1. Consider the following summation, where k is a constant. Prove that $f(n)$ is $\Theta(n^{k+1})$.

$$f(n) = \sum_{i=1}^{n} i^k$$

(a) Prove $f(n)$ is $O(n^{k+1})$.

(b) Prove $f(n)$ is $\Omega(n^{k+1})$.

<table>
<thead>
<tr>
<th>GRADE</th>
<th>/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>/100</td>
</tr>
</tbody>
</table>
2. Fibonacci sequence is recursively defined as follows: \(F_1 = 1, \ F_2 = 1 \) and \(F_n = F_{n-1} + F_{n-2}, \ n \geq 3 \).

(a) Compute and tabulate \(F_n \) for \(n = 1 \) to 12.

(b) Prove by induction the following upper bound for \(F_n \).

\[
F_n \leq 2^n, \ n \geq 1.
\]

(c) Prove by induction the following lower bound for \(F_n \).

\[
F_n \geq 2^{n/2}, \ n \geq 6.
\]
3. Consider the following divide-and-conquer algorithm, where the initial call is Find($A, 0, n - 1$). Assume the array size, n, is a power of 2.

```java
Boolean Find(keys A[], int left, int right) {
  1. if (left==right) return(FALSE);
  2. if (A[left] != A[right]) return(TRUE);
  3. int m= FLOOR((left+right)/2);
  4. return (Find(A,left,m) OR Find(A,m+1,right))
}
```

(a) Explain what this program does.

(b) Let $f(n)$ be the worst-case number of key comparisons for an array of size n. (Note that a key-comparison is the comparison of line 2, but not line 1.) Write a recurrence for $f(n)$.

(c) Find the exact solution for $f(n)$. Then express the order.
4. Given an array $A[0..n-1]$ which consists of an increasing sequence followed by a decreasing sequence. Assume the elements are all distinct. Thus, there is an index k in the range $[0..n-1]$, where $A[k]$ is the maximum and

(a) Describe an efficient algorithm which takes the array A as input and finds k. Your algorithm must have time complexity asymptotically better than n. Analyze the time complexity of your algorithm.

(b) Write the pseudocode for your algorithm.
5. Consider the following recurrence: \(T(1) = 2 \) and \(T(n) = 2T(n/2) + n^3, \ n > 1. \) (Assume \(n \) is a power of 2.)

(a) Use master theorem to find the exact solution, then express the order of it.

(b) Use repeated substitution method to find the solution.