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Background
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Background

I Have an oilfield.
I Where should we place

wells?
I Drill a bunch of boreholes.
I Get a bunch of well logs.

3



Background

I Well logs are very detailed...
I ∼ 20000 rows of measurements.

I ...but sparsely distributed across the oilfield.
I Drilling a borehole and putting detectors down it costs time

and money.

I So the challenge is to predict the subsurface structure of the
entire oilfield from these sparse borehole measurements.

I Specifically of course, we want to know where the richest oil
wells are!
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Properties

I Principle target property, OIP.
I The total oil content of an oil reservoir.
I Cannot be measured directly, has to be estimated.
I We will use just three properties. This is greatly simplified, but

helps keep the number of models manageable!

I Three properties derived from well logs used as estimators.
I Porosity.

I Ratio of pore volume to volume of rock.

I Net to Gross.
I A slightly more complicated metric, but roughly the ratio of

volume of rock that can store hydrocarbons, to volume of
rock.

I Saturation.
I The fraction of effective porosity which is filled with a specific

fluid (like oil!).
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Trends

I Petroleum industry concerned with four ‘trends’ of these
properties.
I Depth.
I Stratigraphy.
I Strike.
I Dip.

I How a particular property evolves with a trend defines a
function, represented by its knot points.
I Three knot points for Depth, Dip, Strike, 35 for Stratigraphy.

I We can concatenate the description of these trends for a
particular property to a single 44 knot vector but, order
matters.
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Genes

I We call the concatenated knot vector for a particular property
a gene.

I A gene with Depth-Dip-Strike-Stratigraphy, is different from
one with Stratigraphy-Strike-Dip-Depth.

I To define geological model of an oilfield, identify all possible
genes which are in line with well logs.

I We will be less sophisticated, and just consider all possible
genes. (For now!)
I 4P4 = 24
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Genome

I As noted before we are considering just three properties of our
oilfield.

I A sequence of the three properties’ genes defines a geological
model for the oilfield, and we will call it a genome.
I Defined by 132-element vector.

I For each property we have 24 equally valid explanations
(genes).

I In total then we generate 243 valid geological models.
I Quick reminder that we are looking at a reduced number of

properties, so exponent would typically be much larger.

I Each genome can be uniquely identified either by a triplet of
numbers identifying its genes, or by an identification number
generated treating the triplet as a three-digit base-24 number,
and converting it to base 10.
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Recap

I That’s a lot of background!
I Well logs → Derived properties → Trends → Genes →

Genomes.
I Side note: Our collaborators at Cognitive Geology have

developed software to automate this process of going from well
logs to an ensemble of models.

I Some data reduction has taken place, as we consider trends of
derived properties of the well logs, but nothing interesting...
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Ensemble reduction

I An ensemble of 24n models for n properties is infeasible to
evaluate.

I Ideally we would like to group together all models which give
broadly the same result, and only consider one model from
each group.

I Two questions:
I What is the result we are interested in?
I How similar is ‘broadly the same’?

I Answer to the first question is of course OIP.

I Unfortunately, determining OIP requires an evaluation of the
model which we have to do for every model...
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Ensemble reduction

I In an ideal world where we could quickly and easily cluster
models based on OIP...
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Ensemble reduction

I We considered clustering without calculating OIP, using
Euclidean distance as the similarity metric. This did not
work...

Figure: On the left, density based clustering was used, on the right,
self-organising feature maps.
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OIP Estimation

I Using OIP as the similarity metric is a necessary evil then.

I ...or a least a related metric.
I So why not train a regression model to estimate the OIP?

I This will result in a far less computationally intensive metric
for reducing the ensemble.

I We will try two off-the-shelf approaches, an artificial Neural
Network (NN), and a Gradient Boosted regressor (GB), both
implemented in SciKit-learn.
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OIP Estimation

I Using 80% of the models for training and 20% for testing is
computationally infeasible for real-world problems, but it does
show the approach works.
I Predictions were on average within 1% of the actual OIP value.

I We then experimented with reducing the training set size.
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OIP Estimation

I Using 15% of the set for training gives an acceptable error.
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Ensemble reduction revisited

I Let’s try this again with our two-step approach.
I Step one: Determine OIP estimator using gradient boosted

regressor.
I Step two: Cluster models with self-organising feature maps,

using OIP estimator as the metric.

I Self-organising Feature Maps (SOFM/SOM).
I A specialised form of artificial neural network.
I Assumes a two-dimensional grid of neurons in the hidden layer.
I Makes use of competitive learning, in which individual neurons

‘compete’ to respond to inputs.
I Nodes are updated according to their Euclidean distance to the

winning node.
I Our models will be clustered according to which node they are

mapped to.
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Ensemble reduction revisited

I Does it work? Yes!

Figure: On the left our SOFM, and on the right, OIP, colour-coded by
node/cluster.
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Data Reduction

I Can choose one model from each cluster to form a
representative model of the whole oilfield for further
evaluation.

I Total reduction in ensemble size from 243 → 64.
I How this scales with 24n is an open question.

I Two step approach: using supervised learning to determine an
estimator, and unsupervised learning to cluster models using
that estimator.

I Only 15% (∼ 2000) of the original ensemble required to train
estimator model.

18



Thanks to...

...the people who actually did the work on this project but
unfortunately couldn’t be here:

I Anna Roub́ıčková
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