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The National Center for Atmospheric Research (NCAR)

• A federally funded research and development center

• Mission: To understand the behavior of the atmosphere and related
Earth and geospace systems
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NCAR’s Community Earth System Model

• a “virtual laboratory” to study past, present and future climate states
• describes interactions of the atmosphere, land, river runoff, land-ice,

oceans and sea-ice
• complex! Large code base: approx. 1.5 Millions lines of code
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Why compress climate data?

Increasing resolution and computational power lead to more and more
climate model data. Flood of data, with no end in sight!

Storage is costly!
Previous HPC system Yellowstone: ∼ 20% of hardware budget for storage
New HPC system Cheyenne starting 2017: ∼ 50%

CMIP5 Archive is ∼ 3.3 Petabytes of data

CMIP6 Archive > 20 Petabytes! (expected)

Many other examples such as large ensemble projects

Data storage a limiting factor for climate science.

Compression as a tool to store less data with MINIMAL information loss.
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Why are climate scientists reluctant to use compression?

The typical metrics used in the compression community don’t have much
meaning to climate scientists and are not reassuring to them.

Work with climate scientists to reassure them that compression doesn’t
change their scientific conclusions, and make sure it indeed doesn’t!
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Spatio-temporal analysis to emulate climate analysis

We have developed spatio-temporal statistical analysis tools that emulate
the key aspects of climate data analysis.

• gradients in space and time

• cumulative effects in time

• changes in variability over space or time

• changes in the statistical distribution

• changes in the extremes
• changes in skewness
• . . .

Pro-actively work with algorithm developers to use these tools to address
any potential issues BEFORE climate scientists use the lossy compressors.
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Temperature compressed with different versions of zfp

Surface Temperature

• Daily CESM data from
1920–2005

• 31,390 time slices;

• 192 × 288 grid points

• Smooth in space and
time (i.e., strongly
correlated)

ZFP

• one of the most effective lossy floating
point compressors, transform method

• three version:

• ZFP-0.5.3
• ZFP-ROUND
• ZFP-BETA

• ZFP-0.5.3 and ZFP-ROUND only
differ in their rounding

• ZFP-BETA: more compression by
encoding fewer bits; same symmetric
rounding as ZFP-ROUND
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Original data: gridcell mean
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Original data: gridcell standard deviation
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TS Mean Error, RMSE and Compression Ratio (CR)

zfp Mean Error RMSE CR
tol. zfp-0.5.3 zfp-round zfp-beta zfp-0.5.3 zfp-round zfp-beta zfp-0.5.3 zfp-round zfp-beta
1.0 6.75e-3 -2.25e-6 -1.39e-6 7.39e-2 6.76e-2 1.32e-1 .15 .15 .13
0.5 -3.38e-3 5.20e-7 -2.25e-6 3.88e-2 3.48e-2 6.76e-2 .18 .18 .15
1e-1 4.22e-4 7.34e-7 3.06e-7 5.32e-3 4.56e-3 9.03e-3 .26 .26 .23
1e-2 -5.25e-5 -7.04e-7 8.11e-7 6.71e-4 5.73e-4 1.14e-3 .36 .36 .33
1e-3 6.86e-6 2.70e-7 -1.93e-8 8.44e-5 7.20e-5 1.43e-4 .45 .45 .42
1e-4 4.86e-8 1.72e-8 1.19e-7 3.18e-6 2.11e-6 9.25e-6 .58 .58 .55
1e-5 0.00 0.00 0.00 0.00 0.00 0.00 .67 .67 .64
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Selected Results: TS Mean Errors
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Sign reversal at the poles: how come?

It is cold at the poles! Binary exponent boundary at 256◦K.
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Oceans in turmoil

Little variation spatially means ZFP coefficients are small and often
quantized to zero where asymmetric rounding works better.
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Getting close to machine precision

At 1e-4 tolerance, errors are only a few possible discrete values which are
poorly approximated by uniform distribution.
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Lag-1 correlations of first differences of deseasonalized TS

• 1e-2 visually identical to original for all three versions

• dampening and gridding artifacts at looser tolerances
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Summary of evaluation work

• Compression has effects at fine spatial and temporal scales that are
masked by global statistics

• Useful insights come from investigating metrics which vary at lower
magnitudes than the data itself

• Collaboration is key to address issues that are highlighted in these
analyses, for example, adaptive rounding schemes

Next goal: develop a Python library (integrated with Pangeo) so climate
scientist and compression algorithm developer can see effects for
themselves
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Where we would like to be some years from now . . .
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Thanks! Any questions: hammerling@mines.edu
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