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PAVE: An in situ framework allowing researchers and practitioners to
couple scientific visualization and machine learning tasks.

Motivation
Solution
Framework

Case Study and Application of PAVE
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Motivation:

I/O remains a limiting factor in traditional HPC which often
produces large amounts of output.

This limitations of I/O are increasing as machine learning
(ML) is growingly more important in HPC and requires not
only large amounts of data (‘big data’) but also data in
combination with large amounts of output in order to
produce an algorithm.
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Traditional Programming

.Y _

Scientific Visualization Qutput

Supernova Direct Volume Supernova Contour Ray-tracing:
Rendering Seismic Wave Propagation

VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures, Moreland et al. 2016
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A Virtual Reality
Visualization Tool
for Neuron Tracing

Usher, W., Klacansky, P.,
Federer, F., Bremer, P. T., Knoll,
A., Yarch, J., ... & Pascucci, V.
(2017). A virtual reality
visualization tool for neuron
tracing. IEEE transactions on
visualization and computer
graphics, 24(1), 994-1003.

Isosurface representation of
the vorticity, rendered with
path tracing

Wang, Feng, et al. "CPU Isosurface Ray
Tracing of Adaptive Mesh Refinement
Data." IEEE transactions on visualization
and computer graphics 25.1 (2018):
1142-1151.

" Fria " S
Ultra Super Critical" Oxy-Coal A
Kumar, Sidharth, et al. "Scalable data management of the
Uintah simulation framework for next-generation engineering K IDG‘I l: u

problems with radiation." Asian Conference on .
Supercomputing Frontiers. Springer, Cham, 2018. at10nal Laboratory


https://docs.google.com/file/d/13ZJvWUQU7clUX4JdqhHroQCVrCZDPZ9W/preview

Machine Learning Output

Generative Models: Gaussian mixture model, Hidden Markov model, Bayesian
network, Generative Adversarial Network, Autoencoder, ...

Neural Networks: Convolutional, Recurrent, Long-Short, ...

Structured Predictions: Conditional Random Field, Structured SVM, Language
Processing, ...

Decision Trees
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Motivating Aim

A scalable and efficient framework for combining scientific
visualization (traditional programming) and machine learning

tasks

Scientific Visualization > >| Machine Learning
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What do we have to address?

Problem: An increasing gap between compute performance
and |I/O bandwidth for HPC.

Scientific Visualization

>| Machine Learning
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In Situ Transport: Coupling scientific visualization and

machine learning.

- In situ data transport of visualization task used as input for machine learning
model to produce a trained learning algorithm.

¢
I/

A— Trained
m— Algorithm

Visualization PAVE Machine Learning
Task model

Bidirectional communication
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PAVE provides a simple API for in situ data transport for
coupling user defined scientific visualization and machine

learning tasks.

Scientific Visualization

—

PAVE

—

Machine Learning
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Case Study

Coupled Path Tracing and Conditional Adversarial Network

Scalable conditional generative adversarial network (cGAN) trained on the output of a path
tracer to be able to emulate the behavior of light and global illumination for scene
dependent geometry.
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End Goal: Path Tracer trains a Generative Adversarial Network
(GAN) for emulating the behaviour of light in a given scene.

Generator
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Traditional Programming

System Overview: Coupling — - L
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System Overview: User Defined Visualization

Traditional Programming Machine Learning

Scene Geometry
and Direct Lighting

H Scientific
Visualization -
Path Tracer -

Scene Geometry and
Direct Lighting I

Rendered Scene wi

Global IIIuminatiin

“Ground truth”

-Scene
Generator

Scientific Visualization:
Path Tracer using VTK-m

Data parallel primitive toolkit for
scientific visualization suitable for

VTK " massively threaded architectures.

VTK-m was chosen due to its %) AK RIDGE U
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System Overview: Learning Model

Traditional Programming Machine Learning
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Scientific Visualization: Learning Goal:
Path Tracer using VTK-m cGAN: U-Net + patchGAN (CNN)

with PyTorch

VTKm O PyTorch
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Path Tracer Design

Path Tracer: Monte Carlo sampling over shapes, light intensity and pixel values.
The sampling is performed by sending multiple rays per pixel traversing the scene,
accumulating the color of the surfaces it interacts with until it hits a light source.

Image

Camera

8 Light Source

| I

_View Ray

Scene Object

Ray-tracing: AK RIDGE u

Seismic Wave Propagation
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Discriminator
Generator (patchGAN CNN)

CNN Prediction:
Zero Sum Loss Update Fake / Real
4 \
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Path
Tracer
Output

Generator (cGAN)

Discriminator
(patchGAN CNN)

CNN Prediction:

-
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Data from VTK-m Pathtracer: Geometric Buffers

Image buffers needed to compute light
paths offer conditional dependency on the
behavior of light based on the geometry
and light sources within a scene.

Material property parameters, direct
lighting, color coded normals of Surfaces
and depth: (a) — (d) respectively.
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raditional P

Data for both path tracer and cGAN along with = [ —
the output from the path tracer for cGAN i

¢ I

Data: Conditional Geometric Buffers Output: Ground Truth Rendering

aboratory



Conditional Generative Adversarial Network

Conditional Dependence U-Net

EETT

KK Encode / K Decode /K

e
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Discriminator

Deep Convolutional patchGAN Network ( Isola et. al. [30])

Added advantage of providing a patch-wise probability and regional accuracy
within an image in question as being real or fake.

/ Score 1 Score Image = Average(Score i)

7
| Score 2

—_ |
—_ |
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Generative Network Loss

Spatial relations and location is important.

Added L1 norm loss to cross entropy due to Structural preservation of U-Net due
to concatenate and regional influence due to patch-wise probability in
Discriminator.

Gradient descent based optimization as zero-sum game between discriminator
and generator.
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// /Skip connections
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2K 2K

K Encode / K Decode
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o

Once trained Generative model; &) Discriminator

(Conv. Neural Net)

Similar to an explorable database. Sore 1
Serves as a look-up table or filter’

ﬁ@ U:"rez
rendering globally illuminated images .

ackpropagation

with quality comparable to offline CNN Prediction:
quality P | Zero Sum Loss Update |Cassenopveci| = 000

approaches.
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Example of Learned Light Transport

Light reflected from near surfaces.
lllumination dependent on orientation and proximity to light source.
Path Traced Ground Truth Artificial Image from Generator




Example of Learned Light Transport

Accurately approximate diffuse indirect illumination and soft shadows

Path Traced Ground Truth Artificial Image from Generator




Generator Validation Loss Discriminator Validation Loss
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Discriminator Validation Loss
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Performance

Ray Tracing: Generating 3080 image, dimension 256x256x3, ray depth 50,
sampling 1000, system 2x Nvidia RTX-2080 Ti GPUs, Totaling 13 hours.

Training cGAN: On same machine with one Nvidia RTX-2080 Ti GPU took 2.7
hours over 400 epochs (with all data available).
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Future Work

Implement more cyclical, interweaved applications of visualization and learning
such as learning implementations on time dependent visualizations.

Larger scale in the amount to compute and data generated with more intensive
coupling of tasks.

Generate novel scene or for volumes.

We would also like to add more output connectors such as Ospray or Optix, and
add more machine learning frameworks such as TensorFlow.
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Thank you, questions?

I
\

Computer, in the Holmesian style, create a mystery to confound
Data with an opponent that has the ability to defeat him...
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Example Synthetic Conditional Buffer and Sphere

When using synthetic conditional the network showed ability to learn refraction.

Path Traced Original Image Augmentation Generated Image
as Conditional During Training.
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