Microcontroller systems and Development
Ex: Toshiba TMP87CH29U

TMP87CH29U/N, TMP87CK29U/N, TMP87CM29U/N

The TMP87CH29/K29/M29 are high-speed and high-performance 8-bit single chip microcomputers. These MCU contains CPU core, ROM, RAM, a LCD driver, multi-function timer/counters, an AD converter, two clock generators and a serial interface (UART) on a chip.

<table>
<thead>
<tr>
<th>Part No.</th>
<th>ROM</th>
<th>RAM</th>
<th>Package</th>
<th>OTP MCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMP87CH29U</td>
<td>16 K x 8-bit</td>
<td>1 K x 8-bit</td>
<td>P-LQFP64-1010-0.50D</td>
<td>TMP87PM29U</td>
</tr>
<tr>
<td>TMP87CH29N</td>
<td></td>
<td></td>
<td>P-SDIP64-750-1.78</td>
<td></td>
</tr>
<tr>
<td>TMP87CK29U</td>
<td>24 K x 8-bit</td>
<td>1 K x 8-bit</td>
<td>P-LQFP64-1010-0.50D</td>
<td>TMP87PM29U</td>
</tr>
<tr>
<td>TMP87CK29N</td>
<td></td>
<td></td>
<td>P-SDIP64-750-1.78</td>
<td></td>
</tr>
<tr>
<td>TMP87CN29U</td>
<td>32 K x 8-bit</td>
<td></td>
<td>P-LQFP64-1010-0.50D</td>
<td>TMP87PM29U</td>
</tr>
<tr>
<td>TMP87CN29N</td>
<td></td>
<td></td>
<td>P-SDIP64-750-1.78</td>
<td></td>
</tr>
</tbody>
</table>

Features

◆ 8-bit single chip microcomputer TLCS-870 Series
◆ Instruction execution time: 0.5 \(\mu \)s (at 8 MHz), 122 \(\mu \)s (at 32.768 kHz)
◆ 412 basic instructions
 - Multiplication and Division (8 bits \(\times \) 8 bits, 16 bits \(\div \) 8 bits)
 - Bit manipulations (set/clear/complement/move/test /exclusive or)
 - 16-bit data operations
 - 1-byte jump/subroutine-call (Short relative jump/Vector call)
◆ 13 interrupt sources (External: 4, Internal: 9)
 - All sources have independent latches each, and nested interrupt control is available.
 - 2 edge-selectable external interrupts with noise reject
 - High-speed task switching by register bank changeover
◆ 7 Input/Output ports (43 pins)
 - High current output: 3 pins (typ. 20 mA)
◆ 18-bit Timer/Counter
 - Timer, Event counter, Pulse width measurement, Frequency measurement modes
Ex: Toshiba TMP87CH29U

◆ Four 8-Bit Timer/Counters
 - Timer, Event counter, Capture (Pulse width/duty measurement), PWM output, Programmable divider output modes
◆ Time Base Timer (Interrupt frequency: 1 Hz to 16384 Hz)
◆ Divider output function (frequency: 1 kHz to 8 kHz)
◆ Watchdog Timer
 - Interrupt source/reset output (programmable)
◆ Universal asynchronous receiver and transmitter (UART)
 - With 8-bit transmit/receive data buffer
 - Transfer clock, Select of with/without parity bit.
◆ LCD driver/Controller
 - LCD direct drive capability (max. 12-digit display at 1/4 duty LCD).
 - 1/4, 1/3, 1/2 duties or static drive are programmably selectable.
 - With display memory.
◆ Dual clock operation
 - Single/Dual-clock mode (option)
◆ Five power saving operating modes
 - SLOW mode: Low power consumption operation using low-frequency clock (32.768 kHz).
 - IDLE1 mode: CPU stops, and peripherals operate using high-frequency clock. Release by interrupts.
 - IDLE2 mode: CPU stops, and peripherals operate using high and low frequency clock. Release by interrupts.
◆ Wide operating voltage: 2.7 to 5.5V at 4.19 MHz/32.768 kHz, 4.5 to 5.5 V at 8 MHz/32.768 kHz
◆ Emulation Pod: BM87CM29U0A
Ex: Toshiba TMP87CH29U
Ex: Sphygmomanometer

An instrument for measuring blood pressure, particularly in arteries.

Digital with manual or automatic inflation. These are electronic, easy to operate and practical in noisy environments. They measure mean arterial pressure (MAP) and use algorithms to calculate systolic and diastolic values. In this sense, they do not actually measure the blood pressure, but derive the readings.

An oscillometric type electronic sphygmomanometer which determines the blood pressure by the steps of compressing an artery with an inflated cuff, detecting pulse wave amplitude while the inflated cuff being deflated and comparing the pressure provided by the cuff on the artery with the pulse wave amplitude. The cuff pressure corresponding to the maximum pulse wave amplitude is determined as the mean the blood pressure, the cuff pressure corresponding to the pulse wave amplitude of the high pressure side which is equivalent to 50% of the maximum pulse wave amplitude as the systolic blood pressure, the cuff pressure corresponding to the pulse wave amplitude of the low pressure side which is equivalent to 70% of the maximum pulse wave amplitude as the diastolic blood pressure.
Ex: Sphygmomanometer - top

- To cuff
- Electric release valve
- Electric pump
- Pressure sensor
- LCD display
- Controls
Ex: Sphygmomanometer - bottom

Toshiba microcontroller
Timer/Alarm System development
Introduction

The Scenix SX family of configurable communications controllers are fabricated in an advanced CMOS process technology. The advanced process, combined with a RISC-based architecture, allows high-speed computation, flexible I/O control, and efficient data manipulation. Throughput is enhanced by operating the device at frequencies up to 50/75 MHz and by optimizing the instruction set to include mostly single-cycle instructions. In addition, the SX architecture is deterministic and totally reprogrammable. The unique combination of these characteristics enables the device to implement hard real-time functions as software modules (Virtual Peripheral™) to replace traditional hardware functions.

On-chip functions include a general-purpose 8-bit timer with prescaler, an analog comparator, a brown-out detector, a watchdog timer, a power-save mode with multi-source wakeup capability, an internal R/C oscillator, user-selectable clock modes, and high-current outputs.
System schematic
Program Flowchart

Configure: Port direction, Port logic levels, Port voltage levels

Sense START button

N

Button ?

Y

20 mS debounce

sense button pin again

N

Button ?

Y

Read Port B - Load Regs with timer values

Turn on Yellow LED - Generate On Beep

Sense clock bit on Port

N

Bit = Hi ?

Y

Clear clock Flag

Check clock Flag

N

Flag already set?

Y

Set clock Flag - Decrement timer regs
Program Flowchart

C

B

A

N

Time
regs
=0?

Turn off Yellow LED

Read Port C - Load
regs with timer values

Turn on Red LED -
generate OFF Beep

Sense clock bit on Port
A

Bit = Hi

N

Y

Clear clock Flag

Check clock Flag

Y

Flag already
set?

N

Set clock Flag -
Decrement timer regs

N

Timer
regs
=0?

Y

Turn Off Red Led
System memory map

<table>
<thead>
<tr>
<th>PORT MAP</th>
<th>REG. MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Function</td>
</tr>
<tr>
<td>RA0</td>
<td>1PPS (IN)</td>
</tr>
<tr>
<td>RA1</td>
<td>Yellow LED (OUT)</td>
</tr>
<tr>
<td>RA2</td>
<td>Red LED (OUT)</td>
</tr>
<tr>
<td>RA3</td>
<td>Start Button (IN)</td>
</tr>
<tr>
<td>RB0</td>
<td>10 Minute SW1 (IN)</td>
</tr>
<tr>
<td>RB1</td>
<td>20 Minute SW1 (IN)</td>
</tr>
<tr>
<td>RB2</td>
<td>30 Minute SW1 (IN)</td>
</tr>
<tr>
<td>RB3</td>
<td>40 Minute SW1 (IN)</td>
</tr>
<tr>
<td>RB4</td>
<td>50 Minute SW1 (IN)</td>
</tr>
<tr>
<td>RB5</td>
<td>60 Minute SW1 (IN)</td>
</tr>
<tr>
<td>RB6</td>
<td>3 Minute Timer SW3 (IN)</td>
</tr>
<tr>
<td>RB7</td>
<td>PCM speaker (OUT)</td>
</tr>
<tr>
<td>RC0</td>
<td>10 Minute SW2 (IN)</td>
</tr>
<tr>
<td>RC1</td>
<td>20 Minute SW2 (IN)</td>
</tr>
<tr>
<td>RC2</td>
<td>30 Minute SW2 (IN)</td>
</tr>
<tr>
<td>RC3</td>
<td>40 Minute SW2 (IN)</td>
</tr>
<tr>
<td>RC4</td>
<td>50 Minute SW2 (IN)</td>
</tr>
<tr>
<td>RC5</td>
<td>60 Minute SW2 (IN)</td>
</tr>
<tr>
<td>RC6</td>
<td>N.C.</td>
</tr>
<tr>
<td>RC7</td>
<td>N.C.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORG $0

DEVICE SX28L, OSC1MHZ, TURBO
RESET Start
ID 'punchual'
FREQ 1_000_000
STACKX ; expand stack to 8 levels

;j330 JMP @_330 ; set up page jump

ORG $50

;******************************
; port direction config.
;******************************
Start MODE $0F
MOV !ra, #1001
MOV !rb, #01111111
MOV !rc, #00111111

;bits0-3 = in, bits1-2 = out
;bits0-6 = in, bit 7 = out
;bits0-5 = in, bits 6-7 = out

;******************************
; port startup logic levels
;******************************
MODE $0F
MOV ra, #1000
MOV rb, #00000000
MOV rc, #00000000

;port pins 0-2 = low
;all port pins = low
;all port pins = low

MODE $0E
MOV !ra, #1111
MOV !rb, #10000000
MOV !rc, #11000000

;pullup resistor config.
;bit3 = pullup, bits0-2 = normal
;bits0-6 = pullup, bit7 = normal
;bits0-5 = pullup, bits6-7 = normal

MODE $0D
MOV !ra, #1110
MOV !rb, #11111111
MOV !rc, #11111111

;logic level config.
;bit0 = CMOS, rest = TTL
;all TTL
;all TTL

;******************************
; read and debounce START button
;******************************
butn MOV W, RA
SNE RA.3
JMP butn

ms20 CLR $0C
MOV $0D, #20
Loop DECSZ $0C
JMP Loop
DECSZ $0D
JMP Loop

butn2 MOV W, RA
SNE RA.3
JMP butn

;******************************
; read time ON switches
;******************************
ton MOV W, RB
JNE RB.0, ten

;read port B
;read port B again
;button still pressed?
;retry if not
;read port B
;read port B again
;button still pressed?
;retry if not
JNB RB.1, ten ;20 min
JNB RB.2, thir ;30 min
JNB RB.3, four ;40 min
JNB RB.4, fif ;50 min
JNB RB.5, six ;60 min
ten CALL ldten
JMP countsec
twen CALL ldtwen
JMP countsec
thir CALL ldthir
JMP countsec
four CALL ldfour
JMP countsec
fif CALL ldfif
JMP countsec
six CALL ldsix
JMP countsec

;**
;load regs with timer values
;**

ldten MOV $08, #$03 ;0258 hex = 600 sec
MOV $09, #$58
RET
ldtwen MOV $08, #$05 ;04B0 hex = 1200 sec
MOV $09, #$B0
RET
ldthir MOV $08, #$08 ;0708 hex = 1800 sec
MOV $09, #$08
RET
ldfour MOV $08, #$0A ;0960 hex = 2400 sec
MOV $09, #$60
RET
ldfif MOV $08, #$0C ;0BB8 hex = 3000 sec
MOV $09, #$B8
RET
ldsix MOV $08, #$0F ;0E10 hex = 3600 sec
MOV $09, #$10
RET

;**
;wait for ON-time timeout
;**
countsec SETB RA.1 ;turn on YELLOW LED
CALL hbeep ;alert tone
rdclk MOV W, RA ;read clock in bit
CALL @j330 ;check for 3 min 30 sec switch
JB RA.0, chflag ;see if flag already set
CLR RB $0E.0 ;if port=10, clear flag
JMP rdclk ;wait for next rising edge
chflag JB $0E.0, rdclk ;if flag already set, wait
SETB $0E.0 ;else, set flag

;**
count decrement routine
;**
DJNZ $09, rdclk ;LSR = 0?
DJNZ $08, rdclk ;MSR = 0?
CLRB RA.1 ; time up - turn off YELLOW LED

; *******************
; read time OFF switches
; *******************
toff
 MOVB W, RC
 JNB RC.0, Cten
 JNB RC.1, Ctwen
 JNB RC.2, Cthir
 JNB RC.3, Cfour
 JNB RC.4, Cfif
 JNB RC.5, Csix

Cten CALL ldten
 JMP countsec2
Ctwen CALL ldctwen
 JMP countsec2
Cthir CALL ldthir
 JMP countsec2
Cfour CALL ldfour
 JMP countsec2
Cfif CALL ldffif
 JMP countsec2
Csix CALL ldsix
 JMP countsec2

; ********************
; wait for ON-time timeout
; ********************
countsec2
 SETB RA.2
 CALL lbeep
 ; turn on RED LED
 ; alert tone
 rdclk2
 MOV W, RA
 JB RA.0, chflag2
 CLRB $0E.0
 JMP rdclk2
chflag2
 JB $0E.0, rdclk2
 SETB $0E.0

; ********************
; count decrement routine
 ; ********************
 DJNZ $09, rdclk2
 DJNZ $08, rdclk2
 CLRB RA.2
 JMP ton
 ; time up - turn off RED LED
 ; repeat cycle

; ********************
; beep subroutines
 ; ********************
hbeep
 MOV $12, #3
 ; set for 3 seconds
ml
 MOV W, RA
 JB RA.0, flg
 CLRB $0E.0
 SETB RB.7
 CALL delay
 ; set sound bit
 ; wait
CLRB RB.7 ; clr sound bit
CALL delay ; wait
JMP m1
flg JB $0E.0, m1 ; flag already set?
 SETB $0E.0 ; else set flag
DJNZ $12, m1 ; more sound bits
RET delay CLR $10 ; variable delay routine
 MOV $11, #4
nloop DJNZ $10, nloop
RET lbeep MOV $12, #3 ; set for 3 seconds
 MOV W, RA ; read clock port
 JB RA.0, flg2 ; flag already set?
 CLR $0E.0 ; port = lo, clear flag
 SETB RB.7 ; set sound bit
 CALL delay2 ; wait
 CLR RB.7 ; clr sound bit
 CALL delay2 ; wait
 JMP m2
flg2 JB $0E.0, m2 ; flag already set?
 SETB $0E.0 ; else set flag
DJNZ $12, m2 ; more sound bits
RET delay2 CLR $10 ; variable delay routine
 MOV $11, #4
lp DJNZ $10, lp
 DJNZ $11, lp
RET _330 MOV $13, #$B4 ; 180 secs for 3 minutes
 MOV $14, #$1E ; 30 secs
 CLR $0E.2 ; clear 3minbeep flag
 CLR $0E.2 ; clear 30 sec beep flag
 JNB RB.6, BACK ; timer switch set? No, go back.
 JNB $0E.1, DMIN ; 3min beep flag set? No, decr 3min counter
 SETB $0E.1 ; else set beep flag
; start 3minute beep
; start 3minbeep
;**
;3 min-on/ 30 sec-off special timer
;**
 MOV $15, #2 ; set for 2 seconds
 MOV W, RA ; read clock port
 JB RA.0, flg3 ; flag already set?
 CLR $0E.0 ; port = lo, clear flag
 SETB RB.7 ; set sound bit
;**
;variable delay
CLR $10 ;variable delay routine
MOV $11, #2
oloop DJNZ $10, oloop
DJNZ $11, oloop

;***

CLRB RB.7 ;clr sound bit

;***

;variable delay
;***

CLR $10 ;variable delay routine
MOV $11, #2
oloop DJNZ $10, oloop
DJNZ $11, oloop

;***

JMP m3
flg3 JB $0E.0, m3 ;flag already set?
SETB $0E.0 ;else set flag
DJNZ $15, m3 ;more sound bits

;***

D3MIN DJNZ $13, BACK ;decr 3 min ctr, if 0 - return
JNB $0E.1, D30SEC ;30 sec beep flag set? No, decr 30 sec ctr
SETB $0E.2 ;set beep flag

;***

;start 30second beep
MOV $15, #2 ;set for 2 seconds
m4 MOV W, RA ;read clock port
JB RA.0, flg4 ;flag already set?
CLRB $0E.0 ;port = 10, clear flag
SETB RB.7 ;set sound bit

;***

;variable delay
;***

CLR $10 ;variable delay routine
MOV $11, #3
tloop DJNZ $10, tloop
DJNZ $11, tloop

;***

CLRB RB.7 ;clr sound bit

;***

;variable delay
;***

CLR $10 ;variable delay routine
tloop DJNZ $10, tloop
DJNZ $11, tloop

;***

JMP m4
flg4 JB $0E.0, m4 ;flag already set?
SETB $0E.0 ;else set flag
DJNZ $15, m4 ;more sound bit

;***

D30SEC DJNZ $14, BACK ;decr 30 sec ctr, if 0 - return
BACK RETP
Distance measurement
System development
GP2D05 Distance Measuring Sensor – 1-bit Output

Open drain operation input

1. Distance measuring type object sensor (Distance measuring range: Optional distance can be set as threshold level by means of built-in VR)

2. Impervious to color and reflectivity of reflective object

Applications:
- Sanitary sensors (human body detection)
- OA equipment (paper detection)
- Game equipment
- For consumer products (human body detection)

3. High precision distance measurement
Distance measuring system prototype
Sharp Sensor Schematic

Block Diagram

- Black lead
- Red lead
- Grn lead w/diode [RA0]
- Yellow lead [RB7]

Reflective object

IR LED

Light detector (PSD*)

LED drive circuit

Signal processing circuit

Control circuit

Reg

\[V_{CC} \]

\[V_{out} \]

\[Vin \]

\[V_{CC} \]

\[VR \]: Threshold setting volume

* PSD: Position Sensitive Detector
Measurement Timing

Timing Chart

- **Control signal (V_{in})**
 - Current [OFF]
- **Output (V_{o})**
 - MAX. 56ms
 - TYP. 28ms
 - Distance measuring operation start
 - Output [H] or [L]
 - 1ms or More
Sensor Flowchart

Need to write code for:

-1 mSec timer
- 56mSec timer
- return pulse detector routine
- 2 Sec timer
Init & port configurations

ORG $0 ;Page 0 for jump table

DEVICE SX28L, OSC1MHZ, TURBO, STACKX, OPTIONX, IRCDIV1
IRC_CAL IRC_FAST ; calibrate internal RC clock

RESET Start
ID 'GP2D05' ;Device = SHarp GP2D05 optical sensor
FREQ 1_000_000

ORG $50
;******************************
;port direction config.
;******************************
START MODE $0F
MOV lra, #%0000 ;all bits = out
MOV lrb, #%11111111 ;all bits = in
MOV lrc, #%00000000 ;all bits = out

;******************************
;port startup logic levels
;******************************
MOV ra, #%0001 ;all port pins = low, except RA0
MOV rb, #%00000000 ;all port pins = low
MOV rc, #%10000000 ;port 7 pin = hi - LED off

MODE $0E ;pullup resistor config.
MOV lra, #%1110 ;all bits1-3 = normal; bit 0 = pullup
MOV lrb, #%01111111 ;all bits = no pullup except rb7
MOV lrc, #%11111111 ;all bits = normal

MODE $0D ;logic level config.
MOV lra, #%1111 ;bit0 = TTL,
MOV lrb, #%11111111 ;all TTL
MOV lrc, #%11111111 ;all TTL
Main loop

Main

; pulse CALL trig ; start measurement pulse
 CALL ms56 ; wait 56 msecs
 CALL detect ; look for detection signal
 CALL ms2k ; 2 sec pause
 JMP pulse ; loopback
Subroutines

;******************************
; 1 millisecond timer
;******************************
msec MOV $0C, #250 ; set reg to rollover from zero to start
 MOV $0D, #2 ; set loop for 2x
Loop DECSZ $0C ; 250 usecs each time test = 0
 JMP Loop
 DECSZ $0D ;
 JMP Loop
 RET ; done

;******************************
; 56 millisecond timer
;******************************
ms56 MOV $0E, #60 ; SET COUNTER FOR 56 TIMES
mslp CALL msec ; 1 msec
 DECSZ $0E
 JMP mslp ; not done
 RET

;******************************
; 2 second timer
;******************************
ms2k MOV $0E, #250 ; SET COUNTER FOR 250 TIMES
inlp CALL msec ; 1 msec
 DECSZ $0E
 JMP inlp
 RET
Subroutines continued

;**
; send trigger pulse to sensor
;**
trig SETB RC.7
 CALL msec
 CLRB RA.0 ;send trigger pulse
RET

;**
; return pulse detection
;**
detect MOV $0F, #20 ;set counter for 14 times
quart MOV W, RB ;read all bits on port B
 JNB RB.7, getout ;jump out if bit is low
 CALL msec
 DECSZ $0F
 JMP quart
 MOV rc, #%10000000 ;Bit 7 hi = LED OFF
 SETB RA.0 ;reset trigger bit
RET
Overview
The eZ430-Chronos is a highly integrated, wearable wireless development system based on the CC430. It may be used as a reference platform for watch systems, a personal display for personal area networks, or as a wireless sensor node for remote data collection. Based on the CC430F6137 <1 GHz RF SoC, the eZ430-Chronos is a complete featuring a 96 segment LCD display, an integrated pressure sensor and 3-axis accelerometer for motion sensitive control. The integrated wireless interface allows the Chronos to act as a central hub for nearby wireless sensors such as pedometers and heart rate monitors. The eZ430-Chronos offers temperature and battery voltage measurement and is complete with a USB-based CC1111 wireless interface to a PC. The eZ430-Chronos watch may be disassembled to be reprogrammed with custom applications and includes an eZ430 USB programming interface.
eZ430-Chronos Development Tool

Figure 1-1. eZ430-Chronos

Figure 4-1. Removing Watch Module from Housing
eZ430-Chronos Development Tool

Figure 4-3. Chronos Watch Module Attached to eZ430-RF Debug Interface

Connector J1 on the emulator (starting on top with pin 1) (see Figure 4-10).
- UART TX (from emulator to target)
- 3.6V supply for target
- TEST/SBWTCK
- RST/SBWTDIO
- GND
- UART RX (from target to emulator)

Figure 4-10. eZ430-Chronos Debug Interface
4.2 Functional Description of the Chronos Watch

The core technology behind the eZ430-Chronos watch is the CC430F6137 microcontroller with its integrated <1GHz radio. The CC430 also controls the LCD and its temperature sensor is used for temperature measurement. The only other ICs on the watch PCB are pressure and acceleration sensors and the LCD backlight driver.

![Diagram of eZ430-Chronos Watch Block Diagram]

Figure 4-7. eZ430-Chronos Watch Block Diagram

The PCB does not include an antenna; the metal frame of the watch module that surrounds the LCD is used as antenna. The antenna is tuned for best performance when the watch is worn or held in hands.
Sub-1 GHz Radio

The implemented sub-1-GHz radio module is based on the industry-leading CC1101, requiring very few external components. Figure 1 shows a high-level block diagram of the implemented radio.

Figure 1. Sub-1 GHz Radio Block Diagram

The radio features a low-IF receiver. The received RF signal is amplified by a low-noise amplifier (LNA) and down-converted in quadrature to the intermediate frequency (IF). At IF, the I/Q signals are digitized. Automatic gain control (AGC), fine channel filtering, demodulation bit/packet synchronization are performed digitally.

The transmitter part is based on direct synthesis of the RF frequency. The frequency synthesizer includes a completely on-chip LC VCO and a 90 degrees phase shifter for generating the I and Q LO signals to the down-conversion mixers in receive mode.

The 26 MHz crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the ADC and the digital part.

A memory mapped register interface is used for data access, configuration and status request by the CPU.

The digital baseband includes support for channel configuration, packet handling and data buffering.

For complete module descriptions, refer to the CC430 Family User’s Guide, literature number SLAU259.
Development systems

Texas instruments
Tiva™ C Series TM4C123G
LaunchPad Evaluation Kit
$13.50

Features

• Tiva C Series TM4C123GH6 microcontroller
• USB Micro-AB connector
• Device mode default configuration
• Host/OTG modes supportable
• RGB user LED
• Two user switches (application/wake)
• Available I/O brought out to headers on a 0.1" grid
• On-board In-Circuit Debug Interface (ICDI)
• Switch-selectable power sources
• ICDI
• USB Device
• Reset switch
• Preloaded RGB quickstart application
• Supported by TivaWare™ for C Series software including the USB library and the peripheral driver library
• Tiva C Series TM4C123G LaunchPad BoosterPack XL interface which features stackable headers to expand the capabilities of the 40-pin Tiva C Series LaunchPad evaluation platform

Atmel 8-bit
AVR364: MEGA-1284P
$31.25

Features

• Atmel® megaAVR® ATmega1284P microcontroller
 - Target controller
• Atmel AVR® AT32UC3B1256 32-bit microcontroller
 - Board controller
 - Communication gateway
• Analog input (to ADC)
 - Temperature sensor
 - Light sensor
 - RC filter
• Digital I/O
 - Three mechanical buttons
 - Four LEDs
 - Four expansion headers
• Footprints for external memory
 - Atmel AT45DB series DataFlash® serial flash
 - Atmel AT25DF series industrial standard serial data flash
• Touch
 - One Atmel QTouch® button
Development systems

ST Micro
STM32F0DISCOVERY
$9.00

Features
- STM32F051r8t6 microcontroller with 64kFLASH
- 8kRAM in LQFP64 package
- On board ST-link/v2 with selection mode switch for Programming and debugging
- Board power supply through USB or external power Supply (3V and 5V)
- 4 LED’s – 3.3v power, USB comm., PC8 PC9 outputs
- 2 push buttons
- Extension header
- Additional board for prototyping and extension

Microchip
chipKIT™ UNO32
$28.64

Key Features
- Application development using an environment based on the original Arduino IDE, modified to support PIC32 devices while still supporting the original Arduino line. Leverages existing code examples, tutorials and resources.
- Pin-out compatibility with many existing Arduino shields
- Higher performance at a lower price-point than existing solutions
- Advanced capabilities including:
 - Integrated USB (Device/Host, OTG
 - Integrated Ethernet
 - CAN
Development systems

Freescale
i.MX53 Quick Start Development Board
$49.00

Features
- i.MX53 1GHz ARM Cortex-A8 processor
- MC34708 PMIC
- 4GB microSD card with Linux image
- 5-volt power supply with worldwide adapters
- Micro USB cable
- Quick start guide
- DVD with VMware player, getting started video, demos and other documents

Arduino Uno
$25.00

Features
- Microcontroller ATmega328
- Operating Voltage 5V
- Input Voltage (recommended) 7-12V
- Input Voltage (limits) 6-20V
- Digital I/O Pins 14 (of which 6 provide PWM output)
- Analog Input Pins 6
- DC Current per I/O Pin 40 mA
- DC Current for 3.3V Pin 50 mA
- Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader
- SRAM 2 KB (ATmega328)
- EEPROM 1 KB (ATmega328)
- Clock Speed 16 MHz
Development systems

The Raspberry Pi is a credit-card-sized single-board computer developed in the UK by the Raspberry Pi Foundation with the intention of promoting the teaching of basic computer science in schools. The Raspberry Pi has a Broadcom BCM2835 system on a chip (SoC), which includes an ARM1176JZF-S 700 MHz processor (The firmware includes a number of "Turbo" modes so that the user can attempt overclocking, up to 1 GHz, without affecting the warranty), VideoCore IV GPU and was originally shipped with 256 megabytes of RAM, later upgraded to 512 MB. It does not include a built-in hard disk or solid-state drive, but uses an SD card for booting and long-term storage. The Foundation's goal was to offer two versions, priced at US$25 and US$35.

Microcontroller system boards

Raspberry Pi

Operating system Linux (Raspbian, Debian GNU/Linux, Fedora, and Arch Linux ARM)
RISC OS, FreeBSD, NetBSD, Plan 9

Power 2.5 W (model A), 3.5 W (model B)

CPU ARM1176JZF-S (ARMv6K) 700 MHz
Raspberry Pis can dynamically increase clockspeeds, and some can temporarily reach speeds up to 1 GHz.

Storage capacity SD card slot

Memory 256 MB (Model A)
512 MB (Model B rev 2)[5]
256 MB (Model B rev 1)
Summary

There are many types of microcontroller development systems available.

They are usually low priced and have a lot of support documentation to promote their use by hobbyists.

Once you have an application in mind, select the appropriate microcontroller or small board development system that will best meet the application criteria.