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Extreme-scale/Exascale computers and AI/ML are in our playground
• We have been using after-data taken from storage in fusion science

⎯ Theory/computation
⎯ Experiment

• We need to use live-data (on-line)
Emphases in the XGC group: examples to be presented

⎯ In-situ, on the fly
⎯ AI / Machine learning
⎯ Feature detection/discovery
⎯ Real-time control of experiment and simulation
⎯ Federated data management
⎯ Simulation acceleration
⎯ Extrapolation to future experiments



Theme of this talk
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• Once the live data hit the storage, 

⎯ Beautiful “after-data” needs to be discovered and 
awakened by a Prince to be brought to life.  
Otherwise, they stay asleep for ever. 

⎯ Many of the data in the storage are useless.
They should have been thrown away.

• We need to let the data to enjoy their lives and do their 
work before falling into “after-data” storage. How?
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Simulation data from LCF cannot be post-processed any more
§ Data size from today’s XGC simulation on 200PF Summit is too big for filesystem

• Trillions of particles with 10 scalars per particle x 1,000 time steps per day
à Hundreds PB/day, cannot be allowed on the 250PB Summit GPFS

§ Exascale HPCs will produce ~EB/day data

§ Why do we need the on-memory particle data?
• 3D particle motions must be followed to calculate 

the non-Maxwellian edge plasma transport.

Simple fluid picture: plasma 
moves together with blobs.

Particle picture: individual particle 
orbits are distorted by blobs while 
they go through them.Very inaccurate in edge

Vis by D. Pugmire

AI/ML needed



Fusion research can be greatly accelerated by federating 
thousands of sensors and distribted scientists/computers
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Fusion data from ITER possess all the big-V properties 
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Value

• ~1/2EB/year
• Subsequent 

simulations can 
greatly enhance 
data volume

• >50GB/s for up to 
1000s, each shot

• Hierarchy of 
analysis for real or 
near-real-time 
feedback 

• Wide variety 
data from 
thousands of 
sensors

• Many-scale 
many-physics

• All sensors have 
different quality: e.g., 
validity range, error, 
and noise

• All the 
expensive 
sensors are 
there because 
they produce 
valuable data

AI/ML in high 
demand
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We have been using after-data à very slow scientific advance

I observed something that 
seems to be important, 
and published it.  But, ?

Months or years later, a theoretician 
heard/remembered about the experiment

Give me the data, PLEASE
(human relationship,

bureaucracy)

Data back to life

HPC

We understand it now.
Do “this” in the next experiment.

But, months or years have passed.

(further delay)

ITER’s progress plan is based 
upon this type experience.

There is also a critical need for real-
time control.
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ITER requires real-time control 
• Disruptions can damage the machine’s structural integrity (~50ms response): AI/ML work in progress
• Edge-localized-mode (ELM) crashes will destroy ITER wall: AI/ML work at infancy

Requires ~10ms response from physics precursor detection to actuator trigger

• Human intervention 
not possible

• Must be a highly 
trained AI/ML system

⎯ Detection
⎯ Actuator trigger

• Local inference near 
sensors, but remote 
training on HPCs

à Federated data 
management system

(Zweben)
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ML prediction for disruption is making further progress

DIII-D training and inference:
Dilated Convolutional NN with 
2D imaging data can yield 94% 

true positives with limited 
dataset [Churchill et al.]

AUC
Model

AUC: JET training, 
JET inference

DIII-D training, 
JET inference

DIII-D training + 5 JET data, 
JET inference

DL + 1d profile 0.836 0.911    (Kate-Harbeck et al)

DL + 0d 0.952 0.817 0.879

Classical ML 0.893 0.616 0.851

[Kates-harbeck ]

Classical ML à
DL + 0d à
DL + 1d profile (Kates-Harbeck et al.) à
Dilated Convolution NN + 2D instability dynamics

(R.M. Churchill et al., XGC group)
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Streaming feature 
detection at 

sensors

Real-time or 
near-real-time 

feedback

Smart-reduced-
data stored

In-stream: 
Remote-HPC 

trained AI/ML 
inference 

codes

Deep scientific 
understanding

Federated Fusion Data System to Accelerate Fusion Research

HPC,
Cloud...

Fast Lane
Slow
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Data reduction & Vis

Simulation 
trigger

Many scientists on multiple HPCs in different countries
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On-going collaboration with ORNL (Klasky)
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Use ML for simulation acceleration: Fokker-Planck Eq.

N

N

• Multispecies collision 
operation is a serious issue 
in kinetic ITER simulation: 

cost ∝N2

• We utilize Semantic 
Segmentation task: 
Hourglass Convolutional NN

• Include physics constraints 
in the loss after the main NN

(R.M. Churchill)
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Deep NN trained Fokker-Planck operator: initial result

[Collaboration with 
ANL (T. Munson) has 
been initiated]

(R.M. Churchill)

Target 
≤ 10-5



Toward Machine Learning in XGC’s iterative EM solver preconditioner
R. Archibald (ORNL), Ben Sturdevant and C-S Chang (PPPL)

• Goal: Use machine learning to act as effective preconditioner for fully implicit kinetic EM scheme in XGC

For more information:  Rick Archibald (ArchibaldRK@ornl.gov), Data Analytics lead

Initial Condition of iterative solve ML Prediction from Initial Condition

§ Result: Use small XGC run, validated that machine learning (Convolutional DNN) that 
initial condition guess can be improved by over a factor of 4X in relative error.

§ Challenge: Improve accuracy. Translate improvements in initial guess to reduced 
iterations of fully implicit XGC.  Build lightweight adaptive training of Convolutional DNN.

13
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Anchored ML for prediction: Anchor the under-determined ML, using 
predictive data from first-principles-based simulations

Present data is usually an under-determined set: solution may not be extrapolated

Data from 
today’s 

experiments

Interpolative 
AI/ML for today’s 

experiment

Interpolation-based 
AI/ML prediction for 
future experiment

Anchor-based 
extrapolative AI/ML 

for future experiment

Data from 
predictive 

simulations

+

Validity?

Must be validated on 
today’s experiments

D(xi) à yk

D′(xi+xi′) à Yk(⊃ yk)

This technique will get better as the accuracy and sampling of xi’ improves on 
more powerful computers with better algorithms (AI/ML algorithms included). 

High-fidelity 
simulations

Present 
experiments High-fidel.

simulation

(C.S. Chang)



Predictions from gyrokinetic XGC have been validated on existing tokamaks 

• But, the same code predicts λq(XGC) 
>6λq(Exp) for full-power ITER

• This result was challenged by the 
high-current C-Mod experiments.
o Double valued?
o Suggestive of hidden parameters
o Or XGC is wrong

• XGC on NSTX-U at 2MA also 
produced a wider λq

• But, not at 1.5MA
• Hidden parameters, again?

15

(Summit, Cori)

1.4MA C-Mod

★
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Machine learning reveals trapped electron interaction with 
turbulence in the 15MA ITER edge (R.M. Churchill)

§ K-means clustering, with K=6
§ At a higher energy band, trapped 

electrons show correlated response to 
turbulence

• Another sign of TEM turbulence
§ Because of the high ω*~v(ρ/L) around 

the separatrix, q needs to be high for 
precession resonance by trapped 
electrons: Vprecess~v(ρ/R)(B/BP)
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Isolated “blobby” turbulence 
(with strong sheared-ExB flow across 

separatrix)

Connected “streamer”-type turbulence 
(with weak sheared-ExB flow across 

separatrix)
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TEM streamers are 
the suspects.  ITGs 
do not penetrated 
into SOL.

Electron heat-spread by strong trapped electron modes is the prime suspects
• Fact: ρip/a à0 in 15MA ITER yields little neoclassical ExB shearing,
• Fact: (2a/R)1/2 à1  in NSTX-U with warm Te yields strong TEM drive

Today’s conventional 
aspect tokamaks

Full-current ITER

(Summit)
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Looking for hidden parameters with feature engineering 
• Large a/ρi,pol weakens the neoclassical ExB shearing rate à stronger TEM

• In the present conventional aspect-ratio 
tokamaks, λq(XGC) follows λq(Exp).

• However, λq(XGC) shows double-value 
between high-Ip C-Mod and 15MA ITER.

• When we use Bpol a/ρi,pol as the scaling variable, 
⎯ λq(XGC) in the present tokamaks still follows λq(Exp)
⎯ and the double-valuedness disappears
⎯ NSTX-U 2MA data follows the ML anchored curve
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(C.S. Chang)

λq(XGC) = 0.63Bpol
-1.19 

[1.0+(10-2.5Bpol a/ρi,pol)4 ]

Excel
Machine learning

(Eureqa)
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NSTX-U 
2MA
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There are several other AI/ML applications in dire needs*

normalized plasma radius

• Kinetic evolution of background plasma profile is 
computationally expensive, but a critical problem 
for ITER.
⎯ When the initial plasma profile is far away from 

kinetic solution, XGC could spend 10x more 
exascale computing time

• Can we use AI/ML to telescope the background 
profile evolution?
• Tried a Beysian algorithm, but with only a 

limited success 

*Not all the collaborations are represented here; e.g.,
• Hanqui Guo: Deep learning feature discovery from blob-

turbulence isocontours
• Jong Choi: this workshop

XGC evolves plasma 
density profile to a 
kinetic equilibrium 
in ITER edge
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