The Control and Verification of Similar Agents Operating in a
Broadcast Network Environment !

Kurt Rohloff and Stéphane Lafortune
Department of Electrical Engineering and Computer Science
The University of Michigan
1301 Beal Ave., Ann Arbor, M1 48109-2122, USA
{krohloff,stephane } @eecs.umich.edu; www.eecs.umich.edu/umdes

Abstract

We explore issues related to the control and verification of
similar agents that interact through events broadcast over a
network. The similar agents are modeled as discrete-event
systems that have identical structure. System events are
partitioned into global and private events that respectively
affect all agents or exactly one agent. We show how the
state explosion problem inherent to many concurrent sys-
tems is not as problematic in this setting. We give a pro-
cedure to test if these systems are globally deadlock-free or
nonblocking. We explore control and verification problems
related to both local and global specifications on these sys-
tems. For each module there is exactly one controller and all
controllers enforce the same control policy. Necessary and
sufficient conditions for achieving local and global specifi-
cations in this setting are identified.

1 Introduction

Many real-world systems are comprised of interacting
agents that can be modeled in a modular manner. Often
many of these agents exhibit a degree of similarity such
that they can be modeled as interacting modular subsystems
that are exact copies of one another. It is possible in prin-
ciple to convert the set of modular subsystems to a mono-
lithic model to simplify the control and verification of the
behavior of these interacting agents. However, this conver-
sion from modular to monolithic systems is generally not
computationally feasible as this operation suffers from the
well-known state explosion problem. Regardless of the dif-
ficulties inherent to the conversion of modular systems to
monolithic systems, it is generally more intuitive to manip-
ulate concurrent processes as modular systems. It has been
found that in general the verification and control of modular
systems is complicated [3, 4, 6, 16, 17, 18, 20].

We explore a model for similar interacting agents that hope-
fully leads to more computationally tractable methods for
solving verification and control problems. The modules are

IThis research was supported in part by NSF grant CCR-0082784.

exact copies of one another except for a renaming of private
events. Many relevant and important real-world processes
are included in this class of systems such as platoons of sim-
ilar unmanned aerial vehicles, sensor networks operating in
an unknown environment and communication systems all
running the same protocol at all nodes of a network. We at-
tempt to make our model as general as possible so we do not
specify the exact broadcast medium the similar agents will
use for interaction. However, it could be conceived that the
agents are communicating over a common data link such as
an Ethernet LAN or through the use of radio transmissions
that can be received by all modules.

The system events are partitioned into global and local be-
havior events. The behavior of the modules is coordinated
only through the occurrence of global events, and the oc-
currence of a local event affects only the module where
it occurs. We assume that there is exactly one controller
per module that makes local observations and enforces lo-
cal control actions, but local controllers can disable global
events. As with the system modules, the controllers are sim-
ilar in that all controllers enforce the same control policy at
each of their respective subsystems except for a renaming
of the respective local events. There is no explicit commu-
nication between controllers.

We generally follow the framework of “supervisory control
theory”(SCT) introduced in the seminal work of [15]. The
interested reader may consult the text [1] for a general in-
troduction to discrete-event systems and SCT. The finite au-
tomaton modeling formalism which we use here is generally
considered to be the simplest one for discrete-event systems
that is expressive enough to approximate the behavior of
real-world systems in a reasonable manner. We assume each
local controller is a parallel control system modeled as a fi-
nite automaton. Namely, the controller is realized as an au-
tomaton that is coupled to the uncontrolled system through
parallel composition. The controllers make observations of
global and local behavior and enact control actions at the lo-
cal site as introduced in [9]. We also use the parallel compo-
sition operation to model interaction between our modules,
which is currently the standard method to model the interac-
tion between automata in discrete-event system theory. We

call our model for interacting similar module systems “Iso-
morphic Module Systems” or IMS’s because the modules
are isomorphic to one another.

Specifications for modular systems can be made at both
the local and global levels. We assume that our specifica-
tions are given as languages and we wish our systems to
exactly match the behavior of these specifications. We give
a method for testing if a system is globally deadlock-free or
nonblocking that avoids enumerating over all system states
in an IMS. We show that for local specifications, control
and verification problems are computationally very simple.
We find that global language specifications are more prob-
lematic for our models, but we give necessary and suffi-
cient conditions for the existence of controllers to achieve
a global specification.

The supervision of modular systems is currently receiving
much attention from the control research community; see,
e.g., 2,5 7,8,9, 11, 12, 13, 14, 21, 22, 23]. Some of
the earlier results relating to modular supervision are shown
in [9, 11, 14, 21, 23]. Properties of modular discrete-event
systems when the modules have disjoint alphabets are in-
vestigated in [13, 14]. Various local specification and con-
current supervision problems, respectively, are investigated
in [5]. The supervision of modular systems using specific
architectures is discussed in [7, 8]. A form of modular con-
trol where each controller has a different objective is dis-
cussed in [2]. Situations when local nonblocking behavior
implies global nonblocking behavior are discussed in [12].
To the best of our knowledge however, problems of inter-
acting similar systems have received very little attention in
the literature.

In the next section of this paper we formally define the mod-
els used in this paper. In Section 3 we discuss classes of
equivalent states in our models and how we can decrease
the number of states that need to be checked in the worst-
case in order to verify global properties. In Section 4 we
discuss local specification problems and in Section 5 we dis-
cuss problems related to global specifications. We close this
paper with a discussion of our results and possible areas for
further research in Section 6.

2 Model Definition

We now introduce the models used in the rest of the paper.
Automaton G| = (X,xo0,%1,01,X,) models the behavior of
a generic module in our system. The overall system is com-
posed of a set of system modules {Gj,...,Gy,} isomorphic
to Gi. The module event set X is partitioned into the dis-
tinct subsets X, and X1, the global event set and the private
event set for module 1, respectively. Let X,...,X,, be ad-
ditional event sets that represent copies of the private event
sets for Gy, ...,G,, respectively, such that for all i, j,i # j,
YeNXpi=0and Xp;NEy; = 0. Define &; = X, UL, and let

Y denote ¥ U---UX,. The events in X; are the events whose
occurrence affect behavior in G;.

We use the function ¥; : X1 — X; that maps the private event
set of the first module to the ith private event set and maps
global events to themselves. This function is extended in
the usual manner to map strings from ZJ to strings from X}.
Let ‘Pi_l denote the corresponding inverse mapping from £}
to X7. We also use the function ¥y, : ©* — X* to denote the
operation where, for K C X*, W;(K) is the set of strings
t € K except all events 61 € X, in ¢ are replaced with the
corresponding event from o; € Xj; and all events ©; in ¢ are
replaced with the corresponding event from 6 according to
W;(-). Let P; : ¥* — X¥ be the natural projection that erases
events in £\ ¥; and let the inverse projection Pl-_1 (X = 2T
be defined in the usual manner [1].

When constructing G; € {G1,...,G,} from G, we replace
all events in X,; with the respective events from X,; ac-
cording to the W¥;(-) mapping. To formalize, let G; =
(X,x0,%:,08i,Xim). For x € X,y € X;, we define J;(x,Yy) =
81(x, ¥ (7). We do not index the state sets X and X,
because it does not matter if the state labels are replicated.
We take advantage of this replication of state labels in the
next section.

As was mentioned in the introduction, we use the par-
allel composition, denoted by ||, to model the interac-
tion between modules. Therefore, given a set of modules
{Gji,...,Gy}, the composed monolithic equivalent of these
interacting modules can be expressed as Gi|---[|G,. We
call the system just described with {G1,...,G,} as defined
an IMS. Let X be the state space of G||---||G,. We call
the states of the individual modules (i.e., x € X) module
states and the states of the composed system Gi||---||G,
(i.e., ¥ € X) composed states. Let ¥ be the ith module state
in ¥. Observe that L£,(Gi|--+]|G,) = Py (Lu(G1))N---N
B (Ln(Gn)) and L(Gi||-+-]|G,) = PT(L(G1)) N -+ N
P71(L(G,)). We introduce the following definitions which
will be used below.

Definition 1 A language K C L* is said to be symmetric
with respect to the private event sets Lpi,...,Lp, and the
mappings ¥11,..., Y1, ifVie {1,...,n}¥;(K) =K.

This symmetry definition is used to convey the intuition that
K is identical with respect to a relabeling of private events
for the IMS {Gj,..,Gn}

Definition 2 [/9] A language K C X* is decomposable with
respect to the projections {P\,...,P,} if K = P ' (P (K)) N
=N (Po(K)).

A language is decomposable if given the local knowledge
of K at all sites, i.e., Pi(K),...,P,(K), we can recover K.

Note that this definition is slightly altered from the defini-
tion given in [19] in that we disregard system behavior.

Definition 3 [23] A set of languages {L1,...,Ly} is said to
be nonconflicting if L1 N---NL, = Lin---NL,.

It is known that the parallel composition of a set of non-
blocking automata need not be nonblocking unless the re-
spective languages marked by the automata are nonconflict-
ing.

Given a supervisor S and a system Gy, we denote the com-
posed system of S; supervising G; as the supervised sys-
tem S;/G. Furthermore, because we assume we are us-
ing parallel supervisors realized as finite-state automata,
S1/G is equivalent to S1||G;. Supervisor S; is said to
be nonblocking for system G if S||G; is nonblocking,
ie., if £,(81]|G1) = L(S1]|G1). For our control systems
model, we assume that the controller automata {S5,...,S,}
are copies of the generic control module S; with the private
events replaced according to the ¥;(-) mapping. We call
{S1,--.,Sx} a set of Isomorphic Module Controllers.

We assume that a local controller S; operating on module G;
observes and controls only locally relevant events (X,; C X;
and ¥,; C %) respectively. Furthermore, let £,.; = X; \ X
Let P,; : * — X7, be the natural projection that erases events
in X\ X,;. P,; represents the projection operation for the lo-
cal observations of controller S;. Let the inverse projection

P{;l : Zf — 2%" be defined in the usual manner [1].

An automaton G is blocking (resp. deadlocking) by defi-
nition if there is a reachable blocking (resp. deadlocking)
state x in G. A state x is blocked if there is no path to reach
a marked state from x according to the transition rules of
G. A state x is deadlocked if there are no transitions from
x according to the transition rules of G. Note that testing
if a system is deadlock-free or nonblocking can be reduced
to problems of testing reachability. As a reminder to the
reader, a system that is nonblocking is not deadlock-free if
a marked state deadlocks.

3 Verification

Given a set of automata {Gj,...,G,} such that the size of
their respective state spaces is bounded by k, the composed
automaton Gi||---||G, has k" reachable states in the worst
case. As n grows, this state space can become unbearably
large and we would understandably be unable to perform
any procedures that require us to enumerate over all of the
reachable states of Gy||---||G, in a time-efficient manner.
Therefore we would be unable to efficiently perform many
control or verification procedures on the composed system
G1||---||Gn with respect to a global specification K using
current known methods.

However, with the added structure for isomorphic module
systems we introduced above, there are several shortcuts to
decrease our computation time when we wish to perform
control and verification procedures. We show how the sym-
metries in the state space of the composed systems decrease
the number of states we need to check to verify the behav-
ior of the composed model. We now show an example to
demonstrate how the states of an IMS can be partitioned
into sets of “equivalent” states.

Example 1 Consider the 2-module system composed of the
similar modules G| and G, seen in Figure 1. Let Y, =
{'Y, 7\,}, Zpl = {0(1,51} and Epz = {062,52}. G and Gy are
both locally deadlock-free and nonblocking.

G

Y
o
—(

Figure 1: The automata G| and G».

Figure 2: The automaton G ||G>.

Now consider the composed system G1||G, as seen in Fig-
ure 2. The automaton G1||G has a large degree of sym-
metry due to the similarity of the component automata G
and Gs. Consider the states (1,2) and (2,1). These states
are reached by the occurrence of 0 and 0.1 events respec-
tively. Consider also the (2,3) and (3,2) states in G1||Ga.
If we swap the subscript labels of the events in the strings
leading to state (2,3) the resulting string will lead instead
to state (3,2). The parallel composition operation is com-
mutative and so, the order of parallel composition is arbi-
trary. Due to the isomorphic structure of the automata it
should not matter if we alter the order of the component au-

tomata when verifying state properties in the composed sys-
tem. This is because the modules are identical with respect
to a renaming of private events. Therefore, any property of
state (2,3) is also held by state (3,2) because by swapping
state locations we are in effect swapping the order of paral-
lel composition of the component automata.

For G1||G3 there are six classes of states that could be con-
sidered equivalent with respect to a reordering of the com-
ponent states. The six sets of equivalent state classes are
{(1,D}1{(1,2),(2,1)}1.{(1,3),(3, D }1,{(2,2)},
{(2,3),(3,2)} and {(3,3)}.

Now consider a third component G5 similar to G and G, as
seen in Figure 1. A state (xq,%p,xc) in G1||G2||G3 is equiva-
lent to (Xay%c,Xp), (XpyXa,Xe), (XpyXeyXa), etc... with respect
to a shuffling of the components G1, G2 and G3.

The intuition we are trying to develop with Example 1 is
that state orderings do not matter when testing global prop-
erties. Given a state space X = {xi,...,x;} for an IMS
Gi,...,Gy, we can place an ordering on the states in X such
that x; < xp < --- < x¢. Therefore, for any state X in the com-
posed machine Gi||---||G,, we can reorder the component
states in X such that the component states have the correct
ordering with respect to the list x; < xp < -+ < x;. We call
this rearranged state with the correct component state or-
dering the standard representation of the original state. The
notion of a state’s standard representations establishes sev-
eral classes of equivalent states such that two states are in an
equivalence class if they have the same standard representa-
tion. We define a function SR : X — X that maps a composed
state to its standard representation and let SR~(-) be the in-
verse function that returns a set of states that have the same
standard representation as its input. The initial state X is its
own standard representation because xp = (xg,---,X0).

We now define an automaton G = (f(,)EE),Z,S,X;”) con-

structed from {G1,...,G,}. G uses the set of standard rep-
resentations of the reachable states in Gy||...||G, as its state
space and fm is the set of all marked states in X. X, is
the initial state of Gi||---||Gy. The state transition function

_S : X — X is defined as follows:

SR((81(x',0),...,8,(¥",0)))ifc € &,
SR((%',...,8(¥,0),...,x"))if 6 € L)
undefined otherwise.

We can extend the definition of S(,) to allows strings
of arbitrary length using the usual methods. We call G
the reduced state space composed automaton. G can be
constructed efficiently using standard breadth-first methods.
We now use the IMS introduced in Example 1 to demon-
strate the construction of a reduced state space composed
automaton G.

Example 2 Consider the IMS G1,G introduced in Exam-
ple I above. The set of standard representations in G1||G» is
{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}. The reduced state
space composed automaton G can be seen in Figure 3. Note
that G has a smaller state space than G,||G».

Figure 3: The automaton G constructed from G1,Gs.

We can use G to perform verification on the composed be-
havior of Gy||---||G,. First, we show reachability in G im-
plies a form of reachability in Gy || - ||G, and vice-versa.

Theorem 1 Given two states X,y in a reduced state space
composed automaton G constructed from an IMS composed
of Gi,...,Gy, X is reachable from ¥ in exactly p steps ac-
cording to the transition rules of G if and only if all states
in SR™'(¥) are reachable from a state in SR~ (¥) in exactly
p steps according to the transition rules of G1||---||Gy.

Due to space considerations we do not show the proof of
this theorem, but it is fundamentally a proof by induction. A
similar proof can also be used to show that given two states
X,7in G, X is reachable from ¥ in exactly p steps if and only
if from all states in SR™!(¥) there is a set of transitions that
leads to a state in SR™!(¥) in exactly p steps according to
the transition rules of Gi||---||G,. We can extend Theorem
1 to the following useful corollary using a proof by contra-
diction.

Corollary 1 Given two states X,¥ in a reduced state space
composed automaton G constructed from an IMS composed
of Gi,...,Gy, X is reachable from ¥ according to the tran-
sition rules of G if and only if all states in SR™'(X) are
reachable from a state in SR™'(¥) according to the tran-
sition rules of Gi||-+-||Gn.

Based on the definitions of deadlock-free and nonblocking
systems, Corollary 1 implies the following corollary.

Corollary 2 Given an IMS composed of Gi,...,Gy,
the composed system Gi||---||G, is nonblocking (resp.

deadlock-free) if and only if G is nonblocking (resp.
deadlock-free).

Corollary 2 shows two of the main advantages of using the
automaton G: the construction allows us to test if an IMS is
deadlock-free or nonblocking in less time using a construc-
tion with a smaller space than would be needed if we were
to construct the full system G || - --||G, and enumerate over
all states.

From here a fruitful question to ask would be given an IMS
Gi,...,Gy, based on the model we introduced in Section 2
where k = |X|, how many sets of equivalent states are there?
This would put an upper limit on the size of the reachable
state space of G. This question is equivalent to the question
from bag theory where given a set of k elements and a bag
that can contain n objects, how many ways are there to fill
the bag? This problem is equivalent to a bin and ball prob-
lem from combinatorics where we are asked to find how
many ways there are to fill (n+ 1) bins using (k — 1) balls.
For this problem, there are

k+n—1Y\ [(k+n—1)! n

n U (k=1)n!
ways to fill the bins. Therefore, there are the same number
of classes of states that need to be verified to check a global

property.

Although this is still a large number of classes of states
that need to be verified, it is rather smaller than k. We
demonstrate the reduction in computation using the IMS in-
troduced in Example 1.

Example 3 Suppose instead of a 2-module IMS {G1,G2}
in Example 1 we have an n-module system, {G1,...,G,}
with the same isomorphic structure as {G1,G2}. For this
example k = 3, so k" = 3" and

() (+222)- (552

Although not all problems have as dramatic a reduction in
the number of states that need to be enumerated over in or-
der to perform verification, we have found that for many
problem instances the number of equivalent state classes is
on the order of n*/k!. The time required to construct G
and test for deadlock-freeness or nonblocking is linear in
the size of the state-space of G. If a module of an IMS
has a relatively small state space and there are a fairly large
number of modules, the reductions in computation time and
space can be significant when performing verification using
the G construction described here.

When verifying similar module systems for local specifi-
cations, there are other approaches besides the brute-force

method of enumerating over all possible states. For in-
stance, we can take advantage of the symmetric system
structure and use a divide-and-conquer approach. We ex-
plore these possibilities in the next section.

4 Local Specifications

We now show that to verify local module behavior in an IMS
we only need to investigate the local module without the
interaction of other modules. Suppose we are given a lan-
guage specification K; C X} for behavior relevant to module
Gi. We assume that K| is also replicated as {K,...,K,} ac-
cording to the mapping ¥;(-). We may for example wish to
check if for all i, P; (L, (G1||---||Gn)) = K;. We can verify
this property by solely looking at the behavior £,,(G;). This
follows from the following theorem whose proof we do not
show due to space considerations.

Theorem 2 For an IMS {G\,...,G,} as introduced above
with respective local projection operations {Py,...,P,} and

Jorie{l,...,n}, Pi(Ln(Gil|---|Gn)) = Lun(Gi)-

We can now present the following corollary which is a direct
extension of Theorem 2.

Corollary 3 Given a local language specification K; and
IMS {Gy,...,Gn}, P;(Ln(Gi||---1|Gn)) = K; if and only if
Ln(Gi) =K.

Likewise, we can extend the results of Theorem 2 and
Corollary 3 to the case of generated languages rather than
marked languages. Verifying £,,(G;) = K; and L(G;) = K;
are both known to be computationally simple if K; is spec-
ified by an automaton. This means we can test local be-
havior in a composed IMS by looking at a single module.
This greatly simplifies previously known verification meth-
ods based on more general modular systems.

Similar reductions in computational effort also hold for
many control problems related to IMS’s with local spec-
ifications. For an IMS {Gi,...,G,} and similar lan-
guage specifications {Ki,...,K,}, suppose we would
like to know if there exists a nonblocking set of con-
trol automata {S,...,S,} as discussed above such that
Vi € {1,...,n} B[Lu((51/G)]|--[(S:/Ga)] = Ki and
P[L((S1/G1)||---1|(Sn/Gn))] = K;. This problem can be
solved by looking only at the local behavior of G| and the
locally observable and controllable event sets, X, and .1,
respectively, as seen in the following corollary whose proof
is based on the controllability and observability theorem as
seen in [10].

Corollary 4 For an IMS {G1,...,G,} as introduced above
with respective local projection operations {Py,...,P,},

observation projections {P,1,...,P,}, controllable
event sets {Xc1,...,2Zen} and local behavior specifica-
tions {Ki,...,K,} such that K; # 0, K; C L,(G;) and
Vie{l,...,n} K; =Y(K1), there exists a set of isomorphic
module controllers {S\,...,Sy} such that

B/ IS/G)] = K and
PL((S1/G)l-+- |1(Sn/Gn))] = Ki if and only if

1. K| is controllable with respect to L(G1) and ;.
2. K is observable with respect to L(G1), P,1 and X.
3. Ky is Ly (Gy)-closed.

The controllability and observability theorem is known to be
constructive so we have a method for synthesizing the local
controllers {S1,...,S,} such that local nonblocking specifi-
cations are satisfied at all nodes when the modules interact.
Our results also generalize to the cases where we may not
be concerned with marking properties.

5 Global Specifications

Suppose we are given a global specification K and
we are asked to decide if there exist nonblocking iso-
morphic module controllers {Si,...,S,} for an IMS
{Gy-.+,G} such that K = L,((S1/G1)||-+-[1(Sn/Gn)) and
K = L((S1/G)I|---1|(Sx/Gn)). Due to the similarity of
the controllers and system modules one would think that
K would have to exhibit a degree of symmetry with respect
to the occurrence of private events. This is exactly the case
which we find in Theorem 3 below. We do not show the
proof due to space considerations, but it is a constructive
proof and it gives a method for synthesizing the local con-
trollers to achieve the specification.

Theorem 3 For an IMS {G\,...,G,} as introduced above
with respective local projection operations {P1,...,Py},
observation projections {P,1,...,Pom}, controllable
event sets {Xc1,...,Ln} and global behavior specifi-
cation K such that K # 0 and K C L,(G1||---||Gn),
there exists a set of isomorphic module controllers
{S1,---,Su} such that L,,((S1/G1)||--||(Sn/Gn)) = K and

L(($1/GVII-+-11(Sn/Gn)) = K if and only if

1. K is symmetric w.rt. {Z1,..., X, }.

K is decomposable w.r.t. {Py,...,P,}.

{PTY(PI(K)), .., Py (Pu(K))} are nonconflicting.
(

Pi(K) is controllable w.r.t. L(G}) and X..
Pi(K) is observable w.r.t. L(G1), Py and Z.1.
Py (K)

S T R)

(K) is L,(Gy)-closed.

The six necessary and sufficient conditions for controller
existence in Theorem 3 can be divided into two types. The
first three conditions (symmetry, decomposability and non-
conflicting inverse projections) show that the global speci-
fications can be decomposed into symmetric local specifi-
cations such that the global behavior can be regained by re-
composing the local behavior. The last three conditions (lo-
cal controllability, observability and L,,-closure) are essen-
tially existence conditions for local controllers to achieve
local projections of global behavior. These conditions are
inherent to many controller problems and have been well
known since the early papers in supervisory control theory
[10, 15]. Given a set of local specifications {Kj,...,K,}
obtained from the local projections of the global specifica-
tion K, the controllers {Si,...,S,} can be synthesized very
easily using known methods.

The first condition demonstrates that any specification K
must contain a symmetry with respect to the local behav-
ior required at the local sites in {G,...,Gx}. The behavior
of all controllers operating on the modules should be similar
with respect to a renaming of local events, so the specifica-
tion is necessarily symmetric if it can be achieved.

The decomposability condition ensures that we can recon-
struct the specification K from its local behavior projections
P,...,P,. Therefore, if we know the local specifications are
achieved by the local behavior, i.e., Pi(K) = L, (Si/Gi), the
decomposability condition forces the global controlled be-
havior to be equivalent to the global behavior specification.

As is known from the standard literature in SCT, local non-
blocking behavior does not imply global nonblocking be-
havior. The nonconflicting condition ensures that local non-
blocking behavior implies global nonblocking behavior.

Taken together, the first three conditions imply that the
global specification can be expressed as isomorphic noncon-
flicting local specifications if there exists a set of isomorphic
controllers that can be coupled with the IMS to achieve the
specification.

Note that all six conditions imply that the system
Gi||---||Gy is globally controllable, coobservable and L,,-
closed, but the reverse implication does not hold because
of the assumptions on the controllers we are using. If we
were to allow the controllers to be asymmetric we would
be able to achieve a larger class of specifications, but this
would require an extra amount of coordination in the con-
trol synthesis. Our model is set up so that once one control
module is designed, the implementation of more controllers
is merely a matter of copying that first controller.

6 Discussion

We have introduced a model for a isomorphic module sys-
tem that can be used to model a wide variety of real-world
concurrent processes. A method that can be used to test
global deadlock-freeness or nonblocking without enumerat-
ing all possible combinations of system states is shown. We
demonstrated that we can perform verification of local be-
havior in an off-line manner without module interaction. We
have also shown necessary and sufficient conditions for the
existence of local controllers for the similar module model
we introduced.

We have solely investigated the case where the control mod-
ules are similar, but it might be the case in many real-world
problems that the control systems may be asymmetric. For
instance, one controller may be a “leader” that has more lee-
way in enforcing global control actions to avoid situations
where deadlock or blocking may occur. It would also be
interesting to investigate more general system models. For
instance, it is possible that using a method besides paral-
lel composition to model module interaction might lead to
other results. Furthermore, it would be interesting to investi-
gate more general system models where the modules might
have some sort of similarity besides being isomorphic with
respect to a renaming of private events.

References

[1] C.G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Kluwer Academic Publishers,
Boston, MA, 1999.

[2] YL. Chen, S. Lafortune, and F. Lin. Design of
nonblocking modular supervisors using event priority func-
tions. [IEEE Trans. Auto. Contr., 45(3):432-452, March
2000.

[3] P. Gohari and WM. Wonham. On the complexity of
supervisory control design in the RW framework. [EEE
Transactions on Systems, Man and Cybernetics, Part B,
30(5):643-652,2000.

[4] D. Harel, O. Kupferman, and M.Y. Vardi. On the
complexity of verifying concurrent transition systems. In-
formation and Computation, 173:143-161, 2002.

[5] S.Jiang and R. Kumar. Decentralized control of dis-
crete event systems with specializations to local control and
concurrent systems. [EEE Transactions on Systems, Man
and Cybernetics, Part B, 30(5):653-660, 2000.

[6] O. Kupferman, M. Vardi, and P. Wolper. An
automata-theoretic approach to branching-time model
checking. Journal of the ACM, 47(2):312-360, 2000.

[71 R.J.Leduc, B. Brandin, M. Lawford, and W.M. Won-
ham. Hierarchical interface-based supervisory control: Se-
rial case. In Proc. 40th IEEE Conf. on Decision and Control,
pages 41164121, 2001.

[8] R.J. Leduc, M. Lawford, and W.M. Wonham. Hier-
archical interface-based supervisory control: AIP example.
In 39th Allerton Conf. on Comm., Contr., and Comp., 2001.

[9] FE Lin and W. M. Wonham. Decentralized supervi-
sory control of discrete-event systems. Information Sci-
ences, 44:199-224, 1988.

[10] F Lin and W. M. Wonham. On observability of
discrete-event systems. Information Sciences, 44:173—-198,
1988.

[11] F. Linand W. M. Wonham. Decentralized control and
coordination of discrete-event systems with partial observa-
tion. IEEE Trans. Auto. Contr., 35(12):199-224, December
1990.

[12] F. Lin and W. M. Wonham. Verification of nonblock-
ing in decentralized supervision. Control-Theory and Ad-
vanced Technology, 7(1):223-232, March 1991.

[13] M. H. Queiroz and J. E. R. Cury. Modular control
of composed systems. In Proc. of 2000 American Control
Conference, 2000.

[14] PJ. Ramadge. Some tractable supervisory control
problems for discrete-event systems modeled by Biichi au-
tomata. IEEE Trans. Auto. Contr., 34(1):10-19, 1989.

[15] PJ. Ramadge and W.M. Wonham. The control of
discrete-event systems. Proc. IEEE, 77(1):81-98, 1989.

[16] K. Rohloff and S. Lafortune. On the computational
complexity of the verification of modular discrete-event sys-
tems. In Proc. 41st IEEE Conf. on Decision and Control,
Las Vegas, Nevada, December 2002.

[17] K. Rohloff and S. Lafortune. Recent results on com-
putational issues in supervisory control. In Proc. of the
ATPN-Workshop on Discrete Event Systems Control, Eind-
hoven, The Netherlands, June 2003.

[18] K. Rohloffand S. Lafortune. Supervisor existence for
modular discrete-event systems. In Proc. 2nd IFAC Conf.
on Control Systems Design, Bratislava, Slovakia, September
2003.

[19] K. Rudie and W.M. Wonham. Think globally, act lo-
cally: Decentralized supervisory control. I[EEE Trans. Auto.
Contr., 37(11):1692-1708, November 1992.

[20] M. Vardi and P. Wolper. Reasoning about infinite
computations. Information and Computation, 115:1-37,
1994.

[21] Y. Willner and M. Heyman. Supervisory control of
concurrent discrete event systems. International Journal of
Control, 54(5):1143-1169, 1991.

[22] K.C. Wong and W.M. Wonham. Modular control
and coordination of discrete-event systems. Journal of Dis-
crete Event Dynamical Systems: Theory and Applications,
8:247-297, 1998.

[23] W. M. Wonham and P. J. Ramadge. Modular super-
visory control of discrete event systems. Maths. of Control,
Signals and Systems, 1(1):13-30, 1988.

