Lecture Notes on
Divide-and-Conquer Recurrences

The following important class of recurrences often arise in the analysis of algorithms that are based on Divide-and-Conquer strategy.

\[
T(n) = \begin{cases}
 a \frac{T(n)}{b} + c n^\alpha, & n > 1 \\
 d, & n = 1
\end{cases} \tag{1}
\]

Note that \(a, b, c, d\) and \(\alpha\) are constants (determined by the particular algorithm) and \(n\) is assumed to be an integer power of \(b\), \(n = b^k\).

Theorem 1: Let \(h = \log_b a\). The solution of the above class of recurrences is as follows:

\[
T(n) = \begin{cases}
 A n^h + B n^\alpha = \Theta(n^\alpha), & h < \alpha \\
 A n^h + B n^\alpha = \Theta(n^h), & h > \alpha \\
 A n^h + B n^h \log n = \Theta(n^h \log n), & h = \alpha
\end{cases} \tag{2}
\]

where \(A\) and \(B\) are some constants for each case. (This theorem is a slight variation of a result called the Master Theorem in several textbooks on algorithms, including Cormen et al, and Goodrich-Tamassia.)

Proof: We will use the repeated substitution method (also known as iteration method) to derive the solution.

\[
T(n) = cn^\alpha + aT(n/b) = cn^\alpha + ac(n/b)^\alpha + a^2T(n/b^2) = cn^\alpha + ac(n/b)^\alpha + a^2c(n/b^2)^\alpha + a^3T(n/b^3).
\]

We factor out \(cn^\alpha\), use the equality \((b^i)^\alpha = (b^\alpha)^i\), and continue with the repeated substitution.

\[
T(n) = cn^\alpha[1 + a/b^\alpha + (a/b^\alpha)^2 + \cdots + (a/b^\alpha)^{k-1}] + a^kT(n/b^k)
\]

Recall that \(n = b^k\), thus \(k = \log_b n\). Then, \(T(n/b^k) = T(1) = d\), and

\[
a^k = a^\log_b n = n^\log_b a = n^h.
\]

(The reason for the equality, \(a^\log_b n = n^\log_b a\), is seen by taking the \(\log_b\) of both sides to get \(\log_b n \log_b a\).) Therefore,

\[
T(n) = cn^\alpha \sum_{i=0}^{k-1} (a/b^\alpha)^i + dn^h. \tag{3}
\]

We now consider two cases, depending on whether the ratio \(a/b^\alpha\) in the above summation is equal to 1.
1. $a/b^\alpha \neq 1$, which means $\log_b a \neq \alpha$. That is, $h \neq \alpha$.

In this case, the summation in Eq.(3) is a geometric series, thus:

$$T(n) = c n^\alpha \frac{(a/b^\alpha)^k - 1}{a/b^\alpha - 1} + d n^h.$$

Again we use $a^k = n^h$ (as derived above), and $(b^\alpha)^k = (b^k)^\alpha = n^\alpha$ to obtain the solution:

$$T(n) = c n^\alpha \frac{n^h/n^\alpha - 1}{a/b^\alpha - 1} + d n^h$$

$$= c \frac{n^h - n^\alpha}{a/b^\alpha - 1} + d n^h$$

$$= \left(\frac{c}{a/b^\alpha - 1} + d\right) n^h - \left(\frac{c}{a/b^\alpha - 1}\right) n^\alpha$$

$$= A n^h + B n^\alpha.$$

This proves the first two forms of the solution in Eq.(2).

Note: Although we derived the values of the constants A and B (in terms of the constants a, b, c, d, α), these values need not be memorized. We will see in the examples below how the constants A and B may be directly computed in a trivial way.

2. $a/b^\alpha = 1$, which means $\log_b a = \alpha$. That is, $h = \alpha$.

In this case, $\sum_{i=0}^{k-1} (a/b^\alpha)^i = k = \log_b n$. Thus,

$$T(n) = c n^\alpha \log_b n + d n^h$$

$$= c n^h \log_b n + d n^h.$$

This proves the third line in Eq.(2), and completes the proof of the Theorem.

Next, we will provide several examples that use the solution form established by this theorem.
Example 1: Finding MAX by divide-and-conquer

We discussed in class how to apply divide-and-conquer to find the maximum element in an array of size n. Assuming that $n = 2^k$, the number of key comparisons is given by the following recurrence.

$$f(n) = \begin{cases}
0, & n = 1, \\
2f(n/2) + 1, & n \geq 2.
\end{cases}$$

The solution form may be obtained immediately from Theorem 1:

$$a = 2, \ b = 2, \ \alpha = 0, \ h = \log_b a = 1.$$

Since $h \neq \alpha$, the solution is of the form:

$$f(n) = An^h + Bn^\alpha = An + B.$$

Thus, $f(n) = \Theta(n)$. If we are interested in finding the exact solution, we may readily compute the constants A and B. We will discuss two easy methods for finding the constants directly from the recurrence.

1. **Find the two constants by substituting two values in the recurrence.**
 (This method is applicable because we know from Theorem 1 that the solution form $f(n) = An + B$ is correct.)
 - $n = 1$: $f(1) = 0$ (from the recurrence)
 $$= A + B \quad \text{(from the solution form)}$$
 - $n = 2$: $f(2) = 2f(1) + 1 = 1$ (from the recurrence)
 $$= 2A + B \quad \text{(from the solution form)}$$

Solving the two equations $A + B = 0$ and $2A + B = 1$ finds the constants $A = 1$ and $B = -1$. Thus, $f(n) = n - 1$.

2. **Apply induction to verify the correctness of the solution and find the constants.**
 This method is useful in situations when we need to verify the correctness of the solution (i.e., if the solution form is a guess that needs to be verified).

For the induction base, $n = 1$, $f(1) = 0 = A + B$.

For $n \geq 2$, suppose that the solution is correct for all $m < n$. That is, suppose that $f(m) = Am + B$, $\forall m < n$.

Then, we will prove the solution is also correct for $m = n$. That is, we will prove that $f(n) = An + B$.

$$f(n) = 2f(n/2) + 1 \quad \text{from the recurrence for } n \geq 2$$
$$= 2[An/2 + B] + 1, \quad \text{from the hypothesis for } m = n/2$$
$$= An + 2B + 1$$
$$= An + B, \quad \text{if } 2B + 1 = B.$$

Solving the two relations (equations)

$$A + B = 0 \quad \text{(to satisfy the base)}$$
$$2B + 1 = B \quad \text{(to satisfy the induction step)}$$

finds the constants $A = 1$ and $B = -1$ (and completes the inductive proof). Therefore, $f(n) = n - 1$.

3
Example 2: Binary Search

We discussed this algorithm in class. Assuming that \(n = 2^k \), the worst-case number of key comparisons is given by the following recurrence.

\[
f(n) = \begin{cases}
1, & n = 1, \\
f(n/2) + 1, & n \geq 2.
\end{cases}
\]

We may find the solution from Theorem 1.

\[a = 1, \quad b = 2, \quad \alpha = 0, \quad h = \log_b a = 0.\]

Since \(h = \alpha \), Theorem 1 tells us the solution has the form:

\[
f(n) = A n^h + B n^h \log n = A + B \log n.
\]

Thus, \(f(n) = \Theta(\log n) \). The exact solution is found by computing the constants \(A \) and \(B \). Since the correctness of the solution form is already known from Theorem 1, we may simply plug in two values for \(n \) to find two relations.

- \(n = 1 \) : \(f(1) = 1 \) (from the recurrence)
 \[= A + B \log 1 = A. \] (from the solution form)

- \(n = 2 \) : \(f(2) = f(1) + 1 = 2 \) (from the recurrence)
 \[= A + B \log 2 = A + B. \] (from the solution form)

From the two relations

\[
A = 1 \\
A + B = 2
\]

we find the constants: \(A = 1 \) and \(B = 1 \). Therefore,

\[
f(n) = 1 + \log n.
\]