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Extreme-scale/Exascale computers and Al/ML are in our playground

* We have been using after-data taken from storage in fusion science

- Theory/computation
- Experiment

* We need to use live-data (on-line)

Emphases in the XGC group: examples to be presented

- In-situ, on the fly

- Al / Machine learning

- Feature detection/discovery &

- Real-time control of experiment and simulation ADI S
- Federated data management

- Simulation acceleration

- Extrapolation to future experiments



Theme of this talk

* Once the live data hit the storage,

- Beautiful “after-data” needs to be discovered and
awakened by a Prince to be brought to life.
Otherwise, they stay asleep for ever.

- Many of the data in the storage are useless. '} \
They should have been thrown away.

* We need to let the data to enjoy their lives and do their
work before falling into “after-data” storage. How?




Simulation data from LCF cannot be post-processed any more

= Data size from today’s XGC simulation on 200PF Summit is too big for filesystem

 Trillions of particles with 10 scalars per particle x 1,000 time steps per day
- Hundreds PB/day, cannot be allowed on the 250PB Summit GPFS
Vis by D. Pugmire

= Exascale HPCs will produce ~EB/day data = e

Time=304  pseydocolor
Var: turbulence
-0.50

= Why do we need the on-memory particle data?
« 3D particle motions must be followed to calculate
the non-Maxwellian edge plasma transport.

Al/ML needed /

ﬁ ﬁ

Simple fluid picture: plasma Particle picture: individual particle
moves together with blobs. orbits are distorted by blobs while
they go through them.

Very inaccurate in edge




Fusion research can be greatly accelerated by federating
thousands of sensors and distribted scientists/computers

Magnetic Feedthrough

. —_—
Glow Discharge Probe Basic Diagnostics
E TV. Fast-ion D Baseline Diagnostics =%
SCapIng * Ab-lon. etoctor Mission-Oriented Diagnostics =
" Tangential Den. Retro-reflector 7y
Torus lon Gauge cC
RGA & LHH/ }I:%R(% ECH : o
Thomson Laser Dump <\/‘/ AN LHCD Inspection Hllumination ~ Magnetic Feedthrough o
Particle Diagnostics (*) , \Q\ Thomson Optics IRTV g
AN - MSE 19
Soft X-ray Array NN CES .
X-ray Pinhole Camera ‘ S N \
Movable Langmuir Probe /-4_ " N 2 NBI (I)
,,\{‘\‘\‘

IR TV
Visible/H-alpha TV Bolometer Array
X-ray PHA Thomson Laser Input

CX-NPA

ECE Radiometer
K —— ™ ECE Interferometer
ECE GPC
NliDiv. Thomson) Optics
Visible/H-alpha TV
H_alpha Monitor
Visible Survey Spec.

Visible Brems. Array
Visible Filterscope

Magnetic Feedthrough
Inspection Illumination
Glow Discharge Probe

Div. VUV Survey Spec.
Multichord Vis. Spec.

Pellet Injector E
Magnetic Feedthrough /

Inspection Illumination
Glow Discharge Probe
IR TV
Torus lon Gauge
RGA

X-ray Crystal Spec.

Soft X-ray Spec.

Tangential Densitometer Laser BES
mm-wave Interferometer

Movable Langmuir Probe IR TV
NBI(IT) Edge Density Reflectometer
(*) vacuum-duct end plate mm-wave Refl.

ECE Imaging Sys.




Fusion data from ITER possess all the big-V properties

Volume

» ~1/2EB/year
» Subsequent

simulations can
greatly enhance

data volume

» Wide variety
data from
thousands of
Sensors

* Many-scale
many-physics

Variety

» >50GB/s for up to
1000s, each shot

 Hierarchy of
analysis for real or
near-real-time

5 Vs of big
ITER data

 All sensors have
different quality: e.g|,
validity range, error;
and noise

Velocity

Veracity

expensive
Sensors are

there because
they produce
valuable data

an|ep

demand

AI/ML 1n high




We have been using after-data = very slow scientific advance

ITER’s progress plan is based
upon this type experience.

A A A

There is also a critical need for real-
time control.

| observed something that

Months or years later, a theoretician seems to be important,

heard/remembered about the experiment

| \ 7

.\3@“' % =

(f Urthe, J N\ _
€lay) ) Data back to life

\ v

L s .We understand '.t NOW- Give me the data, PLEASé
Do “this” in the next experiment. . :
(human relationship,

But, months or years have passed. = ,
o bureaucracy)




ITER requires real-time control

Disruptions can damage the machine’s structural integrity (~50ms response): Al/ML work in progress
Edge-localized-mode (ELM) crashes will destroy ITER wall: Al/ML work at infancy
Requires ~10ms response from physics precursor detection to actuator trigger

(Zweben)
« Human intervention NSTX 113434 @ 300 ms [Filter=D median=3 max=4000]
not possible Frame #1  time = 4 s fast DA(top);fast MHD(bot)
« Must be a highly ' '
trained Al/ML system
- Detection
- Actuator trigger

0,2995 0.3005 0.3015

- oA

 Local inference near
sensors, but remote
training on HPCs

- Federated data

management system 0:2995 0.3005 0.3015
e S€eC




ML prediction for disruption is making further progress

Classical ML -
DL +0d =

DL + 1d profile (Kates-Harbeck et al.) 2

Dilated Convolution NN + 2D instability dynamics

(R.M. Churchill et al., XGC group)

AUC | AUC: JET training,
Model

JET inference
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Validation metrics

—8— Validation Accuracy
—4— Validation F1-score

DIII-D training and inference:
Dilated Convolutional NN with
2D imaging data can yield 94%
true positives with limited

dataset [Churchill et al.]

slurm-2575472.out

0 200 400 600 800 1000
Epochs

DL + 1d profile
DL + 0d
Classical ML

0.952
0.893

DIII-D training, DIII-D training + 5 JET data,
JET inference JET inference

0.836
0.817
0.616

0.911 (Kate-Harbeck et al)
0.879
0.851

[Kates-harbeck ]



Federated Fusion Data System to Accelerate Fusion Research
ADI&s On-going collaboration with ORNL (Klasky)

Can HPCs
explain 1t?

Real-time or In-stream:

P near-real-time Remote-HPC L
feedback trained Al/ML a
inference Feature discovery -
. Streaming feature ’ Q
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Many scientists on multiple HPCs in different countries
10



Use ML for simulation acceleration: Fokker-Planck Eq.

» Collision operator equation maps e.g. {f,/,} - {5f )}

dfa X /
F :anb(fa,fb)
col b
N 2821 A /
—_y s Tdyg, [fd3v’g- (ﬁv’f,;—ﬁvfaﬂ
— 8Teymg mp Mg

» Task then is minimizing the per-velocity bin mean-square error
(MSE) loss, averaged over all velocity bins.

(R.M. Churchill)

Multispecies collision

operation is a serious issue

in kinetic ITER simulation:
cost oc N2

We utilize Semantic
Segmentation task:
Hourglass Convolutional NN

Include physics constraints
in the loss after the main NN

_________________________

..........................

i(a,t) - gp(a,t)  [—(loson2(g7)

Ak Ion
94 (2,t) — gr(u,2,t) :

_________________________
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Deep NN trained Fokker-Planck operator: initial result

ReSeq training, 25 epochs, iphi=0 (RM CthChl”)
Collision operator neural all = , ,
; e frainad ReS = 13 [Collaboration with
networ raine on e eg 4 - Conservation ANL (T Munson) has

architecture, using both L2 and ]
conservation losses

been initiated]

loss

Single XGC1 simulation time 107 ;
point (JET discharge), ~17k
“images” 5
Mean conservation loss:
Density: 1.61e-4
Target
Momentum: 1.22e-3 ] <105
Energy: 1.040e-5

Further work using more data
and harder constraints is
ongoing.
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Toward Machine Learning in XGC'’s iterative EM solver preconditioner
R. Archibald (ORNL), Ben Sturdevant and C-S Chang (PPPL)

» Goal: Use machine learning to act as effective preconditioner for fully implicit kinetic EM scheme in XGC
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Initial Condition of iterative solve ML Prediction from Initial Condition

= Result: Use small XGC run, validated that machine learning (Convolutional DNN) that
initial condition guess can be improved by over a factor of 4X in relative error.

= Challenge: Improve accuracy. Translate improvements in initial guess to reduced
iterations of fully implicit XGC. Build lightweight adaptive training of Convolutional DNN.

s For more information: Rick Archibald (ArchibaldRK@ornl.gov), Data Analytics lead 13

N
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Anchored ML for prediction: Anchor the under-determined ML, using

predictive data from first-principles-based simulations
(C.S. Chang)

Present data is usually an under-determined set: solution may not be extrapolated

Data from Interpolative Interpolation-based
today’s SN A|/ML for today’s [E==a A|/ML prediction for [REL08F
experiments experiment future experiment
Anchor- PR
Data.frc.>m nc or.based High-fidelity
predictive extrapolative Al/ML . .
. : : simulations
simulations for future experiment
T - D(x;) 2 i
ust be validated on
) : D'(x;{+x;) 2 Yi(®P yu) = >
today’s experiments Z):f)seer?r:\ents \High_ﬁde,'

simulation

This technique will get better as the accuracy and sampling of x,” improves on
more powerful computers with better algorithms (Al/ML algorithms included). .



Predictions from gyrokinetic XGC have been validated on existing tokamaks
(Summit, Cori)

 But, the same code predicts A,(XGC)
>6A4(Exp) for full-power ITER

« This result was challenged by the
ITER=s %} high-current C-Mod experiments.

15MA o Double valued?
o Suggestive of hidden parameters
o Or XGC is wrong

« XGC on NSTX-U at 2MA also
produced a wider A,

* But, not at 1.5MA
1.4MA C-Mad « Hidden parameters, again?

1.0 1.2

15



Machine learning reveals trapped electron interaction with
turbulence in the 15MA ITER edge (R.M. Churchill)

(Summit data, NERSC)

= K-means clustering, with K=6
= At a higher energy band, trapped
electrons show correlated response to 20|
turbulence
* Another sign of TEM turbulence

NERSC

1.5

=
= Because of the high w-~v(p/L) around 5 °
the separatrix, g needs to be high for 0.5
precession resonance by trapped

electrons: Vecess~V(p/R)(B/Bp)

0 V||/Vth

—> easier excitation of TEMSs just inside the B
separatrix, Yy=0.98-1, where VT, is high. L%
’ b

Vprecess
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Electron heat-spread by strong trapped electron modes is the prime suspects
« Fact: p;p/a >0 in 15MA ITER yields little neoclassical ExB shearing,
« Fact: (2a/R)"2 21 in NSTX-U with warm T, yields strong TEM drive

(Summit)
ITER 5SMA ITER 15MA
07 . T : . - 0.2 5"
ost 1 0.45
'y ¥ TEM streamers are
i 0- | the suspects. ITGs
N G 0.05 R do not penetrated
E 05F ) . c E .
;1/045» *: | 10 E \I\-I/ 2500 { F 0.00000 Into SOL
o i‘ | F {-005
Today’s conventional 0.1 Full-current ITER
aspect tokamaks ‘ * 6
o3 .'n ] FIr . ‘(
R (m) R(m)

Isolated “blobby” turbulence
(with strong sheared-ExB flow across
separatrix)

Connected “streamer”-type turbulence
(with weak sheared-ExB flow across

separatrix)
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Looking for hidden parameters with feature engineering

- Large a/p; o, Wweakens the neoclassical ExB shearing rate - stronger TEM

(C.S. Chang)
14
. G} b Bool - Aq*Bpol™1.19 vs Bpol*a/pi,pol .
15 q Vs Bpo O 12 :
— -
g S 10 y = SE-05x2 - 0.0098x + 1.2331 "
E s ~ R? = 0.9939 "
—_ & 8
O m Excel
éa 6 i O 6 \ Machine learning
= 4 ... NSTX-U — 9, ' (Eureqa)
< 2MA y =0.63x" g% A(XGC) =0.63B,o ! "*
. B . .. JET45  C-Mod ~ 2 | T JET{‘_:..S.‘...........,..- [1.0+(102°Bo a/p; por)’* ]
S I (R D R i i - 5 C-R/lod
0 0.2 0.4 0.6 0.8 1 1.2 0 100 200 300 400 500 600 700
pol (T) Bpol a/ pi,pol
* In the present conventional aspect-ratio * When we use B, a/p; , as the scaling variable,
tokamaks, A,(XGC) follows A,(Exp). - A(XGC) in the present tokamaks still follows A (Exp)
» However, A\,(XGC) shows double-value - and the double-valuedness disappears
between high-lp C-Mod and 15MA ITER. - NSTX-U 2MA data follows the ML anchored curve
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There are several other Al/ML applications in dire needs*

g 1019

"N — T  Kinetic evolution of background plasma profile is
8t Newn | computationally expensive, but a critical problem
it AN ‘ for ITER.

—~ sl O | . - When the initial plasma profile is far away from
E i g | kinetic solution, XGC could spend 10x more
2 XGC evolves plasma exascale computing time
@ 4F density profile to a \ 1
8 .| kinetic equilibrium \ « Can we use Al/ML to telescope the background
in ITER edge profile evolution?
I - - Tried a Beysian algorithm, but with only a
"I (a) : limited success
%.9 0.195 1 1.05

normalized plasma radius

*Not all the collaborations are represented here; e.qg.,

« Hanqui Guo: Deep learning feature discovery from blob-
turbulence isocontours

« Jong Choi: this workshop
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Federated Fusion Data System to Accelerate Fusion Research
ADI&s On-going collaboration with ORNL (Klasky)

Can HPCs
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Real-time or In-stream:
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Many scientists on multiple HPCs in different countries
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