1. Prove the following function

\[T(n) = 10n^3 - 100n^2 + 1000n \]

is \(\Theta(n^3) \).

(a) Prove \(O(n^3) \):

(b) Prove \(\Omega(n^3) \):
2. Fibonacci sequence is recursively defined as: $F_1 = 1$, $F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$, $n \geq 3$.

(a) Compute and tabulate F_n for $n = 1$ to 12.

(b) Prove by induction the following upper bound for F_n.

$$F_n \leq 2^{n-1}, \quad n \geq 1.$$

(c) Prove by induction the following lower bound for F_n.

$$F_n \geq 2^{n/2-1}, \quad n \geq 1.$$
3. Consider the following divide-and-conquer algorithm (pseudocode). The initial call for an array \(A[0..n-1] \) is \(\text{SECRET}(A, 0, n-1) \).

```plaintext
Boolean \text{SECRET}([], int left, int right) {
    1. if \((left == right)\) return(\text{FALSE}); // Case of \( n = 1 \).
    2. if \((A[left] \neq A[right])\) return(\text{TRUE});
    3. int \( m = \lfloor (left + right)/2 \rfloor \);
    4. return (\text{SECRET}(A, left, m) \lor \text{SECRET}(A, m + 1, right)) // This is OR.
}
```

(a) Explain precisely what this program accomplishes. Prove your claim by induction.

(b) Let \(f(n) \) be the worst-case number of key comparisons for an array of size \(n \). (A key-comparison is the operation in line 2, which is a comparison between two array elements. The operation in line 1 is not a key comparison.) Write a recurrence for \(f(n) \), assuming that \(n \) is a power of 2. Find the exact solution by repeated substitution.
4. Given a sorted array $A[0..n-1]$ of 0’s and 1’s. The array consists of some number k of zeros followed by $n-k$ ones, for some integer k, $0 \leq k \leq n$.

(a) Describe an efficient algorithm which takes the array A as input and finds k. Your algorithm must have time complexity asymptotically better than n. Analyze the time complexity of your algorithm.

(b) Write the pseudocode for your algorithm.
5. The following recursive algorithm uses a **divide-and-conquer** technique to find the maximum element in an array of size n. The initial call for an array $A[0..n-1]$ is $\text{Findmax}(A, 0, n)$.

```c

dtype Findmax(dtype A[], int i, int n)
{
    // $i$ is the starting index, and $n$ is the number of elements.
    dtype Max1, Max2;
    if ($n == 1$) return $A[i]$;
    $Max1 = \text{Findmax}(A, i, \lfloor n/2 \rfloor)$; //Find max of the first half
    $Max2 = \text{Findmax}(A, i + \lfloor n/2 \rfloor, \lceil n/2 \rceil)$; //Find max of the second half
    if ($Max1 \geq Max2$) return $Max1$;
    else return $Max2$;
}
```

Let $f(n)$ be the worst-case number of *key comparisons* for finding the max of n elements.

(a) Assuming n is a power of 2, write a recurrence relation for $f(n)$.

(b) Find the solution of the recurrence by repeated substitution.

(c) Now apply the alternative method of proof by induction to show that the solution of the recurrence is $f(n) = An + B$ and find the constants A and B.
