1. (a) Prove the following set equality both by a Venn Diagram and by algebraic method.

\[A \cup (\overline{A} \cap B) = A \cup B \]

(b) Prove the following set equality by algebraic method.

\[(A \cup B) - (A \cap B) = (A \cap \overline{B}) \cup (\overline{A} \cap B) \]
2. (a) Use a truth-table to show the following propositions are logically equivalent. (Show the detailed step-by-step computations in the table.)

 i. \(X \leftrightarrow Y \) (if and only if)
 ii. \((X \to Y) \land (Y \to X) \)
 iii. \((X \to Y) \land (\neg X \to \neg Y) \)

(b) Express an equivalent form for the following proposition using only \(\land, \lor, \neg \) operations. Use a truth table to show that they are equivalent.
\((P \to Q) \)

(c) Find an equivalent form for the following proposition using only \(\land, \lor, \neg \) operations.
\(\neg[\text{if } (x < y) \text{ then } (x^2 < y^2)] \)
3. (a) Determine the true/false value of each of the following propositions, where the domain of x and y is all integers. Explain your reasoning.

i. $\forall x \exists y, \ y^2 = x^2$

 ii. $\exists x \forall y, \ y^2 = x^2$

(b) Express the negation of each of the above statements and simplify.
4. (a) Given a rational number x and an irrational number y. Prove by contradiction that $x \cdot y$ is irrational.

(b) Suppose the domain of n is positive integers. Express the contrapositive equivalent form of the following proposition. Then prove the proposition is true.

If n^2 is not divisible by 4, then n is not divisible by 2.
5. (a) Prove by simple induction that any postage amount of \(n \) cents, where \(n \geq 18 \) may be achieved by using only 7-cent stamps and 4-cent stamps. That is, prove that for every integer \(n \geq 18 \), there exist some non-negative integers \(A \) and \(B \) such that

\[n = 7A + 4B. \]

(b) Is the same true for all \(n \geq 16 \)? Obviously the base is true for \(n = 16 \), since 16 = 7 \(
\times 0 + 4 \times 4 \). So does the induction step also work for all \(n \geq 16 \)? Explain.