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Motivation

Solution

Framework

Case Study and Application of PAVE

PAVE: An in situ framework allowing researchers and practitioners to 
couple scientific visualization and machine learning tasks.



Motivation:

 I/O remains a limiting factor in traditional HPC which often 
produces large amounts of output. 

This limitations of I/O are increasing as machine learning 
(ML) is growingly more important in HPC and requires not 
only large amounts of data (‘big data’) but also data in 
combination with large amounts of output in order to 
produce an algorithm.
   



With ML, the role of data and output has changed, becoming 
more integral in algorithm design.



Scientific Visualization Output

Supernova Contour Ray-tracing:
Seismic Wave Propagation

Supernova Direct Volume 
Rendering

VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures, Moreland et al. 2016



"Ultra Super Critical" Oxy-Coal

Isosurface representation of 
the vorticity, rendered with 
path tracing 

Wang, Feng, et al. "CPU Isosurface Ray 
Tracing of Adaptive Mesh Refinement 
Data." IEEE transactions on visualization 
and computer graphics 25.1 (2018): 
1142-1151.

Kumar, Sidharth, et al. "Scalable data management of the 
Uintah simulation framework for next-generation engineering 
problems with radiation." Asian Conference on 
Supercomputing Frontiers. Springer, Cham, 2018.

A Virtual Reality 
Visualization Tool 
for Neuron Tracing

Usher, W., Klacansky, P., 
Federer, F., Bremer, P. T., Knoll, 
A., Yarch, J., ... & Pascucci, V. 
(2017). A virtual reality 
visualization tool for neuron 
tracing. IEEE transactions on 
visualization and computer 
graphics, 24(1), 994-1003.

https://docs.google.com/file/d/13ZJvWUQU7clUX4JdqhHroQCVrCZDPZ9W/preview


Machine Learning Output 

Generative Models: Gaussian mixture model, Hidden Markov model, Bayesian 
network, Generative Adversarial Network, Autoencoder, …

Neural Networks: Convolutional, Recurrent, Long-Short, …

Structured Predictions: Conditional Random Field, Structured SVM, Language 
Processing, …

Decision Trees

...



Motivating Aim

Scientific Visualization          I/O    Machine Learning

A scalable and efficient framework for combining scientific 
visualization (traditional programming) and machine learning 
tasks 



Scientific Visualization I/O Machine Learning

What do we have to address? 

I/O

Bottleneck

Problem: An increasing gap between compute performance 
and I/O bandwidth for HPC.



In Situ Transport: Coupling scientific visualization and 
machine learning.
- In situ data transport of visualization task used as input for machine learning 

model to produce a trained learning algorithm.



PAVE provides a simple API for in situ data transport for 
coupling user defined scientific visualization and machine 
learning tasks.

Scientific Visualization I/O Machine LearningPAVE          PAVE



Case Study
Coupled Path Tracing and Conditional Adversarial Network 

Scalable conditional generative adversarial network (cGAN) trained on the output of a path 
tracer to be able to emulate the behavior of light and global illumination for scene 
dependent geometry.



End Goal: Path Tracer trains a Generative Adversarial Network 
(GAN) for emulating the behaviour of light in a given scene.

Generator



- Paradigm for developing ML algorithms often more memory intensive than 
traditional programming.

Motivation: Alleviate input/output bottleneck when coupling 
traditional programming and machine learning.
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Scene Geometry and 
Direct Lighting

Rendered Scene with 
Global Illumination
“Ground Truth”

Rendered Scene with 
Global Illumination

Scene Geometry 
and Direct Lighting

Path Tracer

Scene Generator



System Overview: Coupling

Scientific 
Visualization

Machine 
Learning: 

cGAN

PAVE
Path Tracer
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System Overview: User Defined Visualization

Scientific Visualization: 
Path Tracer using VTK-m
                              Data parallel primitive toolkit for 

scientific visualization suitable for 
massively threaded architectures.

VTK-m was chosen due to its 
scalability and HPC compatibility 

PAVEPAVE
Scientific 

Visualization
Machine 
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Generator
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“Ground truth”



System Overview: Learning Model

Scientific Visualization: 
Path Tracer using VTK-m

PAVE
Scientific 

Visualization
Machine 
Learning: 

cGAN

Learning Goal: 
cGAN: U-Net + patchGAN (CNN) 
with PyTorch

PAVE
Path Tracer
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Path Tracer Design
Path Tracer: Monte Carlo sampling over shapes, light intensity and pixel values. 
The sampling is performed by sending multiple rays per pixel traversing the scene, 
accumulating the color of the surfaces it interacts with until it hits a light source. 

Ray-tracing:
Seismic Wave Propagation



Training Generative Neural Networks
Cops and Counterfeiters, a zero sum game.

Predict: Real or 
Generated



CNN  Prediction:
Fake / RealZero Sum Loss Update
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Case Study
Training the generator
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Case Study
Training the generator



Data from VTK-m Pathtracer: Geometric Buffers

Image buffers needed to compute light 
paths offer conditional dependency on the 
behavior of light based on the geometry 
and light sources within a scene.

Material property parameters, direct 
lighting, color coded normals of Surfaces 
and depth: (a) – (d) respectively.

(A) (B)

(C) (D)



Data for both path tracer and cGAN along with 
the output from the path tracer for cGAN

Data: Conditional Geometric Buffers                    Output: Ground Truth Rendering 



Conditional Generative Adversarial Network

U-NetConditional Dependence 

Encode Decode



Discriminator
Deep Convolutional patchGAN Network ( Isola et. al. [30])

Added advantage of providing a patch-wise probability and regional accuracy 
within an image in question as being real or fake.

Score 2

Score 1 Score Image = Average(Score_i)



Discriminator Generative Network Loss
Spatial relations and location is important.

Added L1 norm loss to cross entropy due to Structural preservation of U-Net due 
to concatenate and regional influence due to patch-wise probability in 
Discriminator.

Gradient descent based optimization as zero-sum game between discriminator 
and generator. 



Zero Sum Loss Update
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Zero Sum Loss Update

 Discriminator
   (Conv. Neural Net)
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CNN  Prediction:
Fake / Real cross entropy + L1

Score 2

Score 1

Once trained Generative model:
- Similar to an explorable database.
- Serves as a look-up table or ‘filter’ 

rendering globally illuminated images 
with quality comparable to offline 
approaches.

x

Generator (cGAN)

Encode Decode

OR



Example of Learned Light Transport
Light reflected from near surfaces.
Illumination dependent on orientation and proximity to light source.

Path Traced Ground Truth Artificial Image from Generator



Example of Learned Light Transport
Accurately approximate diffuse indirect illumination and soft shadows 

Path Traced Ground Truth Artificial Image from Generator



Results
As training progressed, and the generative network improved with loss 
converging to zero, the discriminator deteriorated and was left with near  
even odds amounting to a near 50-50% chance of identifying input images 
as either artificial or original.



Results
As training progressed, and the generative network improved with loss 
converging to zero, the discriminator deteriorated and was left with near  
even odds amounting to a near 50-50% chance of identifying input images 
as either artificial or original.

Possible Issue:
- Need longer ray depth, higher sample 

rate. 
- Discriminator learns to identify fixed 

point.
- To low training resolution.
- ect...



Performance
Ray Tracing: Generating 3080 image, dimension 256x256x3, ray depth 50, 
sampling 1000, system 2x Nvidia RTX-2080 Ti GPUs, Totaling 13 hours.

Training cGAN: On same machine with one Nvidia RTX-2080 Ti GPU took 2.7 
hours over 400 epochs (with all data available).



Future Work
Implement more cyclical, interweaved applications of visualization and learning 
such as learning implementations on time dependent visualizations.

Larger scale in the amount to compute and data generated with more intensive 
coupling of tasks.

Generate novel scene or for volumes.

We would also like to add more output connectors such as Ospray or Optix, and 
add more machine learning frameworks such as TensorFlow.



Computer, in the Holmesian style, create a mystery to confound 
Data with an opponent that has the ability to defeat him… 

Thank you, questions?







Example Synthetic Conditional Buffer and Sphere
When using synthetic conditional the network showed ability to learn refraction.

Path Traced Original Image Augmentation 
as Conditional

Generated Image 
During Training.


