On the Computational Complexity of the Verification of Modular
Discrete-Event Systems !

Kurt Rohloff and Stéphane Lafortune
Department of Electrical Engineering and Computer Science
The University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122, USA
{krohloff,stephane } @eecs.umich.edu; www.eecs.umich.edu/umdes

Abstract

This paper investigates issues related to the computational
complexity of automata intersection problems. For several
classes of problems, comparing the behavior of sets of in-
teracting finite automata is found to be PSPACE-complete,
even in the case of automata accepting prefix-closed lan-
guages (equivalently, even when all states are marked). This
paper uses these results to investigate the computational
complexity of problems related to the verification of super-
visory controllers for modular discrete-event systems. Mod-
ular discrete-event systems are sets of finite automata com-
bined by the parallel composition operation. We find that a
large number of modular discrete-event system verification
problems are also PSPACE-complete, even for prefix-closed
cases. These results suggest that while system decomposi-
tion by parallel composition could lead to significant space
savings, it may not lead to sufficient time savings that would
aid in the study of “large scale” systems.

1 Introduction

There has been considerable interest lately in the discrete-
event systems community in concepts related to modular
systems. Some plants too complicated to model as mono-
lithic discrete-event systems may be easier to model as mod-
ular plants of interacting subsystems. Manipulating plants
as separate interacting agents has the added advantage of
avoiding the “state explosion” problem; when several finite
state systems are combined, the size of the state space of
the composed system is exponential in the number of com-
ponents. Likewise, there may be several separate specifica-
tions for a system and therefore it would be advantageous
to keep the specifications modular. If we were to try to
combine diverse specifications to form a single monolitic
specification, the monoalithic specification may be unbear-
ably large due to a similar state explosion problem. Sev-
eral researchers in the discrete-event systems community
have investigated using modular plants and specifications
for discrete-event systems; see for instance [1] and [5].

1This research was supported in part by NSF grant CCR-0082784.

Problems in PSPACE are defined to be those problems that
can be solved by a Turing machine restricted to a tape poly-
nomially long with respect to the length of the input. Similar
to a NP-complete problem, a PSPACE-complete problem
is a problem such that any other problem in PSPACE can
be reduced to that PSPACE-complete problem in a poly-
nomial amount of time using a many-one reduction. It is
known that NP C PSPACE, but the inclusion is believed to
be proper. Showing that a problem is PSPACE-complete is
strong evidence that the problem is computationally expen-
sive. These problems can be solved in polynomial time if
and only if P=NP and NP=PSPACE. The NP vs. PSPACE
problem is a major open problem in computer science simi-
lar to the P vs. NP problem. A well known result from com-
plexity theory is that PSPACE=NPSPACE [3]. This means
that a Turing machine using a polynomial length tape can-
not solve more problems if it operates in a nondeterministic
manner. Using known methods in computer science such as
Savitch’s algorithm [11], we can convert the nondeterminis-
tic polynomial space algorithms into deterministic polyno-
mial space algorithms. For more background on complexity
theory, please consult a standard textbook such as [3].

In this paper we investigate controller verification issues as-
sociated with modular systems. Given a (possibly decen-
tralized) control system, a modular plant and a modular
specification, can we verify that our specification is satisfied
in a computationally feasible manner? In general, we find
that verification problems for modular discrete-event sys-
tems are PSPACE-complete, meaning that these problems
are probably intractable. Although there may not be great
savings in time by verifying systems in a modular manner,
there is possibly great savings in computation space. This
is why the discrete-event systems community began to in-
vestigate the use of modules in the first place - to avoid the
state explosion problem.

There has recently been a lot of research on the computa-
tional complexity of other modular problems in discrete-
event systems. See for example [4], [7], [9], [10] and
[12]. Undecidability properties related to the existence of
nonblocking decentralized observers and controllers are ex-
plored in [7] and [12]. Rudie and Willems [10] show how

deciding co-observabilty for a bounded number of observers
can be decided in polynomial time. Gohari and Wonham [4]
show that several controller existence problems are NP-hard
and [9] clarifies these results by demonstrating that several
controller existence problems are PSPACE-complete. Ver-
ification has also been investigated extensively and is an
ongoing research topic in several areas related to discrete-
event systems. See for example [1].

The work in this paper was inspired by the deterministic fi-
nite automata intersection (DFA-Int) problem investigated
by Kozen [6]. We generalize Kozen’s work and apply our
results to verification problems in discrete-event systems.
Because we are drawing from the work of two separate re-
search areas, we explicitly introduce the notation and as-
sumptions we will be using in Section 2 where we also in-
troduce several simplifying assumptions that do no cause a
loss of generality. In Section 3, we present new results re-
lated to the computational complexity of automata intersec-
tion problems. In the fourth section of this paper we reduce
several results of the third section to discrete-event system
controller verification problems and present our main con-
trol related results. We close by discussing the implications
of the presented results and areas of possible related future
research. Due to the necessary brevity of this paper’s for-
mat we refrain from demonstrating any results besides The-
orem 1 because this theorem is central to many results in
this paper.

2 Notation and Assumptions

In this paper we will generally use the notation of computer
science theory when we discuss automata intersection prob-
lems and we will use the notation of supervisory control
when we discuss work relating to discrete-event systems.
For the aid of the reader we use this section to review the
basic notations used in both fields.

Computer scientists generally assume that deterministic au-
tomata have complete transition functions while supervi-
sory control researchers allow partial transition functions.
A result of this difference is evidenced in the meaning of
the languages accepted, marked and generated by automata.
For an automaton G, in theoretical computer science, the
language accepted by an automaton is the set of all strings
that lead to final (marked) states, denoted by L(G). L(G)
is equivalent to the language marked (Lm(G)) in supervi-
sory control. The language generated in supervisory con-
trol (L(G)) is the set of strings whose state transitions are
defined by the transition function of a discrete-event system
G. Note that we use a regular L for computer science nota-
tion and a script £ for discrete-event systems notation.

We generally assume that the state transition functions of
automata are partial, but this assumption does not greatly
alter our results. We assume without loss of generality that

the automata discussed in this paper have a common alpha-
bet Z. If the automata do not have a common alphabet, their
alphabets can be extended in polynomial time by adding
self-loops at all states for all events not previously in the
alphabet that we wish to add. This modification of the au-
tomata does not alter the results of the parallel composition
operation that is used in this paper to model automata inter-
action.

We model the interaction between individual automata with
the parallel composition operation as seen in [2]. G||H rep-
resents the parallel composition of G with H. For a set of h
automata Hi,H>...,Hn, we use # to denote Hi||Hy||...||Hn.
We use a similar notation to denote the intersection of a set
of languages. For a set languages {K1, Ka..., Kk}, we use the
short-hand notation X to denote K1 N KoN...N Kg. When
we use the K notation, we also assume without loss of gen-
erality that all the languages in question have a common
alphabet.

With these definitions and assumptions, it should be appar-
ent that for M = My ||Mg||...||Mm:
L(M)=LIM1)NLM2)N...N L(Mp)

Lin(M) = Ln(M1) N Ln(M2) N... O Ln(Mm)

The problem of showing that two nondeterministic finite
automata are equivalent is PSPACE-complete [3]. With
this information it is also easily shown that deciding
L(M) C L(H) for the nondeterministic case is also PSPACE-
complete because verifying L(M) C L(H) and L(H) C
L(M) also verifies that L(H) = L(M). Because of these
discouraging results for simple nondeterministic automata
comparison problems, we discuss deterministic automata
exclusively in the remainder of this paper. It is well known
that deciding L(H) C L(M) and L(H) = L(M) in the de-
terministic case can be done in polynomial time. We now
investigate some automata comparison problems for sets of
interacting deterministic finite automata.

3 Complexity of Automata Intersection Problems

Kozen demonstrates that given a set of deterministic
automata {M1,Ma,...,Mn}, the problem of deciding if
L(M) = 0 is PSPACE-complete. In this section of the pa-
per we examine other finite automata intersection problems
and prove some computational complexity results. We are
explicitly interested in decision problems comparing the be-
haviors of two sets of composed automata. We find that in
general, decision problems involving composed automata
are PSPACE-complete although a few problems are decid-
able in polynomial time. We start by demonstrating that
in general, several classes of composed automata decision
problems are in PSPACE.

Proposition 1 Given an instance of two sets of interacting
deterministic finite automata M1, ...,My and Hay,...,Hy ac-

cepting languages not necessarily prefix-closed, deciding if
L(M) CL(#H) and L(M) = L(#H) are in PSPACE.

The proof of this theorem relies on showing there ex-
ists a polynomial space nondeterministic sample-path al-
gorithm to solve the listed problems. Now that we have
shown a class of problems are in PSPACE, we show
PSPACE-completeness results using reductions from the
Linear Bounded Automaton acceptance problem (LBA for
short). The LBA acceptance problem is a known PSPACE-
complete problem even in the deterministic case [3].

A LBA ¥ = (Q,%,I,0(-),q0,B,F, p(-)) is a special type
of possibly nondeterministic Turing machine. For an input
string x of length n, the tape of W is bounded to have p(n)
cells.

Q is a finite set of symbols representing the set of states

> is the finite set of input symbols

I is the finite set of tape symbols

0:Q x X — Qx X x {L,R} is the next move function

o is the start state symbol

B is a blank symbol

F is the set of accepting state symbols

p: 0 — O is a polynomial function

Many topics related to modular plants and specifications
in discrete-event systems deal with the prefix-closure of
languages so it would be advantageous for us to investi-
gate whether automata intersection problems are PSPACE-
complete even for problems dealing with automata accept-
ing prefix-closed languages. We therefore expand the work
in [6] by exploring intersection properties of automata ac-
cepting prefix-closed languages. For the sake of simplicity
we use the term “prefix-closed automaton” to denote an au-
tomaton that accepts a prefix-closed language.

Theorem 1 Given a finite automaton H and a set of in-
teracting finite automata My, ...,Mpy, all accepting prefix-
closed languages, the problem of deciding if L(M) = L(H)
is PSPACE-complete.

Proof: This proof is a modified version of the proof in
[6] that shows the DFA-Int problem is PSPACE-complete.
Because the proof of DFA-Int is nontrivial nor are our mod-
ifications, we replicate Kozen’s work and alter as necessary.

Using the definition of W seen above, we reduce the linear
bounded automaton acceptance problem for an instance of
an LBA W and a string x to the prefix-closed case of de-
ciding L(9) # L(H) in polynomial time. The comparison
problems in Proposition 1 are more general than the prob-
lem in this theorem so we know deciding L(M) = L(H) for
the prefix-closed case is in PSPACE. It is therefore sufficient
for us to demonstrate that the deterministic LBA acceptance
problem can be reduced in polynomial time to the problem
of deciding L(M) # L(H) for the prefix-closed case. We

assume without loss of generality that W has a unique ac-
cepting state q¢ and that W erases its work tape and moves
its read/write head to the left of the tape before accepting.
We also assume that W takes an even number of steps before
accepting. These assumptions can be made without loss of
generality because the size of the Turing machine finite con-
trol will at most double.

The instantaneous description (1D) of a Turing machine rep-
resents as a finite string the current state of the Turing ma-
chine, the current contents of the work tape and the location
of the read/write head. Suppose y = y1y» where y is the con-
tents of a Turing machine tape and y; represents the content
of the tape to the left of the read/write head. Let the first let-
ter of y, represent the tape cell being read by the read/write
head and the rest of y» be the content of the tape to the right
of the read/write head. If g represents the current state, an
effective representation of the ID would be the string y1qyo.

In this proof, we pad the work tape with a string of nor-
mally unwritten blank symbols BP("=(v1l+1¥2)) to make ex-
plicit in the representation of the ID the fact that the LBA
has a work tape of size p(n) where n is the length of the in-
put string. Therefore withy = y1y», an ID of the LBA would
be y1qy,BPM—(Iyil+lyl)

If x is the input string to W, the initial instantaneous de-
scription (1Do) would be goxBP™W=IX| Because of our pre-
vious assumptions on how W accepts a string, there is a
unique accepting instantaneous description IDs = q¢BP(".
We use the notation ID;j Fy ID; to represent that accord-
ing to the transition rules of W, ID; follows in one step
from ID;. It should therefore be readily apparent that
[x € L(W)] if an only if [3(1Dg, D3, ...,1D¢) such that Vi €
[1,..., f](IDi—1 Fy ID;j)]. This means that a string x is ac-
cepted by W if and only if there is a sequence of instanta-
neous descriptions IDg Fy ID1 Fy ... Fy ID5 starting with
the initial instantaneous description 1D, and finishing with
the accepting instantaneous description ID+.

Let A=TUQU{B} and let # be a previously unused sym-
bol. To perform our reduction from an instance of the LBA
acceptance problem to an instance of the prefix-closed au-
tomata intersection problem, we generate a set of prefix-
closed interacting automata % that when combined using
parallel composition accept the language

((@U{E)\ (AU {# BUED"))

U{#ID#ID1#.. #1Ds##} C (AU{#})*
if Vi € [1,..., {](IDi_1 Fy 1Dy)),

((AUENY\ (AU {Eh" (##} (aU{#)"))

otherwise.

M always accepts all strings not containing ## and M ac-
cepts a string ending with ## if and only if there is a se-
guence of instantaneous descriptions from 1D, to ID+ that
represent a set of valid computations for W.

We can construct an automaton H in time polynomial with
respect to the encoding of W and x such that

L(H) = ((AU{#ED) \ (AU D" {#} AU {#)))).

Note that L(“M) and L(H) are both prefix-closed by con-
struction. For this reduction we show L(M) # L(H) if and
only if x € L(W) where 4 and H are constructed in polyno-
mial time from x and W. Therefore deciding L(M) = L(H)
is PSPACE-complete because PSPACE = coPSPACE.

When the read/write head moves, the state updates, a sym-
bol is written on the current tape cell and the tape head
should move exactly one cell to the left or the right. There-
fore, to verify that (1D; Fy IDj), we need to verify that the
tape contents in ID; and 1D; are identical except for where
the read/write head wrote to the tape during the transition
and that the read/write head moved exactly one tape square
to the left or right according to the next move function .
With this in mind, given a three element string a;azas from
ID; and a three element string bibobs from ID; both at the
same relative locations in the instantaneous descriptions, we
can verify in polynomial time that b1b,bs can follow from
ajapas. Ifwe verify this for all pairs of three element strings
at the same locations in ID; and I1Dj, we can verify in poly-
nomial time that (1D; Fy IDj).

We now construct two sets of interacting automata, ¢ "
and M4, The automata in M verify for a sequence
of instantaneous descriptions ID;,...,1Dj that the instanta-
neous descriptions at odd humbered locations follow from
the even instantaneous descriptions. Similarly, the automata
in /%% verify for a sequence of instantaneous descriptions
IDj,...,ID;j that the even instantaneous descriptions follow
from the odd instantaneous descriptions.

With this in mind, we construct M#*" to accept the language
({#Ai‘lalazagAp(”)—i‘Z#Ai‘1b1b2b3Ap(“)‘i‘2}*{##})
U(@u{E)*\ (Au{#)* {#}@au{#)))
where ajasas,bibobs € A3, A string representing a valid
execution of W (i.e., #IDo#ID1#...#ID#4#) is accepted by
Me= only if the i, (i + 1) and (i +2)" symbols in the
odd instantaneous descriptions follow from the ith, (i+ 1)St

and (i +2)nd symbols in the even instantaneous descrip-
tions.

Similarly, let us also construct Mf’dd to accept the language
({#APMHIY {#AI 161 coeaAPM—1=24A1=1d d o d s AP —1=2) *
{#OPF L1
U(@u{#Eh"\ (Au{#h)* {#}1Bu{#})))
where c1coc3,d1d2d3 € A3, A string representing a valid
execution of W (i.e., #1Do#ID1#.. #ID#4#) is accepted by
Modd only if the it (i + 1) and (i +2)" symbols in

the even instantaneous descriptions follow from the ith,

(i+ l)St and (i +2)nd symbols in the odd instantaneous
descriptions. Remember that we assume without loss of
generality that f is odd.

Let us construct M®s and M®’s for i ranging from 0
to (p(n) —1). This should take less than 6|A|3p(n) states
each, so this construction can be performed in polynomial
time with respect to the encodings of W and x. Note that by
their constructions, the languages accepted by the M"’s
and M®4%°s are prefix-closed.

Let us define M = ME*||...[MEE_; and Mmodd —
Mgdd||...||Mg?r‘]’)_l. M accepts a string containing ##
(Notably #IDi#IDj1#... #1D;##) only if the odd instanta-
neous descriptions follow from the even instantaneous de-
scriptions. Likewise, %9 accepts a string containing ##
(notably #1Di#IDj1#.. #IDj##) only if the even instanta-
neous descriptions follow from the odd instantaneous de-
scriptions.

We construct a final automaton M fi"@ that accepts the prefix
closure of the following set of strings:
((AU{E)*\ ((Au{#)" {#1U{#)Y))

U ({#| Do} {#APM+1}+ 14 Df##})

Mfina accepts a string of instantaneous descriptions ending
with ## only if the first instantaneous description is ID, and
the final instantaneous description is ID¢. Note that M fina
also accepts a prefix-closed language. Constructing M find
takes less than 6|A|3p(n) states, so this construction can be
performed in polynomial time.

Let M = MTind||areven||a70dd | there is a valid accept-
ing computation for W with input x then IDg, 1Dy, ...,1D;¢
is a sequence of valid accepting computations for W and
#1Do#ID1#... #1D¢## is accepted by M. Likewise, if a
string containing ## is accepted by A/, it must be the string
#I1Do#ID1#... #1D¢## representing a valid computation on
Y for accepting input x. A string containing ## is ac-
cepted by all the automata in 2/ if and only if there is a
valid computation for W that accepts x. We therefore know
[xeL(W)] < [L(M) #L(H)].

Furthermore, H and the components of % can be con-
structed in polynomial time with respect to the size of the
encoding of x and W. Therefore, the problem of decid-
ing L(M) = L(H) for the prefix-closed case is PSPACE-
complete. m

The primary alterations in the proof of Theorem 1 from the
proof of DFA-Int complexity is that the automata in this
proof accept all strings not containing the substring ## and
they accept a string containing ## if and only if their parts
of the LBA computation are valid. Therefore a string con-
taining ## is accepted if and only if a string x is accepted
by W. This proof construction can also be used to show a
similar language inclusion problem is PSPACE-complete.

Theorem 2 Given a finite automaton H and a set of in-
teracting finite automata My, ...,Mpy, all accepting prefix-
closed languages, the problem of deciding if L() C L(H)

is PSPACE-complete.

Theorems 1 and 2 are particularly discouraging because
PSPACE-complete problems are thought to be rather dif-
ficult. They are known to be at least as difficult as NP-
complete problems. Our PSPACE-completenes results from
Theorem 1 and Theorem 2 also hold for more general prob-
lems where H is replaced by # such as in Proposition 1
or where the automata are not restricted to be prefix-closed.
Despite these negative results some similar automata inter-
section problems decision problems are in P.

Proposition 2 Given a deterministic finite automaton H
and a finite set of interacting deterministic finite automata
M4, ..., Mm, the problem of deciding if L(H) C L(M) isin P.

4 Complexity of Modular Controller Verification
Problems

We now apply our results regarding the computational com-
plexity of automata intersection problems to verification
problems of supervisory controllers for discrete-event sys-
tems. Supervisory control of discrete-event systems is a
control paradigm discussed in [8]. Controllers observe
events occurring in a plant G and issue control actions by
disabling controllable events. The plants (i.e. the systems
to control), specifications and controllers are represented as
finite automata with partial transition functions. We use the
standard notation that a controller S controlling a plant G is
denoted by S/G. For discrete-event systems, all controller
states are marked. This convention is used to prevent con-
trollers from affecting the marking of the plant states. Also,
S/G is modelled as S||G.

Controllers have also been modeled as decentralized sys-
tems where the individual controllers observe and control
different sets of events. The controllers take local actions
and their behavior is combined globally through the parallel
composition operation. In this paper, we denote a decentral-
ized control system Sy, ...,Ss by § = S1||...||Ss. Research on
decentralized controllers has been ongoing in the discrete-
event systems community; see for example [10] and [13].

A common problem that arises when dealing with large
plants or specifications is the state explosion problem
[2]. When several plants (G1,Gg,...,Gg) interact, the best
known algorithm for calculating their composed behav-
ior takes time exponential in the number of plants. This
prompted the discrete-event systems community to research
modular plants and specifications. The thought was that cal-
culating a composed automaton to perform control opera-
tions from various sub-plants may be computationally too
expensive for large monolithic systems, but we may be able
to achieve computational savings if we were to consider the
plants to be several composed subsystems. Similar to the

notation used in the rest of this paper, we denote modular
plants as G and modular specifications as X. In this section
of the paper we investigate the computational complexity
of deciding if given a modular plant, specification and con-
troller, whether the specification is satisfied.

We show that a large class of verification problems are
PSPACE-complete. We start by showing a simple extension
of the results from Proposition 1.

Proposition 3 Verifying that £m(S/G) = Lm(%),
Lm(S5/G) € Lm(K) and Lm(K) C Lm(S/G) are all
problems in PSPACE.

Using the theoretical results of Section 3 and Proposition 3
we can demonstrate the theoretical difficulty of verifying a
large class properties of modular supervisory control sys-
tems.

Theorem 3 Deciding the validity of the following expres-
sions is PSPACE-complete:

(o2 NS) B A R)
h

~~ N o~ N
“n
~
@

It can be easily seen that the problems listed in Theo-
rem 3 above are special cases of several other problems in
PSPACE, notably problems where the marking properties of
supervisory controllers of modular discrete-event systems
are verified. These problems are too numerous to conve-
niently list, but their computational complexity easily can
easily be found as a consequence of Proposition 3 and The-
orem 3. Although our listed completeness results deal only
with problems where either the controller, plant or specifi-
cation are modular, these results can be easily extended to
cases where two or three of the controller, plant and spec-
ification are modular. It should be noted that if we put a
bound on the number of controllers, plants and specifica-
tions, we can decide all of the verification problems listed
here in polynomial time.

Despite the seemingly overwhelming number of PSPACE-
complete problems related to the verification of modular
control problems, there are several important problems that
can be verified in polynomial time even when there is no
restriction on the number of modules. We have already seen
in Proposition 2 that verifying L(H) C L(#) is in P. This
result can be used to prove the following propositions.

Proposition 4 Given a controller S, plant G and a
set of specifications Kj,...,Kg, the problem of verifying
Lm(S/G) C Lu(K) is in P.

Proposition 5 Given a set of controllers Sy, ...,Ss, a set of
plant modules Gy, ..., Gg and a specification K, the problem
of verifying Lm(K) C Lm(S/G) isinP.

Propositions 4 and 5 can also be used to prove that several
other verification problems are in P.

5 Conclusion

We have shown that many controller verification prob-
lems for supervisory control of discrete-event systems are
PSPACE-complete. It is believed that NP-complete prob-
lems cannot be solved in polynomial time and PSPACE-
complete problems are believed to be strictly more difficult
than NP-complete problems.

The current algorithms developed to solve the PSPACE-
complete supervisory control verification problems take
time exponential in the number of modules, so adding more
modules makes the problems listed more difficult. Note that
if the number of deterministic modules is bounded, all prob-
lems discussed in this paper can be solved in polynomial
time. The PSPACE-completeness result arises from the fact
that the number of states that potentially need to be verified
is exponential in the number of modules. Our results tell us
that verification of large discrete-event systems modeled as
interacting sets of finite automata will not lead to computa-
tionally tractable results unless we make more assumptions
about the models themselves.

A possible simplifying assumption that could be investi-
gated in future research would be to assume that for a set of
interacting automata 2 there exists an automaton M rep-
resenting a set of “most general behavior” such that for all
M; that comprise %, M; is a subautomaton of M. This as-
sumption would make calculations of & much simpler and
would aid in the “modularization” of the plant.

Even though many modular verification problems are often
PSPACE-complete, what about controller existence prob-
lems? Controller existence problems are generally more
difficult than verification problems, but this is an open area
of research. As mentioned in the introduction, some recent
results are shown in [4] and [9].

It may appear at first that modular verification problems
are more time-expensive than monolithic problems, but we
must realize that a modular problem can be padded out to
a monolithic problem by performing the parallel composi-
tion of the modules. The monolithic computation may take
polynomial time in the size of the monolithic system, but

the size of the monolithic system is potentially exponen-
tial in the size of its modules. Therefore, there may be no
consistent time disadvantage in performing modular com-
putations versus monolithic computations. Modular com-
putations appear to take longer because a different metric
is used. There is potentially an exponential contraction in
information storage space that occurs when a system can be
converted efficiently from a monolithic system to a modular
system. The possibly great savings in computation space by
using modular systems is the reason the discrete-event sys-
tems community began to investigate the use of modules in
the first place - to avoid the state explosion problem.

References

[1] B.A.Brandin, R. Malik, and P. Dietrich. Incremental sys-
tem verification and synthesis of minimally restrictive behaviors.
In Proc. of 2000 American Control Conference, pages 4056-4061,
2000.

[2] C.G.Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, Boston, MA, 1999.
[3] M.R. Garey and D.S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W.H. Freeman,
1979.

[4] P. Gohari and W.M. Wonham. On the complexity of super-
visory control design in the RW framework. |EEE Transactionson
Systems, Man and Cybernetics, Secial |ssue on DES 30(5):643—
652, 2000.

[5] S.Jiang and R. Kumar. Decentralized control of discrete
event systems with specializations to local control and concurrent
systems. |EEE Transactions on Systems, Man and Cybernetics,
Part B, 30(5):653-660, 2000.

[6] D. Kozen. Lower bounds for natural proof systems. In
Proc. 18th Symp. on the Foundations of Copmuter Science, pages
254-266, 1977.

[7]1 H. Lamouchi and J.G. Thistle. Effective control synthesis
for DES under partial observations. In Proc. 39th IEEE Conf. on
Decision and Control, pages 22-28, 2000.

[8] P.J. Ramadge and W.M. Wonham. The control of discrete-
event systems. Proc. |[EEE, 77(1):81-98, 1989.

[9] K. Rohloff and S. Lafortune. On the controller existence
problem for modular discrete-event systems. Preprint.

[10] K. Rudie and J.C. Willems. The computational complex-
ity of decentralized discrete-event control problems. IEEE Trans.
Automat. Contr., 40(7):1313-1318, 1995.

[11] W. J. Savitch. Relationships between nondeterministic
and deterministic tape complexities. Journal Comput. Sys. ci,
4(2):177-192, 1970.

[12] S. Tripakis. Undecidable problems of decentralized obser-
vation and control. In Proc. 40th |EEE Conf. on Decision and
Control, pages 4104-4109, 2001.

[13] T.-S. Yoo and S. Lafortune. A general architecture for de-
centralized supervisory control of discrete-event systems. Journal
of Discrete Event Dynamical Systems: Theory and Applications,
13(3):335-377, 2002.

