1. Use both Venn diagram and algebraic method to prove each set equality.

(a) \[A \cup (B - A) = A \cup B \]
\[A \cup (B - A) = A \cup (B \cap \overline{A}) \]
\[= (A \cup B) \cap (A \cup \overline{A}) \quad \text{DISTRIBUTIVE} \]
\[= (A \cup B) \cap \top \]
\[= A \cup B \]

(b) \[(A \cap B) \cup (A \cap \overline{B}) = A \]
\[(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B}) \]
\[= A \cap \top \]
\[= A \]
2. (a) Express an equivalent expression for the following proposition, using only AND, OR, and NOT connectives. Then, use a truth table to show equivalence of the two expressions.

\[\neg(P \rightarrow Q) \]
\[P \land \neg Q \]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \rightarrow Q</th>
<th>\neg(P \rightarrow Q)</th>
<th>\neg Q</th>
<th>P \land \neg Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

(b) Let the domain of \(x \) and \(y \) be all integers. Is the following proposition true or false? Give a reasoning.

\[\forall x \exists y, \text{ if } (x > y) \text{ then } (x^2 < y^2) \]

TRUE. For any \(x \), we can pick \(y = -\lceil |x| - 1 \rceil \).

Then, \(x > y \) and \(x^2 < y^2 = x^2 + 2|\lceil x \rceil| + 1 \).

Examples: (Note: Examples by themselves are not proof.)

\[x = 5, \quad y = -7 \]
\[x = -5, \quad y = -6 \]

(c) Find negation of the above statement and simplify. Is the result true or false? Explain.

\[\exists x \forall y, \quad \neg \left[\forall y \left((x > y) \implies (x^2 < y^2) \right) \right] \]
\[\exists x \forall y, \quad \neg \left[(x > y) \implies (x^2 < y^2) \right] \]
\[\exists x \forall y, \quad (x > y) \land \neg (x^2 < y^2) \]
\[\exists x \forall y, \quad (x > y) \land (x^2 \geq y^2) \]

FALSE. There is no \(x \) greater than every \(y \).

Also, it is false because it is negation of (b) which was true.
3. Use proof by contradiction or contrapositive proof, as appropriate, for each of the following.

(a) Prove that if \(n^3 \) is divisible by 8, then \(n \) is divisible by 2. Assume domain of \(n \) is positive integers.

We'll prove contrapositive equivalent form:

"If \(n \) is not divisible by 2,
then \(n^3 \) is not divisible by 8."

Suppose \(n \) is not divisible by 2.
So, \(n = 2k + 1 \) for some integer \(k \).
Then,
\[
 n^3 = (2k+1)^3 = (2k)^3 + 3(2k)^2 + 3(2k) + 1
 = 8k^3 + 12k^2 + 6k + 1
 = 2(4k^3 + 6k^2 + 3k) + 1
\]
Therefore, \(n^3 \) is ODD, so not divisible by 8.

(b) Let the domain of \(x \) and \(y \) be positive real numbers. Suppose \(x \) is rational and \(y \) is irrational. Prove that \(x + y \) is irrational.

We'll prove by contradiction.
Suppose \((x+y) \) is rational.
Then, \(x + y = \frac{i}{j} \) for some int \(i, j \).
And, we know \(x \) is rational.
So, \(x = \frac{i'}{j'} \) for some int \(i', j' \).
Then,
\[
y = (x+y) - x = \frac{i}{j} - \frac{i'}{j'} = \frac{i'j - ij'}{jj'}
\]
So, \(y \) is rational.
This contradicts earlier fact that \(y \) is irrational.
Therefore, \((x+y) \) is irrational.
4. Prove by simple induction that any postage amount of \(n \) cents, \(n \geq 12 \), may be achieved by using only 7-cent stamps and 3-cent stamps. That is, for every integer \(n \geq 12 \), there exist non-negative integers \(A \) and \(B \) such that,

\[
n = 7A + 3B.
\]

For BASE, \(n = 12 \), \(12 = 7 \times 0 + 3 \times 4 \).

Now suppose for some \(n \geq 12 \),

\[
\boxed{n = 7A + 3B}
\]

We'll show how to achieve \(n+1 \).

Case 1: \(B \geq 2 \)

Then,

\[
n + 1 = 7(A+1) + 3(B-2)
\]

Case 2: \(n (B \geq 2) \)

\[
B \leq 1
\]

Since \(n \geq 12 \), and \(B \leq 1 \), then \(A \geq 2 \).

So, \(A \geq 2 \).

Therefore,

\[
n + 1 = 7(A-2) + 3(B+5)
\]
5. Consider the relation \(R = \{(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)\} \).

(a) Does the relation satisfy each of following properties? Explain.

Reflexive?
\[\text{YES. } \forall x, (x, x) \in R. \]

Symmetric?
\[\text{No, } (1, 2) \in R \text{ but } (2, 1) \notin R. \]

Antisymmetric?
\[\text{YES. } \forall i \neq j, \text{ if } (i, j) \in R \text{ then } (j, i) \notin R. \]

Transitive?
\[\text{No, } (1, 2) \in R \text{ and } (2, 3) \in R, \text{ but } (1, 3) \notin R. \]

Partial Order?
\[\text{No, not transitive} \]

Equivalence Relation?
\[\text{No, not symmetric and not transitive} \]

(b) Show the matrix of this relation. Use matrix multiplication to decide if the relation is transitive. Explain.

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

\[
A^2 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \times \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Not Transitive,
\[A[1, 3] = 0 \text{ but } A^5[1, 3] = 1. \]