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Molecular dynamics (MD) solves a system of ordinary differential equations governing the mo-
tion of the particles (atoms) in a system [2]. MD is very useful in many applications. In a
biomolecular system such as solvated proteins, for example, one can use MD to study the coordi-
nated motion of the side chains, the closing and opening of certain binding domains, the diffusion of
small molecules inside the channels within the proteins, or the interaction of ligand (drug) molecules
and proteins [12, 29]. These studies are crucial in providing deep insights on a molecular level as
to why certain molecules are useful for regulating protein function, thereby acting as an effective
drug. In a fluid system, one can use MD to study the dynamics of the fluid on a nanoscale, helping
to elucidate, say, heat and mass transfer [11]. Time stepping algorithms are at the heart of molec-
ular dynamics simulations. Even a modest improvement in time stepping algorithms will result in
significant reduction in turnaround time since most MD simulations of real biological systems take
days or even months to finish. A closely related technique is called coarsening. Coarsening aims at
speeding up simulations by using a coarsened representation of the system, allowing a reasonable
compromise between fidelity and speed.

Nano-devices refer to systems that have characteristic length of less than 1 micron. Under-
standing the unconventional physics involved in the operation of such minute devices is critical for
the advancement of nano-technology. Unfortunately, fluid flows in such devices cannot be reliably
predicted by conventional continuum models such as Navier-Stokes (NS) equations with no-slip
boundary condition. Further complicating matters, molecular scale numerical computations of an
entire fluid system using an all-atom MD approach are prohibitively expensive. However, an ex-
citing new approach has been proposed recently which uses a hybrid scheme to study the fluids in
nano-devices, i.e., the slip boundary layer is resolved using atomic level resolution MD simulations,
whereas the bulk of fluid is modeled using the N-S equations [11]. This new approach retains
many of the desirable features of the two disparate approaches, MD and continuum models, while
overcoming the overwhelming computational expense of a full MD simulation. Nevertheless, the
main difficulty with applying this hybrid scheme to study the dynamics of fluids in nano-devices is
still the relative inefficiency of the molecular dynamics component.

Another exciting application of multiscale MD is in computer–assisted drug design. Medically
active drugs typically incorporate small molecules (ligands) that bind to target protein(s) or DNA
as tightly as possible. A tight binding leads to a more effective conformational change of the target
protein or DNA. This is referred to as binding affinity. For example, in the treatment of breast
cancer, the Tomaxifen or Raloxifen molecule binds to the estrogen receptor (ER) tightly so that
estrogen molecules can no longer bind to ER, thus preventing cancer cells from proliferating. There
may be hundreds or even thousands of candidates for such a drug, however, the binding affinity
can only be computed reliably by efficient sampling using very long MD simulations [57].

The investigator plans to continue his research program developing more efficient time stepping
algorithms for MD and novel multiscale modeling approaches. These will be applied to two specific
problems: modeling the the slip boundary condition in nano-fluid dynamics (for which the proposer
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will also develop effective and efficient interfacing techniques), as well as obtaining binding affinity
predictions in computer–assisted drug design. Part of the latter study includes developing effective
and efficient coarsening techniques for biological systems. This plan builds on a base of prior
research in time stepping algorithm development for multiscale molecular modeling and molecular
dynamics [36, 34, 24, 37, 33, 35]. The deliverables of this research will include more advanced
algorithmic techniques for multiscale molecular modeling and software and toolkits developed for
employing these new techniques.

Evaluation of novel molecular dynamics algorithms is very compute-intensive, especially when
the dimension of the system becomes large, which is the case for the simulation of the boundary layer
in nano-fluidic systems. A MD simulation of a medium size system on a modern workstation usually
runs for days only to achieve a simulated time scale of a few nanoseconds. Parallel computing is
sorely needed to help this research, which partially justifies the need for the computer cluster we
are proposing. Excellent parallel MD codes exist, such as NAMD developed at the University of
Illinois at Urbana-Champaign [26], and ProtoMol developed with the aid of the proposer at the
University of Notre Dame [37, 38]. NAMD is the best scalable parallel MD code existing today,
whereas ProtoMol is easily extensible due to its modular design. Both codes runs efficiently in a
parallel environment such as the Linux cluster we are proposing. In the proposed study, we will
use both codes for algorithms development and verification.
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Computations and Processing by the Visual Cortical Neuronal Network

Louis Tao

The primary visual cortex (V1) is the first area along the visual pathway where individual
neurons are sensitive to elementary features of the visual scene (for instance, a pattern’s orientation
or its spatial location). Selectivity is revealed in electrode measurements of activity in individual
neurons: An anesthetized animal is shown a simple visual pattern, such as a bar or a grating, and the
dependence on the pattern’s orientation (or location, contrast, size, etc.) is measured. Individual
V1 neurons show preference, in terms of higher firing rates, to certain orientations. It is properties
similar to this “orientation selectivity” that likely underly important higher-level processing such
as “contour completion” and “edge detection”. V1 computes within a complex architecture that
is characterized by a layered structure, with intralayer connections locally isotropic [15, 32, 9, 8]
while specific feedforward and feedback pathways run between layers. The network activity of
feature selectivity is likewise complex and spans multiple space- and time-scales. While the precise
mechanisms underlying the basis of visual perception are beginning to be understood, some of these
same mechanisms are likely to be operating in any computation involving pattern detection and
recognition.

Despite much research, there does not yet exist a comprehensive mathematical model that
accounts for the observed selectivity and the response diversity of V1, while remaining consistent
with known anatomical and physiological studies. However, because of recent developments [49,
53, 1, 39, 55], the proposer believes that a detailed model is emerging and that the understanding
and mathematical description of some of V1’s elementary functions now appear to be within reach.
Recently, the investigator and collaborators have developed a numerical model of the primary
input layer (4Cα) of macaque V1. This model consisted of a large number (> 16, 000) of coupled
excitatory and inhibitory integrate-and-fire (I&F) point neurons representing a small, 1mm2 cortical
area. The model cortex rationalized many aspects of the available experimental data and led to
distinctive predictions of population response measures [51] with the qualitative structure seen in
recent experimental measurements [46].

Analytical studies and numerical simulations of neuronal networks help form the basis for our
current theoretical understanding of the properties of large, interacting neuronal systems. Issues
include the stability of these dynamical systems and the dependencies of the system dynamics on the
synaptic couplings. A major challenge is to develop reduced descriptions to simulate and understand
the larger, multi-layered models. Using a kinetic theory approach, we have been developing, in
several directions, a coarse-grained description of neuronal network dynamics that is effective and
efficient for representing the firing rates of a neuronal population that is sufficiently small so that
the cortical architecture does not change appreciably across it, and yet sufficiently large to contain
hundreds of neurons [7].

A typical simulation of 1mm2 of layer 4Cα with 16, 000 neurons responding to 60 seconds of a
visual pattern takes over a day on a single processor on the fastest currently available workstation.
While a parallel implementation will reduce simulation time, to understand the functional conse-
quences of the complex architecture of V1 requires a major extension of the local patch model.
In the current model neurons in 1mm2 “see” less than 1◦ of visual space (1◦ is about the size of
a dime held at an arm’s length). To capture interesting cortical processing such as “edge detec-
tion” and “contour completion”, we must consider a much larger region of cortex, include longer
range (> 1mm) interactions, involve non-local anisotropic connections, and increase the number of
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model layers. A realistic model requires at least three layers: an input layer (4Cα), an output layer
(4B) and a feedback layer (6). The computational requirements then increase 100-fold, which goes
beyond current capabilities, but which is within reach of the proposed parallel cluster. With the
further development of coarse-grained representations, new numerical methods, and the access to
a state-of-the-art computing cluster, simulation of an extended cortical model is within reach.
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Dynamics of dense granular materials

Lou Kondic

Collective systems that are far from equilibrium present some of the most important challenges
within statistical physics. One of the most intensively scrutinized systems at the current time is
that of granular materials. On the one hand, these materials—collections of particles interacting
via classical mechanics— bear a great resemblance to non-quantum molecular systems. For in-
stance, they exhibit fluctuations and random behavior that is highly suggestive of classical thermal
systems. On the other hand, granular interactions are dissipative due to friction and to collisional
(restitutional) energy losses. In order to sustain any state other than a totally static situation, there
must be a continuous input of energy. Thus, despite a strong resemblance to molecular systems,
granular materials are always out of equilibrium in any dynamical state.

Substantial progress in understanding of granular systems has been reached for systems that
are sufficiently dilute and energetic that all interactions can be characterized by binary short-lived
collisions [25, 47]. However, for dense granular systems, this assumption does not apply and there
is still no generally accepted theory. One particular characteristic of granular systems, jamming,
introduces additional complications, because of nonuniform (in space and time) system response
to external driving [30]. Jamming occurs not not only in granular systems, but also in sheared
foams [13, 28] and colloidal suspensions [10, 31]. Moreover, it appears to be closely related to the
glass transition in supercooled liquids [19]. Although these systems are significantly different from
the granular ones, the numerous similarities offer a tantalizing possibility that all of these systems
could be explained by extensions of the same (still unknown) underlying theory.

The proposer has already performed extensive simulations of various granular systems [27, 40,
52]. These are so-called soft sphere simulations which have a potential to realistically describe
contact dynamics between granular particles. These simulations effectively integrate through the
collision process, and therefore require rather short time steps. Additional simulations are currently
being performed under the investigators guidance by a postdoctoral associate at NJIT, Oleh Baran
(supported by NASA).

The proposed research involves developing and performing large scale discrete element simula-
tions of sheared granular systems. This project will be carried out in close collaboration with the
experimental efforts at Duke University, under the guidance of Robert P. Behringer. The simu-
lations will also serve as a guidance for the flight experiment of sheared granular systems in zero
gravity, which is planned to be performed at Space Station during 2008 (supported by NASA).

The simulations will concentrate on 3D sheared granular system in a Couette geometry. An
experiment in 2D [22] has recovered the phase transition as the volume fraction of a granular
sample is increased. The main issue which will be addressed in the proposed simulations is to
obtain an understanding of the phase transition in 3D systems, with and without gravity. These
simulations will help us understand the flow properties of sheared granular systems (in particular,
shear-banding) and identify the spatial and temporal characteristics of the stress distribution in
granular systems close to jamming. Additionally, this work will lead to better insight into sta-
tistical properties of granular systems, including computational verification of a newly proposed
statistical theory of granular matter [14] The simulations will also provide significant guidance to
the experiments currently being performed at Duke.

Behringer’s experiments, as well as the proposed space experiments, utilize a large number of
particles, on the order of 106−107. The simulations currently being performed at NJIT use up to 104
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particles. While these simulations already provide a significant insight into the granular sample, it is
necessary to increase the number of particles in the simulations in order to (i) improve the statistics
of the obtained results; (ii) understand more precisely the influence of various system parameters,
such as frictional properties of the physical boundaries; (iii) understand the scaling properties of
the granular systems; and (iv) analyze the features, such as force chains, that propagate throughout
the granular sample.

The current simulations are being performed in a serial mode, and individual runs in parameter
studies use up to a day of computing time. We expect that an improvement of our computational
methods and the increased speed and memory of the proposed state-of-the-art multi-processor
machine will allow us to increase the number of particles by an order of magnitude. Further
increases in the size of the system are expected to require development of the parallel version of our
computational routines. Discrete element simulations naturally scale with the size of the system,
and a significant increase in the speed of computations can be reached by performing simulations
in a parallel computing environment. This particular aspect of the proposed research is expected
to be performed as a part of research training of a graduate student, which would lead to research
results appropriate for a PhD dissertation. For this purpose, it will be very useful to have available
(parallelizable) computational resources DMS. A cluster with a large number of CPU’s will be the
most appropriate for this kind of computations.
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Mesoscopic Simulation for Surface Processes

David Horntrop

Surface processes are multiscale problems in which proper incorporation of small scale behavior
is essential to understand large scale phenomena. The main approaches traditionally used to study
surface processes have included a macroscopic approach and a microscopic or molecular approach.
The macroscopic approach typically involves partial differential equations and does not incorporate
interactions at the molecular level in a direct fashion. On the other hand, the microscopic approach
directly models the molecular interaction by considering individual molecules. A typical numerical
study based on such micromechanisms follows many particles undergoing such processes and is
referred to as a molecular dynamics or Monte Carlo simulation. Not surprisingly, these calculations
are quite demanding of computer resources for systems with large numbers of particles for which
long time results are needed.

The approach here is to use mesoscopic (or local mean field) models to bridge the gap between
scales. Mesoscopic models lie between microscopic models and macroscopic models while incorpo-
rating many features of both of these approaches. Mesoscopic models can be derived through a
coarse graining of the underlying microscopic system in a rigorous fashion in which the effect of
small scale phenomena is described as stochastic forcing on larger scales. These stochastic terms
naturally arise and are derived without the introduction of any artificial cutoffs. A typical meso-
scopic model equation is a stochastic partial integrodifferential equation which incorporates the
(potentially long range) molecular interactions explicitly through convolutions.

One important surface process which can be modeled mesoscopically is colloidal gold labeling of
proteins in a biomaterial. A knowledge of both the location and pattern of proteins is very important
in many biological applications including the development of biomaterials which are compatible with
blood and the determination of the structure of subcellular components and organelles [3-4]. In
colloidal gold labeling, a suspension of colloidal gold particles covered with ligands that bind only
to the desired protein receptor sites is placed above the biomaterial to be labeled. The system is
allowed to equilibrate thus “staining” the locations of the protein on the surface. The attachment
of the gold particle to the protein on the surface is an adsorption process which occurs rapidly.
However, the presence of a gold particle above a given location of the biomaterial surface depends
on the much longer time scale of transport within the suspension. A quantity of importance to
biophysicists which can be determined from the time evolution of the model is the time required
for complete staining of the surface. Other important issues to understand include the selection of
a flow in the colloidal suspension and other physical parameters such as the concentration and size
of the gold particles in the suspension so as to minimize the amount of time required to stain the
biomaterial.

Colloidal gold labeling of proteins is an ideal problem in which to use mesoscopic models due
to the relatively simple molecular behavior at the surface of the biomaterial; this equation will be
coupled with a transport equation for the colloidal suspension to model the complete system. Given
that a typical system can involve 1015 gold particles, it is clearly impractical to use a molecular
dynamics simulation approach. The success of the mesoscopic modeling approach to this problem
depends crucially on the existence of computationally efficient and accurate schemes. Recently
developed spectral schemes for stochastic partial differential equations [5] are especially well-suited
for studying mesoscopic models. The enhanced efficiency of spectral calculation makes possible
much longer time simulations than would be possible using existing finite difference schemes; how-
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ever, even with the spectral method, a mesoscopic simulation of a two dimensional surface without
external coupling can require a week of computational time to obtain only about 100 realizations
using a single processor. Given the physical importance of the equilibrium staining pattern of the
biomaterial, longer time simulations for each realization are necessary for the study of a two di-
mensional surface coupled with a transport equation. The greatest amount of computational time
required by the overall spectral algorithm is spent taking FFT’s and generating random variates.
These computations are well-suited for a parallel machine for many reasons. Given the necessity
of calculating thousands of realizations in these stochastic simulations, the availability of a parallel
machine with a large number of processors will greatly facilitate the completion of the necessary
simulations.
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Calculations of Surface Motion for Crystalline Materials

Michael Siegel

It is well known that stress effects play a large role in the surface morphology of growing crystals.
For example, elastic stress causes a flat surface bounding a material solid to be unstable to small
amplitude shape perturbations (the Asaro-Tiller-Grinfeld instability [3]). This instability is now
recognized to be an important mechanism for the formation of “islands”’ on thin material films as
well as the appearance of cracks and defects in solids. Another important factor in the evolution
of material surfaces is the anisotropy of physical quantities, such as surface energy, that occurs due
to the crystalline nature of materials. The presence of large anisotropy, for example, is associated
with the formation of corners on an interface, as dictated by the well known Wulff construction.

The PI proposes to continue his research program (supported by NSF) investigating the effects
of stress and large anisotropy on surface evolution using continuum models. Much of the under-
standing of crystal growth is based on continuum modelling. Generally, the motion of free surfaces
in such models is driven by variations in a chemical potential µ along the surface. One component
of the chemical potential, denoted by µs, is related to the surface energy density γ. For crystals
with anisotropic surface energy γ is normally taken to be a function only of the orientation angle
θ of the outward surface normal. In this case, the contribution of the anisotropic surface energy to
the chemical potential is described by the well-known relation (written in nondimensional form)

µs = [γ(θ) + γ′′(θ)]κ (1)

where κ is the interfacial curvature, considered positive for a convex profile, and the prime denotes
derivative with respect to θ. A representative (dimensionless) expression for γ(θ) is that for a simple
four-fold symmetry γ(θ) = 1 + ε cos 4θ where ε is a measure of the degree of anisotropy. The θ
dependence of µs described in (1) leads to severe difficulties for large anisotropy, i.e., for ε > 1/15.
In that case there exists values of the angle θ for which the expression (1) is less than zero. At
these ‘unstable’ orientations, the coefficient in front of the largest derivative term in the equation
governing interfacial evolution is negative, and the initial value problem is ill-posed. Additionally,
the equilibrium shapes of unstressed voids subject to large anisotropy have ‘missing orientations’,
i.e., corners corresponding to jumps in θ along the surface. These are the well-known Wulff shapes.

One way to overcome the ill-posedness, proposed by Gurtin [18], is to regularize the evolution
equations by incorporating higher order terms in the surface energy. In previous work [48] the
proposer has employed such a regularization combined with boundary integral numerical simulation
to study the evolution by surface diffusion of two dimensional material voids, in the case of large
anisotropy. The emphasis in [48] was on inferring trends in limit of zero regularization (c → 0).
It is found that in the presence of elastic stresses the limiting corner angles (as suggested by the
numerics) can differ from angles found on the zero-stress Wulff shape. This is an unexpected result.
For large elastic stress a new filamenting instability is found.

The proposed project is to extend the above work to higher dimensions, as well as the incorpo-
ration of additional (yet critical) physical effects, such as surface stress. Theses computations are
numerically intensive. For small regularization, the problem is ‘nearly’ ill-posed and there are a
large number of fast growing modes. This necessitates a large number of surface nodes N as well as
small time steps. Serial computations for the 2-D problem (which has complexity O(N2), reduced
to O(N lnN) using the Fast Multipole Method) take on the order of days. The complexity rises to
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O(N4) for naive implementations in 3-D. The application of Fast Multipole techniques and parallel
computations will be required to make the 3-D calculation feasible.

Finally, we shall explore a way of marrying continuum and atomistic based approaches. A
disadvantage of the continuum model studied in [48] is that the assumed curvature dependence
of the surface energy density γ(θ, κ) is phenomenological and effectively ad hoc. In general, the
nonequilibrium surface energy depends on internal energy as well as entropy of a system of atoms,
and hence first principles calculation of γ needs to take into account microscopic fluctuations. This
requires numerically intensive techniques, such as Kinetic Monte Carlo or Molecular Dynamics (see
e.g., [23] for calculations of θ dependence of γ using MD simulations). Further calculations are
required to infer the curvature dependence in addition to the angle dependence.
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Fourth-Order Schemes for the Maxwell Equations

Peter Petropoulos

Many modern technology applications involve the propagation and scattering of transient elec-
tromagnetic signals, e.g., electronic interconnects in semi-conductor circuits. The design and opti-
mization of new systems demands fast and accurate solvers of the time-domain Maxwell equations
over complex closed/open domains filled with heterogeneous dielectrics in which metals are em-
bedded. In [56] we derived appropriate difference stencils to implement boundary and dielectric
interface conditions in a fourth-order accurate staggered scheme for the time-dependent Maxwell
equations discretized on a Cartesian grid. We adopted a domain-decomposition point of view and
treated dielectric interfaces as boundary points between subdomains in which the spatial derivatives
were computed to fourth-order accuracy with boundary data imposed as in the Yee scheme [50] (a
2nd-order accurate scheme popular in the engineering community). In [43] we derived accurate and
stable spatial mesh refinement strategies for the fourth-order staggered scheme of [56]. Further, in
[44] we considered an approximation in terms of damped exponentials of the impedance boundary
condition (IBC). This boundary condition applies at a planar interface separating a homogeneous
lossy half-space (of conductivity σ and permittivity ε) from free-space, and relates the tangen-
tial components of the electric and magnetic field evaluated at the interface. More precisely, the
expression used in [44] is

Etan =
η0√
εr

Htan + ζ ∗Htan, (2)

where η0 is the impedance of free-space, εr is the relative permittivity of the lossy half-space, ∗
denotes convolution, and ζ(t) = η0√

εr
aeat[I0(at) + I1(at)] is the time-domain impedance function

with I0 and I1 being modified Bessel functions. Additional parameters are a = − 1
2τ , and τ = ε

σ ,
the dielectric-loss relaxation time. Our approximation of ζ(t) in terms of N exponential functions
is (see [44] for details and an error estimate) ζN (t) = η0√

εr

a
N

∑N−1
k=0 (1 + vk)eat(1+vk). Consequently,

the computationally efficient IBC is Etan = η0√
εr

Htan + ζN ∗Htan.
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Figure 1: The computational domain. The surrounding walls (around and top) indicate the ab-
sorbing layer location.

In this project we intend to derive a fourth-order accurate implementation of the IBC originally
used in [56] in order to study wave propagation in certain complex geometries, such as that shown

11



in Figure 1. It turns out that the presence of the half-space restricts the spatial discretization,
however, employing the proposed IBC allows for a larger space step. Furthermore, we propose to
combine the results of [43]-[56] with the fourth-order implementation of the IBC to construct a
simulation for the problem depicted in Fig. 1. The model problem is one of signal propagation on
a metallic microstrip and combines all the previously derived procedures for the implementation
of boundary conditions to fourth-order accuracy. Additionally, it requires the use of an absorbing
boundary condition on five sides of the computational box; our intent is to implement the long-time
stable perfectly matched layer [4] to fourth-order accuracy. The domain-decomposition approach
employed in our fourth-order method is ideally suited to parallel computation, and this project
will provide us with the opportunity to investigate parallel programming techniques and issues
of load balancing on the proposed computer hardware. The resulting algorithms will enable 3D
simulations, even with very complicated geometries, and provide a useful tool in the design of
microelectronic components. This research is supported by AFOSR.
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Stability of Nonlinear Light Pulses Trapped by Defects

Roy Goodman

The investigator’s research , supported by NSF, centers on the interactions between solitary
waves and localized variations in the media through which they travel. Of particular interest has
been the interaction of gap solitons with localized defects in Bragg grating optical fibers. Bragg
grating fibers have found increasing application as components of optical communications systems
due to their very high dispersion and their ability to filter out light at selected wavelengths. Bragg
grating solitons support a family of traveling waves (pulses of light) known as gap solitons which
have the intriguing property that they may travel at any speed less than or equal to the speed of
light. In particular, the equations predict the existence of light pulses which do not propagate:
trapped light! This could have many applications and might serve as the basis for an optical
memory. Unfortunately, technical barriers make it extremely difficult to create these zero-velocity
pulses.

With Michael Weinstein and Dick Slusher, both at Bell Labs, the proposer has been investigating
the trapping of light pulses with specially designed defects in the grating structure, which act as
localized potentials. The group has shown in numerical studies that under certain conditions,
moving pulses transfer their energy to localized nonlinear modes supported at the defect [16]. They
also find from exact analysis that the linearized equations may have several distinct eigenpairs. As
the nonlinearity (i. e., the norm of the solution) varies, the eigenfunctions deform, and persist as
separate branches of nonlinear defect modes. The stability of these modes is an important open
question. Investigation of this problem requires two steps. The first is to numerically determine
the nonlinear defect modes, the second is to compute their stability. The first component of this
research has been accomplished, and work on the second is ongoing.

The computational tool used for the stability problem is the Evans functionf(λ), whose roots
correspond to eigenvalues of the linearization of the PDE about the numerically computed solutions
[5, 6]. Any roots in the right half-plane, then, correspond to growing modes. Typically one computes
the winding number of the image of the imaginary axis, and if this exceeds zero, instability is
inferred. Thus f(λ) must be computed for a large set of λ’s on the imaginary axis. Each evaluation
of the Evans function requires the numerical solution of ODE’s derived from the linearized operator,
as well as combinations of those solutions in a way that leads large loss of significance. Therefore,
the calculations require numerical schemes of high accuracy. A typical run requires the order of
1000 evaluations of f(λ) in order to calculate the winding number accurately. For each branch
of solutions, we have computed 10-30 defect modes, and the defects of most importance usually
support 3 defect modes. Therefore, finding the stability profile of all the modes supported by
a given defect involves the solutions of tens of thousands of ordinary differential equations, and
usually takes days on the currently available computers. By computing the stability of multiple
modes or branches in parallel, this could easily be reduced to an hour or two, greatly facilitating
parameter studies. The proposed cluster provides an ideal environment to further develop these
ideas.
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