling waves. Proving this statement in general is a fundamental challenge (for
recent results, see [25,37]). Fife and McLeod used a functional similar to ®. to
prove convergence of the solutions of the initial value problem to the traveling
wave solution in the case of the bistable scalar reaction-diffusion equations in one
dimension [12]. This, however, requires boundedness of the functional in the refer-
ence frame moving with speed ¢, where ¢ is the speed of the traveling wave. For
bistable scalar reaction-diffusion equations this can be done by using comparison
arguments [12,13]. On the other hand, because of the exponentially decaying weight
at & — —oo in the right-hand side of Eq. (4.1) one also needs to make sure that
the solution u(,y,t) actually converges to the traveling wave solution and not to
zero. This can also be done by using comparison arguments in the case of bistable
scalar reaction-diffusion equations [12].

In the general case, however, it is not clear under what conditions there exists
such a speed c of the reference frame in which ®. is uniformly bounded from below
in time with the solution remaining bounded away from zero on a fixed finite sub-
domain of ¥. A simple example of a system in which such a speed does not exist
is the Fisher equation in one dimension, for which f(u) = u(1 — u) and the initial
condition in the form of a unit step. As was shown by Kolmogorov, Petrovsky
and Piskunov, while the asymptotic speed of propagation of the solution of this
equation is ¢* = 2, the solution goes to zero in the reference frame moving with
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speed ¢ = ¢* [9]. They also pointed out that at long times the solution converges
to the traveling wave solution in shape and not uniformly in time.

Here, instead of the conventional approach, we are going to use certain special
properties of the functional ®. that have to do with its sign to make some general
conclusions about the behavior of the solutions of Eq. (1.1) at long times. In
the following, we we will only consider solutions that decay sufficiently rapidly at
plus infinity. More precisely, we will look at u = u(z,y,t) € Q... (2, R"), where
Cmax 18 given by Eq. (3.11). In the previous section we showed that there are no
variational traveling wave solutions for ¢ > cpax. Let us now show that solutions
u € Q.. (B,RT) of Eq. (1.1) cannot propagate faster than the speed cmax in the
limit ¢ — oo.

Theorem 4.2. Let u € Q.. (3, RT), where cumax is given by Eq. (3.11), be a
solution of Eq. (1.1). Then u converges to zero in H) (%) in the reference frame
moving with any speed ¢ > Cmax-

Proof. Let us pick ¢’ such that cpax < ¢! < cand u € Q. (X). From Proposition
4.1 and Lemma 2.3 we have

(42)  ®oluolz,y)] > ofulz + 't y, t)] = e D [u(z + ct, y, t)].
This means that & [u(z +ct,y,t)] — 0 as t = oo. But, by Lemma 3.6, this implies
fz e (zmet) 7y T . Vudzdy — 0 as t — 00, so taking into account Lemma 2.5, we see

that  — 0 in H} () in the reference frame moving with speed c. Now, since for
any " < ¢

/ e *vul - Vu dydz =
b

R [}
/ / S VT v dydz + / / e *vuT - Vu dydz
—o0 JQ —R JQ

o
< Me "B 4 e_C”R/ / e Ry T . Yy dydz
rJa

(4.3) < Me "B qeld—c)ER / / e*VuTl - Vudydz - Me 'R

as t — 0o, and R is arbitrary, u converges to zero in H} () as well. |

Note that since Vu is uniformly bounded, this 1mp11es that u = 0 in C(ZT),
where X1 is an arbitrary subdomain of ¥ which is bounded at minus infinity.

Thus, we have established the upper bound on the speed of propagation for
disturbances lying in Q.. (¥, R"). This means that the initial disturbance ug
that decays sufficiently rapidly at plus infinity will not propagate faster than the
speed cmax. Notice that the obtained upper bound applies to the initial data with
compact support.

Let us now study the question of the speed of propagation of disturbances in more
detail. Tt turns out that the scalar product generated by the L? norm provides
a natural way to introduce an instantaneous propagation speed for the solution
u = u(z,y,t) of Eq. (1.1). Indeed, for a fixed constant ¢ > 0 and a solution
u € Qc(Z,RT) of Eq. (1.1), let us define the speed v.(t) as the projection of u; on
the appropriately normalized translational mode in L2. That is, let

J5 e uf u.dzdy
Jse*ulu dzdy’

It turns out that v.(t) can be explicitly calculated in terms of ®..

(4.4) velt) = —
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Proposition 4.3. Let u € Q.(X,R") be a solution of Eq. (1.1). Then
c®.[u]

45 W(t) = cm el
(4.5) ve(t) = ¢ Js euTu dzdy

Proof. This result can be obtained by going through exactly the same steps as
in Eq. (3.17). O

Naturally, we recover Eq. (3.16) when u = 4 is a traveling wave solution.

Let us take a closer look at Eq. (4.5). This equation indicates that u propagates
faster or slower than ¢ depending on the sign of the functional ®.. By Corollary
2.4, the sign of the functional is invariant with respect to translations along the
z-axis. Therefore, we can get the information about it by studying the problem
in the reference frame moving with the speed ¢ and then applying it to Eq. (4.5)
which is written in the original reference frame.

Our first conclusion is that, since for ¢ > ¢max and u € Q.(%, RT) the functional
@ [u] > 0, we will have v.(t) < cmax- S0, the propagation speed in the sense of
Eq. (4.4) of a solution which decays sufficiently rapidly at plus infinity is bounded
by ¢max- This is in agreement with the convergence of the solutions to zero on finite
subdomains in the reference frames moving with speeds ¢ > ¢pax Obtained above.
Secondly, let us introduce the following definition.

Definition 4.4. Let u € Q.. (X,R") be a solution of Eq. (1.1). We will call
u wave-like, if there exists a constant ¢ = cpin > 0 such that ®.[u(-,t9)] < 0 for
some tg > 0.

Observe that any solution of Eq. (1.1) that tends to a constant for which V' < 0
at minus infinity is a wave-like solution. Indeed, for sufficiently small ¢ the main
contribution to ®. will be from the tail of the solution at minus infinity, which for
this type of a solution is negative. So, it will always be possible to find such ¢ > 0
that ®.[u] < 0. Naturally, wave-like solutions exist only if V (u) < 0 for some u.

Since in the reference frame moving with speed ¢ the functional ®.[u(¢,y,t)] is
monotonically decreasing with time, we will have ®.[u(§,y,t)] < 0 for all t > #o
in that reference frame. But, since the sign of ®.[u] is invariant with respect to
translations, ®.[u(z,y,t)] < 0 for all ¢ > ¢o as well. This means that for ¢t > g
we will have vc(t) > ¢min. Thus, these arguments allow to determine a range of
propagation speeds for the solution u in the sense of Eq. (4.4). In essence, Eq. (4.5)
provides an integral comparison principle for the propagation speeds of the solutions
of Eq. (1.1). Its advantage is in the fact that one only needs to evaluate the sign
of ®.[u] at different values of ¢ instead of constructing sub or supersolutions.

On the other hand, the propagation speed v, (t) suffers from the ambiguity intro-
duced by its c-dependence. This dependence is in fact non-trivial, since the value
of ¢ determines in which space H!(X) the solution may lie. On the other hand, if u
decays sufficiently rapidly at plus infinity, v.(¢) will be well-defined for sufficiently
large ¢, so there is a question of the choice of ¢ in Eq. (4.4). It turns out that for
these solutions it is possible to introduce another kind of the propagation speed
which does not suffer from this ambiguity and has a few interesting properties that
can be exploited in the analysis.

Indeed, let us assume that u = u(z,y,t) is a wave-like solution. Since ®.[u(-,1)]
changes sign from positive to negative only once, if ever, as a function of time, we
will have ®._, [u(-,t)] < 0 for all ¢ > #,. On the other hand, from the a priori
estimate of Eq. (3.12) we have ®.__ [u] > 0 for all ¢. Since ®.[u] is a continuous
function of ¢, it must become zero somewhere in the interval ¢y, < ¢ < ¢pax for
each t. Therefore, the following definition may be introduced:
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Definition 4.5. Let u be a wave-like solution of Eq. (1.1). Then define the speed
o(t):
(4.6) ¢t) =supS(t), S(t) ={c: cmin < ¢ < Cmax, Pclul(-,t)] <0}
for all t > tg.
Clearly, by continuity of ®.[u] as a function of ¢
(4.7) Buplul-,8)] = 0

identically. Furthermore, ®.[u(-,t)] as a function of ¢ changes sign at ¢ = &(t) and
@ [u] > 0 for all &(t) < ¢ < Cmax. Comparing this with Eqgs. (4.4) and (4.5), we
can see that &(t) = vz (), that is, ¢ is the speed of the reference frame in which
[ e%uluedédy = 0 at time ¢.

Another important property of &(t) is the following.

Proposition 4.6. The function &(t) is a non-decreasing function of t.

Proof. By Proposition 4.1, once ®.[u(-,t)] < 0, it will remain like this for all
time. Therefore, the set S(t) cannot shrink. Since €(t) = sup S(t), the function &(t)
cannot decrease. d

But, observe that &(t) is bounded from above. This leads to the following striking
observation.

Theorem 4.7. There exists a limit

(4.8) ¢* = lim &(t),

t—o0

where cpin < ¢* < Cmax-

While the argument above establishes existence of a limiting propagation speed
¢*, it does not actually say what this speed is. It would be natural to suppose that
this should be the speed of the traveling wave solution to which the solution u of
Eq. (1.1) converges. This, however, would require to prove that u indeed converges
to a traveling wave in a certain sense. Unfortunately, the variational structure alone
does not seem to give such a proof in our problem. One might get encouraged by
the fact that since ¢* = sup &(t), we have ®.«[u] > 0 for all ¢ in the reference frame
moving with speed ¢*, so d®.-[u(-,t)]/dt — 0 on a sequence {t,} in that reference
frame. This, however, does not yet mean convergence of u to a traveling wave
solution (on arbitrary compact subdomains of ¥) in that reference frame because
the possibility of u converging to a trivial solution (for which f(u) = 0) is not
excluded.

Furthermore, since convergence of the solutions of Eq. (1.1) to the traveling wave
solution may not be uniform in any reference frame, one needs to make more precise
what is meant by such convergence [9]. As Kolmogorov, Petrovsky, and Piskunov
pointed out, one needs to look at the convergence in shape, that is, eliminate simple
translations along the z-axis. So, the question may be asked in the following way:
for a given sequence of times {t,} is there a suitable sequence of shifts {R,}, such
that
(4.9) lim u(z + Ry, y,t,) = 4(z,y),

n— 00
where @ is a traveling wave solution, in some norm? In the following, we will show

that the answer to this question is positive at least on a sequence of times under
certain assumptions on the shape of the solution.
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Theorem 4.8. Let u be a wave-like solution of Eq. (1.1). Assume that for each
t there exists a shift R(t) such that u(z + R(t),y,t) is uniformly bounded in H(X)
with some ¢ > ¢*, and f(u(z + R(t),y,t)) is bounded away from zero at a fized
point in X. Then, there exists a sequence of times {t,} and shifts {R,} such that
w(z+ Ry, y,tn) = 4 as t, — 00, where U is a variational traveling wave with speed
c=c*, in C%(Xo), where X¢ is an arbitrary compact subdomain of 3.

Proof. Let us differentiate Eq. (4.7) with respect to t. We get

_ dblu( )] _ 0%.fu]|  de

0 _
dt e | ooy dt

c=cC

+/ ef(h)z (uluze + VyuT - Vyu, — 7 (u)uy) dedy
b

dé - z=+400
=4 (/ ec(t)zuzTutdy>
c=c(t) dt Q z=—00

+ /82 D2y T (n -V, u)dzdy

_ 0%[u]
T e

= [0 (e + e0us + T+ f) wdady
»

0% [u]
Jc

dec

/ D2 (uTuy + &(t)uluy)dzdy,
c=2(t) b

whenever d¢/dt exists. Here 0®./0c is as in Eq. (3.7), we performed integration by
parts and took into account that the surface terms are all equal to zero. Now, taking

into account that @ [u] = 0 and so [, eM*ulu,dzdy = —&(t) [,, e®®*ulu dzdy
(see Eq. (4.4) and (4.5)), we obtain

o, dé )
(4.11) O%c[u] g _ / D% (uy + &(t)u,)” dzdy.

60 e=a(t) dt »

This equation is invariant with respect to constant shifts of u along the z-axis.
Indeed, according to Eq. (3.7) with £ = 1 and Eq. (4.7), we have

a<I)c[u(z - Raya t)] — ea(t)R 6(}0[11’(.25 yat)]
dc c=&(t) dc c=&(t)

so a finite shift by R produces a factor of e®®¥ in both sides of Eq. (4.11). Thus,
this equation only depends on the shape of the solution.

Since &(t) is bounded from above, there exists a sequence of times {t,} going to
infinity such that dé(t,,)/dt — 0. Indeed, by Lebesgue Theorem, &(t) is differentiable

almost everywhere, and for any 7' > 0 we have ftioJrT %dt < ¢*. Applying the Mean

which

(4.12)

’

Value Theorem to this integral, we obtain that 0 < infy<i<yoqr % < <,
can be arbitrarily small for large T', so the sequence {t,} exists.

Then, there exists a subsequence {t!,} such that u(z + R(t.),y,t.,) — u(z,y)
in C2(Xy), where 4 is a traveling wave solution with speed c*. The proof follows
from the fact that from uniform boundedness of u(z + R(t),y,t) in H(X) with

¢ > ¢* > &(t) follows uniform boundedness of w (see Eq. (3.8)
c=¢c(t

and the arguments there). This means that the right-hand side of Eq. (4.11) goes

to zero on a sequence of u(z+ R(t,), y, tn)- Since u(-,t) € Q.(X) are equicontinuous

together with all its derivatives, and Xg is compact, by Arzela-Ascoli Theorem there

exists a subsequence {t/,} such that u(z + R(t.,),y,t,) — a(z,y) in C?(%p). Since
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also ¢é(t) — ¢*, u satisfies Eq. (3.1) with ¢ = ¢*. By assumption, the trivial solutions
are excluded from the possible choices of @, so this completes the proof. |

Corollary 4.9. Suppose there erists a wave-like solution of Eq. (1.1) that satis-
fies the assumptions of Theorem 4.8. Then there exists a variational traveling wave
solution with speed cpin < ¢ < Cmax-

Note that if @(z + R(t),y,t) € H}(X) with ¢ > ¢*, u can only converge to a
variational traveling wave. So, the question here is to find some a priori bounds
on the rate of decay of v and Vu at plus infinity in a suitable reference frame. Let
us also comment on the way to show whether v — 4 asymptotically as t — oo.
Theorem 4.8 allows to establish that c¢* is the speed of the traveling wave solution.
Suppose that for any u € Q.(X%, Rt) there exists R = R(t) that minimizes

(4.13) AR 1) = / "% (u(z,y, ) — alz — R, y))>dzdy
>

with respect to R for any ¢. Then, convergence of the shape of the solution to the
traveling wave in the reference frame characterized by the shift R(t) may be shown
by establishing that e “OEMU q(R(t),t) — 0 as t = oo.

Let us see what sorts of assumptions on ®. this would require. Introducing
v =u — @, where @ = 4(z — R(t),y), expanding ®,. around @, and using Eqgs. (4.7)
and (3.16), we get

0= c(t}i—c/ 2T a, dzdy + (¢* — E(t))/ D2 qTvdzdy
ct) Js )

(4.14) —}—% / W=(VoT . Vo + oT H(a)v)dzdy,
b5

where H is given by Eq. (3.4), for some u(z,y,t). In fact, the second integral
in the right-hand side of this equation is zero. Indeed, by construction 0 =
%d(R, )| r=r@t) = [y ec®2gTydzdy. If now we assume a version of strong positiv-
ity of the last integral in Eq. (4.14):

(4.15) / e (Vo - Vo + vl H(@)v) dzdy > K/ e“vlvdzdy
b5 5

for sufficiently small e=*F(®)||v||2, in some interval of ¢ < ¢*, we can prove that

e CMEM(R(t),t) = 0 as t — co. Indeed, the first integral in Eq. (4.14) behaves
like (c* — &(t))e®EM) 5o multiplying both sides of Eq. (4.14) by e ¢®E®) and
taking into account that ¢(t) — ¢* as t — 0o, we obtain the result.

A number of other general conclusions can be made for the asymptotic behavior
of the wave-like solutions, when the nonlinearity has certain properties. Suppose,
for example, that H(0) is a positive-definite matrix, so zero is a locally stable
equilibrium point. Clearly, in this situation some of the initial conditions may
decay to zero. This, however, cannot happen under certain assumptions if u is a
wave-like solution.

Proposition 4.10. Let u be a wave-like solution of Eq. (1.1) and ¢* > 2,/—vyg,
where vy 1is the lowest eigenvalue of Eq. (3.3), if vu < 0. Then there exists a
constant b > 0 such that

(4.16) max_u?(z,y,t) > b
(2,9)€X

for all t.
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Proof. We only need to show this for ¢ > ty. So, suppose the opposite is true.
We have

(4.17) / (Vyu - Vyu+u"H(O)u) dy > 1/0/ uTudy,
Q 0

and V is smooth with V' (0) = V,V(0) = 0. So, for any € > 0 it is possible to find
b > 0 such that V(u) > LuT(H(0) — €)u for all u? < b. Therefore

D fu(-,1)]
1
> 3 / e (ulu, + eVyu” - Vyu+ (1 — €)vg — €) ulu + eu H(0)u) dzdy
>

1
2

E/ e*VuTl - Vudzdy
2J)s

v

2

(4.18) +% ((1 —¢) (CZ +u0> — e+ emin H(0)> /EeczuTudzdy.

Now, for sufficiently small e there exists ¢ > to such that the last bracket in the
integral on the right-hand side of Eq. (4.18) is positive for ¢ = &(t). Therefore,
4 [u(-,t)] > 0, which contradicts Eq. (4.7). O

Under the same assumptions, it is also possible to show that the solutions remain
uniformly bounded in H!(¥) with any ¢ < ¢*, in a certain special reference frame.

Theorem 4.11. Let u be a wave-like solution of Eq. (1.1) and c¢* > 2\/—vy,
where vg is the lowest eigenvalue of Eq. (3.3), if vo < 0. Then

(1) There exists a shift R(t) such that u?(R(t),y,t) = b at some y, and u?(z,y,t) <
b for all z > R(t) for sufficiently small b > 0 and all t.

(2) u(z + R(t),y,t) is uniformly bounded in H(X) for any c < c*.

(3) R(t) > ct + Ry with some Ry for any c < c¢* for all t.

Proof. By Proposition 4.10, there exists a constant b > 0 such that u?(-,t) > b
somewhere in X. Since u(-,t) — 0 as z — +00, the set of all points in ¥ at which
u? > b is bounded at plus infinity. Therefore, for each ¢ there exists the least upper
bound of that set, call it R(t). Since u is continuous, there exists y such that
u?(R(t),y,t) = b and u?(-,t) < b for all z > R(t). So, R(t) is the function sought.

Let us now show that u(z + R(t),y,t) remains uniformly bounded in H!(X)
for arbitrary ¢ < ¢*. We only need to show that for those values of ¢ that are
sufficiently close to ¢*, this would then imply uniform boundedness in H},(X) with
any 0 < ¢’ < ¢. Following the argument of Eq. (4.18), for any € > 0 it is possible
to choose such b > 0 that V(u) > fu” (H(0) — €)u for all u? < b. Then, using this
value of b to define R(t) and repeating the arguments of Eq. (4.18), we get

®cfu(z + R(1),y,1)] = e PO @c[u(-,1)]

R(t)
> %/ ez R(1) 7, T . Vudzdy + Vmin/ / eC(Z*R(t))dzdy
) QJ—c0

2 +o0
+1 ((1 —€) (c_ + 1/0) — €+ emin H(O)) / / G ROy T ydzdy,
2 4 o JR()

(4.19)

where Vinin = HQlir(lE) V(u), and we used Lemma 2.3. Let us choose ¢ sufficiently
u€Q,

close to ¢*, S0 ¢pin < ¢ < ¢*. Then, there exists a time T such that ®.[u(-,t)] < 0
for all ¢ > T'. Let us choose € so small that the last integral in Eq. (4.19) is positive.
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Then from Eq. (4.19) for ¢t > T we obtain

VminA
(4.20)0 > P [u(z + R(t),y,t)] > %/ ecE=ROIGyT . Vudzdy + Y
>
where A = [, dy. This means that
2 minA
(421) Vu(e + B@),p, 03, < - 2222,

so, by Lemma 2.5, ||u(z + R(t),y,t)||1,c is uniformly bounded for all ¢ > T'. But
since u € Q... (X, R"), this means that u(z + R(t),y,t) is uniformly bounded in
HY(X) for all t as well.

Now, by Proposition 4.1, Lemma 2.3 and Eq. (4.20), for ¢ > T we have

e CBO-DS [u(z + ¢T,y,T)] > e “FO=NDP [u(z + ct,y,1)]
VminA
(4.22) = Befu(z + R(),p,0] > -
Dividing this inequality by a negative number ®.[u(z + ¢T',y,T)] and taking the
logarithm of both sides, we obtain

c®fu(z +cT,y,T)]
VminA ’
which is the last statement of the Theorem. |

The quantity R(t) represents the position of the leading edge of a wave-like solu-
tion. Thus, under the assumptions of Theorem 4.11 the leading edge will propagate
faster than the speed ¢* — € with € arbitrarily small, establishing ¢* as a lower bound
on the average propagation speed of the leading edge of the solution. Note that
Theorem 4.2 establishes the upper bound for the speed of propagation of the leading
edge.

Also, under the assumptions of Theorem 4.11 the shape of the solution remains
sufficiently well-behaved: u(z + R(t),y,t) € HL. _(X). This fact provides a selec-
tion criterion for the solutions in that reference frame. In particular, it allows to
exclude all the non-variational traveling wave solutions as potential candidates for
the asymptotic state in this reference frame. Note that this, however, is not yet
sufficient for applying Theorem 4.8. For this theorem to be valid, we would have
to have u(z + R(t),y,t) € HL () with some e.

Let us point out that when vy < 0, the speed ¢ = 24/—vy is the smallest propaga-
tion speed for a traveling wave solution that behaves asymptotically like vo(y)e™*?,
where vg is the eigenfunction of the operator in Eq. (3.3) corresponding to vy, as
z — +oo. In this situation it is possible to have families of traveling wave solu-
tions with speeds greater or equal than 2,/—v [1]. Moreover, for scalar equations
the solution with the speed ¢ = 24/—vp may often be the selected solution at long
times [9, 27, 28]. However, the assumptions of Theorem 4.11 do not allow that. In
the language of Ref. [28], these conditions exclude the possibility of linear selection
mechanism.

(4.23) R(t) > ¢t +1n

5. SOME APPLICATIONS

As a simple example, consider the subcritical version of Eq. (1.5) in one space
dimension:

(5.1) Up = Ugy + pu +u® — ub.

For this equation, certain exact traveling wave solutions were found in [28] (see
also [1,29]). When p > —1, this equation has three equilibrium points. For
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—% < p < 0 there is a unique traveling wave solution with positive speed ¢ = c*,
where

o 2T +4p -1
\/S b

connecting zero with a positive equilibrium point [12]. According to the discussion
above, this is a variational traveling wave. When y = 0, there exists one positive
traveling wave solution with speed c* = 1/4/3 that decays exponentially for z —
400 and a continuous family of positive solutions with ¢ > ¢* and algebraic decay
[14,15]. Out of these, only the former is a variational traveling wave. For 0 < p < %,
a family of exponentially decaying solutions with ¢ > 2,/ and slower decay, and
a unique positive solution with ¢ = ¢* > 2,/1, where ¢* is given by Eq. (5.2), and
faster decay exist [28,29]. Only the latter is the variational traveling wave. Finally,
for p > % a family of exponentially decaying solutions for ¢ > 2,/u exists. There
is also a family of solutions with oscillatory behavior at infinity for 0 < ¢ < 2,/p.
None of these solutions is a variational traveling wave.

A simple calculation for Eq. (5.1) shows that the upper bound for the speed of
the variational traveling wave is

1
(5.3) Cmax = 5\/ 16p + 3.

As it should, this equation is in agreement with Eq. (5.2). It also provides the value
3

of p = —1% at which the variational traveling waves cease to exist. Note that the
upper bound in Eq. (5.3) is typically very close to the exact value in Eq. (5.2). For
example, numerically we have ¢* = 1.423, while ¢ax = 1.658, for p = %, within
~ 15% of each other.

Note that it can be shown that the variational traveling wave solutions of Eq. (5.1)
are in fact minimizers of ®, at ¢ = ¢* [40]. This then allows to obtain lower bounds
for the value of ¢*. For example, consider Eq. (5.1) with p = % Let u,, be the

positive equilibrium solution of this equation, then consider a trial function

(5.2)

_ _ Um, z <0,
(54) w@={ " 250

where a is an adjustable parameter. Let us substitute @, into ®., minimize the
functional with respect to a and then find the largest value of ¢ = ¢, for which
®.[@,] < 0. A straightforward numerical calculation then gives ¢mpin = 1.415. This
is below the exact value by just ~ 0.5%!

Let us now discuss the results of Sec. 4 applied to Eq. (5.1). For simplicity,
consider the case of 4 = 0. Theorem 4.11 applies to any initial condition that
decays sufficiently rapidly at plus infinity and approaches a nonzero limit whose

absolute value is less than \/g at minus infinity. For example, an initial condition

ug =1if z < 0 and ug = e * cosz if x > 0 will generate a wave-like solution with
¢(t) > 0.2138. The value of b for this solution can be chosen to be, say, 0.01. Then,
according to Theorem 4.11, the first point on the right at which u? = 0.01 will
move with an average speed greater than cnin = 0.2138. Better lower bounds can
be obtained from estimates of &(¢) obtained by the numerical solution of Eq. (5.1) on
finite time intervals, which can be done with any reasonable precision. Furthermore,
the only accessible traveling wave solutions for this initial value problem will be the
two variational traveling waves (which differ by the sign) with speed ¢ = 1/4/3,
since they are the only variational traveling wave solutions of Eq. (5.1) at u = 0.
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Let us now demonstrate that Theorem 4.8 can be applied to a class of monotone
initial conditions connecting zero and one, and decay sufficiently rapidly at plus
infinity. To do that, we need to show that in the reference frame associated with
the leading edge of the solution the functions v and w, decay with a sufficiently
fast exponential rate. This can be done using phase plane arguments. Indeed, for

ug < 0 it is possible to rewrite Eq. (5.1) in terms of v = —u, as a function of ¢ and
u. After a change of variables, we obtain
o (Ov ud—ub
5.5 e 0) =v(1) =0
(5.5 =ty (Ge+ 20 w0 =) =0,

with v(u,t) > 0 for all 0 < w < 1. This degenerate parabolic equation obeys the
comparison principle (see, for example, [41]). To construct suitable lower solutions,
we use the phase plane trajectories of the stable manifold of

(5.6) Upg + Qg +u® —u® =0,

approaching zero from above as 2 — 400, with a < 1/v/3. Clearly, these trajecto-
ries will intersect the v = 0 axis at some u = ug < 1. Therefore, since v(ug) > 0, the
obtained trajectories v = w,(u) are subsolutions on the interval 0 < u < ug [41].
Similarly, by choosing 8 > 1//3 (instead of a in Eq. (5.6)), we will obtain the
supersolution 0g(u) for 0 < u < 1, since obviously 75(1) > 0.

Since v, (u) and Ug(w) are obtained from the stable manifold of Eq. (5.6), we will
have

(5.7) v, (u) > (@ —€)u, 18 < (B+e€)u, 0 <u <,

for some sufficiently small § > 0, given an arbitrary ¢ > 0. Now, choosing the
initial data for Eq. (5.1) which lie in the phase plane between v, and ¥, we are
guaranteed that (a —e)u < v(u,t) < (B8+€)u as long as u < §. This, in turn implies
for solutions of Eq. (5.1) that

(58) U(.fL’,t) < 66—(a—e)(m—R(t)),
(5.9) lug (z,8)] < 8(B + e)e~(@—(@—R®)

with R(t) defined by u(R(t),t) = 0. Indeed, recalling the definition of v(u) and
using the first inequality in Eq. (5.7), we have

(5.10) uy < —(a—€)u, for all x > R(t).

Dividing by wu, integrating from R(t) to x > R(t), and taking into account the
definition of R(t), we obtain Eq. (5.8). Also, recalling the second inequality in
Eq. (5.7), we obtain Eq. (5.9). Then, taking into account that both v and u, are
uniformly bounded, we conclude that u(z + R(t),t) is uniformly bounded in H}(R)
with ¢ = 2a — 3e.

Clearly, a and € can be chosen in such a way that ¢ > ¢max, Where cmax = V3 /2
(see Eq. (5.3)). Since, in turn, lim;_, o &(t) < Cmax, for this class of initial conditions
the conclusion of Theorem 4.8 holds. For example, this is the case for the initial
conditions ug = 1 if z < 0 and up = e 2 if > 0, with a > v/3/4, which is
guaranteed to lie between v, (recall that v, ~ au in the limit u — 0, and that
f(u) > 0 implies that v, (u) is convex down) and vg (with large enough f) in the
phase plane. Note that local stability of the variational traveling wave then implies
global convergence of the solution to the traveling wave solution as ¢ — oo (see
[25]). In addition, these arguments with, say, a = 1 give existence of a variational
traveling wave with 0.5220 < ¢ < 0.8660, which agrees with the known exact
solution.
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Let us point out that the above analysis is for illustrative purposes only, we
are not aiming at complete generality here. Various generalizations of the above
mentioned arguments are possible. For example, these results can be extended to
the initial data with faster than exponential decay (including data with compact
support), or to the case 0 < p < %. One can also come up with heuristic forms of

subsolutions. For example, one can choose v, (u) = a, /1 — %;, with a = 0.44 and
0

up = 0.7, the fact that this is a subsolution for Eq. (5.5) is verified directly. We
shall not dwell on these issues here any further.

On the other hand, it is more difficult to apply our results to nonlinearities of
Fisher type. Indeed, as a simple example, consider the Fisher equation in one
dimension, so f(u) = u(1 —u). It is easy to see that in this case cpax = 2.
However, it is known that positive traveling wave solutions for this equation exist
only for ¢ > 2 and have slow exponential decay, which make them lie outside of
spaces H!(R). Clearly, Theorem 4.11 cannot be applied since in view of the value
of cmax we must have ¢* < 2, which contradicts the assumption of the Theorem.
Similarly, Theorem 4.8 cannot hold, since Corollary 4.9 contradicts non-existence
of variational traveling waves for the Fisher equation. Of course, Theorem 4.7 holds
for all equations of the considered type, including the Fisher equation.

Nevertheless, the techniques developed in this paper allow to make a number of
conclusions about the behavior of solutions of the Fisher equation and the like. Once
again, consider the Fisher equation in one dimension. We can use the properties
of Q.(R) to establish global stability of the traveling wave solutions with speed
¢ > 2 with respect to perturbations decaying faster than the wave at plus infinity.
Indeed, let v = u — %, where 4 is the traveling wave solution with speed ¢ > 2, and
we consider positive solutions: u > 0. Then the Fisher equation can be rewritten
as
(5.11) Vp = Vg + Uy + v — 200 — 02,

Let us multiply this equation by e %y and integrate over space. After a number of
integrations by parts, we obtain

' : c—c)d .
/ec ”thd;zc:/ecz (—vi—%vz+v2—2ﬂv2—v3) dx
R R

/2 /
(5.12) < / e® (C— ~% t1-92a- v) v?dz,
where in arriving at the last inequality we used Eq. (2.14). Observe that in view of
positivity of u, we have —a—v < 0, so the last two terms in the bracket in Eq. (5.12)
are negative. Therefore, if we choose ¢’ = ¢ — v/¢2 — 4 + ¢, with sufficiently small
€ > 0, we get

(5.13) 4 / e *vldr < —a/ e “v2dz,
dt R

with some constant a > 0, and we immediately conclude that the traveling wave
solution @ is exponentially stable with respect to arbitrary perturbations in Q. (X),
as long as u > 0. Note that the traveling wave solutions with speed ¢ > 2 behave
asymptotically like 4(z) ~ e=*-%, where A_ = 1 (¢ —V/c? — 4), as 2 — 400 [9,13].
So, the above mentioned requirement amounts to the fact that v must decay with
a faster exponential rate than u for large z. This also implies that the propagation
speed and the asymptotic profile of the solutions of the Fisher equation is deter-
mined solely by the asymptotic behavior of the initial data for sufficiently slow
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exponential decay rates. This generalizes the well-known result of McKean [42].
Note that the argument above can be trivially extended to cylinders with Neu-
mann boundary conditions, or to convex down nonlinearities f(u).

6. CONCLUSIONS

In conclusion, we have identified a variational structure of the gradient reaction-
diffusion systems with equal diffusion coefficients in cylinders. This variational
structure is intimately related with the traveling wave solutions. The obtained
functionals are well-defined for functions that decay sufficiently rapidly exponen-
tially at one end of the cylinder.

We found that a certain class of the traveling wave solutions which we call
variational traveling waves are critical points of these functionals. For systems
with linearly stable equilibrium solution v = 0 all traveling wave solutions are
variational traveling waves. In the opposite case the variational traveling waves are
special in the sense that the exponential decay rate of |u| ahead of the wave for
these waves corresponds to the larger value of A that satisfies Eq. (3.5) (see Sec. 3).

Our main result about the variational traveling waves is the global upper bound
for their speed (Theorem 3.7). Note that this upper bound is only determined
by the nonlinearity f (plus, perhaps, the information about the spectrum of the
Laplace operator in 2) and can therefore be readily calculated for a given system.
Our method also allows to estimate the lower bounds of the speeds of the variational
traveling waves. Note that different kinds of other variational estimates can also be
obtained for the speeds of the traveling waves in reaction-diffusion systems [35,38].

Perhaps the most interesting results associated with the variational structure
of the problem have to do with the solutions of the initial value problem. The
variational formulation allows to study the evolution of disturbances, that is, the
solutions of Eq. (1.1) that decay exponentially at one end of the cylinder. Our
analysis allows to make predictions about the propagation of the disturbances that
decay sufficiently rapidly as z — +00.

For such solutions, the obtained functionals are monotonically decreasing with
time in the reference frames moving with constant speeds. Our main observation
here is that the sign of the functionals is translationaly invariant, so one can make
certain predictions about the propagation of disturbances based on the information
about the sign. It turns out that this allows one to introduce a definition of the
instantaneous propagation speed for a wide class of solutions which we call wave-
like. A striking property of this propagation speed is the fact that it approaches
a limit as ¢ — oo (Theorem 4.7), thus suggesting that these kinds of disturbances
propagate asymptotically linearly with time. In turn, this definition can be related
to other definitions of the speed of the traveling wave, such as the average speed
of the leading edge of the solution, for example (see Sec. 4). In this case under
certain verifiable assumptions one can obtain bounds on such speeds. Essentially,
the variational structure provides an integral comparison principle for the solutions
of the initial value problem with the results similar to those obtained using the
maximum principle (see, for example, [13,16,34]). The advantage of our method,
however, is that it works with very general classes of initial conditions in arbitrary
dimensions with multicomponent variable v and does not require construction of
the upper and lower solutions.

One of our main results about the propagation of disturbances has to do with
convergence of wave-like solutions to variational traveling waves (Theorem 4.8).
What we found is that if the profile of the disturbance remains sufficiently compact
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FIGURE 1. Development of complex spatiotemporal dynamics in
the Newell-Whitehead-Segel equation. The shades of gray go from
black to white when Rew and I'mwu go from —1 to 1. See text for
details. Only half of the solution is shown.

in a certain reference frame, the solution of the initial value problem will converge
to a variational traveling wave at least on a sequence of times. In other words, this
will happen if the distribution of u does not spread out, or, more precisely, when
the front of the disturbance remains sufficiently steep for all times. So, for this
one needs some apriory bounds on the behavior of the solution in the front of the
disturbance. For example, in the case of certain scalar reaction-diffusion equations
in one dimension one can obtain such bounds by phase plane analysis and using
the comparison principle for certain types of initial conditions (see Sec. 5). Note,
however, that this result does not work with all gradient reaction-diffusion systems
(like the Fisher equation).

A general question related to this is whether the traveling wave solutions are
the only possible asymptotic states for the gradient reaction-diffusion systems with
equal diffusion coefficients. For scalar reaction-diffusion equations the answer to
this question is positive in a large number of situations [9-12,24,25]. Yet, it is
not clear whether this can be extended to more general classes of initial conditions
or multicomponent systems (for monotone systems, see [26]). To illustrate the
nontriviality of this point, let us give a numerical example of a situation in which
the asymptotic state is not a traveling wave. Consider the Newell-Whitehead-
Segel equation (see Sec. 1). We solved numerically the initial value problem with
uo(z) = cosh™? (%) exp (% tanh £). The result is presented in Fig. 1. It is clear
from this figure that complex spatiotemporal dynamics develop at long times. At
the same time, the leading edge of the solution propagates linearly with time, in
agreement with Theorem 4.7.

On the other hand, Theorem 4.11 gives uniform bounds in H!(X) for the solu-
tions in the reference frame associated with the leading edge and, therefore, allows
to exclude certain classes of solutions as potential asymptotic states. In particular,
it allows to exclude all non-variational traveling waves and therefore provides a
selection criterion. Note that this selection criterion partially verifies the nonlinear
selection hypothesis introduced in Ref. [28].
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Finally, let us mention a number of possible generalizations of our results. It can
be easily seen that our results remain valid when the function f explicitly depends
on the transversal coordinate y. Also, the variational formulation can be modified
to include a constant mean flow in the transverse directions, as well as nonlinear
sources at the boundaries. In addition, the variational formulation can be extended
to Eq. (1.1) with an extra term cuy, where « is an arbitrary positive constant,
added to its left-hand side. The latter can be particularly useful even for scalar
problems in one dimension since the maximum principle does not apply to these
equations.
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