1. (a) Convert the decimal integer 58 to binary, octal, and hexadecimal. (Show the computation.)

 \[
 \begin{array}{|c|c|}
 \hline
 & \text{GRADE} \\
 \hline
 1 & /20 \\
 2 & /20 \\
 3 & /20 \\
 4 & /20 \\
 5 & /20 \\
 \hline
 \text{SUM} & /100 \\
 \hline
 \end{array}
 \]

 Binary:
 Octal:
 Hex:

 (b) Perform each of the following additions directly in the specified bases:

 \[
 \begin{array}{lll}
 \text{Binary:} & \text{Octal:} & \text{Hex:} \\
 \text{Carry:} & & \\
 110010 & 761 & \text{CF9} \\
 +010111 & +673 & +\text{C7A} \\
 \hline
 \text{----------} & \text{-----} & \text{-----} \\
 \end{array}
 \]

 (c) Assuming 16-bit word size and 2’s complement number system, show the representation for the negative number \(-58\).
2. Using algebraic manipulations, obtain a simplified sum-of-products expression for each of the following functions.

(a) \(f = XY + XYZ + XZ \)

(b) \(f = (X + Y + Z)(X + Y + Z) \)
3. (a) Show the truth table for the following function.

\[f = (X \oplus Y)(X + Z) \]

(b) Express the sum-of-minterms expression for the above function \(f \). (Write the expression in both algebraic form and decimal-notation form.)
4. (a) Use a map to find a simplified \textbf{sum-of-products} expression for:
\[f(X, Y, Z) = \Sigma_m(0, 2, 4, 6, 7) \]

(b) Use a map to find a simplified \textbf{product-of-sums} expression for:
\[f(W, X, Y, Z) = \Sigma_m(0, 3, 6, 7, 8, 11, 14, 15) + \Sigma_d(5, 13) \]
5. A comparator circuit has two integer inputs $X = (X_1, X_0)$ and $Y = (Y_1, Y_0)$. The inputs X and Y are unsigned integers in the range 0 to 3, and X_0 and Y_0 are the least significant bits of X and Y. The circuit has a single output G which will have a value of 1 whenever $X > Y$.

(a) Using a K-map, obtain a simplified sum-of-products expression for G.

(b) Draw the 2-level NAND circuit to implement G. Provide a brief explanation of the circuit.