A Collaborative Effort to Improve Lossy Compression Methods for Climate Data

Dorit Hammerling

Department of Applied Mathematics and Statistics
Colorado School of Mines (CSM)
Visiting Appointment: National Center for Atmospheric Research (NCAR)

Joint work with Allison Baker (NCAR), Alexander Pinard (CSM), and Peter Lindstrom (Lawrence Livermore National Laboratory)

...and many other contributors

November 17, 2019
The National Center for Atmospheric Research (NCAR)

- A federally funded research and development center
- Mission: To understand the behavior of the atmosphere and related Earth and geospace systems
The National Center for Atmospheric Research (NCAR)

- A federally funded research and development center
- Mission: To understand the behavior of the atmosphere and related Earth and geospace systems
NCAR’s Community Earth System Model

- a “virtual laboratory” to study past, present and future climate states
- describes interactions of the atmosphere, land, river runoff, land-ice, oceans and sea-ice
- complex! Large code base: approx. 1.5 Millions lines of code
Why compress climate data?

Increasing resolution and computational power lead to more and more climate model data. *Flood of data, with no end in sight!*

Storage is costly!
Previous HPC system Yellowstone: $\sim 20\%$ of hardware budget for storage
New HPC system Cheyenne starting 2017: $\sim 50\%$

CMIP5 Archive is ~ 3.3 Petabytes of data
CMIP6 Archive > 20 Petabytes! (expected)
Many other examples such as large ensemble projects

Data storage a limiting factor for climate science.
Compression as a tool to store less data with MINIMAL information loss.
Why compress climate data?

Increasing resolution and computational power lead to more and more climate model data. *Flood of data, with no end in sight!*

Storage is costly!
Previous HPC system Yellowstone: $\sim 20\%$ of hardware budget for storage
New HPC system Cheyenne starting 2017: $\sim 50\%$

CMIP5 Archive is ~ 3.3 Petabytes of data
CMIP6 Archive ≥ 20 Petabytes! (expected)
Many other examples such as large ensemble projects

Data storage a limiting factor for climate science.
Compression as a tool to store less data with MINIMAL information loss.
Why compress climate data?

Increasing resolution and computational power lead to more and more climate model data. *Flood of data, with no end in sight!*

Storage is costly!
Previous HPC system Yellowstone: $\sim 20\%$ of hardware budget for storage
New HPC system Cheyenne starting 2017: $\sim 50\%$

CMIP5 Archive is ~ 3.3 Petabytes of data
CMIP6 Archive > 20 Petabytes! (expected)

Many other examples such as large ensemble projects

Data storage a limiting factor for climate science.
Compression as a tool to store less data with MINIMAL information loss.
Why compress climate data?

Increasing resolution and computational power lead to more and more climate model data. *Flood of data, with no end in sight!*

Storage is costly!
Previous HPC system Yellowstone: \sim 20% of hardware budget for storage
New HPC system Cheyenne starting 2017: \sim 50%

CMIP5 Archive is \sim 3.3 Petabytes of data
CMIP6 Archive >20 Petabytes! (expected)
Many other examples such as large ensemble projects

Data storage a limiting factor for climate science.
Compression as a tool to store less data with MINIMAL information loss.
Why compress climate data?

Increasing resolution and computational power lead to more and more climate model data. *Flood of data, with no end in sight!*

Storage is costly!
Previous HPC system Yellowstone: $\sim 20\%$ of hardware budget for storage
New HPC system Cheyenne starting 2017: $\sim 50\%$

CMIP5 Archive is ~ 3.3 Petabytes of data
CMIP6 Archive > 20 Petabytes! (expected)
Many other examples such as large ensemble projects

Data storage a limiting factor for climate science.

Compression as a tool to store less data with MINIMAL information loss.
Why are climate scientists reluctant to use compression?

The typical metrics used in the compression community don’t have much meaning to climate scientists and are not reassuring to them.

Leave my data alone!

Work with climate scientists to reassure them that compression doesn’t change their scientific conclusions, and make sure it indeed doesn’t!
Why are climate scientists reluctant to use compression?

The typical metrics used in the compression community don’t have much meaning to climate scientists and are not reassuring to them.

Work with climate scientists to reassure them that compression doesn’t change their scientific conclusions, and make sure it indeed doesn’t!
Spatio-temporal analysis to emulate climate analysis

We have developed spatio-temporal statistical analysis tools that emulate the key aspects of climate data analysis.

- gradients in space and time
- cumulative effects in time
- changes in variability over space or time
- changes in the statistical distribution
 - changes in the extremes
 - changes in skewness
 - ...

Pro-actively work with algorithm developers to use these tools to address any potential issues BEFORE climate scientists use the lossy compressors.
Spatio-temporal analysis to emulate climate analysis

We have developed spatio-temporal statistical analysis tools that emulate the key aspects of climate data analysis.

- gradients in space and time
- cumulative effects in time
- changes in variability over space or time
- changes in the statistical distribution
 - changes in the extremes
 - changes in skewness
 - ...

Pro-actively work with algorithm developers to use these tools to address any potential issues BEFORE climate scientists use the lossy compressors.
We have developed spatio-temporal statistical analysis tools that emulate the key aspects of climate data analysis.

- gradients in space and time
- cumulative effects in time
- changes in variability over space or time
- changes in the statistical distribution
 - changes in the extremes
 - changes in skewness
 - ...

Pro-actively work with algorithm developers to use these tools to address any potential issues BEFORE climate scientists use the lossy compressors.
Temperature compressed with different versions of ZFP

Surface Temperature
- Daily CESM data from 1920–2005
- 31,390 time slices;
- 192 \times 288 grid points
- Smooth in space and time (i.e., strongly correlated)

ZFP
- one of the most effective lossy floating point compressors, transform method
- three version:
 - ZFP-0.5.3
 - ZFP-ROUND
 - ZFP-BETA
- ZFP-0.5.3 and ZFP-ROUND only differ in their rounding
- ZFP-BETA: more compression by encoding fewer bits; same symmetric rounding as ZFP-ROUND
Surface Temperature
- Daily CESM data from 1920–2005
- 31,390 time slices;
- 192×288 grid points
- Smooth in space and time (i.e., strongly correlated)

ZFP
- one of the most effective lossy floating point compressors, transform method
- three version:
 - ZFP-0.5.3
 - ZFP-ROUND
 - ZFP-BETA
- ZFP-0.5.3 and ZFP-ROUND only differ in their rounding
- ZFP-BETA: more compression by encoding fewer bits; same symmetric rounding as ZFP-ROUND
Original data: gridcell mean

TS : mean= 287.23
Original data: gridcell standard deviation
<table>
<thead>
<tr>
<th>ZFP tol.</th>
<th>Mean Error</th>
<th>RMSE</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zfp-0.5.3</td>
<td>zfp-round</td>
<td>zfp-beta</td>
</tr>
<tr>
<td>1.0</td>
<td>6.75e-3</td>
<td>-2.25e-6</td>
<td>-1.39e-6</td>
</tr>
<tr>
<td>0.5</td>
<td>-3.38e-3</td>
<td>5.20e-7</td>
<td>-2.25e-6</td>
</tr>
<tr>
<td>1e-1</td>
<td>4.22e-4</td>
<td>7.34e-7</td>
<td>3.06e-7</td>
</tr>
<tr>
<td>1e-2</td>
<td>-5.25e-5</td>
<td>-7.04e-7</td>
<td>8.11e-7</td>
</tr>
<tr>
<td>1e-3</td>
<td>6.86e-6</td>
<td>2.70e-7</td>
<td>-1.93e-8</td>
</tr>
<tr>
<td>1e-4</td>
<td>4.86e-8</td>
<td>1.72e-8</td>
<td>1.19e-7</td>
</tr>
<tr>
<td>1e-5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
It is cold at the poles! Binary exponent boundary at 256°C K.
Sign reversal at the poles: how come?

It is cold at the poles! Binary exponent boundary at 256°K.
Selected Results: TS Mean Errors

- **zfp 0.5.3**
 - Overall Mean: 0.0068

- **zfp round**
 - Overall Mean: $-2.3e-06$

- **zfp beta**
 - Overall Mean: $-1.4e-06$
Oceans in turmoil

Little variation spatially means ZFP coefficients are small and often quantized to zero where asymmetric rounding works better.
Oceans in turmoil

Little variation spatially means ZFP coefficients are small and often quantized to zero where asymmetric rounding works better.
Selected Results: TS Mean Errors

- **zfp 0.5.3**
 - Overall Mean: -2.3×10^{-6}
 - Overall Mean: 7.3×10^{-7}
 - Overall Mean: 7×10^{-7}
 - Overall Mean: 1.7×10^{-8}

- **zfp round**
 - Overall Mean: -1.4×10^{-6}
 - Overall Mean: 3.1×10^{-7}
 - Overall Mean: 8.1×10^{-7}
 - Overall Mean: 1.2×10^{-7}

- **zfp beta**
 - Overall Mean: 1.0
 - Overall Mean: 1×10^{-1}
 - Overall Mean: 5×10^{-2}
 - Overall Mean: 4.9×10^{-8}
At 1e-4 tolerance, errors are only a few possible discrete values which are poorly approximated by uniform distribution.
Getting close to machine precision

At 1e-4 tolerance, errors are only a few possible discrete values which are poorly approximated by uniform distribution.
Lag-1 correlations of first differences of deseasonalized TS

- 1e-2 visually identical to original for all three versions
- dampening and gridding artifacts at looser tolerances
Summary of evaluation work

- Compression has effects at fine spatial and temporal scales that are masked by global statistics.
- Useful insights come from investigating metrics which vary at lower magnitudes than the data itself.
- Collaboration is key to address issues that are highlighted in these analyses, for example, adaptive rounding schemes.

Next goal: develop a Python library (integrated with Pangeo) so climate scientist and compression algorithm developer can see effects for themselves.
Summary of evaluation work

- Compression has effects at fine spatial and temporal scales that are masked by global statistics.
- Useful insights come from investigating metrics which vary at lower magnitudes than the data itself.
- Collaboration is key to address issues that are highlighted in these analyses, for example, adaptive rounding schemes.

Next goal: develop a Python library (integrated with Pangeo) so climate scientist and compression algorithm developer can see effects for themselves.
Where we would like to be some years from now . . .

<table>
<thead>
<tr>
<th>Climate Variables</th>
<th>Algorithm</th>
<th>Compression Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Shortwave Radiation</td>
<td>ZFP</td>
<td>1x (none)</td>
</tr>
<tr>
<td>Precipitation Rate</td>
<td>ZFP</td>
<td>1.25x (~lossless)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>ZFP</td>
<td>2x</td>
</tr>
<tr>
<td>Sea Level Pressure</td>
<td>ZFP</td>
<td>100x</td>
</tr>
<tr>
<td>Surface Temperature</td>
<td>SZ</td>
<td>1x (none)</td>
</tr>
<tr>
<td>Vertical Heat Flux</td>
<td>SZ</td>
<td>1.25x (~lossless)</td>
</tr>
<tr>
<td></td>
<td>SZ</td>
<td>2x</td>
</tr>
<tr>
<td></td>
<td>MGARD</td>
<td>1x (none)</td>
</tr>
<tr>
<td></td>
<td>MGARD</td>
<td>1.25x (~lossless)</td>
</tr>
<tr>
<td></td>
<td>MGARD</td>
<td>2x</td>
</tr>
<tr>
<td></td>
<td>MGARD</td>
<td>100x</td>
</tr>
<tr>
<td></td>
<td>OTHERS</td>
<td>1x (none)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Thanks! Any questions: hammerling@mines.edu