1. Prove the following polynomial is $\Theta(n^3)$.

$$P(n) = 2n^3 - 5n^2 + 10n - 20$$

(a) Prove $O(n^3)$:

(b) Prove $\Omega(n^3)$:
2. Find the exact number of times (in terms of n) the innermost statement ($X = X + 1$) is executed in the following code. That is, find the final value of X. Then express the total running time in terms of $O(\)$.

```plaintext
X = 0;
for i = 1 to 2n - 1
  for j = i to 5n - i
    X = X + 1;
```
3. Consider the following divide-and-conquer algorithm (recursive function). Parameter i is the starting index of the array, and n is the number of elements. The initial call is $\text{COMPUTE}(A, 0, n)$.

```c
int COMPUTE (int A[], int i, int n) {
    if ($n == 1$) return $A[i]$;
    $n1 = \lfloor n/2 \rfloor$;  //Length of first half of array
    $n2 = n - n1$;       //Length of second half of array
    $C1 = \text{COMPUTE} (A, i, n1)$;
    $C2 = \text{COMPUTE} (A, i + n1, n2)$;
    return ($C1 * C2$)
}
```

(a) Figure out what the function does. (What does it compute?) Explain briefly.

(b) Let $f(n)$ be the number of times the arithmetic operation ($C1 * C2$) is performed by this algorithm. Assume that n is a power of 2. Write a recurrence for $f(n)$. Find the solution of the recurrence by repeated substitution.

(c) Now consider the general case where n is any integer. Write a recurrence for $f(n)$. Guess the solution and prove it correct by induction.
4. (a) Use Master Theorem to obtain the solution form for the following recurrence. Then find the exact solution. (Assume \(n \) is a power of 2.)

\[
T(n) = \begin{cases}
8T(n/2) + n, & n \geq 2 \\
1, & n = 1.
\end{cases}
\]

(b) Use repeated substitution to find the solution of the following recurrence. (Assume \(n \) is a power of 2.)

\[
T(n) = \begin{cases}
8T(n/2) + n^2, & n \geq 2 \\
1, & n = 1.
\end{cases}
\]
5. We have four sorted lists, each with $n/4$ elements. (Elements are real-valued.) We want to merge these lists into a single sorted list of n elements.

(a) First consider the following naive approach.

- Merge the first and second list into a sorted list of $2n/4$ elements,
- Merge the result with the third list to get a sorted list of $3n/4$ elements,
- Merge the result with the fourth list.

Analyze the worst-case number of key comparisons. (Find the exact worst-case number, not order of it.)

(b) Describe a more efficient algorithm for this problem based on a divide-and-conquer technique. Use a diagram to help explain your algorithm. Analyze the worst-case number of key comparisons. (Again, find the exact worst-case number, not order of it.)