1. (a) Prove that $P(n) = 5n^3 + 50n^2 - 100n$ is $\Theta(n^3)$.

 i. Prove $\Omega(n^3)$.

 $$P(n) = 5n^3 + 50n^2 - 100n$$

 $$\geq 5n^3 - 100n, \quad n \geq 0 \quad \text{(drop positive terms)}$$

 $$\geq 5n^3 - 100n\left(\frac{n}{10}\right)^2, \quad n \geq 10$$

 $$\geq 5n^3 - n^3, \quad n \geq 10$$

 ii. Prove $O(n^3)$.

 $$P(n) = 5n^3 + 50n^2 - 100n$$

 $$\leq 5n^3 + 50n^2, \quad n \geq 0 \quad \text{(drop negative terms)}$$

 $$\leq 5n^3 + 50n^2\left(\frac{n}{100}\right) \quad n \geq 100$$

 $$\leq 5.5n^3, \quad n \geq 100$$

(b) Consider the following pseudo-code. (The code does not do anything useful except to test you!)

   ```
   x = 0;
   for J = 1 to n
       for K = J+1 to 3*n
           x = x + 1;
   ```

 Let $T(n)$ be the total number of times the innermost statement (increment x) is executed. Derive the EXACT value of $T(n)$. Then express the result in $O(\)$ form.

 $$T(n) = \sum_{j=1}^{n} \sum_{k=j+1}^{3n} (1)$$

 $$= \sum_{j=1}^{n} (3n - j)$$

 $$= 3n^2 - \sum_{j=1}^{n} j$$

 $$= 3n^2 - n(n + 1)/2$$

 $$= (5n^2 - n)/2$$

 $$= \Theta(n^2).$$
2. Use induction to prove that every postage of 13 cents or more can be achieved using only 3-cent stamps and 7-cent stamps. That is, prove that for every integer $n \geq 13$, there exist some non-negative integers A and B such that

$$n = 3A + 7B.$$

Solution: For the base, $n = 13$,

$$13 = 3 \times 2 + 7 \times 1.$$

Next, for any $n \geq 13$, suppose the following hypothesis is true for some non-negative integers A, B:

$$n = 3A + 7B. \tag{1}$$

Then, we shall prove that there exist some non-negative integers A' and B' such that

$$n + 1 = 3A' + 7B'.$$

We consider two cases:

(a) $A \geq 2$. Then, from the hypothesis (eq. (1)) it follows that

$$n + 1 = 3(A - 2) + 7(B + 1).$$

(b) $A < 2$, which implies $B \geq 2$. (Why? If both A and B were less than 2, then n would be at most 10. But we know $n \geq 13$.) Therefore, from the hypothesis (eq. (1)), it follows that

$$n + 1 = 3(A + 5) + 7(B - 2).$$
3. Consider the following recurrence relation, where \(n \) is a power of 2.

\[
T(n) \leq \begin{cases}
0, & n = 1 \\
2T(n/2) + \log n, & n > 1.
\end{cases}
\]

Prove by induction that

\[
T(n) \leq An + B \log n + C
\]

and determine the constants \(A, B, C \).

Solution: For the base, \(n = 1 \),

\[
T(1) \leq 0 \leq A.1 + B \log 1 + C.
\]

Thus,

\[
A + C \geq 0.
\]

For \(n \geq 2 \), suppose that

\[
T(m) \leq Am + B \log m + C, \; \forall m < n.
\]

Then,

\[
\begin{align*}
T(n) & \leq 2T(n/2) + \log n, \quad \text{(from the recurrence)} \\
& \leq 2[A(n/2) + B \log(n/2) + C] + \log n \quad \text{(from hypothesis)} \\
& \leq 2[A(n/2) + B \log n - B + C] + \log n \\
& \leq An + (2B + 1) \log n + (2C - 2B) \\
& \leq An + B \log n + C, \quad \text{(needed for the induction step)}
\end{align*}
\]

To satisfy the latter inequality, we pair like-terms (i.e, the \(n \) terms, \(\log n \) terms, and constants) to get:

\[
\begin{align*}
2B + 1 & \leq B \\
2C - 2B & \leq C
\end{align*}
\]

Thus, together with the earlier inequality, we have the three relations:

\[
\begin{align*}
A & \geq -C \\
B & \leq -1 \\
C & \leq 2B.
\end{align*}
\]

Since \(A \) is the constant for the dominant term in the solution, we would like to make \(A \) as small as possible. We observe that the larger we pick the \(B \) value, the larger \(C \) gets, and the smaller \(A \). Thus we pick:

\[
B = -1, C = -2, A = 2.
\]

So we have proved that

\[
T(n) \leq 2n - \log n - 2.
\]
4. Consider a $2^n \times 2^n$ board, with one of its four quadrants missing. That is, the board consists of only three quadrants, each of size $2^{n-1} \times 2^{n-1}$. Let’s call such a board a quad-deficient board. For $n = 1$, such a board becomes an L-shape 3-cell piece called a tromino, as shown below.

(a) Use a divide-and-conquer technique to prove by induction that a quad-deficient board of size $2^n \times 2^n$, $n \geq 1$ can always be covered using some number of trominoes. (By covering we mean that every cell of the board must be covered by a tromino piece, and the pieces must not overlap.) Use diagram to help describing your algorithm and proof.

Solution: For the base, $n = 1$, the board is in the shape of a single tromino, thus it can be covered by a single tromino.

For $n \geq 2$, we will prove that if a $2^{n-1} \times 2^{n-1}$ board can be covered, then a $2^n \times 2^n$ board can also be covered. Consider a $2^n \times 2^n$ quad-deficient board. The board can be divided into four $2^{n-1} \times 2^{n-1}$ quad-deficient boards, as shown below. By the hypothesis, each of these smaller boards can be covered. Therefore the $2^n \times 2^n$ board can be covered.

(b) Let $f(n)$ be the number of tromino pieces used for covering a $2^n \times 2^n$ quad-deficient board. Write a recurrence for $f(n)$.

$$f(n) = \begin{cases} 1, & n = 1 \\ 4f(n-1), & n \geq 2 \end{cases}$$

The solution (though it was not asked for) is $f(n) = 4^{n-1}$. (You may verify this by either repeated substitution or by induction.) For example, $f(3) = 4^2 = 16$.

(c) Illustrate the covering produced by the algorithm for $n = 3$ (that is, $2^3 \times 2^3$ board).
5. (a) Insert the following sequence of elements into a Binary-Search-Tree (BST), starting with an empty tree: \((50, 90, 200, 25, 20, 10, 65, 35, 250)\).

(b) Delete element 80 in the following BST. (First complete the picture by carefully drawing a line from each node to its children, to get a valid BST.)

(c) What is the worst-case and average-case time complexity of BST operations SEARCH, INSERT, and DELETE?

Worst-Case Time = \(O(n)\)
Average-Case Time = \(O(\log n)\)