1. Use algebraic method to prove each set equality.

(a) \(A \cup \overline{A} \cap B = A \cup B \)

\[
\begin{align*}
A \cup (\overline{A} \cap B) & = (A \cup \overline{A}) \cap (A \cup B) & \text{DIST} \\
& = \overline{\overline{U}} \cap (A \cup B) \\
& = A \cup B
\end{align*}
\]

(b) \(A - (B \cup C) = (A - B) \cap (A - C) \)

\[
\begin{align*}
A - (B \cup C) & = A \cap (\overline{B \cup C}) \\
& = A \cap (\overline{B} \cap \overline{C}) & \text{De Morgan} \\
& = (A \cap \overline{B}) \cap (A \cap \overline{C}) \\
& = (A - B) \cap (A - C)
\end{align*}
\]
2. (a) Use a truth table to show the following propositions are equivalent.

i. \(A \rightarrow B \)

ii. \(\neg B \rightarrow \neg A \)

iii. \(\neg(A \land \neg B) \)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A \rightarrow B</th>
<th>\neg B</th>
<th>\neg A</th>
<th>\neg B \rightarrow \neg A</th>
<th>A \land \neg B</th>
<th>\neg(A \land \neg B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

We see from the table that (1), (2), (3) are equivalent.

(b) Find the negation of the following proposition. (Assume domain of \(x \) is positive integers, and \(f(x) \) and \(g(x) \) are Boolean functions of \(x \).)

\[\neg \left(\forall x, \text{ if } f(x) \text{ then } g(x) \right) \]

\[\exists x, \neg \left(\forall \bar{x}, \text{ if } f(\bar{x}) \text{ then } g(\bar{x}) \right) \]

\[\exists x, \; f(x) \land \neg g(x) \]
3. (a) Determine true/false value of each of the following propositions, where the domain of \(x \) and \(y \) is all integers. Provide your reasoning.

i. \(\forall x \exists y, \ (x + y = 0) \)

 True. For every \(x \), there is a corresponding \(y = -x \), so that \(x + y = 0 \).

ii. \(\exists x \forall y, \ (x + y = 0) \)
 Note: You must read from left to right.

 FALSE. There is no single fixed \(x \),
 so as for every \(y \), \(x + y = 0 \).

 Counterexample: Given any \(x \), pick \(y = -x + 1 \), so \(x + y \neq 0 \).

(b) Find the negation of each of the following propositions. Show the work step-by-step.

i. \(\forall i \forall j \forall k, \ (A[i, k] \land A[k, j]) \) then \(A[i, j] \).

\[
\exists i \exists j \exists k, \ \neg (\forall k \ (A[i, k] \land A[k, j]) \ \text{then} \ A[i, j])
\]

\[
\exists i \exists j \exists k, \ (A[i, k] \land A[k, j]) \land \neg A[i, j]
\]

ii. \(\forall i \forall j, \ (\exists k, (A[i, k] \land A[k, j])) \) then \(A[i, j] \).

\[
\exists i \exists j, \ \neg (\forall k \ (\exists k, (A[i, k] \land A[k, j])) \ \text{then} \ A[i, j])
\]

\[
\exists i \exists j, \ (\exists k, (A[i, k] \land A[k, j])) \land \neg A[i, j]
\]

\[
\exists i \exists j \exists k, \ (A[i, k] \land A[k, j]) \land \neg A[i, j]
\]

Note that (i) and (ii) are the same negation.
4. (a) Given a rational number x and an irrational number y. Prove by contradiction that $x \cdot y$ is irrational.

Suppose to the contrary that $x \cdot y$ is rational.

So, $x \cdot y = \frac{i}{j}$ for some int i, j.

And we know x is rational. So, $x = \frac{k}{l}$ for some int k, l.

Then $y = \frac{x \cdot y}{x} = \frac{i/j}{k/l} = \frac{i \cdot l}{k \cdot j}$ which is rational,

Therefore, $x \cdot y$ is irrational.

(b) Suppose the domain of n is positive integers. Prove by contrapositive method the following statement is correct.

"If n^2 is not divisible by 4, then n is not divisible by 2."

If $(n \text{ is divisible by } 2)$ then $(n^2 \text{ is divisible by } 4)$.

To prove the latter, suppose n is divisible by 2.

Then, $n = 2k$ for some int k.

So, $n^2 = 4k^2$ which is divisible by 4.
5. (a) Prove by simple induction that any postage amount of \(n \) cents, \(n \geq 14 \), may be achieved by using only 8-cent stamps and 3-cent stamps. That is, prove that for every integer \(n \geq 14 \), there exist some non-negative integers \(A \) and \(B \) such that

\[
n = 8A + 3B.
\]

- **Base, \(n = 14 \):**
 \[
 14 = 8 \times 1 + 3 \times 2.
 \]
 So, base is correct.

- **For any \(n \geq 14 \), suppose \(n = 8A + 3B \).**

- Then, we'll prove \(n+1 = 8A' + 3B' \), for some non-negative int \(A', B' \).

 - **Case 1:** \(B \geq 5 \)
 \[
 n+1 = 8(A+2) + 3(B-5).
 \]

 - **Case 2:** \(n(B \geq 5) \). That is, \(B \leq 4 \). Since \(n \geq 14 > 4 \times 3 \)

 - **Thus,** \(A \geq 1 \).

 So,

 \[
 n+1 = 8(A-1) + 3(B+3)
 \]

(b) Next use strong induction to prove the above statement.

First prove 3 base cases:

\[
14 = 8 \times 1 + 3 \times 2 \\
15 = 8 \times 0 + 3 \times 5 \\
16 = 8 \times 2 + 3 \times 0
\]

To prove for any \(n \geq 17 \), suppose true for all \(m < n \).

In particular, \(n = n-3 \geq 14 \), not true for \(n-3 \). So,

\[
n-3 = 8A + 3B \] for some non-negative int \(A, B \).

Thus, we can add one 3-cent stamp to \(n-3 \) to get \(n \).

That is,

\[
n = 8A + 3(B+1).
\]

Note: An alternative proof is to use 8 base cases.
6. Consider the relation

\[R = \{(1,1), (1,2), (2,1), (3,1), (3,2), (3,3)\} \]

Show the matrix of this relation.

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

By direct observation of the matrix, decide if the relation satisfies each property. Explain.

(a) Reflexive?

\[\text{No, } (2,2) \notin R. \] That is, \(A[2,2] = 0 \).

(b) Symmetric?

\[\text{No, } A[1,3] = 0 \text{ but } A[3,1] = 1. \]

(c) Antisymmetric?

\[\text{No, } A[1,2] = 1 \text{ and } A[2,1] = 1. \]

(d) Transitive? (Decide this by directly examining the ordered pairs. Do NOT use matrix multiplication for this part.)

\[\text{No, } A[2,1] = 1 \land A[1,2] = 1 \text{ but } A[2,2] = 0. \]

(e) Is the relation a Partial Order?

\[\text{No, } \text{not (reflexive, antisymmetric, transitive).} \]

(f) Is the relation an Equivalence Relation?

\[\text{No, } \text{not (reflexive, symmetric, transitive).} \]
7. Use matrix multiplication to decide if each relation is transitive. Provide an explanation.

(a) \(A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \) \(A \times A = A^2 \)

\[
\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}
\]

Not transitive, because \(A_{3,1} = 0 \) but \(A^2_{3,1} = 1 \).

(b) \(A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \)

\[
\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}
\]

Not transitive, because \(A_{1,1} = 0 \) but \(A^2_{1,1} = 1 \).