Recent Results on Computational Issues in Supervisory
Control *

Kurt Rohloff and Stéphane Lafortune
Department of Electrical Engineering and Computer Science
The University of Michigan 1301 Beal Ave., Ann Arbor, MI 48109-2122, USA
{krohloff,stephane } @eecs.umich.edu www.eecs.umich.edu/umdes

April 25, 2003

Abstract

We present and discuss the implications of recent results by several researchers on com-
putational issues in supervisory control of discrete event systems. The first issue discussed
is the boundary between decidability and undecidability in centralized and decentralized con-
trol problems for systems modeled by finite-state automata and subject to regular language
specifications. The second issue discussed is the PSPACE-completeness of a large class of
verification and control problems for decentralized and modular systems modeled by sets of
interacting finite-state automata coupled by parallel composition. The state space explosion
inherent to modular systems and the possible time-space tradeoff that arises for computations
on these systems are discussed.

1 Introduction

This paper presents a survey of recent results in applying concepts from the theory of computation
to problems related to the supervisory control of discrete-event systems. The current literature in
theoretical computer science is mature, well-developed and contains many results that are partic-
ularly relevant to problems in supervisory control theory. There has already been considerable
interest in applying theoretical computer science results to supervisory control problems. Some
notable examples of crossover work between these two fields include [3], [4], [6], [14], [17], [36],
[42], [44], [47], [48], [50], [52], [58] and [64].

We assume our systems are modeled as deterministic finite-state automata with regular lan-
guage specifications as introduced in [42]. We assume the control systems in this paper are “par-
allel” control systems that are realized as deterministic finite-state automata where the controlled
system is synthesized by a parallel composition of the control automata with the uncontrolled sys-
tem. See [9], [34], [35], [42], [43] and [54] for a sample of major innovative works from the control
community on parallel control discrete-event systems and the text [7] for a general introduction to
discrete-event system theory.

An important property inherent to computing the solutions to problems is the concept of de-
cidability. Intuitively, a problem is decidable if there exists an algorithm to solve that problem and
a problem is said to be undecidable if there are no algorithms to solve that problem. Later in this

*This research was supported in part by NSF grant CCR-0082784.

paper we give more formal background information on the concept of decidability. It was recently
found in [29] and [57] that several decentralized nonblocking controller existence problems are
undecidable. We discuss these and other decidability results associated with similar yet simpler
problems discussed in [20], [33], [53], [54] and [65]. We examine the boundary between decid-
able and undecidable controller existence problems in a supervisory control setting given range
specifications.

Besides decidability results, there has been considerable interest lately in the discrete-event
systems community in concepts related to modular systems. Some systems too complicated to
model in a monolithic manner may be easier to model as modular interacting subsystems similar to
how decentralized control may at times be more natural than centralized control in some instances.
Manipulating systems as separate interacting agents has the added advantage of avoiding the “state
explosion” problem; when several finite-state systems are combined, the size of the state space of
the composed system is potentially exponential in the number of components, so we may wish to
keep system models modular whenever possible. Likewise, when controlling or verifying system
behavior, there may be several separate specifications and therefore it would be advantageous to
keep the specifications modular as well.

There have been several papers from the computer science community that discuss the diffi-
culty of several modular system problems. The complexity of verification for systems using more
complicated models than automata such as temporal logic and alternating tree automata is, dis-
cussed in [16], [26], [28] and [59]. Synthesizing distributed systems and controllers, but under
assumptions different from those made in this paper, is discussed in [27], [36] and [39]. Berg-
eron [3] discusses the control of systems from a computer science viewpoint that is similar to the
paradigm used here, but does not discuss modular systems.

The control of modular systems is currently receiving much attention from the control research
community. See [14], [21], [22], [31], [32], [40], [41], [60] and [61] for example. Reference
[60] shows some of the earlier results to modular control. Properties of modular discrete-event
systems when the modules have disjoint alphabets are investigated in [40] and [41]. Various
local specification and concurrent control problems, respectively, are investigated in [21] and [22].
References [31] and [32] discuss the control of modular systems using specific architectures. With
the exception of [14], there has been little work investigating the computational complexity of
modular control besides the results discussed herein. NP-hardness results for modular control
problems are presented in [14] and incremental system verification for modular discrete-event
systems under weaker assumptions than discussed in this paper is discussed in [5].

A problem that is decidable for a monolithic system is guaranteed to be decidable for a modular
system because we can convert modular systems to monolithic systems. However, associated with
the state explosion problem, problems that are computationally trivial for monolithic systems may
become intractable for modular systems. We discuss some results related to the computational
complexity of decision problems associated with the control of modular systems. In particular,
we discuss results shown in [47], [48] and [50]. Of particular relevance for proving many of the
results discussed here is the class of problems called automata intersection problems which were
initially discussed in [24]. Many problems related to the verification and control of modular and
decentralized systems are found to be PSPACE-complete, meaning that they are probably much
more difficult than NP-complete problems. To aid the reader who may be unfamiliar with concepts
from computational complexity, we include a brief introduction to this topic.

As would be natural when drawing from the work of two separate research areas, we need to
explicitly introduce the notation we will be using in the rest of this paper. We do this in Section 2
where we also give a brief introduction to supervisory control theory. In Section 3 we discuss de-

cidability issues in decentralized control along with an introduction to the concept of undecidable
problems. Section 4 discusses the recent results on the computational complexity of decidable
problems in decentralized and modular control along with the necessary theoretical background.
The paper closes in Section 5 with a discussion of the results presented herein.

2 Notational Review

Although the notation for automata problems used by researchers in computer science and discrete-
event systems is similar, there are subtle differences. We generally use the notation of computer
science theory when we present the automata intersection problems and we use the notation of
supervisory control when we discuss work relating to discrete-event systems. However, to aid the
reader, we use this section to review the notation used in both fields. For more background infor-
mation on theoretical computer science, please reference the seminal text by Hopcroft and Ullman
[18]. Furthermore, a background on supervisory control and discrete-event systems can be gained
in [7].

We define the automaton G as a 5-tuple (X x% 26 89 XC) where X© is the set of states,
xY is the initial state, X© is the automaton alphabet, 8¢ : X¢ x £6 — X G is the (possibly partial)
state transition function, and X.C is the set of “final” or “marked” states. We discuss deterministic
systems and specifications exclusively in this paper. We discuss our motivation for this distinction
in Section 4.

For an automaton G, in theoretical computer science, the language accepted (L(G)) by the
automaton G is the set of all strings that lead to a final state. L(G) is equivalent to the language
marked (L,,(G)) in discrete-event system theory. The language generated in discrete-event system
theory (L(G)) is the set of strings whose state transitions are defined by the transition function
8Y(-). Note that we use a script L for discrete-event systems notation and a regular L for computer
science notation. When 8(+) is a partial function, £L(G) C Z*. L(G) is a prefix-closed language,
i.e., it contains all the prefixes of all its strings. £,,(G) and L(G) are not prefix-closed in general.
For a language K, we use K to denote the set of all the prefixes of all the strings in K. We call
an automaton that accepts a prefix-closed language a prefix-closed automaton. We also say an
automaton is nonblocking if the prefix-closure of its marked language is equal to its generated
language, i.e., L,,(G) = L(G).

To review the parallel composition operation, suppose we have the automaton G defined above
and another automaton H = (X x# ¥H §H xI).

We now define the parallel composition of G and H denoted by G||H:

G||H = (X x XH), (x§ ,x4), 29 UEH, 8, (X7 > X))

where

(86(x9,0),80(x,6)) it 89(xC,0)!I A (x",0)!
(85(x%,6),x) if 89(x%,6)!A (o & =H)
(0,87 (x| 5)) it 8 (x",6)! A (o ¢ 20)

undefined otherwise

§CIH ((x9 ¥, 6) =

Note that we use the unary operator ! where f(a)! returns true if f(-) is defined for input o, false
otherwise. We assume without loss of generality that the automata in this paper have a common
alphabet ¥ because we can always add self-loops at all states for all events not initially in an
automaton’s alphabet.

Given a set of & modules modeled as automata {H, Hy, ..., Hy }, we use the script notation 7—[{’
to denote the set of the module automata {H,H>, ..., H,} and the regular notation H f‘ to denote the
parallel composition H,||H>||...|Hy. H]' accepts (generates) a string 7 if and only if 7 is accepted
(generated) by all automata in 7—[{’ = {H,,H;...,H,}. This implies that L,,,(th) = Ly(H)N...N
L,(Hy). Similarly, for a set of k languages {Ki, K>, ..., Ki }, we use the script notation 17(1" to denote
the set {K;,K>,...,K;} and the regular notation K{‘ to denote the intersection of the languages
KiNK>N...NKy. We also use the notation L(#;") and L,,(#") to denote the sets of languages
{L(H,), L(H>),...,L(H})} and { L,,(H1), Lin(H2), -.., Lin(H}) }, respectively.

Following the modeling system of Ramadge and Wonham [42, 63], we model systems as finite-
state automata with external controllers. Control actions are enforced by selectively disabling con-
trollable events. Controllers are also realized as finite-state automata that can observe some events
and control a potentially different set of events. Controllers should not be able to disable uncon-
trollable events and control actions should not update on the occurrence of locally unobservable
events.

Given a controller S and a system G, we denote the composed system of S controlling G as the
controlled system S/G. Furthermore, because we assume we are using parallel controllers realized
as finite-state automata, S/G is equivalent to S||G. Controller S is said to be nonblocking for system
G if S||G is nonblocking, i.e., if L,(S||G) = L(S||G). For the case of multiple controllers (i.e.,
decentralized control), we assume that an event is disabled if it is disabled by at least one controller.
For a set of decentralized controllers {S1,...,S,}, we adopt a similar notation for §; = {Si,...,Ss}
and S = Si]|...||Sy as seen above for %" and H!'. Hence, a set of controllers 5§ controlling G is
equivalent to S{/G. As stated before, a controller observes only locally observable events and can
disable only locally controllable events, denoted by X,; and X;, respectively, for controller S;.

A very important associated result used in demonstrating controller existence for many prob-
lems is the controllability and coobservability theorem seen below.

Theorem 1 [54] For a finite-state automaton system G and a finite-state automaton specification
H such that L,(H) C L,(G), sets of controllable events {¥.1,...,Lcs} and sets of observable
events {¥,1,...,Los } there exists a set of partial observation controllers {S1,S,,...Ss} such that
£,(81/G) = Lu(H) and L(S}/G) = Ly ()
if and only if the following three conditions hold:

1. L, (H) is controllable with respect to L(G) and L.
2. L,(H) is coobservable with respect to L(G), Ly1,..., Los and L1, ..., Les.
3. Ly(H) is L,,(G)-closed.

We expect the reader is familiar with the concepts of controllability, coobservability and
L,,(G)-closure which are discussed in [7]. Given two automata G and H, algorithms exist to
decide controllability, coobservability and £,,(G)-closure.

A less restrictive version of Theorem 1 also holds for the case of generated language specifica-
tions (and hence prefix-closed specifications) where the L£,,(G)-closure condition is disregarded.
Also, in the case of centralized control (i.e., one controller), coobservability is called observabil-
ity. In this paper we use the terminology of control theory even though it may be counter to
naming conventions currently used in computer science theory. (That is, coobservability is not
non-observability.)

The result of Theorem 1 is useful for deciding if given a system G and a specification language
E such that E C £,,(G), there exists a nonblocking controller S such that £,,(S/G) = E. This is

called the nonblocking controller existence problem with zero tolerance. A similar problem that
we discuss in the next section is the controller existence problem with tolerance where given
languages A and E such that A C E C L(G), we must decide if there exists a controller S such that
A C L(S/G) C E. This is called the “controller existence problem with tolerance”, or the “range
problem” for short. There are extensions of the range problem for the cases of decentralized
control and/or if we desire the controlled system to exhibit nonblocking behavior.

3 Decidability Issues in Decentralized Control

Now that we have introduced the preliminaries of supervisory control theory we discuss some
recent research on the decidability of several controller existence problems. In Section 2 we dis-
cussed how we can decide controller existence when the behavior of the controlled system is
required to match a specification. It is well known in the literature that deciding decentralized
controller existence with zero tolerance and nonblocking behavior is decidable, but it was recently
shown in [29] and [57] that no algorithm exists to decide nonblocking decentralized controller
existence with tolerance. In this section we discuss the boundary between decidability and unde-
cidability for control problems with tolerance.

We first give the necessary background information on the theory of computation that is rel-
evant for understanding the concept of decidability. We then discuss several results related to
decidability of various problems for deciding controller existence with tolerance in [20], [29],
[33], [53], [54], [57] and [65]. If the reader is interested in more background information, please
consult one of the many excellent texts on the subject including [11], [18], [37] and [56].

3.1 An Introduction to Undecidability

Central to understanding the concept of undecidability is the concept of a Turing machine which is
considered by many researchers in computer science to be a good theoretical model for a general
computation device. Although the exact definition of a Turing machine is beyond the scope of this
paper, it is similar to a finite-state automaton with unlimited memory. Given an arbitrary input
string x, a Turing machine 7 is said to accept x if when given x as input, 7' performs a series of
computations and halts in an accepting state. Likewise, a Turing machine T is said to reject x if T
performs a series of computations when given x as input and halts in a rejecting state. Note that a
Turing machine may not halt for all input strings.

A language (i.e., a set of strings) is said to be recursively enumerable or Turing recognizable
if there exists a Turing machine that accepts the strings in that language and fails to accept all
strings not in that language. Note that when we say that a string fails to be accepted by a Turing
machine, the string could either be rejected or the Turing machine may not halt for that string. A
language is said to be recursive or decidable if there exists a Turing machine that accepts those
strings in the language and rejects all other strings. Note that for a decidable language, there is
always a Turing machine that halts in the correct accept or reject state for a given input string, by
definition. Although a decidable language is Turing recognizable, a Turing recognizable language
may not be decidable and the distinction between Turing recognizable and decidable languages is
nontrivial.

A decision problem is defined to be any problem such that every instance of that problem is
said to be labelled either “true” or “false”. Any problem instance of a decision problem can be
encoded as a string x of ones and zeros that can be given as an input to a Turing machine 7. A

Turing machine is said to decide a problem if when given a problem instance encoded as a string
as input, the Turing machine performs a series of computations and eventually halts in either an
accept state or a reject state. Furthermore, when the Turing machine halts, it halts in an accept
state if and only if the problem instance is labelled as “true”. A problem is said to be decidable
if there is a Turing machine that decides the problem. A problem is said to be undecidable if it
is not decidable and therefore there are no Turing machines to decide that problem. Intuitively,
this follows from the common understanding in computer science that an algorithm to decide a
problem must always halt by definition.

The Church-Turing hypothesis states that the Turing machine model is equivalent to any rea-
sonable computation device in its ability to solve problems. This statement is impossible to prove,
but the Church-Turing hypothesis is generally believed among computer scientists. Although Tur-
ing machines may not be as reasonable to implement as more common real-world computation
devices such as RAM machines, they are very useful as a theoretical model for computations and
demonstrating undecidability. Therefore, from the hypothesis, if we can show there are no Tur-
ing machines to solve a problem, then there are most likely no other computation devices that can
solve the problem. Please consult one of the standard texts mentioned earlier for more background
information.

The most common method to show that a problem is decidable is to use a constructive proof
and present an algorithm that always halts and that solves the problem. There are no time or space
constraints on algorithms to demonstrate decidability other than halting in finite time; we make a
further discussion of the time and space complexity of decidable problems in Section 4

As may be expected, not all problems are decidable. This means that there are some problems
that cannot be solved by any computation device and the set of undecidable problems is nontriv-
ial. A sample of important undecidable problems includes the Turing machine string acceptance
problem, the Turing machine empty input halting problem and Post’s Correspondence Problem.
The Turing machine string acceptance problem is formulated as follows: given a Turing machine
T and a string x, decide if 7 halts on an accepting state if it is run with x as its input. The Turing
machine empty input halting problem is formulated as follows: given a Turing machine 7, decide
if T halts when it is run with an empty input. Due to space limitations it is beyond the scope of
this paper to describe Post’s Correspondence Problem (also called PCP), but we encourage the
reader to consult the standard texts on the theory of computation that we mentioned earlier for a
description of this and other problems.

The most common method to show a problem B is undecidable is to perform a reduction from
a known undecidable problem A to that problem (denoted A < B). Intuitively, a reduction is an
algorithm that takes an instance of problem A and converts it to an instance of problem B. This
means that if we can solve problem B, then we can solve problem A. Hence, by contradiction, if
there is no algorithm for solving problem A, then there can be no algorithm to solve problem B if
we can show a reduction between these two problems.

Now that we have introduced the preliminaries of the theory of computation, in the next sub-
section we discuss recent results on the decidability of the controller existence problem when the
specification has tolerance.

3.2 Boundary Between Undecidability and Decidability

Because of the controllability and coobservability theorem, deciding controller existence for su-
pervisory control problems with partial observation when we wish the controlled system to exactly
match a specification’s behavior is well understood. We can always calculate if there exists a set

of partial observation decentralized controllers for a system that achieves a specification. How-
ever, the controller existence problem does not always have a solution when the controlled system
behavior is allowed to be in a range of solutions. For this problem, we are given a system G and
two prefix-closed regular languages A and E such that A C E C £(G). As was mentioned earlier,
we are asked to decide if there exists a partial observation controller S such that A C L(S/G) CE.
We may place additional restrictions on this problem where instead of a centralized controller S,
we may be required to use a decentralized control system. Furthermore, we may also have the
additional requirement that S/G is nonblocking.

The decidability of the simplest form of this problem (i.e., centralized control and blocking is
of no concern) is investigated by Rudie and Wonham in [53] and Lin in [33]. Given a language M,
let infO(M) represent the infimal prefix-closed observable superlanguage of M and let supC(M)
represent the supremal controllable sublanguage of M. Lin [33] shows that there exists a controller
Ssuch that A C L(S/G) CE ifand only if infO(A) C supC(E). A method for calculating supC(E)
is given in [62] and [53] shows a method for calculating infO(A). Therefore, by construction, the
centralized controller existence problem with tolerance where blocking is disregarded is decidable.
Furthermore, [53] show a method for synthesizing this controller.

We now investigate a slightly more complicated controller existence problem with tolerance
and nonblocking specifications. Suppose we are given a system G and a specification language
E such that E C £,,(G), and the goal is to decide if there exists a nonblocking safe controller S
such that £,,,(S/G) C E and £,,(S/G) = L,(S/G). There is a method in [20] for computing the
union of all safe nonblocking solutions to this problem. This effectively decides if there exists a
nonblocking controller S such that £,,(S/G) C E. Yoo [65] shows a method for synthesizing such
a controller S to solve this problem. Hence, for the centralized control case, both the existence and
synthesis problems for nonblocking safe controllers are decidable even when we assume partial
observation.

Another slightly more complicated problem than the first problem we discuss above is the
decentralized controller existence problem when we do no care about blocking. Let infCCCo(M)
represent the infimal prefix-closed, controllable and coobservable superlanguage of M. It is shown
in [54] that there exists a pair of decentralized controllers S and S, such that A C £(81]|S2/G) CE
if and only if infCCCo(A) C E. A method for calculating infCCCa(A) is also shown in [54], so
the (possibly blocking) decentralized controller existence problem with tolerance is decidable.
Using the method outlined in [54], we can synthesize a controller to solve this problem.

We now look at the fourth and final problem in our hierarchy of controller existence problems
with tolerance. Suppose we are given an automaton G and two regular languages A and E such that
A CE C £,(G). Itis shown in [29] and [57] using different reductions that the problem of deciding
if there exists a pair of decentralized controllers S| and S, such that A C £,,,(S1(|S2/G) C E and
L,(S1|S2/G) = L(S1]|S2/G) is undecidable.

In [29], the authors use a reduction from the Turing machine empty input halting problem to
a modified version of the decentralized controller existence problem that uses a Rabin automaton
model, but the reduction also holds for our system model. In [57], the author uses a reduction from
Post’s Correspondence Problem to another slightly modified decentralized controller existence
problem where it is assumed that A = 0. This restriction is not problematic because the reduction
still holds for proving the decentralized nonblocking controller existence problem when we make
no assumption on A.

Note that these nonblocking decentralized control problems with tolerance are undecidable
for two-controller systems and as may be expected, remain undecidable if we assume a more
general n-controller system. The decidability of the decentralized controller existence problem

where blocking is not a concern is not altered if we use an n-controller system, but in general the
computational complexity of these problems is greatly increased in this case. We discuss these
results in the next section.

We would also like to draw attention to the fact that the decidability of control problems is
not altered if we assume modular systems or specifications. We discuss this more in the following
section, but an algorithm for converting modular systems to monolithic ones is known. However,
using known methods, the conversion of modular systems to monolithic systems may take expo-
nential time and space in the worst case. We show in the following section that modular control
and verification problems are in general much more computationally expensive than monolithic
control and verification problems.

4 The Computational Complexity of Decidable Problems

Even though many problems in supervisory control theory are decidable, this does not automati-
cally imply that these problems can be decided in a computationally feasible manner. Some decid-
able problems may be computationally difficult or even infeasible to solve in reasonable manner.
The necessary computations may be so unbearably difficult that they may take too much time,
or worse, use too much computation space. Researchers from theoretical science have developed
a theory of computational complexity to categorize the computational “difficulty” of decidable
problems and we apply this theory to decentralized and modular control problems in supervisory
control theory.

We initiate this section with a review of computational complexity to acquaint the reader with
this theory. We then introduce a general class of problems called automata intersection problems
that are particularly relevant to deciding the computational complexity of decentralized and mod-
ular supervisory control problems. We discuss computational issues in decentralized control and
then computational issues in modular control. We present online control methods which have
been proposed to avoid the computational difficulty of many of these problems. The time-space
trade-off inherent to computations involving many large state-space problems are discussed.

4.1 Review of Computational Complexity

We present in this subsection a brief review of needed concepts from the theory of computation.
For a more thorough exposition of these topics, the reader is encouraged to consult one of the
standard texts in the field such as [11], [12], [37].

Problems are said to be in class P if they can be solved in polynomial time by a deterministic
computation device. The exact type of computation device does not matter as long as it is a
“reasonable” computation device such as a deterministic Turing machine or a deterministic RAM
machine. Similarly, problems are said to be in class NP if they can be solved in polynomial
time by a nondeterministic computation device. The class PSPACE includes all problems that
can be solved in a polynomial amount of space by a deterministic computation device and the
class NPSPACE includes all problems that can be solved in a polynomial amount of space by a
nondeterministic computation device.

By Savitch’s theorem [55] we know that PSPACE=NPSPACE, but a similar result is not
known for time-bounded computation. It is known that P C NP C PSPACE, but both of these
inclusions are thought to be proper. Proving or disproving P##NP and NP # PSPACE are major
open problems in computer science.

We use a special type of reduction called a “polynomial-time many-one reduction” to denote
that one problem is computationally “more difficult” than another. For two problems C C £* and
D C X%, we say that there is a polynomial-time many-one reduction from C to D (denoted C <}, D)
if there exists a polynomial-time computable function f : X¥ — X% such that for eachx € X7, x € C
if and only if f(x) € D [11]. Intuitively, it can be thought that if a polynomial-time many-one
reduction exists as described above, problem D can be thought to be at least as difficult to solve as
problem C.

A different kind of polynomial time reduction based on Oracle Turing Machines (OTM’s) is
the polynomial time Turing reduction (denoted <7) which is similar to the polynomial time many-
one reduction described in the preceding paragraph. Although the distinction between many-one
reductions and Turing reductions is beyond the scope of this paper, it suffices for us to state that
a many-one reduction implies a Turing reduction (i.e., C <, D = C S’T’ D). Readers interested in
more information concerning details of Turing reductions should reference the texts mentioned in
the beginning of this section.

Problem C is called PSPACE-complete if it is in PSPACE and all problems in PSPACE can be
reduced to C using polynomial-time many-one reductions. Similarly, a problem D is called NP-
complete if it is in NP and if all problems in NP can be reduced to D using polynomial-time many-
one reductions. PSPACE-complete problems are problems that are considered to be the “most dif-
ficult” of the problems in PSPACE and are at least as hard as all NP-complete problems. Showing
a problem to be NP-complete or PSPACE-complete is generally considered good evidence that the
problem is intractable. This may initially seem non-intuitive, but we use polynomial-time reduc-
tions instead of polynomial-space reductions to define the PSPACE-complete class because if we
were to use polynomial-space reductions, all problems in PSPACE would be PSPACE-complete.
Given a PSPACE-complete problem C, if we can show for another problem D that C S’T’ D, then
D is known to be PSPACE-hard by definition. (A similar definition holds for NP-hard problems.)
If we know D is in PSPACE and C <%, D, then we know D is PSPACE-complete.

It has been shown in [12] that the problem of showing the language equivalence of two non-
deterministic finite-state automata is PSPACE-complete. With this information it is also easily
shown that for two automata A and B, deciding L(A) C L(B) for the nondeterministic case is also
PSPACE-complete because verifying L(A) C L(B) and L(B) C L(A) also verifies that L(A) = L(B),
a known PSPACE-complete problem. Because of these discouraging results for simple nondeter-
ministic automata comparison problems, we discuss deterministic automata exclusively in this
paper. It is well known that we can decide L(A) C L(B) and L(A) = L(B) in the deterministic case
in polynomial time [18].

4.1.1 Automata Intersection

An important class of problems that is particularly relevant to our discussion of decentralized con-
trol and modular systems are automata intersection problems. These problems involve comparing
the behavior of a set of interacting finite-state automata with the behavior of another automaton.
Many automata intersection problems are PSPACE-complete, although there are some automata
intersection problems in P.

A well known investigation into the complexity of automata intersection was performed by
Kozen [24]. Suppose we are given a set of deterministic finite-state automata {A,A,,...,A,}
with a common alphabet ¥ such that for i € {1,...,n}, A; = (X%,x4 ¥4 8% X24). Suppose

also that Ay||...||A, represents the parallel composition of the automata in {A,A»,...,A, } and that
L,,(A;) represents the language marked by the automaton A;. Furthermore, A} represents the set

{Aj,...,A,} and A" represents the parallel composition Aj||...||A,. Kozen [24] demonstrates the
following theorem.

Theorem 2 [24] Given a set of automata {A1,A,,...,A,}, the problem of deciding if
Ln(A1]|A2]|---]|An) = O is PSPACE-complete.

Kozen demonstrates this problem is in PSPACE using a nondeterministic token path argument
and shows it is PSPACE-complete using a reduction from the linear bounded automata acceptance
problem. This problem is called the deterministic finite-state automata intersection problem and
is referred to as “DFA-Int” in the computer science literature (e.g., [11] and [12]).

The reader familiar with automata algorithms will note that if we restrict n such that for some
constant k, n < k, the DFA-Int problem takes polynomial time to solve. However, known algo-
rithms for solving DFA-Int are exponential in n, so as k grows, so does the worst-case complexity
of the DFA-Int problem. A natural question to ask is whether this problem becomes any easier if
we restrict our attention to the prefix-closed case. As we saw in the previous section, a restriction
to prefix-closed languages for problems in supervisory control theory can make the problems de-
cidable, so maybe a restriction to prefix-closure might make a decidable problem computationally
tractable. Unfortunately, this is not so as is demonstrated in the following theorem.

Theorem 3 [48] Given a set of deterministic finite-state automata {A},As,...,A,,B}, the prob-
lems of deciding if L(A1||Az]|...||An) = L(B) and if L(A1||Az]]...]|An) C L(B) are PSPACE-complete.

The problems in this theorem are shown to be in PSPACE using a nondeterministic path ar-
gument and demonstrated to be PSPACE-complete using reductions from the linear bounded au-
tomata acceptance problem. Many results discussed in the remainder of this paper make extensive
use of reductions from the problems in Theorem 3. These results mean we most likely cannot use
divide-and-conquer techniques for solving many modular and decentralized control problems we
discuss in the rest of this section. Related DFA-Int properties are discussed in [1], [12], and [30].

However, despite the presented negative results, not all automata intersection problems are
PSPACE-complete. In [48], the following theorem is also shown.

Theorem 4 [48] Given a set of deterministic finite-state automata {A,A, ...,A,, B}, the problem
of deciding if Ly(B) C L,(A1||Az]]...||A,) is in P.

The problem in Theorem 4 is computationally easier because we can split this problem into n
simpler monolithic problems. Due to the nature of the parallel composition operation, we can test
Ln(B) C Liy(A1]|Az]]--.]|An) by verifying that for all i € {1,...,n}, L,,(B) C L,,(A;). This result is
used to show several modular and decentralized control problems are in P.

4.2 Decentralized Control Problems

The verification of decentralized control problems for monolithic systems and specifications in the
framework of [54] is discussed in [48] where several decentralized control verification problems
are shown to be computationally difficult. These results are demonstrated using reductions from
the prefix-closed DFA-Int problems presented in the previous subsection.

Theorem 5 [48] Given a set of controllers {S1, ...,Ss }, a system G and a specification K, deciding
the validity of the following expressions is PSPACE-complete: L(S}/G) = L(K), L(S}/G) C
L(K).

The verification problems are shown to be in PSPACE using a nondeterministic token argu-
ment. However, as with the automata intersection problems (cf., Theorem 4 above), there are some
important verification problems that are in P.

Theorem 6 [48] Given a set of controllers {S\, ...,Ss }, a system G and a specification K, deciding
the validity of the following proposition is in P: L(K) C L(S}/G).

The results of Theorems 5 and 6 can be easily extended to the case of marked language specifi-
cations. Also, as may be expected, all of the verification problems are in P if we bound the number
of controllers.

Now that we know that the verification of decentralized control systems can be difficult, what
if we are given a system G and an automaton specification H, and we are asked to decide if there
exists a set of decentralized controllers {S},...,Ss} such that the controlled system .S} /G achieves
the specification? This problem is decidable although it has been shown to be computationally
difficult.

If H and G are deterministic finite-state automata, it is found in [51] that the problem of
deciding coobservability is PSPACE-complete.

Theorem 7 [51] The problem of deciding if L(H) is coobservable with respect to L(G),
YLy ey cny Zoly -y 2on 1S PSPACE-complete when H and G are finite-state automata.

Deciding coobservability for the n-controller case is shown to be in PSPACE using an M -
machine construction as demonstrated in [52] with a nondeterministic token path argument. A
reduction from the DFA-Int problem in Theorem 2 is used to demonstrate PSPACE-completeness.
Controllability and £,,(G)-closure can easily be decided in polynomial time for deterministic
finite-state automata systems and specifications using standard automata algorithms. Therefore,
using Theorem 1, we know that deciding controller existence is PSPACE-complete when we wish
to match a specification. Furthermore, the PSPACE-completeness of decentralized controller exis-
tence shows us that controller synthesis is similarly computationally difficult when we are required
to match a specification. Naturally, all decentralized controller existence problems for exactly
matching specifications become polynomial time decidable when the number of controllers is
bounded.

Although these PSPACE-completeness results show that several decision problems related to
decentralized control are computationally difficult, these problems are decidable. Also, standard
methods for deciding coobservability generally involve enumerating over a large set of system
states which is usually a memory-intensive operation, which implies that these methods do not take
advantage of the minimum space requirements for these problems in order to solve the problems as
fast as possible. Modern computers can often exhaust their memory resources in a short amount
of time, so it might be advantageous to trade some extra computation time for more efficient
memory usage and therefore solve a larger class of problems. We discuss further implications of
the time-space tradeoff inherent to many PSPACE-complete problems in Subsection 4.5.

As was mentioned in the previous section, many range problems for controller existence and
synthesis become more difficult or even undecidable when decentralized control is used instead of
centralized control. Similar results hold when comparing the computational difficulty of deciding
controller existence for modular and monolithic systems. Although there is no shift from de-
cidability to undecidability when using modular systems instead of monolithic systems, modular
controller existence problems are frequently intractable even though they may be polynomial-time
decidable when monolithic systems are used. We discuss computational issues related to the con-
trol of modular systems in the next section.

4.3 Modular Systems

Although there are several ways of specifying modular systems, we make the assumption that the
modular systems and specifications discussed in this paper are modeled as deterministic finite-
state automata interacting via the parallel composition operation which was introduced in Section
2. This modeling method is generally considered to be the simplest method that is expressive
enough to be used for real-world problems. We start by investigating several verification problems
for modular systems and then we discuss controller existence problems for modular systems.

4.3.1 Modular Control System Verification

Control system verification is a very important practical problem in many industrial settings where
we may wish to use a pre-designed, off-the-shelf control system with a modular system and we
want to ensure that the control objectives are attained. It is generally believed that control system
verification problems tend to be computationally simpler than controller existence and synthesis
problems, but besides from the practical relevance of control system verification, many methods
developed for and the experienced gained from verification can be used for control system exis-
tence and synthesis problems. Although in the monolithic case verification can be performed in
polynomial time with respect to the size of the automata, we find that several important verification
problems for modular systems and specifications are PSPACE-complete.

Theorem 8 [47] Consider controller automata S and Sy, uncontrolled system automata G and g‘f
and specification automata H and 7—[{’. Deciding the validity of each of the following expressions
is PSPACE-complete:

Because we are assuming a relatively simple modeling method, our results show that the veri-
fication of more complicated systems is likewise PSPACE-complete.

Despite the seemingly large number of PSPACE-complete verification problems, there are
several important modular system verification problems that can be decided in polynomial time
even when there is no restriction on the number of modules. We have already seen in Theorem 4
that given the finite-state automata B and A, verifying L(A) C L(B?) is in P. This result can be
used to prove the following propositions.

Proposition 1 [47] Given a controller automaton S, system automaton G and a set of specification
automata H', the problem of verifying L,,(S/G) C L, (H) is in P.

By similar reasoning, we can also show the following proposition:

Proposition 2 [47] Given a set of controllers S7, a set of finite-state automata system modules gf
and a finite-state automata specification H, the problem of verifying L,,(H) C L,,(S}/G3) is in P.

4.3.2 Controller Existence for Modular Systems

We now extend the supervisory control theory concepts of controllability, M-closure, and coob-
servability from [42] and [54] to handle the cases where the systems and specifications are modu-
lar.

Let ?(lk and M|" be sets of languages. Let X; and X,; be the locally controllable and observable
event sets, respectively, for i € {1,...,s}. Let P;: ¥* — X¥ be the natural projection that erases
events in X\ ;. Furthermore let X, = U{_ X, and £, = L\ X..

Definition 1 [47] Consider the sets of languages K} and M™ such that M, = My,M> = My, ...,M,, =
M,, and the set of uncontrollable events ¥,.. The set of languages 7(1" is modular controllable with

respect to M{" and ¥, if K_{‘Zuc nM" C K{‘.

Definition 2 [47] Consider the sets of languages ?(lk and M|". The set of languages ?(lk is mod-
ular M["-closed if K¥=KFnmy.

Definition 3 [47] Consider the sets of languages K} and M™ such that M, = My,M> = My, ...,M,, =
M, and the sets of locally controllable, ¥..;, and observable ¥, events such that i € {1,...,s}. The
set of languages K} is modular coobservable with respect to M", P; and L, i € {1,...,s} if for

allt € K{‘ and for all 6 € X,
(IG ¢ K{‘) and (tc € M') =
Ji € {1,...,s} such that P7 [Pi(t)] GﬂK_{‘ =0Qandc € X,

Definitions 1, 2 and 3 are equivalent to the monolithic definitions of controllability, M -closure
and coobservability if we convert the modular systems and specifications to their monolithic equiv-
alents. We introduce these definitions to demonstrate the computational complexity of various
properties related to the control of modular systems which we discuss later in this section. It is
shown in [47] using a nondeterministic token path argument that verifying modular controllabil-
ity, modular M"-closure and modular coobservability for languages specified by deterministic
finite-state automata is in PSPACE.

We now show a theorem relating necessary and sufficient conditions for the existence of a
decentralized controller system such that a modular system achieves a modular specification.

Theorem 9 [47] For a given set of finite-state automata system modules gf and a set of finite-
state automata specification modules 5—[{’ such that H f’ is nonblocking, there exists a set of partial
observation controllers {S1,S,...Ss} such that

L(S}/GE) = Lo(H!) and L(S}/G¥) = L(HD)

if and only if the following three conditions hold:

1. Ly, (H]") is modular controllable with respect to L(G}) and .
2. Lm(ﬂ-[lh) is modular coobservable with respect to L(GY), Pi,...,P; and Ee1,..., Zes.

3. Lm(ﬂ-[lh) is modular L,,(G})-closed.

The proof of this theorem is constructive and is a generalization of the proof of the Control-
lability and Coobservability Theorem discussed in [7] and depends on a sample-path argument
which we do not show here. This result says that a set of nonblocking controllers S1,S5>,...S; that

achieve a set of modular specifications 7" for a modular system G§ (i.e., £,,(S}/G}) = L, (H)
and L(S5/G}) = L(H}")) exists if and only if the system is modular controllable, modular coob-
servable and modular £,,(G;)-closed. These properties completely characterize necessary and
sufficient existence conditions for controllers of modular systems. In turn, these properties can
play a role in safe controller synthesis when existence conditions are not satisfied for a controlled
system to match a specification. Safe controller synthesis for monolithic systems is discussed in
[7]. We can now show the computational complexity of deciding a relatively simple controller
existence problem.

Theorem 10 [47] The problem of deciding if there is a full-observation controller S with control-
lable event set X for a set of prefix-closed finite-state automata system modules gf and a prefix-
closed finite-state specification automaton H such that £L(S/G3) = L(H) is PSPACE-complete
even if we know L(H) C L(G?).

The controller existence problem in Theorem 10 is shown to be in PSPACE using the results of
Theorem 9 and the fact that deciding modular controllability, modular % "-closure and modular
controllability is PSPACE. The problem is shown to be PSPACE-complete using a reduction from
the problem in Theorem 3.

The result in Theorem 10 is particularly disappointing because is shows that a relatively large
and simple class of controller existence problems involving modular system automata is PSPACE-
complete. Due to Theorem 10 it should also be apparent that deciding modular controllability for
languages specified by finite-state automata is PSPACE-complete because modular observability
and modular £,,(G})-closure are implied by full observation and prefix-closure, respectively.

Given 7—[{’, deciding if H f‘ is nonblocking is a PSPACE-complete problem. This can be shown
using a simple reduction from the automata intersection problem presented in [24]. However,
we may have enough foreknowledge to decide this property holds in a computationally feasible
manner. We assume that the modular specifications are given such that H f’ is nonblocking. If the
specification is blocking, no nonblocking controllers that achieves the specification can exist.

Similarly, the astute reader will note that £, (H fl) C £,,(GY) is a necessary condition for both
L,(85/GS) = Ly(HI) and L,,(H") to be modular £,,(G{)-closed. If L,,(H') € L,,(G§) we can

replace 7—[1h with 7-[1h U G so that the specification behavior is strictly smaller than the system

behavior. Hi||...||Hp||G1]|...||G, is the automaton equivalent of the new specification behavior.
This substitution will not alter the computational complexity of the problems discussed in this
paper.

If we do not know that L(H!) # 0 or that L(H") C £(GY}), controller existence problems
remain PSPACE-complete. Likewise, a large class of nonblocking controller existence problems
for modular systems specified by finite-state automata are also PSPACE-complete due to Theorem
9 because the nonblocking controller problems are known to be at least as difficult as prefix-closed
specification problems.

For the case of full control (namely, ¥, = X) and partial observation, we can show using
similar proof methods that the controller existence problem for a modular system and a monolithic
specification is likewise PSPACE-complete. This implies that deciding both modular observability
and modular coobservability for languages specified by deterministic finite-state automata is also
PSPACE-complete.

4.4 Modular Problems and State Explosion

It may appear at first that modular system verification and control decision problems are more
time-expensive than their equivalent monolithic problems, but we must realize that a modular
problem can be padded out to a monolithic problem by performing the parallel composition of
the system modules. The monolithic computation may take polynomial time in the size of the
monolithic system, but the size of the monolithic system is potentially exponential in the size
of its modules (if the system can be effectively decomposed into modules). Therefore, there is
no consistent time disadvantage in performing modular computations versus monolithic compu-
tations. Modular computations appear to take longer because a different metric is used. Namely,
we measure computation time with respect to the size of the input and the size of the modular
problem input is potentially very small. Therefore, there is potentially an exponential contrac-
tion in information storage space that occurs when a system can be converted efficiently from a
monolithic system to a modular system. We must remember that the possibly great savings in
computation space by using modular systems is the reason the discrete-event systems community
began to investigate the use of modules in the first place - to avoid the stafe explosion problem.

4.5 The Time-Space Tradeoff

We know PSPACE-complete decision problems (such as deciding coobservability), can always be
solved in a space efficient manner, but we do not believe these problems can be solved in a time
efficient manner in the worst case. The traditional methods for solving many modular control and
verification problems involve searching over all the reachable system states with breadth-first and
depth-first searching methods to test for the reachability of “special” states that indicate the satisfi-
ability of system properties such as controllability or generated language inclusion. These methods
would in the worst case store all reachable system states in memory, which is computationally very
expensive in both time and space in the worst case. Despite these negative attributes, this method
for testing system properties is most likely the fastest (i.e., least time expensive) method for testing
these properties.

However, when using these methods for performing modular system operations, limitations in
system memory generally cause a larger restriction on the problems that can be effectively solved
rather than the amount of time needed for computation. This is because we may need to store
all reachable system states in memory and in modern computation devices, memory can be filled
very fast. Therefore the real restriction on computations involving modular systems using current
methods is not computation time, but computation space. It would make sense to trade some
computation time for computation space in order to solve more problems. However, we cannot
trade too much time for decreased computation space because we need to allow our calculations
to complete in a reasonable amount of time.

We have already shown how many decision problems for decentralized control and modu-
lar systems are PSPACE-complete which means that these problems can be solved efficiently in
computation space. Also, many of the problems we discussed can be easily converted to to prob-
lems of deciding reachability in a labelled transition system, which is a well known problem in
the computer science community. It is shown in [23] that reachability for a directed graph is
NLOGSPACE-complete, meaning that the besides the space needed to store the transition system,
a nondeterministic computation device needs at most a space logarithmic in the size of the encod-
ing of the transition to decide reachability. Of course no nondeterministic computation machine
exists, but as we alluded to before, Savitch [55] shows a way to convert a nondeterministic com-

putation using space S to a deterministic computation using space S2. Savitch’s limit is the best
known space-efficient conversion for the conversion of nondeterministic computations to deter-
ministic computations and can be used to get a general feel for a lower limit on the amount of
computation space required for many of the verification and control decision problems we discuss
in this paper.

Although powerful, Savitch’s method is not entirely intuitive or time-efficient for converting
nondeterministic computations to deterministic computations. Savitch’s method is a “one-size-
fits-all” approach that makes no consideration of special system structure that may be exploited
to develop more intuitive or effective algorithms. Savitch’s nondeterministic conversion method
is essentially a test of reachability in a directed graph representing the computation tree of a non-
deterministic space-bounded Turing machine where the nodes of the graph are the various in-
stantaneous descriptions of the Turing machine and the edges represent valid computation steps.
This method has been used to give an intuitive space-efficient deterministic method for deciding
coobservability using the /M -machine construction [49]. This method was developed to attempt
to take the maximum known theoretical advantage possible of the time-space tradeoff inherent to
PSPACE-complete problems using a method inspired by Savtich’s method. However, as may be
expected, the algorithm developed in [49] uses more time than reasonable.

This highlights a very interesting area for future research related to modular systems which
we mentioned earlier. It would be worthwhile to develop algorithms for deciding control and
verification problems for decentralized and modular problems that trade a reasonable amount of
computation time for a more efficient use of computation space. There has been a large volume
of related work from the computer science community that explores the time-space tradeoff in
reachability problems. Space-efficient methods for undirected sz-connectivity is discussed in [2].
There is a heuristic method presented in [8] for searching with restricted memory. A sweep-
line state exploration method is discussed in [25] that uses less space than traditional state space
exploration methods but still suffers from the state explosion problem. Although the method
discussed in [38] stores a large fraction of the system states in memory to decide reachability,
the authors use a pseudo-root state technique to cause a reduction in the number of states that
need to be enumerated. There has also been a large volume of work related to the verification of
systems from the formal methods community in computer science. See the texts [10] and [19] for
an introduction.

5 Discussion

We have discussed the computational limitations of various problems being researched in the su-
pervisory control community. We have explored the boundary between decidability and undecid-
ability for deciding controller existence for systems with range specifications. It has been shown
that the problem of deciding if there are nonblocking decentralized controllers for range specifica-
tions is undecidable, meaning that there are no algorithms for solving this problem. However, this
problem is decidable if we assume centralized control and/or if blocking is disregarded.

We also discussed computational issues related to modular discrete-event system control prob-
lems that are also being researched in the supervisory control community. There is no shift from
decidability to undecidability when modular systems are used instead of monolithic systems al-
though there is a marked increase in the computational complexity of these problems. It is shown
that a large number of simple problems which are polynomial time decidable for monolithic sys-
tems are PSPACE-complete when we assume modular systems. Verification is found to be com-

putationally difficult in general along with problems of deciding controller existence.

The increased computational complexity for modular problems is most likely due to the ne-
cessity of enumerating over all possible system states in the modular systems for control and
verification. This exhaustive state enumeration is computationally difficult because the number
of system states is exponential in the number of system components in the worst case. However,
although the modular control and verification problems discussed are in PSPACE, current methods
for solving these computationally expensive problems typically use a large amount of computa-
tion space by exhaustively storing all system states in memory in order to save on computation
time. This is problematic for modern computation devices as computation space can be filled very
quickly and hence, many problems cannot be solved due to space limitations rather than time lim-
itations. Further research is needed on the development of approaches to solve these problems by
balancing the time-space tradeoff inherent to many computationally difficult problems.

Our results on deciding controller existence also show that synthesizing controllers for mod-
ular systems is likewise computationally difficult. Another approach that has been proposed to
circumvent this computational difficulty for control system synthesis has been to use online con-
trol methods where the control actions are computed on the fly as system behavior evolves. This
approach as been successfully applied to reduce intensive precomputation of control actions in
both the centralized and decentralized control of monolithic systems ([15] and [46] respectively).
Online methods for centralized control allows for maximal behavior, but there is no known similar
result for online decentralized control.

When using online control on monolithic systems, control actions can be updated as observa-
tions of system behavior are made in polynomial time with respect to the size of the monolithic
system. However, in the worst case, the problem of updating online control actions is PSPACE-
complete for modular systems [47]. The high computational complexity is due to the large current
state spaces when the online control algorithms make estimates of the current system state. How-
ever, we feel that for many real-world systems, this computational difficulty is not problematic if
we make system assumptions such that system state estimates are not overly large and the modular
online controllers can therefore compute control actions in a computationally reasonable manner.

Our results also imply that instead of working on computationally intensive methods for solv-
ing general modular verification problems, we should focus our efforts on heuristic methods to
efficiently solve problems for special cases of important practical interest. An example of such
a research effort is seen in [45] where the authors investigate modular system models where the
modules exhibit a degree of symmetry that allow for a relaxation of the computational complexity.

Finally, we mention that system decomposition is another approach for tackling the compu-
tational difficulties associated with complex systems. Petri net models appear to be particularly
well-suited for performing system decomposition due to the inherent distributed nature of the
states in a Petri net model. This feature is exploited using the concept of place bounded Petri nets
in the context of fault diagnosis problems in [13].

References

[1] S. Bala. Intersection of regular languages and star hierarchy. In Proc. 29th Int. Colloquium
Automata, Languages and Programming, pages 159-169, 2002.

[2] G. Barnes and W. L. Ruzzo. Deterministic algorithms for undirected s-t connectivity using
polynomial time and sublinear space (extended abstract). In ACM Symposium on Theory of
Computing, pages 43-53, 1991.

(3]

[4]

[5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Bergeron. Sharing out control in distributed processes. Theoretical Computer Science,
139:163-186, 1995.

V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results in systems
and control. Automatica, 36(9):1249-1274, 2000.

B.A. Brandin, R. Malik, and P. Dietrich. Incremental system verification and synthesis of
minimally restrictive behaviors. In Proc. of 2000 American Control Conference, pages 4056—
4061, 2000.

H.-D. Burkhard. Fairness and control in multi-agent systems. Theoretical Computer Science,
189:109-127, 1997.

C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Aca-
demic Publishers, Boston, MA, 1999.

P.P. Chakrabarti, S. Ghose, A. Acharya, and S.C. de Sarkar. Heuristic search in restricted
memory. Artificial Intellgience, 41:197-221, 1989.

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete-event
processes with partial observations. IEEE Trans. Auto. Contr., 33(3):249-260, March 1988.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, Cambridge,
MA, 2002.

D.Z. Du and K.I. Ko. Theory of Computational Complexity. John Wiley and Sons, Inc.,
2000.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

S. Genc and S. Lafortune. Distributed diagnosis of DES using Petri nets. In E. Best and
W.M.P van der Aalst, editors, International Conference on Application and Theory of Petri
Nets - ATPN 2003. Springer-Verlag, 2003.

P. Gohari and W.M. Wonham. On the complexity of supervisory control design in the RW
framework. IEEE Transactions on Systems, Man and Cybernetics, Part B, 30(5):643-652,
2000.

N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and distributed algorithms for
on-line synthesis of maximal control policies under partial observation. Journal of Discrete
Event Dynamical Systems: Theory and Applications, 6:379-427, 1996.

D. Harel, O. Kupferman, and M.Y. Vardi. On the complexity of verifying concurrent transi-
tion systems. Information and Computation, 173:143-161, 2002.

T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science, 221:369-392, 1999.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison Wesley, Reading, MA, USA, 1979.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M.D.A Huth and M.D. Ryan. Logic in Computer Science Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge, UK, 2000.

K. Inan. Nondeterministic supervision under partial observation. In G. Cohen and J. Quadrat,
editors, 11th International Conference on Analysis and Optimization of Systems: Discrete
Event Systems, pages 39—48. Springer-Verlag, 1994.

S. Jiang, V. Chandra, and R. Kumar. Decentralized control of discrete event systems with
multiple local specilizations. In Proc. of 2001 American Control Conference, pages 959-964,
2001.

S. Jiang and R. Kumar. Decentralized control of discrete event systems with specializations
to local control and concurrent systems. [EEE Transactions on Systems, Man and Cybernet-
ics, Part B, 30(5):653-660, 2000.

N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Com-
puter and System Sciences, 11:68-75, 1975.

D. Kozen. Lower bounds for natural proof systems. In Proc. 18th Symp. on the Foundations
of Computer Science, pages 254-266, 1977.

L. Kristensen and T. Mailund. A compositional sweep-line state space exploration method.
In D. Peled and M. Vardi, editors, Formal Techniques for Networked and Distributed Systems
- FORTE 2002, number 629 in LNCS, pages 327-343. Springer-Verlag, 2002.

O. Kupferman and M. Vardi. Verification of fair transition systems. Chicago Journal of
Theoretical Computer Science, 1998(2):1-37, 1998.

O. Kupferman and M. Vardi. Synthesizing distributed systems. In Proc. 16th IEEE Symp.
on Logic in Computer Science, pages 8§1-92, 2001.

O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312-360, 2000.

H. Lamouchi and J.G. Thistle. Effective control synthesis for DES under partial observations.
In Proc. 39th IEEE Conf. on Decision and Control, pages 22-28, 2000.

K.-J. Lange and P. Rossmanith. The emptiness problem for intersections of regular lan-
guages. In 1. Havel, editor, Proc. of the 17th Conf. on Mathematical Foundations of Computer
Science, number 629 in LNCS, pages 346-354. Springer-Verlag, 1992.

R.J. Leduc, B. Brandin, M. Lawford, and W.M. Wonham. Hierarchical interface-based su-
pervisory control: Serial case. In Proc. 40th IEEE Conf. on Decision and Control, pages
4116-4121, 2001.

R.J. Leduc, M. Lawford, and W.M. Wonham. Hierarchical interface-based supervisory con-
trol: AIP example. In 39th Allerton Conf. on Comm., Contr., and Comp., 2001.

F. Lin. On Controllability and Observability of Discrete Event Systems. PhD thesis, Depart-
ment of Electrical Engineering, The University of Toronto, 1987.

F. Lin and W. M. Wonham. Decentralized supervisory control of discrete-event systems.
Information Sciences, 44:199-224, 1988.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

F. Lin and W. M. Wonham. On observability of discrete-event systems. Information Sciences,
44:173-198, 1988.

P. Madhusudan and P.S. Thiagarajan. Distributed controller synthesis for local specifica-
tions. In Proc. 28th Int. Colloquium Automata, Languages and Programming, pages 396—
407, 2001.

C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

A. Parashkevov and J. Yantchev. Space efficient reachability analysis through use of pseudo-
root states. In Tools and Algorithms for Construction and Analysis of Systems, pages 50-64,
1997.

A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In Proc. 31st
Symp. on the Foundations of Computer Science, pages 746-757, 1990.

M. H. Queiroz and J. E. R. Cury. Modular control of composed systems. In Proc. of 2000
American Control Conference, 2000.

P.J. Ramadage. Some tractable supervisory control problems for discrete-event systems mod-
eled by Biichi automata. IEEE Trans. Auto. Contr., 34(1):10-19, 1989.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event processes.
SIAM Journal of Control Optimization, 25(1):206-230, 1987.

PJ. Ramadge and W.M. Wonham. The control of discrete-event systems. Proc. IEEE,
77(1):81-98, 1989.

S. L. Ricker and K. Rudie. Incorporating knowledge into discrete-event control systems.
IEEE Trans. Auto. Contr., 45(9):1656-1668, 2000.

K. Rohloff and S. Lafortune. The control and verification of similar agents operating in a
broadcast network. Preprint.

K. Rohloff and S. Lafortune. On the synthesis of safe control policies in decentralized control
of discrete event systems. Manuscript to appear in IEEE Trans. on Automatic Control.

K. Rohloff and S. Lafortune. PSPACE-completeness of automata intersection decision prob-
lems with applications to supervisory control. Preprint.

K. Rohloff and S. Lafortune. On the computational complexity of the verification of mod-
ular discrete-event systems. In Proc. 41st IEEE Conf. on Decision and Control, Las Vegas,
Nevada, December 2002.

K. Rohloff and S. Lafortune. Space efficient methods for testing reachability with applica-
tions to coobservability and decentralized control. Technical Report CGR03-08, Department
of Electrical Engineering and Computer Science, University of Michigan, 2003.

K. Rohloff, T.-S. Yoo, and S. Lafortune. Deciding coobservability is PSPACE-complete.
Manuscript accepted to IEEE Trans. on Automat. Control.

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

K. Rohloff, T.S. Yoo, and S. Lafortune. Deciding coobservability is PSPACE-complete.
Technical Report CGR03-06, Department of Electrical Engineering and Computer Science,
University of Michigan, 2003.

K. Rudie and J.C. Willems. The computational complexity of decentralized discrete-event
control problems. IEEE Trans. Auto. Contr., 40(7):1313-1318, 1995.

K. Rudie and W.M. Wonham. The infimal prefix-closed and observable superlanguage of a
given language. Systems & Control Letters, 15:361-371, 1990.

K. Rudie and W.M. Wonham. Think globally, act locally: Decentralized supervisory control.
IEEE Trans. Auto. Contr., 37(11):1692-1708, November 1992.

W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal Comput. Sys. Sci., 4(2):177-192, 1970.

M Sipser. Introduction to the Theory of Copmutation. Brooks Cole, first edition, 1997.

S. Tripakis. Undecidable problems of decentralized observation and control. In Proc. 40th
IEEE Conf. on Decision and Control, pages 4104—4109, 2001.

J. Tsitsiklis. On the control of discrete-event dynamical systems. Mathematics of Control,
Signals and Systems, 2:95-107, 1989.

M. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115:1-37, 1994.

Y. Willner and M. Heyman. Supervisory control of concurrent discrete event systems. Inter-
national Journal of Control, 54(5):1143-1169, 1991.

K.C. Wong and W.M. Wonham. Modular control and coordination of discrete-event systems.
Journal of Discrete Event Dynamical Systems: Theory and Applications, 8:247-297, 1998.

W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a given
language. SIAM Journal of Control and Optimization, 25(3):637-659, 1987.

W. M. Wonham and P. J. Ramadge. Modular supervisory control of discrete event systems.
Maths. of Control, Signals and Systems, 1(1):13-30, 1988.

T.-S. Yoo and S. Lafortune. On the computational complexity of some problems arising in
partially-observed discrete-event systems. Manuscript submitted to IEEE Trans. on Automat.
Control.

T.S. Yoo. Monitoring and Control of Partially-Observed Discrete-Event Systems. PhD thesis,
The University of Michigan, Ann Arbor, 2002.

