1. (a) Prove that \(P(n) = 5n^3 + 50n^2 - 100n \) is \(\Theta(n^3) \).

 i. Prove \(\Omega(n^3) \).

 ii. Prove \(O(n^3) \).

 (b) Consider the following pseudo-code. (The code does not do anything useful except to test you!)

   ```python
   x = 0;
   for J = 1 to n
       for K = J+1 to 3*n
           x = x + 1;
   ```

 Let \(T(n) \) be the total number of times the innermost statement (increment \(x \)) is executed. Derive the EXACT value of \(T(n) \). Then express the result in \(O(\) \) form.
2. Use induction to prove that every postage of 13 cents or more can be achieved using only 3-cent stamps and 7-cent stamps. That is, prove that for every integer $n \geq 13$, there exist some non-negative integers A and B such that

$$n = 3A + 7B.$$
3. Consider the following recurrence relation, where n is a power of 2.

$$T(n) \leq \begin{cases}
0, & n = 1 \\
2T(n/2) + \log n, & n > 1.
\end{cases}$$

Prove by induction that

$$T(n) \leq An + B\log n + C$$

and determine the constants A, B, C.

4. Consider a $2^n \times 2^n$ board, with one of its four quadrants missing. That is, the board consists of only three quadrants, each of size $2^{n-1} \times 2^{n-1}$. Let’s call such a board a quad-deficient board. For $n = 1$, such a board becomes an L-shape 3-cell piece called a tromino, as shown below.

(a) Use a divide-and-conquer technique to prove by induction that a quad-deficient board of size $2^n \times 2^n$, $n \geq 1$ can always be covered using some number of trominoes. (By covering we mean that every cell of the board must be covered by a tromino piece, and the pieces must not overlap.) Use diagram to help describing your algorithm and proof.

(b) Let $f(n)$ be the number of tromino pieces used for covering a $2^n \times 2^n$ quad-deficient board. Write a recurrence for $f(n)$.

(c) Illustrate the covering produced by the algorithm for $n = 3$ (that is, $2^3 \times 2^3$ board).
5. (a) Insert the following sequence of elements into a Binary-Search-Tree (BST), starting with an empty tree: (50, 90, 200, 25, 20, 10, 65, 35, 250).

(b) Delete element 80 in the following BST. (First complete the picture by carefully drawing a line from each node to its children, to get a valid BST.)

(c) What is the worst-case and average-case time complexity of BST operations SEARCH, INSERT, and DELETE?