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ABSTRACT
This paper discusses the approximation of solutions to several NP-complete optimization
problems related to the supervisory control of discrete-event systems. Approximation
calculations for the minimal-cost sensor-selection problem in a partial observation, centralized
control setting is first discussed. It is shown that approximate solutions to this problem cannot
always be calculated with a given degree of accuracy in polynomial time. An efficient
construction method is shown to convert this sensor selection problem into a novel type of
graph cutting problem. Several heuristic algorithms are then shown to approximate solutions to
this problem. Approximation methods for computationally difficult communicating decentralized
controller problems and actuator selection problems are also discussed. It is shown how to
convert these problems into graph cutting problems.
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1 Introduction

When synthesizing a controller for a system to achieve a specification, a control engineer may
commonly have a choice of sensors for the controller to use. The controller would naturally
need a sufficient set of sensors to satisfy the specification, but due to reasons of economy
the engineer may want to minimize the cost of purchasing and installing the sensors. This
prompts an important problem in control theory that is the focus of discussion in this paper:
the minimum-cost sensor-selection problem. The sensor selection problem is closely related
to two other types of important control problems also discussed in this paper: the actuator
selection problem, and in the case of communicating decentralized control, the communication
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minimization problem. For the actuator selection problem the task is to find the minimum-
cost amount of control actuation required for a controller to achieve a specification. For the
communication minimization problem in the setting of decentralized control, decentralized
controllers operating on a system may observe different parts of system behavior and may
not be able to control a system to achieve a specification. However, if the controllers were
to pool their observations of system behavior, the specification may be achievable. The
communication minimization problem is to find the minimal cardinality set of events whose
observation occurrences the controllers should to share in order to achieve some specification

These cost minimization problems are discussed using the framework of supervisory con-
trol theory and discrete-event systems introduced in the seminal works [13, 14]. In this
control setting, a controller may have sufficient actuation to disable some events but not
others. Similarly, a controller may not be able to observe all system events. The framework
presented in [11] is used to model a controller’s observation behavior where system events
are partitioned into events whose occurrence is always observed by the supervisor and events
that are never observed by the supervisor. This framework is justified in the context of the
problem of sensor selection in that it is assumed the sensors are deterministic and report all
occurrences of the events they are designated to sense.

Variations of the sensor selection problem using frameworks similar to the one used in
this paper have been investigated in [3, 5, 7, 24, 26]. The problem of designing an observation
function that is as coarse as possible is discussed in [3]. A projection mapping is assumed in
[3] that is different from the natural projection operation used as the observation function
in this paper, and optimization and approximation methods are not discussed in [3]. The
optimization of the observable event set is discussed in [5] for achieving both observability
and normality for a problem setting very similar to that discussed here. An exponential-time
algorithm is shown in [5] for giving an optimal observable set. An algorithm is given in
[26] for optimizing the sensor selection set in exponential time along with a polynomial time
algorithm for finding exactly one locally minimum sensor selection. It is shown in [24] that the
decision problem version of the sensor selection problem investigated here is NP-complete, so
most likely polynomial time methods to solve this problem cannot be developed. An optimal
sensor selection problem is also discussed in [8], except the observation function is different
from the one assumed in this paper.

Variations of the actuator selection problem have been discussed in the supervisory con-
trols literature. In [18, 19], cost is put on the actions of the controller and behavior of the
system. A related problem is also discussed in [26].

The decentralized control systems in this paper are discussed in the framework of [11, 17]
where controllers control and observe possibly different subsets of system behavior. The
two-way communication minimization problem discussed here is a special case of the open
problem presented in [21] for the setting of decentralized control. It is hypothesized in [21] that
more general versions of the communication minimization problem are undecidable, so it is
worthwhile to investigating solutions to simpler versions of the problem. The communication
minimization problem in the setting discussed here is shown to be NP-complete.

Fortunately, despite the computational difficulty of many of these problems, the absolute
minimum-cost solutions to the problems may not always be necessary for many practical
applications. Approximate solutions for the minimization problems might be found in a
more time-efficient manner, and they may commonly be sufficient for practical use. There-
fore, an interesting compromise to finding the minimum-cost solution would be to develop
methods to approximate the minimal sensor selection and hopefully put some bounds on the
closeness of the approximations found this way as many NP-complete problems have accu-
rate polynomial-time approximation methods. However, there has been little investigation
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into the computation of approximate solutions to many computationally difficult supervisory
control problems.

Unfortunately, one of the main results of this paper is that the approximation of minimal-
cost sensor selections for supervisory control is computation difficult and can most likely not
be done in polynomial time with reasonable accuracy. However, it is shown how to convert
the sensor cost minimization problem into a type of directed graph minimum-cost st-cut that
has not previously been investigated in the literature. This alternative formulation of the
selection problems allows the more intuitive development of approximation methods. It is also
shown how to convert these graph cutting problems into an integer programming problem.
Several heuristic polynomial time approximation methods are shown that are based on this
problem conversion. It is also shown that the actuator selection problem and communication
selection problem are computationally similar to the sensor selection problem. Therefore, the
heuristic approximation methods can also be used with these other problems.

The next section of this paper formally introduces the system framework and notation
used in this paper’s investigations of the cost minimization problems. Section 3 introduces
the sensor selection problem and Section 4 discusses the approximation complexity of this
problem. Section 5 discusses randomized methods for solving the sensor selection approx-
imation problem, and Section 6 shows the conversion of the sensor selection problem into
an edge-colored directed graph st-cut problem. Section 7 analyzes a deterministic greedy
and a randomized method for finding approximate solutions to the sensor selection problem.
Section 8 shows how to convert the graph cutting problem into an integer programming prob-
lem. Section 9 discusses the decentralized control communication minimization problem, and
Section 10 discusses the actuator cost minimization problem. Section 12 closes the paper
with a discussion of the shown results.

2 Notational Review

To aid the reader, this section reviews the notation of supervisory control theory. First, the
discrete-event system automata models of [13, 14] are presented and then the supervisory
control model in the decentralized setting of [10] is introduced. This section closes with a
discussion of computational approximation.

The basic automaton system model G used in this paper is a 5-tuple (XG, xG
o , ΣG, δG, XG

m)
where XG is the set of states, xG

o is the initial state, ΣG is the automaton alphabet, δG :
XG × ΣG → XG is the (possibly partial) state transition function, and XG

m is the set of
“marked” states. Deterministic systems and specification automata are exclusively used in
this paper as comparisons on nondeterministic automata are generally PSPACE-complete [4].

The language generated by G is the set of strings L(G) = {s ∈ ΣG∗
|δG(xG

0 , s)!} that are
defined in G from the initial state. Note that the unary operator ! for f(α)! returns true
if f(·) is defined for input α, false otherwise. The language marked by an automaton G
is the set of strings that lead to a marked state from the initial state. That is, Lm(G) =
{s ∈ ΣG∗

|δG(xG
0 , s) ∈ XG

m}. The language generated L(G) is a prefix-closed language, i.e., it
contains all the prefixes of all its strings. The marked language Lm(G) is not prefix-closed
in general. For a language K, K denotes the set of all the prefixes of all the strings in K.
An automaton that accepts a prefix-closed language is called a prefix-closed automaton. An
automaton is said to be nonblocking if the prefix-closure of its marked language is equal to
its generated language, i.e., Lm(G) = L(G).
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2.1 Supervisory Control

Following the modelling formalisms of [13, 23], systems are modelled as finite-state automata
with external controllers. Control actions are enforced by selectively disabling controllable
events. Controllers can be realized as finite-state automata that observe some events and con-
trol a potentially different set of events. Controllers should not be able to disable uncontrol-
lable events and control actions should not update on the occurrence of locally unobservable
events in the absence of external communication.

Given a centralized controller S and a system G, the composed system of S controlling G
is denoted as the controlled system S/G. Controller S is said to be nonblocking for system
G if S/G is nonblocking, i.e., if Lm(S/G) = L(S/G).

As stated above, a controller may only observe a subset of the system events Σo ⊆ Σ.
In this discussion a natural projection operation P : Σ → Σo is used to model a controller’s
observations of system behavior. For the empty event ε, P (ε) = ε, and for a string of events s
and an event σ, P (sσ) = P (s)σ if σ ∈ Σo and P (sσ) = P (s) otherwise. The inverse function
P−1 : Σ∗

o → 2Σ∗
is defined such that P−1(s) is the set of strings with s as their common

projection. As system behavior progresses and a string of events s is generated by the system,
a controller would observe P (s). The controller would then use observation projection P (s)
to estimate the current system state and determine its control action. A controller is said to
be admissible if it only attempts to disable controllable events and updates its control action
on the occurrence of observable events.

For the case of multiple controllers (i.e., standard decentralized control) in the framework
of [10] an event is disabled if it is disabled by at least one controller. (Hence the actions local
controllers are combined globally by a “fusion by intersection” policy.) See Figure 1 for a
schematic of a system with a set decentralized controllers.

G

And

γn(s) ⊆ Σcnγ1(s) ⊆ Σc1

Pn(s)P1(s) s

Sn

1
(s)

SnS1

Observations

Global Control Actions

Figure 1: Schematic of a conjunctive decentralized control system

In Figure 1, the monolithic system G is controlled by n controllers, {S1, . . . , Sn}. The con-
trollers {S1, . . . , Sn} observe system events {Σo1, . . . , Σon} and control events {Σc1, . . . , Σcn}
respectively. For every controller i there is also a defined local observation projection Pi : Σ→
Σoi. Decentralized controller Si makes observations of the system behavior s and generates a
control action γi(s). The local control actions {γ1(s), . . . , γn(s)} are combined globally using
an intersection operation to form the global control action that is enforced on the system G.
Therefore, for this decentralized control system, if an event is locally disabled by a controller
Si, then it is globally disabled due to the global intersections of control actions. Given a
decentralized controller system {S1, . . . , Sn} and a system G, {S1, . . . , Sn} controlling G is
denoted as S1 ∧ · · · ∧ Sn/G. Also in this setting let Σc = ∪n

i=1Σci and Σuc = Σ \ Σc.
Three important properties related to decentralized controller existence are controllability,
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co-observability and Lm(G)-closure.

Definition 1 [13] Consider the languages K and M such that M = M and the set of uncon-
trollable events Σuc. The language K is controllable with respect to M and Σuc if KΣuc∩M ⊆
K.

Definition 2 Consider the sets of languages K and M . The set K is M -closed if K =
K ∩M .

Definition 3 [17] Consider the sets of languages K and M such that M = M and the sets
of locally controllable, Σci, and observable Σoi events such that i ∈ {1, ..., s}. The set of
languages K is co-observable with respect to M , Pi and Σci, i ∈ {1, ..., s} if for all t ∈ K and
for all σ ∈ Σc,

(

tσ /∈ K
)

and (tσ ∈M)⇒
∃i ∈ {1, ..., s} such that P−1

i [Pi(t)] σ ∩K = ∅ and σ ∈ Σci.

The concept of co-observability captures the notion that one supervisor always knows to
disable an event when needed. In the case of centralized control as discussed in [11], co-
observability is called observability. The above definitions on controllability, M -closure and
co-observability are central in the following controller existence theorem called the controlla-
bility and co-observability theorem.

Theorem 1 [17] For a finite-state automaton system G and a finite-state automaton specifi-
cation H such that Lm(H) ⊆ Lm(G), sets of controllable events {Σc1, ..., Σcs} and sets of ob-
servable events {Σo1, ..., Σos} there exists a set of partial observation controllers {S1, S2, ...Ss}
such that Lm(S1 ∧ · · · ∧ Ss/G) = Lm(H) and L(S1 ∧ · · · ∧ Ss/G) = Lm(H) if and only if the
following three conditions hold:

1. Lm(H) is controllable with respect to L(G) and Σuc.

2. Lm(H) is co-observable with respect to L(G), Σo1,...,Σos and Σc1,...,Σcs.

3. Lm(H) is Lm(G)-closed.

For languages generated by deterministic automata, controllability and Lm(G)-closure
can be decided in polynomial time using standard automata manipulation operations. There
is a construction presented in [16] for deciding the co-observability of languages generated by
deterministic automata. A modified version of this construction is used several times later in
this paper. The essence of this method is that a automatonM is constructed from a system
G, a specification automata H, sets of controllable events Σc1, . . . , Σcs and sets of observable
events Σo1, . . . , Σos, such that Lm(M) = ∅ if and only if the Lm(H) is co-observable with
respect to L(G), Σo1, . . . , Σos and Σc1, . . . , Σcs.

The construction of M takes polynomial time if the number of controllers is bounded.
Therefore, for deterministic monolithic system problems with a bounded number of con-
trollers, controller existence can be decided in polynomial time.

A less restrictive version of Theorem 1 also holds for the case of generated language
specifications (and hence prefix-closed specifications) where the Lm(G)-closure condition is
disregarded. Also, in the case of centralized control (i.e., one controller), co-observability is
called observability. In this paper the terminology of control theory is used even though it
may be counter to naming conventions currently used in computer science theory. (That is,
co-observability is not non-observability.)
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2.2 Background on Approximation Theory

In the field of computation theory a problem instance is said to be a “decision problem” if all
problem instances are mapped to be either “true” or “false”. In the set of decision problems,
a problem is said to be in class P if it can be decided in polynomial time using a deterministic
computation device and it is said to be in NP if it can be decided in polynomial time using
a nondeterministic computation device. Although it is not known for sure, it is generally
believed that the class NP is distinct from the class P. Therefore, it is believed that not all
decision problems can be solved efficiently in time.

Similar to decision problems there is a set of problems called optimization problems where
a specific optimization problem has a set of problem instances P, a set of feasible solutions
Sp for a problem instance p ∈ P and a cost function costp : Sp → < that maps the set of
feasible solutions of a problem instance to a real value that is a measure of the desirability
of that solution. The solution to an instance of an optimization problem is the minimal-cost
solution for that problem instance, i.e., S(p) ∈ Sp such that ∀s ∈ Sp, costp(S(p)) ≤ costp(s).

The set of feasible solutions to the optimization problem may be finite, countably infinite
or a subset of the real numbers. Similar to decision problems, there are the PO and NPO
optimization problem classes where an optimization problem is said to be in PO if an optimal
solution can be calculated in polynomial time using a deterministic computation device and
it is said to be in NPO if an optimal solution can be computed in polynomial time using a
nondeterministic computation device.

There are several important optimization problems in NPO that are believed to not
be in PO. Please see the compendium in [1] for an extensive listing of problems such as
these. However, even though some optimization problems probably cannot be solved in
polynomial time, it may still be possible to calculate accurate approximate solutions to these
problems efficiently in time. Naturally, the solutions to some problems may be more difficult
to approximate than the solutions for other problems. The concept of an r-approximation,
shown in Definition 4 below captures this property. First, however, some necessary notation
needs to be introduced.

Definition 4 r-approximate algorithm: [1] For a problem instance p ∈ P of an optimization
problem let A be an algorithm that such that when given p as input, A returns an approx-
imate solution A(p) ∈ Sp for that problem instance. The approximation algorithm A(p) is
r-approximate if

∀p ∈ P

(

cost(A(p))

cost(S(p))
≤ r

)

. (1)

Conceptually, the r in an r-approximation is the maximum ratio between the cost of the
optimal solution cost(S(p)) and the approximation found by an algorithm, A(x). The ratio
r may be some function on the size of the problem instance. An important problem class in
the hierarchy of approximation problems is the APX problem class formally defined below.

Definition 5 The APX Problem Class: [1] APX is the class of all NP-complete optimization
problems such that there is a polynomial time r-approximate for a constant r ∈ <, r ≥ 1,

3 The Sensor Selection Problem

In the framework of supervisory control, a set Σo ⊆ Σ is called a sufficient sensor selection
with respect to G, H and Σc if L(H) is observable with respect to L(G), Σo and Σc. A
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sufficient sensor selection can also be called an observability set. Therefore, if Σo is a sufficient
sensor selection and L(H) is controllable with respect to L(G) and Σc, then there exists an
admissible controller S such that L(S/G) = L(H).

It may be possible that there is a positive cost cost : Σ → <+ associated with observing
an event. Due to economic reasons the total cost of sensors used by a controller may want
to be kept to a minimum as long as the sensor selection is sufficient. The problem of finding
a minimal-cost sufficient sensor selection is called the minimal-cost sensor-selection problem.
For a set of events Σo ⊆ Σ define cost(Σo) = Σσ∈Σocost(σ).

Problem 1 Minimal-Cost Sensor-Selection: Given G, H and Σc ⊆ Σ, find a sufficient sensor
selection Σmin

o such that for any other sufficient sensor selection Σo, cost(Σmin
o ) ≤ cost(Σo).

There is a special case of Problem 1 where the sensors have uniform cost. Therefore, the
cost minimization problem becomes a cardinality minimization problem.

Problem 2 Minimal-Cardinality Sensor-Selection: Given G, H and Σc ⊆ Σ, find a sufficient
sensor selection Σmin

o such that for any other sufficient sensor selection Σo, |Σ
min
o | ≤ |Σo|.

Because of the NP-completeness of Problem 2 the minimal-cardinality sensor-selection
can not always be found in a computationally efficient manner [25]. This also shows that
Problem 1 is similarly computationally difficult. However, a sufficient sensor selection Σo may
still need to be found reasonably efficiently such that the cost of this sensor selection cost(Σo)
is as close to the minimal-cost sensor-selection cost(Σmin

o ) as possible. Fortunately, as men-
tioned above, some NP-complete minimization problems have fairly accurate polynomial time
approximation algorithms [1, 22]. This means sufficient and approximate solutions can be
found for many computationally difficult problems in a reasonable amount of time. However,
not all NP-complete minimization problems are believed to have this property [1, 22]. This
prompts the investigations into the approximation difficulty of minimal-cost sensor-selection
problem in the following subsection.

4 The Complexity of Minimal-Cost Sensor-Selection Approx-

imations

It is now shown that the minimal-cardinality sensor-selection problem is not in APX using
a minimal set cover problem reduction. This implies that the minimal-cost sensor-selection
problem is also not in APX.

The minimal set covering problem is a fundamental problem in computer science used
to show the computational difficulty of many other problems. For this problem a set S =
{γ1, . . . , γn} is given along with a set of subsets C = {C1, . . . , Cm} ⊆ 2S and the problem is to
find a set covering Cmin = {Ci1 , . . . , Cim} ⊆ C such that Ci1 ∪· · ·∪Cim = S and for any other
covering subset C ′ = {Ck1 , . . . , Ckl

} ⊆ C such that Ck1 ∪ · · · ∪ Ckl
= S, |Cmin| ≤ |C

′|. The set
Cmin is called the minimal set covering. It is known that the minimal set covering problem is
NP-complete [4] and not in APX [1]. This result can be used to show that minimal-cardinality
sensor-selection problem is also not in APX.

Theorem 2 The minimal-cardinality sensor-selection problem is not in APX.

Proof: This theorem is demonstrated using a proof by contradiction. Suppose the minimal-
cardinality sensor-selection problem is in APX. Then there is an algorithmAo that when given
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an instance of the minimal-cardinality sensor-selection problem, returns an approximation of
the minimal-cardinality sensor-selection whose cardinality is within a constant ratio r of the
cardinality of the minimal-cardinality sensor-selection in polynomial time. It is now shown
how algorithm Ao can be used to construct an algorithm Asc that when given an instance of
the set cover problem, returns an approximation of the minimal set cover whose cardinality
is within a constant ratio r of the cardinality of the minimal set cover in polynomial time.

Given an instance of the set cover problem, i.e., a set S = {γ1, . . . , γn} and a set of
subsets C = {C1, . . . , Cm} ⊆ 2S , assume without loss of generality that C1 ∪ · · · ∪ Cm = S.
Put an arbitrary ordering on the subsets of S such that C1 < . . . < Cm. For an element
γi let Ci = {Ci

1, . . . , C
i
ji
} represent the subsets that contain γi. That is, ∀Ci

k ∈ Ci, γi ∈ Ci
k.

Furthermore, assume that C i
1 ≤ . . . ≤ Ci

ji
. Now, for the sets {C1, . . . , Cn} construct the

automaton G seen in Figure 2 where the ith branch of the initial state represents the ordered
list of sets that contain γi and α is a symbol not already used.

α

C1
1

C1
j1

C1
2

α

C2
j2

C2
2

α

Cn
jn

Cn
2

α

C2
1

Cn
1

G :

Figure 2: G-automaton used in proof of Theorem 2.

The G automaton can be constructed in polynomial time with respect to the size of
the encoding of the set cover problem, and therefore G also has a polynomial number of
states. Note that the automaton G may be nondeterministic, but it can be converted to a
deterministic automaton accepting the same language by iteratively merging state transitions
with the same label at the same parent node until the automaton is deterministic. That is,
if δG(x1, C

k
j ) = x2 and δG(x1, C

l
j) = x3 such that Ck

j = C l
j , then merge the states x2 and x3

and remove the δG(x1, C
l
j) = x3 transition. Because the number of states is bounded by a

polynomial, this determinization procedure will halt in a polynomial amount of time.
Let H be a copy of automaton G with all transitions labelled by α removed except for the

α transition at the initial state. Let G be the system automaton, let H be the specification
automaton and let Σc = {α}.
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Suppose there exists a string of events C i
1C

i
2 . . . Ci

ji
such that no events in this string are

observed. Then the system is unobservable because a controller would not know to disable
the α event after C i

1C
i
2 . . . Ci

ji
occurred. Hence, if L(H) is not observable with respect to

L(G), Σc and Σo where Σo = {C1
o , . . . , Cp

o}, then there exists some event γi such that for all
Cq

o ∈ Σo, γi 6∈ Cq
o . Then {C1

o , . . . , Cp
o} = C does not form set cover for S.

Similarly, if every string of events C i
1C

i
2 . . . Ci

ji
contains at least one event that is observed,

then a controller would always know to disable α after the string of events C i
1C

i
2 . . . Ci

ji
occurs.

Therefore, for every event γi, there must be an event in C i
1C

i
2 . . . Ci

ji
that is observable.

Hence, if L(H) is observable with respect to L(G), Σc and Σo where Σo = {C1
o , . . . , Cp

o}, then
{C1

o , . . . , Cp
o} = C′ forms a set cover for S. This is because for any γi, there exists a Cq

o such
that γi ∈ Cq

o .
Then, for the given construction of G and H, a set of event Σo ∈ 2Σ is a sufficient sensor

selection with respect to G, H and Σc if and only if the corresponding set C ′ is a set cover for
S. Furthermore, the cardinality of the minimal sensor selection is equal to the cardinality of
the corresponding minimal set cover. Therefore, |Σmin

o | = |Cmin|.
Suppose algorithm Ao is run with the construction of G, H and Σc and the observability

set Σ′
o is returned. It is known that |Σ′

o|/|Σ
min
o | ≤ r because of the assumption on Ao.

The set Σ′
o can then be used to calculate a set C ′ using the construction above such that

|C′|/|Cmin| ≤ r. The problem instance G, H and Σc can be constructed in polynomial time
and it was assumed the algorithm Ao can be run in polynomial time. This implies there
exists a polynomial time algorithm to find an approximation to the minimal set cover such
that the ratio of the cardinality of the approximation to the cardinality of the minimal set
cover is bound by a constant r. This implies by definition that the minimal set cover problem
is in APX which forms a contradiction. Therefore, there does not exist an algorithm Ao

that when given an instance of the minimal-cardinality sensor-selection problem, returns
an approximation of the minimal-cardinality sensor-selection whose cardinality is within a
constant ratio r of the cardinality of the minimal-cardinality sensor-selection in polynomial
time unless P=NP. Finally, the minimal-cardinality sensor-selection problem is not in APX.

Theorem 2 can be easily extended to the non-uniform cost case.

Corollary 1 The minimal-cost sensor-selection problem is not in APX.

Theorem 2 and Corollary 1 show that sensor selection problems are difficult to approxi-
mate in a time efficient manner. It was also shown in [9] that the sensor selection problem

admits no 2log(1−ε) n approximation for any ε > 0 unless NP ⊆ DTIME(npolylog n). It
follows from this result that if solutions to the sensor selection problems can be found with

better than a 2log(1−ε) n-approximation, then a method has been found for solving NP-complete
problems in quasi-polynomial time. This lower bound on the ability to approximate minimal
sensor selections is generally considered to be a very poor lower bound in the computer sci-

ence community because as ε approaches 0, then 2log(1−ε) n approaches n. However, because
of the fundamental importance of this problem, usable methods need to be developed to
approximate the minimal-cost sensor-selections. This prompts the algorithms in the later
sections of this paper for approximating solutions to sensor selection problems.

5 A Randomized Descent Approximation Algorithm

A randomized descent algorithm for approximating minimal-cost sensor-selections is now
shown. Consider the set of system events Σ and its power set 2Σ. The process of finding
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the minimum-cost sufficient sensor selection Σmin
o ⊆ Σ is effectively a search over the power

set of Σ, 2Σ. An interesting property of observable systems is that for any set of observable
events Σo ⊆ Σ such that L(H) is observable with respect to L(G), Σo and Σc, then for
any Σ′

o such that Σo ⊆ Σ′
o ⊆ Σ, L(H) is observable with respect to L(G), Σ′

o and Σc and
cost(Σo) ≤ cost(Σ′

o). That is, all supersets of sufficient sensor selections are also sufficient
sensor selections.

Given a set of events Σo such that L(H) is observable with respect to L(G), Σo and Σc, it
may be possible that there does not exist an event σ ∈ Σo such that L(H) is observable with
respect to L(G), Σo \ {σ} and Σc. In this case Σo is called a locally minimal sufficient sensor
selection. For a given system there may possibly be many locally minimal sufficient sensor
selections, but these locally minimal sufficient sensor selections may not all be minimal-cost
sufficient sensor selections. Consider the following example.

Example 1 Suppose L(G) = {α, λβα, λγα}, L(H) = {α, λβ, λγ} and Σc = {α}. Assume
the events have uniform cost. The set Σo = {β, γ} is a sufficient sensor selection and it is
locally minimal, but the minimal-cardinality sensor-selection is Σo = {α}.

Consider how the power set 2Σ forms a lattice with respect to the partial ordering of the
subsets of Σ. It is assumed that L(H) is never observable with respect to L(G), ∅ and Σc

(i.e. the trivial case). Let n = |Σ|. Therefore, for every path ΣΣ1Σ2 · · ·Σn on the lattice
formed by 2Σ such that Σ ⊇ Σ1 ⊇ · · · ⊇ Σn ⊇ ∅, there is a boundary observability set Σi

such that for any Σ′
i ⊇ Σi, L(H) is observable with respect to L(G), Σ′

i and Σc and for any
Σ′

i+1 ⊆ Σi+1, L(H) is not observable with respect to L(G), Σ′
i+1 and Σc.

Therefore, for the sets of all paths Σ ⊇ Σ1 ⊇ · · · ⊇ Σn ⊇ ∅ in the lattice formed by 2Σ,
the set of boundary sets of these paths forms a frontier between sufficient sensor selections
and sets of observable events that would make the system unobservable. The minimum-cost
observability set is somewhere on this boundary. Note that not all members of this set of
boundaries are locally minimal sensor selections.

Finding a locally minimal sensor selection for a system is fairly easy. This could be done
by initializing the set of observable events to be Σ, and events could iteratively be removed
from the set of observable events as long as the specification is still observable. This is exactly
what is done in the following randomized algorithm.

Algorithm 1 Randomized Local Minima Search Algorithm (RanLocMin):
Input: G, H, Σc.

Σtest ⇐ Σ;
Σo ⇐ Σ;
Repeat:
{

Randomly remove σ ∈ Σtest from Σtest.
If L(G) is not observable w.r.t. L(H), Σc and Σo \ {σ}, then:
{

Σo ⇐ Σo \ {σ};
}

}
Until Σtest = ∅.

Return: Σo.

During the operation of Algorithm 1, events are iteratively tested to be removed from
the set of observable events. The set Σtest is the set of events which have not been tested
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for removal from the set of observable events. Note that the algorithm is greedy in that
once an event is removed from the set of observable events, it is never returned to that
set. Consequently, if an event σ is tested for removal from Σo and it is found that L(G)
is observable with respect to L(H), Σc and Σo \ {σ}, then σ can be removed from Σo and
never needs to be tested for removal again. On the other hand, if at any iteration of the
algorithm an event σ is tested for removal and it is found that L(G) is not observable with
respect to L(H), Σc and Σo \{σ}, then any subset Σ′

o ⊆ Σo \{σ}, L(G) would not observable
with respect to L(H), Σc and Σ′

o. Consequently, such an event σ, removed from Σtest but
retained in Σo should never need to be tested again for removal from Σo. By removing events
iteratively from Σtest as they are tested for removal from Σo it is ensured that all events are
tested exactly once for removal from Σo. This guarantees that the final set of observable
events Σo returned by Algorithm 1 is a local minimum.

Suppose Algorithm 1 finds the global minimum-cost observability set with probability
p, which may be quite low, but it is desired to find the global minimum with probability
r ∈ (p, 1). The probability of finding the global minimum using Algorithm 1 could be boosted
through iteration as in Algorithm 2 below.

Algorithm 2 Iterated Randomized Local Minima Search Algorithm (ItRanLocMin):
Input: G, H, Σc.

Σo ⇐ Σ
Repeat k times:
{

Σf ⇐ RanLocMin(G, H, Σc)
if cost(Σf ) ≤ cost(Σo), then Σo ⇐ Σf

}
Return: Σo.

Algorithm 2 makes k calls to Algorithm 1 and hence takes k times as long as Algorithm
1. This prompts the question of what value of k should be chosen such that a global minima
is found with probability at least r using Algorithm 2? It would be helpful to have k as small
as possible such that a minimal-cost sensor-selection is found with high probability.

If Algorithm 1 finds a global minimum with probability p, this algorithm does not find
a global minimum with probability (1 − p). Hence, over the k trials of Algorithm 2, the
probability that a global minimum is not found is (1− p)k. It is well known that (1− p)k ≤
exp(−pk) based on the convex analysis that exp(−x) − 1 + x ≥ 0 ∀x ∈ [0, inf). So, if it
is desired that the iterated randomized local minima search algorithm returns a non-global
minimum with probability at least (1 − p)k ≤ (1 − r), then k needs to be found such that

exp(−pk) = (1− r), or k =
ln
“

1
(1−r)

”

p .
Unfortunately, p may be very small in the worst case. Consider the case when Σ = n. It

is assumed for the sake of discussion that n is even and that the events have uniform cost of
being observed. The lattice of potential observability sets formed by 2Σ could have a frontier
containing at most

(

n
n/2

)

local minima. This corresponds to a level frontier on the lattice

such that for all sets Σa such |Σa| ≥ n/2, Σa is an observability set and not otherwise. Now
suppose that from this frontier, there is another frontier with exactly one global minimum
observability set Σmin

o such that |Σmin
o | = n/2− 1 and for all other possible observability sets

Σa, Σa is a local minimum if and only if |Σa| = n/2 and Σmin
o 6⊆ Σa.

With this construction the probability that Σmin
o is found by the randomized local mini-

mum search algorithm is n

( n
n/2)

. This is because as the randomized algorithm removes an event
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from the observability set, there are then n/2 events remaining, n possible combinations of
n events taken n/2 at a time leads to the global minimum, Σmin

o .
Therefore, for n reasonably large:

p =
n

(

n
n/2

)

=
n

(

n!
(n/2)!(n/2)!

)

=
n

n
(

n−1
n/2 · · ·

n−i
(n/2+1)−i · · ·

n/2+1
2

)

=

(

n/2

n− 1
· · ·

(n/2 + 1)− i

n− i
· · ·

2

n/2 + 1

)

≤ (1/2)n/2−1

Therefore, p is exponential in −n in the worst case and k would therefore have to be
exponentially large in order to obtain an arbitrarily high probability of finding a minimum-
cost sensor-selection with Algorithm 2. However, worst-case scenarios are rather unusual and
this algorithm helps us gain insight into the problem. The more iterations that are taken
in Algorithm 2 the closer of an approximation is obtained of the global minimum. In the
hypothetical example above with the nearly flat frontier, a very close approximation to the
global minimum is obtained after one iteration of the randomized search algorithm.

6 The Graph Cutting Problem

A method is outlined in [20] for testing observability in polynomial time with anM-automaton
construction. (However, this construction is not explicitly given in [20]), A modified version
of this test is presented here that can be used to convert sensor selection problems into a
novel type of graph cutting problem called an edge colored directed-graph st-cut problem.

For this edge colored directed-graph st-cut problem, assume an edge-colored directed
graph D = (V, A, C) where V is a set of vertices, A ⊆ V × V are directed edges and C =
{c1, . . . , cp} is the set of colors. Each edge is assigned a color in C and let Ai be the edges
having color ci. Given I ⊆ C, let AI = ∪ci∈IAi. For two nodes s, t ∈ V such that there is a
path of directed edges from s to t, then I is a colored st-cut if (V, (A \ AI), C) has no path
from s to t. For each edge color ci ∈ C, associated a positive cost cost(ci) ∈ <

+ and for a set
of colors I ⊆ C, define the cost of I, cost(I) to be Σci∈Icost(ci). This prompts us to define
the colored cut problem.

Problem 3 Minimal-Cost Colored Cut: Given an edge colored directed graph D = (V, A, C)
and two vertices, s, t ∈ V , find a colored st-cut Imin ⊆ C such that for any other colored
st-cut I ⊆ C, cost(Imin) ≤ cost(I).

It is now shown how to convert an instance of a colored cut problem into an instance of
a sensor selection problem.

Proposition 1 An instance of the minimal-cost colored cut problem can be reduced to an
instance of the minimal-cost sensor-selection problem in polynomial time.
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Suppose an edge-colored directed graph D = (V, A, C) and two vertices s, t are given. A sys-
tem G, specification H and controllable event set Σc are now constructed from D. For the col-
ors C = {c1, . . . , cp}, let the event set Σ include a corresponding set of events {σ1, . . . , σp} such
that color ci is paired with event σi. Let γ be another event and define Σ = {σ1, . . . , σp, γ}.
Suppose that for all ci, σi pairs that cost(ci) = cost(σi) and let cost(γ) be any value in <+.
Also define XG = V ∪ {s′, s′′, t′} where s′, s′′, t′ are states not in V . Let xG

0 = s. To de-
fine the state transition function, let v1, v2 be any vertices except s. If (v1, v2) ∈ Ai, then
δG(v1, σi) = v2. If (s, v2) ∈ Ai, then δG(s, σi) = v2 and δG(s′′, σi) = v2. If (v1, s) ∈ Ai, then
δG(v1, σi) = s′′. For simplicity it is assumed that (s, s) 6∈ A. Also, transitions are added to
G such that δG(s, γ) = s′ and δG(t, γ) = t′. Let H be a copy of G except that δH(t, γ) is
undefined. Let Σc = {γ}.

An example of such a system construction for converting a directed graph D to a system
and specification G and H is given in Figure 3.

2

1

tS

S’

S’’

2

1

t

t’S’

S’’

2

1

tS S

βH:

β

α

α

αα

αα

α

βG:

β

α

D:

β

β

γγ γ

Figure 3: A directed graph D and the systems G and H constructed from it.

In the system constructed above, γ must be enabled at s and be disabled at t. There is
a control conflict if there is a path in G from s to t where no event is observed. Therefore,
as system behavior progresses, if any event is observed, then γ can be disabled. Hence,
a set of colors I = {ca, . . . , cz} is a colored cut for D if and only if selecting the sensors
{σa, . . . , σz} corresponding to I makes the system observable. Therefore any approximation
algorithm for the minimal-cost sensor-selection problem can also be used with the same
absolute effectiveness for the minimal-cost colored cut problem.

The converse construction is now shown to convert an instance of Problem 3 to an instance
of Problem 1.

Proposition 2 An instance of the minimal-cost sensor-selection problem can be reduced to
an instance of the minimal-cost colored cut problem in polynomial time.

The reduction construction relies on a modifiedM-automaton method for testing observ-

ability where a automaton MΣo = (XMΣo , x
MΣo
0 , ΣMΣo , δMΣo ) is constructed.
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Suppose H = (XH , xH
0 , Σ, δH), G = (XG, xG

0 , Σ, δG), Σo and Σc are given such that it is
desired to test if L(H) is observable with respect to L(G), Σo and Σc. Let Σ′ be a copy of the
event set Σ where for every event σ ∈ Σ, there is a corresponding event σ ′ ∈ Σ′. The following

are then defined, XMΣo := XH ×XH ×XG∪{d},x
MΣo
0 := (xH

0 , xH
0 , xG

0 )and ΣMΣo := Σ∪Σ′.
A set of conditions at state (x1, x2, x3) is also defined that is called the (∗) conditions.

δH(x1, σ) is defined if σ ∈ Σc

δH(x2, σ) is not defined
δG(x3, σ) is defined







(∗)

The nondeterministic transition relation δMΣo is defined as follows.
For σ′ ∈ Σ′ such that for the corresponding σ ∈ Σ σ 6∈ Σo,

δMΣo ((x1, x2, x3), σ
′) =

{

(δH(x1, σ), x2, x3) if δH(x1, σ)!
(x1, δ

H(x2, σ), δG(x3, σ)) if
(

δH(x2, σ)! ∧ δG(x3, σ)!
)

}

For σ ∈ Σ,

δMΣo ((x1, x2, x3), σ) =
{

(δH(x1, σ), δH(x2, σ), δG(x3, σ)) if
(

δH(x1, σ)! ∧ (δH(x2, σ)! ∧ (δG(x3, σ)!
)

d if (∗)

}

No other transitions are defined in MΣo . The notation is used such that δH(x, σ)! is true if
δH(x, σ) is defined and false otherwise. A similar definition holds for δG(x, σ)!.

For σ ∈ Σ, δMΣo (d, σ) is undefined. The MΣo-automaton here is modified from the
original in [20] in that Σ′ transitions replace some Σ transitions. These σ′ ∈ Σ′ transitions
correspond to transitions that would be cut if σ ∈ Σ \ Σo were to be made observable. This
construction prompts the following proposition.

Proposition 3 [20] The state d is reachable in MΣo if and only if L(H) is observable with
respect to L(G), Σo and Σc.

Effectively MΣo is a nondeterministic simulation of an observer’s estimate of a system’s
behavior with respect to a specification. As system behavior progresses, in a state (x1, x2, x3)
ofMΣo , the first state is an observers estimate of the specification state and the second and
third states are the true states of the specification and system respectively. In MΣo , a Σ
transition occurs if an event occurrence in H and G is correctly predicted by the observer and
a Σ′ transition occurs if the prediction is not correct. Therefore, if an event σ is observed and
added to Σo, the occurrences of σ would therefore be predicted correctly and a σ ′ transitions
would be removed from MΣo . This implies that MΣo∪{σ} can be constructed from MΣo by
cutting all σ′ transitions, and cutting all occurrences of σ′ transitions inMΣo corresponds to
adding σ to Σo.

Lemma 1 The automatonMΣo can be constructed fromM∅ by iteratively cutting Σ′
o labelled

transitions in M∅.

Proof: This lemma is shown by a proof by induction on the cardinality of Σo.
Base: Suppose Σo = ∅. This case is trivial as MΣo =M∅.
Induction hypothesis: For |Σo| = n, theMΣo automaton can be constructed fromM∅ by

iteratively cutting Σ′
o labelled transitions in M∅.

Induction step: Let |Σo| = n. From the induction hypothesis it is known that the MΣo

automaton can be constructed fromM∅ by iteratively cutting Σ′
o labelled transitions inM∅.
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Let σ be some event in Σ \ Σo. From the construction of MΣo and M(Σo∪{σ}), the only
difference in the transition structure of these two automata is that transitions labelled by
σ′ are absent in M(Σo∪{σ}). Therefore the M(Σo∪{σ}) automaton can be constructed from
MΣo by cutting all σ′ labelled transitions inMΣo . Hence, theM(Σo∪{σ}) automaton can be
constructed from M∅ by iteratively cutting Σ′

o ∪ {σ
′} labelled transitions in M∅.

Lemma 1 shows that the sensor selection problem is really a type of colored cut problem.
Suppose the automatonM∅ is considered to be a colored directed graph as introduced above

such that the transition labels are defined to be edge colors. A colored x
M∅
0 d-cut for M∅

where only Σ′ transitions are cut corresponds to a sufficient sensor selection for observability
to hold. This prompts the following theorem.

Theorem 3 L(H) is observable with respect to L(G), Σo and Σc if and only if Σ′
o ⊆ Σ′ is a

colored x
M∅
0 d-cut M∅.

Proof: This proof is demonstrated in two parts. Suppose that L(H) is observable with
respect to L(G), Σo and Σc. Therefore, due to Proposition 3, d is not reachable in theMΣo

automaton constructed from H, G, Σc and Σo. From Lemma 1 the automaton MΣo can be
constructed from M∅ by iteratively cutting Σ′

o labelled transitions in M∅. Hence, Σ′
o is a

colored x
M∅
0 d-cut in M∅.

Now suppose that L(H) is not observable with respect to L(G), Σo and Σc. Therefore,
due to Proposition 3, d is reachable in the MΣo automaton constructed from H, G, Σc and
Σo. From Lemma 1 the automatonMΣo can be constructed fromM∅ by iteratively cutting

Σ′
o labelled transitions in M∅. Hence, Σ′

o is a not a colored x
M∅
0 d-cut in M∅.

The Σ transitions cannot be cut in the M∅ automaton of Theorem 3 by making events
observable, so theM∅ cut problem is not currently in a form that can be used for a reduction
to Problem 1. To counter this difference, the following construction is used which performs
a form of state condensation and hides the Σ transitions in M∅.

Construct MΣo from H, G, Σc and Σo. Define:

X
MΣo
x =

{

yMΣo |∃t ∈ Σ∗, δMΣo (xMΣo , t) = yMΣo
}

.

X
MΣo
x represents all states that could be reached from xMΣo inMΣo if only Σ transitions were

allowed. The states in X
MΣo
x would be reachable from xMΣo inMΣo no matter what events

were added to the observability set because only Σ′
o transitions can be cut by making events

observable. With this in mind, the following nondeterministic automaton M̃Σo is constructed

from MΣo . It is assumed that d 6∈ X
MΣo
x0 . Let M̃Σo = (XM̃Σo , x

M̃Σo
0 , ΣM̃Σo , δM̃Σo ), where

XM̃Σo := XH ×XH ×XG ∪ {d}, x
M̃Σo
0 := (xH

0 , xH
0 , xG

0 ) and ΣM̃Σo := Σ.

The transition relation δM̃Σo is defined as follows.
Suppose three states xMΣo , yMΣo , zMΣo ∈ XMΣo and an event σ ∈ Σ exist such that

zMΣo ∈ X
MΣo
x , δMΣo (zMΣo , σ′) = yMΣo .

δM̃Σo (xMΣo , σ) =

{

yMΣo if d 6∈ X
MΣo
y

d if d ∈ X
MΣo
y

The M̃Σo automaton is really a colored directed graph where states are vertices, transitions
are directed edges and the transition labels are the colors. This prompts one of the main
results of this paper.
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Theorem 4 Given an M̃∅ automaton constructed from H, G, Σc and ∅ as the set of observ-
able events, L(H) is observable with respect to L(G), Σo and Σc if and only if Σo is a colored

x
M̃∅
0 d-cut in the colored directed graph M̃∅.

Proof: It has already been shown that L(H) is observable with respect to L(G), Σo and

Σc if and only if Σ′
o is a colored x

M∅
0 d-cut in the colored directed graph M∅. Therefore it

is sufficient to show that Σo is a colored x
M̃∅
0 d-cut in the colored directed graph M̃∅ if and

only if Σ′
o is a colored x

M∅
0 d-cut in the colored directed graph M∅.

Define a natural projection operation P ′ : Σ ∪ Σ′ → Σ′. Also define the translation
operator Ψ̃ : Σ′ → Σ such that Ψ̃(σ′) = σ. Both of these functions are extended in the
usual manner to be defined over strings. Also define the function P̃ : Σ ∪Σ′ → Σ that is the
composition of P ′(·) and Ψ̃(·), i.e., P̃ (σ) = Ψ̃(P ′(σ)). These functions also have the normally
defined inverse operations.

Suppose that Σ′
o is not a colored x

M∅
0 d-cut in the colored directed graphM∅. Then there

exists a string s ∈ (Σ ∪ Σ′)∗ such that δM∅(x
M∅
0 , s) = d. Due to the construction of M̃∅,

δM̃∅(x
M̃∅
0 , P̃ (s)) = d.

Now suppose that Σ′
o is not a colored x

M̃∅
0 d-cut in the colored directed graph M̃∅. Then

there exists a string s ∈ Σ∗ such that δM̃∅(x
M̃∅
0 , s) = d. Due to the construction of M̃∅,

there exists some string t ∈ P̃−1(s) such that δM∅(x
M∅
0 , t) = d.

With the shown conversions between the graph cutting problem and the sensor selection
problem any method developed to calculate approximate solutions to one problem can be
used to calculate approximate solutions to the other problem.

Due the construction of theMΣo-automaton, it should be apparent that |XM| ≤ |XG| ∗
|XH |2 + 1. Furthermore, at each state xM

Σo
∈ XM

Σo
, the number of state transitions is at

most three times the maximum number of output state transitions in any state of G or
H. If EG is the set of state transitions in G and EH is the number of state transitions
in H, let e = max{|EG|, |EH |}. Therefore MΣo can be constructed in time and space in
O(e∗ |XG| ∗ |XH |2) using standard breadth-first digraph construction algorithms. Therefore,
because reachability can be tested in polynomial time, the observability of L(H) with respect
to L(G), Σo and Σc can be tested in polynomial time.

7 A Deterministic Greedy Graph Cutting Method

An algorithm is now shown for approximating the solution to the minimal-cost sensor-
selection problem. This algorithm is based on the M̃∅ construction seen above for a system
G, a specification H and a set of controllable events Σc. After constructing M̃∅, events are

made observable in order to cut all paths from x
M̃∅
o to d in M̃∅.

A utility function is now used to decide which events to make observable by determining
the relative desirability of cutting a set of transitions associated with an event in M̃∅. Starting
with a trim version of M̃∅, suppose in this automaton it is desirable to find the “probability”

P(σ,M̃∅) that a “randomly” selected path from x
M̃∅
o to d contains an edge labelled by σ.

The term “probability” and “randomly” are used in a loose and intuitive manner in order to
develop an understanding for the solution method for this problem while avoiding the explicit
definition of a probability distribution function at this time. Naturally it would be desirable
to cut transitions associated with events that have the highest probability of occurrence as
specified by P(σ,M̃∅). If an event has a low sensor cost and a high probability of occurring

16



on a simulation of the M̃∅-automaton leading to the d state, then it is desirable to observe
occurrences of that event as observing that event would cut the “most” paths to the d state
in M̃∅ per sensor cost. This prompts the following greedy approximation algorithm.

Algorithm 3 Deterministic Greedy Approximation Algorithm (DetGrAprx)
Input: G = (XG, Σ, δG, xG

0 ), H = (XH , Σ, δH , xH
0 ), Σc ⊆ Σ;

Σo ← ∅;
i← 1;
Construct M̃Σo;
M̃T

Σo
← Trim(M̃Σo);

While Lm(M̃T
Σo

) 6= ∅;
{

σi ← arg maxσ∈Σ\Σo

(

P(σ,M̃T
Σo)

cost(σi)

)

;

ρi ←
P(σi,M̃T

Σo)
cost(σi)

;

Σo ← Σo ∪ {σi};
k ← i;
i← i + 1;
Construct M̃Σo;
M̃T

Σo
← Trim(M̃Σo);

}
Return Σo;

It now needs to be shown how P
(

σ,M̃T
Σo

)

is calculated. This is done by converting

M̃T
Σo

into a stochastic automaton. At each state x ∈ XM̃T
Σo , suppose there are κx output

transitions. Assign the probability 1
κx

to each output transition of x. That probability
assignment models that all the output transitions of a state have the same probability of being
followed. Therefore, using standard methods from stochastic systems theory [6], P(σ, M̃T

Σo
)

denotes the probability that a random walk in the stochastic version of M̃T
Σo

with uniform

probability assignments starting at x
M̃T

Σo
o traverses a σ transition on its way to d. It should

be noted that this probability can be computed in polynomial time using standard methods.
Algorithm 3 iteratively chooses to observe an event with the highest probability of occur-

rence in M̃T
Σo

over the sets of all x
M̃T

Σo
o d paths per the cost of observing that event. After

an event is selected to be observed, it is added to Σo and all transitions associated with that
event are removed in M̃T

Σo
. The M̃T

Σo
-automaton is continually trimmed as events are made

observable until there are no paths from the initial state to the marked state d. Therefore,
as Σo is updated, the next M̃T

Σo
can be calculated in polynomial time. Algorithm 3 runs

in polynomial time with respect to the size of the encodings of G and H as the algorithm
iterates at most k ≤ |Σ| times.

The deterministic greedy algorithm is now analyzed to obtain a bound on the ratio of the
cost of the sensor selection Σo returned by Algorithm 3 to the cost of the minimal observability
set. This analysis relies on the stored {ρ1, . . . , ρk} probability to cost ratios saved during the
operation of Algorithm 3. The set Σmini

o denotes the minimum-cost observability set that
could be chosen at iteration i given that events in Σi

o are already selected to be observed.
Naturally, Σmin1

o = Σmin
o .
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Lemma 2 In Algorithm 3, on the ith iteration,

cost(σi)

P
(

σi,M̃Σi
o

) ≤ cost(Σmini
o )

Proof: Let Σmini
o = {γ1

i , . . . γki
i }. Also, for γj

i ,M̃
T
Σi

o
, j ∈ {1, . . . , ki}, let values of αj

i ∈
(

0,P
(

γj
i ,M̃Σi

o

)]

be chosen such that
∑ki

j=1 αj
i = 1. Because Algorithm 3 is a greedy algo-

rithm, σi has the highest probability of any event not previously chosen for observation on
round i, i.e.,

∀j ∈ {1, . . . , ki}





P
(

σi,M̃Σi
o

)

cost(σi)
≥
P

(

γj
i ,M̃Σi

o

)

cost(γj
i )





⇒ ∀j ∈ {1, . . . , ki}





cost(σi)

P
(

σi,M̃Σi
o

) ≤
cost(γj

i )

P
(

γj
i ,M̃Σi

o

)





⇒ ∀j ∈ {1, . . . , ki}





cost(σi)

P
(

σi,M̃Σi
o

) ≤
cost(γj

i )

αj
i





⇒ ∀j ∈ {1, . . . , ki}





αj
i cost(σi)

P
(

σi,M̃Σi
o

) ≤ cost(γj
i )





⇒
ki

∑

j=1

αj
i cost(σi)

P
(

σi,M̃Σi
o

) ≤
ki

∑

j=1

cost(γj
i )

⇒
cost(σi)

P
(

σi,M̃Σi
o

)

ki
∑

j=1

αj
i ≤ cost(Σmini

o )

⇒
cost(σi)

P
(

σi,M̃Σi
o

) ≤ cost(Σmini
o ).

Lemma 2 can now be used to show the following result on the closeness of the cost of the
approximation to the minimum-cost observability set.

Theorem 5 For the observability set Σo returned by Algorithm 3 and the minimum sensor
selection Σmin

o ,

cost(Σo)

cost(Σmin
o )

≤

|Σo|
∑

i=1

ρi

where {ρ1, . . . ρk} are the values iterative probabilities stored during the operation of Algorithm
3.
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Proof: It has already been shown in Lemma 2 that:

cost(σi)

P
(

σ,M̃Σi
o

) ≤ cost(Σmini
o ) ⇒ cost(σi) ≤ cost(Σmini

o )P
(

σ,M̃Σi
o

)

⇒ cost(σi) ≤ cost(Σmini
o )ρi

⇒ cost(Σo) ≤

|Σo|
∑

i=1

cost(Σmini
o )ρi

⇒
cost(Σo)

cost(Σmin
o )

≤

|Σo|
∑

i=1

ρi

Because of Theorem 5, a bound on the closeness of the approximation returned by Algo-
rithm 3 can be calculated. Unfortunately

∑k
i=1 ρi can be on the order of n− ε in the worst

case where n is the number of system events and ε is some constant greater than 0. A lower
bound on the closeness of the bound on the approximation ratio shown in Theorem 5 is now
shown if the algorithm is used on the special problem case of uniform cost as seen in Problem
2.

Theorem 6 From a set {ρ1, . . . , ρk} calculated from a running of Algorithm 3 where ∀σ ∈
Σ, cost(σ) = λ ∈ <+,

k
∑

i=1

ρi ≥ Hk =
k

∑

j=1

1

j

where Hk =
∑k

j=1
1
j is the sum of the harmonic series.

Proof: Suppose the events chosen to be observable by Algorithm 3, Σo, are chosen in the
order σ1, . . . , σk. In the automaton M̃Σi

o
, the transition labelled by σi has probability ρi of

occurring on a random path from x
M̃

Σi
o

o to d. Before the event σi is chosen, there are k− i+1

events left to be chosen in the set {σi, . . . , σk}. All unique paths from x
M̃

Σi
o

o to d in M̃Σi
o

must contain at least one state transition with a label in {σi, . . . , σk}.
Therefore,

k
∑

j=i

P(σj ,M̃Σi
o
) ≥ 1.

Because σi has the highest probability of occurring on a path from x
M̃

Σi
o

o to d in M̃Σi
o
,

ρi ≥

∑k
j=i P(σj ,M̃Σi

o
)

k − i + 1
⇒ ρi ≥

1

k − i + 1

⇒
1

∑

i=k

ρi ≥
1

∑

i=k

1

k − i + 1

⇒
k

∑

i=1

ρi ≥ Hk.
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Although Theorem 6 puts a lower bound on the guarantee of the approximation ratio
show in Theorem 5, it is not implied that Algorithm 3 cannot have an approximation ratio
better than Hk when the sensors have uniform cost.

7.1 A Randomized Greedy Algorithm

A randomized greedy minimal sensor selection algorithm is now given that combines elements
of Algorithms 1 and 3. As with Algorithm 1, this new algorithm randomly enables events
to be made observable, but uses the utility function P(σ, M̃Σo) to weight the probability
distribution of a sensor being selected. Therefore, an event with a relatively high probability
of occurring over the set of all paths to d in M̃Σo will have a higher probability of being
added to the observable events when sensors are being selected.

Algorithm 4 Randomized Weighted Observability Set Search Algorithm (RanWObs):
Input: G = (XG, Σ, δG, xG

0 ), H = (XH , Σ, δH , xH
0 ), Σc ⊆ Σ

Σo ← ∅;
Construct M̃Σo from G, H, Σc and Σo;
i← 1;
M̃T

Σo
← Trim(M̃T

Σo
);

While Lm(M̃T
Σo

) 6= ∅;
{

For all σ ∈ Σ \ Σo

{

Pr(σ)←

 

P(σ,M̃T
Σo)

cost(σi)

!

P

γ∈Σ\Σo

 

P(γ,M̃T
Σo)

cost(γ)

! ;

}
Randomly select σi ∈ Σ \ Σo according to probability distribution Pr(σ);
k ← i;
Remove σi labelled transitions in M̃T

Σo
;

Σo ← Σo ∪ {σi};
i← i + 1;
M̃T

Σo
← Trim(M̃T

Σo
);

}
Return Σo;

Algorithm 4 can be iterated multiple times using a method similar to that in Algorithm
2 to obtain multiple approximations to the minimum-cost observability set. Unlike the de-
terministic approximation algorithm, Algorithm 3, Algorithm 4 may not always return the
same approximation.

8 Integer Programming

Another approach to approximating the minimal cost sensor selection is to use integer pro-
gramming based methods. Integer programming is a general optimization problem from the
field of the combinatorial optimization that has been well explored in the literature [12].
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This section discusses how to convert the minimal cost sensor selection problem to an in-
teger programming problem so that the approximation methods developped for the integer
programming problem can be used on the sensor selection problem.

First the integer programming problem is introduced.

Problem 4 The Integer Programming Problem: Given a z element row vector C, a y × z
matrix A and a y element column vector B, find a z element column vector ~x ∈ {0, 1}z that
minimizes C~x subject to A~x ≥ B.

The integer programming problem is known to be NP-complete, but there is a vast lit-
erature on calculating approximate solutions to this problem as outlined in [12, 22]. Unfor-
tunately, the integer programming problem is known to be NPO-complete [1] which means
that it is in the most difficult class of NP-complete optimization problems. However, if the
sensor selection problem is in the form of an integer programming problem, already developed
methods for the well understood integer programming can be used to find solutions to the
sensor selection problem.

8.1 Problem Conversion

It is now shown how to convert the minimal cost sensor selection problem to an integer
programming problem. Suppose a system automaton G, a specification automaton H and a
set of controllable events Σc are given along with a cost function cost : Σ→ <+ ∪ {0}. From
this the automaton M̃∅ and M̃Σo can be constructed for some Σo ⊆ Σ. Note that for the

sets of reachable states, XM̃Σo ⊆ XM̃∅ . That is, some reachable states in M̃∅ may not be
reachable in M̃Σo .

Let the events in Σ and states in XM̃∅ are treated as binary variables. The events in the
set Σo ⊆ Σ are all assigned 1 and all events in Σ \Σo are assigned 0. For all states x ∈ XM̃∅

such that x is reachable from x
M̃∅
o according to the transition rules of M̃Σo , then x = 1.

Arbitrary binary assignments are made to the variables representing the unreachable states.

Note that x
M̃∅
o = x

M̃Σo
o = 1.

To express the validity of variable assignments as a set of inequalities, suppose that in M̃∅

there is an event σi1 ∈ Σ and two states xi2 , xi3 ∈ XM̃∅ such that xi2

σi17→M̃∅
xi3 . Therefore,

using the variable assignments described above, this transition can be written as an inequality
xi3 ≥ xi2 − σi1 . This represents the property for the automaton M̃Σo that if xi2 is reachable
in M̃Σo and there is a transition caused by an unobserved event σi1 that leads to xi3 , then
xi3 should also be reachable. This inequality can be manipulated so that xi3 − xi2 + σi1 ≥ 0.

Therefore, if all of the state transitions in M̃∅ are expressed as integer inequalities as

was done for the xi2

σi17→M̃∅
xi3 transition above and the initial state x

M̃∅
o is constrained to be

reachable (that is, assigned to be 1), then the problem is to find the minimal cost set of events
assigned to be 1 (that is, assigned to be observable) such that the d state does not have to be
assigned 1 in order for the set of all transition inequalities to be valid. This set of conditions
can now be converted into an integer programming problem. Let a vector ~x be defined such
that if Σ = {σ1, . . . , σk} and XM̃∅ = {x0, x1, . . . , xn−1, d}:

~x =
[

σ1 · · · σk x0 x1 · · · xn−1 d
]T

.

Therefore, z = k + n.
The row vector C can be a z element constant vector such that for all i ∈ {1, . . . , k}, the

ith entry of C is cost(σi) and all other entries of C are 0.

C =
[

cost(σ1) · · · cost(σk) 0 0 · · · 0 0
]
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Therefore, minimizing C~x is equivalent to minimizing the cost of a sensor selection.

To encode the integer inequalities representing the state transitions such as xi2

σi17→M̃∅
xi3

in M̃∅ such that A~x ≥ B and ensure that d is assigned 0 while x
M̃∅
0 is assigned 1, construct

A and B as follows.
First, suppose there are e transitions in M̃∅ and let y = e + 2. The matrix B is a y

element column vector and A is a y× z. Let the transitions be ordered from 1 to e, such that

transition l represents xl2

σl17→M̃∅
xl3 . For the lth transition, the occurrence of the l1th event at

the l2th state results in M̃∅ entering the l3th state. Therefore, entry (l, l1) in A is assigned
to be 1, entry (l, (k + l3)) in A is assigned to be 1, entry (l, (k + l2)) in A is assigned to be
−1 and entry l of B is assigned to be 0. All other entries in the top e rows of A are assigned
0. This results in the inequality xl3 − xl2 + σl1 ≥ 0 being encoded in A~x ≥ B.

The (y, z) entry of A is assigned to be −1 and the y entry of B is assigned to be 0. This
ensures that state d is not reachable. That is, −d ≥ 0, so that d ≤ 0. If l

x
M̃∅
0

represents

the row of ~x corresponding to the state x
M̃∅
0 , then the (y − 1, l

x
M̃∅
0

) entry of A and the l
x
M̃∅
0

entry of B are assigned to be 1. This guarantees the 1 is assigned to the binary variable

representing the reachability of the initial state x
M̃∅
0 . All of the other entries in the bottom

two rows of A are assigned to be 0. That is x
M̃∅
0 ≥ 1.

Therefore, B is a column vector of (e + 1) 0’s and a 1 at the row corresponding to x
M̃∅
0 .

B =
[

0 · · · 0 1 0 · · · 0
]T

.

Using the given construction of A, B, C and ~x constructed from G, H, Σc and cost(·), the
minimal cost sensor selection problem is now in the form of an integer programming problem
where C~x should be minimized subject to the constraint that A~x ≥ B. An example of the
use of the integer programming construction for the sensor selection problem is now given.

Example 2 As a simple example of how to convert a graph cutting version of a sensor
selection problem into an integer programming problem, consider the M̃∅ automaton seen in
Figure 4.

M̃∅ :

α

β

dx
M̃∅
0

Figure 4: An example of a M̃∅ automaton.

It is assumed that the system events have uniform cost of being observed. Therefore,

~x =











α
β

x
M̃∅
o

d











, A =









1 0 −1 1
0 1 −1 1
0 0 1 0
0 0 0 −1









, B =









0
0
1
0









, C =
[

1 1 0 0
]

.
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9 Applications to Minimal Communication Decentralized Con-

trol

An approximation problem for communicating decentralized control systems is now investi-
gated where decentralized controllers make local observations, communicate the occurrence
of various events between each other and enforce local control actions that are combined glob-
ally using an intersection operation. That is, an event is enabled globally only if it is enabled
by all local controllers. Two controller systems are investigated, but the results presented
can be trivially extended to n controller systems.

For this problem a system G and a specification H are given with respective sets of locally
controllable events Σc1, Σc2 and locally observable events Σo1, Σo2. It is assumed that the
controllers communicate by reporting all occurrences of some locally observed events to the
other controller. More formally, controller 1 communicates all observations of the occurrences
of a subset of the locally observable events Σo12 ⊆ Σo1 to controller 2 and controller 2
communicates all observations of the occurrence of locally observable events Σo21 ⊆ Σo2 to
controller 1.

It is assumed that L(H) is not co-observable with respect to L(G), Σo1, Σo2 and Σc1, Σc2,
but L(H) is co-observable with respect to L(G), (Σo1 ∪ Σo2), (Σo2 ∪ Σo2) and Σc1, Σc2. This
assumption implies that there exists non-trivial Σo12 and Σo21 such that L(H) is co-observable
with respect to L(G), (Σo1∪Σo21), (Σo2∪Σo12) and Σc1, Σc2. When the communicated event
sets Σo12 and Σo21 can be used to solve the communicating controller problem by augmenting
the local observability sets, then the pair of sets Σo12, Σo21 are called sufficient communication
selections.

It is assumed that there is a non-zero cost associated with communicating events and
this cost may be uniform over all events. Two functions cost12 : Σo1 → <

+ and cost21 :
Σo2 → <

+ exist such that cost12(σ) represents the cost to controller 1 of communicating all
observed occurrences of σ to controller 2, and cost21(σ) represents the cost to controller 2
of communicating all observed occurrences of σ to controller 1. The cost function functions
can also be extended to be defined over sets of states as was done with cost(·) above. Due
to reasons of economy or limited bandwidth the total communication cost may want to be
minimized. This prompts the following minimization problem definition.

Problem 5 Minimal-Cardinality Communication-Selection: Given a system G, a specifi-
cation H and controllable events Σc1, Σc2 ⊆ Σ, find a sufficient communication selection
Σmin

o12 , Σmin
o21 such that for any other sufficient communication selections Σo12, Σo21,

cost12(Σ
min
o12 ) + cost21(Σ

min
o21 ) ≤ cost12(Σo12) + cost21(Σo21).

Problem 5 is a special case of the communicating controller open problem discussed in
[21]. It is hypothesized that the general communicating controller problem of [21] may be
undecidable, but the computational methods developed for the centralized sensor selection
problem above can be intuitively applied to the communicating decentralized control problem
discussed here. It is now shown how to convert Problem 5 into a type of graph cutting
problem.

9.1 Graph Cutting for Communication Selection

Problem 5 is a modification of Problem 1 and there exists a similar M̃Σo12,Σo21 construction
for converting the communication selection problem to a type of graph cutting problem. Let
Σ1 and Σ2 be disjoint sets of events such that for all i ∈ {1, 2}, Σi ∩ Σ = ∅. Furthermore,
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define Ψi : Σ → Σi for i ∈ {1, 2} to be a one-to-one function, and for σ ∈ Σ, Ψi(σ) is called
σi when it can be done without ambiguitively. Consider the following construction for the
two controller case that can be easily extended for the n controller case.

MΣo12,Σo21 = (XMΣo12,Σo21 , x
MΣo12,Σo21
0 , (Σ ∪ Σ1 ∪ Σ2), δ

MΣo12,Σo21 , X
MΣo12,Σo21
m )

where

XMΣo12,Σo21 := XH ×XH ×XH ×GG ∪ {d},

x
MΣo12,Σo21
0 := (xH

0 , xH
0 , xH

0 , xG
0 ),

X
MΣo12,Σo21
m := {d}.

Let a set of conditions be defined that together imply a violation of co-observability. Note
that these conditions are only defined for the controllable events. For σ ∈ Σc, these conditions
are called the (∗) conditions.

δH(x1, σ) is defined if σ ∈ Σc1

δH(x2, σ) is defined if σ ∈ Σc2

δH(x3, σ) is not defined
δG(x4, σ) is defined















(∗)

The transition relation for MΣo12,Σo21 is defined as follows:
For σ ∈ Σ \ (Σo1 ∪ Σo2):

δΣo12,Σo21((x1, x2, x3, x4), σ) =






























d if (∗)
(δH(x1, σ), x2, x3, x4) if δH(x1, σ)!
(x1, δ

H(x2, σ), x3, x4) if δH(x2, σ)!
(x1, x2, δ

H(x3, σ), δG(x4, σ)) if
(

δH(x3, σ)! ∧ δG(x4, σ)!
)

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ)) if

(

δH(x1, σ)! ∧ δH(x2, σ)!
∧δH(x3, σ)! ∧ δG(x4, σ)!

)































.

For σ ∈ Σo2 \ (Σo1 ∪ Σo21):

δΣo12,Σo21((x1, x2, x3, x4), σ) =






d if (∗)

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ)) if

(

δH(x1, σ)! ∧ δH(x2, σ)!
∧δH(x3, σ)! ∧ δG(x4, σ)!

)







,

and

δΣo12,Σo21((x1, x2, x3, x4), Ψ1(σ)) =

{

(δH(x1, σ), x2, x3, x4) if δH(x1, σ)!
(x1, δ

H(x2, σ), δH(x3, σ), δG(x4, σ)) if
(

δH(x2, σ)! ∧ δH(x3, σ)! ∧ δG(x4, σ)!
)

}

.

For σ ∈ Σo1 \ (Σo2 ∪ Σo12):

δΣo12,Σo21((x1, x2, x3, x4), σ) =






d if (∗)

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ)) if

(

δH(x1, σ)! ∧ δH(x2, σ)!
∧δH(x3, σ)! ∧ δG(x4, σ)!

)







,
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and

δΣo12,Σo21((x1, x2, x3, x4), Ψ2(σ)) =
{

(x1, δ
H(x2, σ), x3, x4) if δH(x2, σ)!

(δH(x1, σ), x2, δ
H(x3, σ), δG(x4, σ)) if

(

δH(x1, σ)! ∧ δH(x3, σ)! ∧ δG(x4, σ)!
)

}

.

For σ ∈ Σo1 ∩ Σo2:

δΣo12,Σo21((x1, x2, x3, x4), σ) =






d if (∗)

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ)) if

(

δH(x1, σ)! ∧ δH(x2, σ)!
∧δH(x3, σ)! ∧ δG(x4, σ)!

)







.

No other transitions are defined in MΣo12,Σo21 .
The MΣo12,Σo21 construction prompts the following corollary to the main result of [16].

Corollary 2 The state d is reachable from the initial state inMΣo12,Σo21 if and only if L(H)
is co-observable with respect to L(G), (Σo1 ∪ Σo21), (Σo2 ∪ Σo12), Σc1 and Σc2.

Note that the M(Σo12∪{σ}),Σo21
automaton can be constructed from the MΣo12,Σo21 au-

tomaton by cutting all transitions labelled by σ1 and theMΣo12,(Σo21∪{σ}) automaton can be
constructed from theMΣo12,Σo21 automaton by cutting all transitions labelled by σ2. There-
fore, the act of controller i communicating all observed occurrences of event σ to controller
j corresponds to trimming all σj labelled transitions in MΣo12,Σo21 .

For the set of events Σoij ⊆ Σ, let Σoij
j ⊆ Σj represent the corresponding set of events

such that σ ∈ Σoij if and only if σj ∈ Σoij
j . A set of events Σo21

1 ∪ Σo12
2 is a x

M∅,∅

0 d-
cut in M∅,∅ if and only if Lm(MΣo12,Σo21) = ∅ and consequently L(H) is co-observable
with respect to L(G), (Σo1 ∪ Σo21), (Σo2 ∪ Σo12), Σc1 and Σc2. Therefore, the pair of sets
(

Σmin
o12 , Σmin

o21

)

is a minimal-cost communication-selection if and only if the corresponding

events Σo21min
1 ∪Σo12min

2 ⊆ Σ1 ∪Σ2 is a minimal-cost x
M∅,∅

0 d-cut inM∅,∅ when restricted to
cutting transitions labelled with events in Σ1 ∪ Σ2.

As with the MΣo construction given above the MΣo12,Σo21 construction converts the
communicating controller selection problem into a type of graph cutting problem as long as
only events in Σ1 and Σ2 are cut. There is a M̃Σo12,Σo21 construction that can be used to
convert this graph cutting problem into a true edge-colored directed graph st-cut problem.

Define:

X
MΣo12,Σo21
x =

{

yMΣo12,Σo21 |∃t ∈ Σ∗, δMΣo12,Σo21 (xMΣo12,Σo21 , t) = yMΣo12,Σo21
}

.

X
MΣo12,Σo21
x represents all states that could be reached from xMΣo12,Σo21 inMΣo12,Σo21 if only

Σ transitions were allowed. The states in X
MΣo12,Σo21
x would be reachable from xMΣo12,Σo21

inMΣo12,Σo21 no matter what events are communicated between the controllers because only
transitions labelled by events in Σ1 ∪ Σ2 can be cut in MΣo12,Σo21 through the communica-
tion of events. With this in mind, the following nondeterministic automaton M̃Σo12,Σo21 is

constructed from MΣo12,Σo21 . It is assumed that d 6∈ X
MΣo12,Σo21
x0 .

Let M̃Σo12,Σo21 = (XM̃Σo12,Σo21 , x
M̃Σo12,Σo21
0 , ΣM̃Σo12,Σo21 , δM̃Σo12,Σo21 ), where XM̃Σo12,Σo21 :=

XH × XH × XH × XG ∪ {d}, x
M̃Σo12,Σo21
0 := (xH

0 , xH
0 , xH

0 , xG
0 ) and ΣM̃Σo12,Σo21 := Σ1 ∪

Σ2. The transition relation δM̃Σo12,Σo21 is defined as follows. Suppose there exists three
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states xMΣo12,Σo21 , yMΣo12,Σo21 , zMΣo12,Σo21 ∈ XMΣo12,Σo21 and σ ∈ Σ such that zMΣo12,Σo21 ∈

X
MΣo12,Σo21
x , δMΣo12,Σo21 (zMΣo12,Σo21 , σi) = yMΣo12,Σo21 where σi ∈ Σ1 ∪ Σ2. Then,

δM̃Σo12,Σo21 (xMΣo12,Σo21 , σi) =

{

yMΣo12,Σo21 if d 6∈ X
MΣo12,Σo21
y

d if d ∈ X
MΣo12,Σo21
y

The M̃Σo12,Σo21 automaton is really a colored directed graph where states are vertices, tran-
sitions are directed edges and the transition labels are the colors. This prompts another of
the main contributions of this paper.

Theorem 7 Suppose an M̃∅,∅ automaton constructed from H, G, Σo1, Σo2, Σc1, Σc2 and
∅, ∅ as the sets of communicated events is given. The language L(H) is co-observable with
respect to L(G), (Σo1 ∪ Σo21) , (Σo2 ∪ Σo12) and Σc1, Σc2. if and only if Σo21

1 ∪Σo12
2 is a colored

x
M̃∅,∅

0 d-cut in the colored directed graph M̃∅,∅.

Proof: L(H) is co-observable with respect to L(G), (Σo1 ∪ Σo21) , (Σo2 ∪ Σo12) and Σc1, Σc2

if and only if Σo21
1 ∪Σo12

2 is a colored x
M∅,∅

0 d-cut in the colored directed graphM∅,∅. Therefore

it is sufficient to show that Σo21
1 ∪Σo12

2 is a colored x
M̃∅,∅

0 d-cut in the colored directed graph

M̃∅,∅ if and only if Σo21
1 ∪ Σo12

2 is a colored x
M∅,∅

0 d-cut in the colored directed graph M∅,∅

Define the natural projection P12 : Σ∪Σ1∪Σ2 → Σ1∪Σ2. Suppose that Σo21
1 ∪Σo12

2 is not a

colored x
M∅,∅

0 d-cut in the colored directed graphM∅,∅. Then there exists a string s ∈ (Σ∪Σ1∪

Σ2)
∗ such that δM∅,∅(x

M∅,∅

0 , s) = d. Due to the construction of M̃∅,∅, δM̃∅,∅(x
M̃∅,∅

0 , P12(s)) =
d.

Now suppose that Σo21
1 ∪ Σo12

2 is not a colored x
M̃∅,∅

0 d-cut in the colored directed graph

M̃∅,∅. Then, there exists a string s ∈
(

Σo21
1 ∪ Σo12

2

)∗
such that δM̃∅,∅(x

M̃∅,∅

0 , s) = d. Due to

the construction of M̃∅,∅, there exists some string t ∈ P̃−1
12 (s) such that δM∅,∅(x

M∅,∅

0 , t) = d.

With the shown conversion between the graph cutting problem and the sensor selection
problem the methods outlined above to approximate minimal solutions to the graph cutting
problem can be used to approximate solutions to the communication selection problem. The
M̃∅,∅ automaton shown above can be constructed in polynomial time, but this most likely
does not hold if the number of controllers is unbounded. This is due to the result in [15] that
problem of deciding co-observability for systems with an unbounded number of controllers is
PSPACE-complete.

10 Actuator Selection

An interesting dual of the sensor selection problem discussed above is the actuator selection
problem where instead of selecting events to be observed, events are selected to be controlled
in order for a controller to be used with a system in order to satisfy a specification. Given
a system G, a specification automaton H, the unique minimal set of controllable events Σc

can be found in polynomial time for an admissible controller S to exist such that L(S/G) =
L(H). To do this, a automaton H¬ can be constructed in polynomial time that marks
(L(H)Σ ∩ L(G)) \ L(H) using known methods as discussed in [2]. Therefore, H¬ marks a
string sσ if s ∈ (L(H) ∩ L(G)), but sσ 6∈ L(H) and sσ ∈ L(G). For a set of strings K, let
Σter(K) be the set of events that end all strings in K. If Σc = Σter(H¬) and Σuc = Σ\Σc, then
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L(H)Σuc ∩ L(G) ⊆ L(H). Therefore, a set of controllable events Σter(H¬) can be found in
polynomial time such that L(H) is controllable with respect to L(G) and Σ\Σter(H¬) and in
the case of full observation there exists an admissible controller S such that L(S/G) = L(H).

However, suppose instead of dealing with the actuator selection problem for exact spec-
ifications (i.e., so that L(S/G) = L(H)), suppose a minimal-cost set of control actuators
should be selected to satisfy a safety specification (i.e., so that L(S/G) ⊆ L(H)). A set of
controllable events Σc for there to exist an admissible controller S such that L(S/G) ⊆ L(H)
is called a sufficient actuator selection. Unfortunately there is not always a unique set of con-
trollable events Σc for there to exist an admissible controller S such that L(S/G) ⊆ L(H). If
there was a cost function cost : Σ → <+ such that cost(σ) is the cost of controlling σ, then
an interesting problem would be to find the minimal-cost set of controllers Σmin

c for there to
exist an admissible controller S such that L(S/G) ⊆ L(H).

Problem 6 Minimal-Cost Actuator-Selection: Given G and H, find a sufficient actuator
selection Σmin

c such that for any other sufficient actuator selection Σc, cost(Σmin
c ) ≤ cost(Σc).

As with the minimal sensor selection problems, the minimal-cost actuator-selection prob-
lem has an important special case where the cost of controlling an event is uniform over the
set of all system events. Unfortunately Problem 6 is NP-complete and solutions to it are as
difficult to approximate as the minimal-cost sensor-selection problem. This is demonstrated
by converting the edge colored directed graph st-cut problem to a minimal-cost actuator-
selection problem and vice-versa using polynomial-time many-one reductions. With these
reductions it is then known that the computational difficulty results and heuristic approxi-
mation methods developed for the sensor selection problems can be directly applied to the
actuator selection problems.

It is now shown how to reduce the graph cutting to a minimal-cost actuator-selection
problem using a many-one polynomial time reduction. Suppose an edge colored directed
graph D = (V, A, C) and two vertices s, t are given. A system G and a specification H
are now constructed from D. For the colors C = {c1, . . . , cp}, let the event set Σ include
a corresponding set of events {σ1, . . . , σp} such that color ci is paired with event σi and
define Σ = {σ1, . . . , σp}. Suppose that for all ci, σi pairs that cost(ci) = cost(σi). Also
define XG = V ∪ {s′′} where s′′ is a state not in V . Let xG

0 = s. To define the state
transition function, let v1, v2 be any vertices except s. If (v1, v2) ∈ Ai, then δG(v1, σi) = v2.
If (s, v2) ∈ Ai, then δG(s, σi) = v2 and δG(s′′, σi) = v2. If (v1, s) ∈ Ai, then δG(v1, σi) = s′′.
For simplicity it is assumed that (s, s) 6∈ A. Let H be a copy of G except that for any state
v and event σ such that δG(v, σ) = t, then δH(v, σ) is undefined. Note that G and H can be
constructed in polynomial time with respect to the size of D.

Let Σc = {σa, . . . , σz} be a set of events such that for a controller S that always disables
these events, L(S/G) ⊆ L(H) and leaves all other events enabled. Therefore, for any string of
events τ that leads from s to t in G, τ ∈ Σ∗ΣcΣ

∗ because due to the fact that L(S/G) ⊆ L(H),
there must be some event in τ that is disabled by S such that δG(s, τ) = t. Let I = {ca, . . . , cz}
be the set of colors that correspond to Σc = {σa, . . . , σz} according to the construction of G
and H. Consequently, in the directed graph D used to construct G and H, for any path of
transitions from s to t, there must be an edge with a color in I.

Now suppose that Σc = {σa, . . . , σz} is the set of controllable events and there does not
exist a (full observation) controller S such that L(S/G) ⊆ L(H). Therefore, for some string of
events τ that leads from s to t in G, τ 6∈ Σ∗ΣcΣ

∗ because due to the fact that L(S/G) 6⊆ L(H),
there must be some τ without transitions labelled by events in Σc = {σa, . . . , σz}. Let
I = {ca, . . . , cz} be the set of colors that correspond to Σc = {σa, . . . , σz} according to the
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construction of G and H. Consequently, in the directed graph D used to construct G and
H, there is some path from s to t, with no edges with a color in I.

Hence, for the given construction of G and H from D, a set of colors I = {ca, . . . , cz}
is a colored cut for D if and only if selecting actuators for {σa, . . . , σz} corresponding to
I allows there to be an admissible controller S such that L(S/G) ⊆ L(H). Therefore, the
minimal-cost actuator-selection problem is NP-complete and any approximation algorithm
for the minimal-cost actuator-selection problem can also be used with the same absolute
effectiveness for the minimal-cost colored cut problem.

An example of such a system construction for converting a directed graph D to a system
and specification G and H is given in Figure 5.

SS

1

2

S’’

t

1

2

S’’

S t

2

1

β

H: β

α

β

G: β

α α

α α

α
β

β

D:

α

Figure 5: A directed graph D and the systems G and H constructed from it.

It is now shown how to convert the actuator-selection problem into a type of graph cutting
problem. There exists an admissible controller S such that L(S/G) ⊆ L(H) if and only if
for any string τ and event σ such that τ ∈ L(G) ∩ L(H), τσ ∈ L(G) and τσ 6∈ L(H), there
must be some event in τσ that can be disabled. With this in mind, a automaton H./ can
be constructed in polynomial timing using methods discussed in [2] that marks the language
(L(G) \ L(H)) ∩ (L(H)Σ) and has a unique marked state. Then, there is a set Σc ⊆ Σ
such that Lm(H./) ⊆ Σ∗ΣcΣ

∗ if and only if there exists an admissible controller S such that
L(S/G) ⊆ L(H). Therefore, if s is the initial state of H./ and t is the unique marked state
of H./ and if H./ is thought of as a edge colored directed graph with the set of transition
labels Σ as colors, the set Σc ⊆ Σ is a colored st-cut for H./ if and only if the set of events
are controllable Σc then there exists an admissible controller S such that L(S/G) ⊆ L(H).

Now that it has been shown how to convert the actuator selection problem into an edge
colored directed graph st-cut problem, the approximation methods developed above for the
graph cutting problem can be effectively used to approximate solutions to the actuator se-
lection problem.

11 Discussion

This paper has shown results related to the approximation of minimal sensor selections for
centralized supervisory control synthesis. It was shown that minimal sensor selections cannot
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be approximated within a constant factor in polynomial time unless P=NP. It was shown
how to convert the sensor selection problem into an edge colored directed graph st-cut prob-
lem. Several deterministic and randomized heuristic approximation methods for this directed
graph problem were shown and a conversion of the directed graph problem to an integer pro-
gramming problem was given. An open communicating controller problem was also discussed
and it was shown how to convert this minimal communication decentralized control problem
into an edge colored directed graph st-cut problem. Therefore the methods discussed in this
paper for dealing with the edge colored directed graph st-cut problem can be used to solve
the minimal communication problem.
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