
Symmetry Reductions for a Class of Discrete-Event Systems

Kurt Rohloff and Stéphane Lafortune

Abstract— Issues related to the control and verification of
isomorphic modular discrete-event systems are investigated.
A finite state automaton system model is considered for the
system modules where a set of atomic propositions are defined
on the states. A type of symmetry is defined for these modular
systems and a restriction of the µ-calculus designed for these
systems is introduced. A procedure is shown to reduce the cost
in computation time and memory for testing if symmetric
modular systems satisfy propositions in this µ-calculus. An
example of a symmetric modular UAV platoon leader system
is then shown and discussed.

I. INTRODUCTION

This paper discusses how symmetry can be exploited
to more efficiently perform verification tasks for modular
discrete-event systems. It is well known that many control
and verification tasks for modular discrete-event systems are
computationally very difficult [5, 10, 12], but few methods
have been developed to avoid this computational diffi-
culty. This paper investigates an important special case
of modular discrete-event systems verification problems
where the various system modules are exact copies of one
another except for the renaming of events. Examples of
such systems include swarms of Unmanned Aerial Vehicles
(henceforth called UAV’s), computer networks and resource
sharing manufacturing systems. Methods are shown below
to alleviate the computational difficulty of verifying a large
class of system properties for these symmetric systems.

The modular systems discussed in this paper are modeled
as sets of finite state automata. These automata interact
through the parallel composition operation which coordi-
nates behavior on the occurrence of common events. Such
models are standard in the field of discrete-event systems
[1]. However, the models herein are generalized to permit
more atomic propositions on the module states than state
marking. This model extension is inspired by the work in the
formal methods community in computer science. See [2] for
an introduction to formal methods. This paper generalizes
and extends a number of key results shown in [11].

In this paper, verification tasks for the modular discrete-
event systems are performed with respect to µ-calculus
specifications. The µ-calculus is a very general specification
language developed by the formal methods community that

This research was supported in part by NSF grants CCR-0082784 and
CCR-0325571. K. Rohloff was also supported by the NSF grant CCR
00-85917 ITR.

K. Rohloff is with the Coordinated Science Laboratory, The Uni-
versity of Illinois, 1308 West Main St., Urbana, IL 61801, USA
krohloff@control.csl.uiuc.edu

S. Lafortune is with the Department of Electrical Engineering and
Computer Science, The University of Michigan, 1301 Beal Ave., Ann
Arbor, MI 48109-2122, USA stephane@eecs.umich.edu,
www.eecs.umich.edu/umdes

is more general than many other common specification
logics such as LTL, CTL and CTL*. Researchers have
investigated the use of the temporal logics in the field
of discrete-event systems; see e.g., [8, 9, 14]. A special-
ized µ-calculus is presented that is particularly relevant
to the modular systems in this paper containing a type
of symmetry defined as permutation symmetry. Classes of
symmetry equivalent states are defined for the symmetric
systems and the version of the µ-calculus presented here
is formulated such that µ-calculus propositions hold at
a state in a symmetry equivalence class if and only if
the propositions hold at all other states in the symmetry
equivalence class.

A method is given for reducing the inherent complexity
of testing if the specialized µ-calculus propositions hold at
a system state by constructing quotient structures that are
equivalent with respect to µ-calculus propositions for the
original symmetric systems. The use of symmetry for test-
ing µ-calculus propositions has been discussed in [3] with a
different system model and assumptions on the µ-calculus
propositions used. There are most likely no polynomial time
algorithms for the µ-calculus model checking problem, so
any method for reducing the difficulty of testing µ-calculus
propositions is potentially very useful [2].

Excluding [4, 11], there has been little work in the
supervisory control literature that exploits system symme-
try when analyzing discrete-event systems. Group-theoretic
methods are used in [4] to define classes of states and
transitions in a system that are equivalent under defined
permutation operations. These classes of equivalent states
and transitions of a system are used to define a quotient
automaton that has a state space smaller than the original
system. This quotient automaton is used to perform various
controller synthesis operations for the original system. The
quotient automaton presented herein for verifying properties
on permutation symmetric systems is also discussed in [11],
but for a more restricted class of systems.

Unfortunately, finding the optimal partition of state equiv-
alence classes for the construction of quotient automata as
in [4] is computationally rather difficult and at least as
difficult as the graph isomorphism problem [7]. This has
induced several authors to attempt to design distributed
systems with special architectures so that special forms
of symmetry are guaranteed to occur a priori, therefore
avoiding intensive symmetry verification procedures [4, 11].
This paper expands on this work by discussing classes of
systems that are assumed to contain permutation symmetry.

The next section presents the model and notational defini-
tions used in our discussions. The definition of permutation
symmetry is presented in Section 3. Section 4 introduces

our restriction of the µ-calculus and in Section 5 a quotient
automaton for symmetric systems is presented. In Section
6 it is shown how the quotient automaton can be used to
reduce the computational difficulty of testing µ-calculus
propositions for systems with permutation symmetry. An
example of a permutation symmetric system is given in
Section 7 based on swarming UAV’s. The paper concludes
with a brief discussion of results. Due to the necessary
brevity of this work the proofs of lemmas and theorems
in this paper can be seen in [13].

II. MODELING AND NOTATIONAL DEFINITIONS

The modular systems are composed of sets of isomor-
phic interacting automata {G1, . . . , Gn}. Each automaton
Gi = (X,x0, AP, L,Σi, δi) models the behavior of a single
module in the system. The set X is a set of system states
and x0 is the initial state. AP is a set of atomic propositions
and L : X → 2AP maps a state to the set of propositions
that hold at that state. Σi is the set of events relevant to the
state evolution of module Gi and δi : X × Σi → X is the
state transition function.

As stated, the system modules, {G1, . . . , Gn}, are iso-
morphic to one another, but state transition labels are
modified. The module Gj is a copy of Gi except that
local transition labels Σi are replaced with the respective
events from Σj according to a predefined Ψij : Σi → Σj

translation mapping. The function Ψij(·) translates events
relevant to module i to events relevant to module j. To
formalize, for x ∈ X, γ ∈ Σi, Ψij(·) is defined such
that δi(x, γ) = δj(x,Ψij(γ)). The function Ψij(·) is also
extended in the usual manner to be defined over strings and
languages.

The inverse function Ψ−1
ij : Σj → Σi is defined such that

Ψ−1
ij (·) = Ψji(·). Note that it is possible that σ ∈ Σi ∩ Σj

but Ψij(σ) 6= σ. For an event σi ∈ Σi, the notation σj

is used to represent Ψij(σi) when it can be done without
ambiguity.

Note that the set of system states, X , is not indexed nor
is the set of atomic propositions P or the state labeling
function L(·). Therefore, when two modules are at the
same system state, the same atomic propositions hold at
both states. The replication of state labels is used later
in this paper. If the system state labels are restricted to a
binary state marking (i.e., to AP = {m}), then this model
is equivalent to the commonly used model in supervisory
control theory [1].

An extended parallel composition operation, denoted by
‖, is used to model the interaction between modules. For a
set of isomorphic modules {G1, . . . , Gn}, the interaction
of these modules is the system G‖ = G1‖ · · · ‖Gn =

(X‖, x
‖
0, AP, L‖,Σ, δ‖). The X‖, x

‖
0 and δ‖ components

are defined in the usual manner for the parallel composition
operation. Let Σ = Σ1 ∪ · · · ∪ Σn. The states of the
composed system G1‖ · · · ‖Gn (i.e., x‖ ∈ X‖) are called
composed states and are n-tuples of the module states.
The individual states of a module (i.e., x ∈ X) are called

module states. For a composed state n-tuple x‖, the ith
module state is represented as x‖i. A transposition operator
φij : X‖ → X‖ is defined where φij(x

‖) is x‖ with the
ith and jth module states swapped. The composed state
labeling function L‖ : X‖ → 2AP is not predefined except
to require that for x

‖
a, x
‖
b ∈ X‖ and i, j ∈ {1, . . . , n}, if

φij(x
‖
a) = x

‖
b then L‖(x

‖
a) = L‖(x

‖
b).

A state permutation operator is constructed as follows
from a set of transposition operators for a given input x‖ ∈
X‖:

Φ[(i1j1)(i2j2)···(imjm)](x
‖)

= φi1j1

(

φi2j2

(

· · ·φimjm

(

x‖
)))

Given a state x‖, the set of all possible permutation
operators Φ[···](·) can be used to define the set of composed
states that are permutations of the components in the n-tuple
x‖. These states are called the permutation equivalent states
of x‖. Given a state space X = {x1, . . . , xk} for an isomor-
phic module system G1, . . . , Gn, an arbitrary ordering can
be placed on the states in X such that x1 < x2 < · · · < xk.
Therefore, for any set of permutation equivalent states from
X‖ there is always one state such that the module states of
the composed states have the correct relative order with
respect to the ordering x‖1 ≤ x‖2 ≤ · · · ≤ x‖n. This
state is called the standard permutation of all states in
its equivalence class. A function SP : X‖ → X‖ is
defined such that when given an n-tuple composed state z‖,
SP (z‖) = y‖ is another composed state with the module
states in the correct order, i.e. y‖1 ≤ y‖2 ≤ · · · ≤ y‖n.

Let ~X = {x‖ ∈ X‖|x‖ = SP (x‖)} be the set of
standard permutations. The inverse function SP−1 : ~X →
2X‖

returns the set of states that has the input as its
standard permutation. Note that the initial state x

‖
0 is its own

standard permutation because x
‖
0 = (x0, . . . , x0). Also note

that using the notation just defined, the above mentioned
requirement on the composed state labeling function that
for x

‖
a, x
‖
b ∈ X‖, i, j ∈ {1, . . . , n} if φij(x

‖
a) = x

‖
b , then

L‖(x
‖
a) = L‖(x

‖
b) can be rephrased as follows for all ~x ∈ ~X

and x‖ ∈ X‖
(

x‖ ∈ SP−1(~x)
)

⇒
(

L‖(x‖) = L‖(~x)
)

.

For all x‖ ∈ X‖ there is a (non-unique) string
of index pairs

[

(ix
‖

1 jx‖

1)(ix
‖

2 jx‖

2) · · · (ix
‖

m jx‖

m)
]

such

that Φ[
(ix‖

1
jx‖

1
)(ix‖

2
jx‖

2
)···(ix‖

m jx‖
m)

](x‖) = SP (x‖).

With this string of index pairs, a permutation
operator Φx‖(·) : X‖ → X‖ is defined such that
Φx‖(·) = Φ[

(ix‖

1
jx‖

1
)(ix‖

2
jx‖

2
)···(ix‖

m jx‖
m)

](·). Therefore,

Φx‖(x‖) = SP (x‖).

III. MODULAR SYMMETRY

Some properties of a special class of isomorphic module
systems are now discussed. Consider the following simple
example.

T 12, T 32

T 21, T 23

T1, T2

0 1 2

G2:

T 13, T 23

T 31, T 32

T3

T1, T2

0 1 2

G3:

T2
T1

T 21, T 31

T 12, T 13

T2, T3

0 1 2

G1:

Fig. 1. Modules G1, G2, G3 for Example 1.

T 23

(0,0,0)
T 31

T1

T2

T3

T 12

T 13

T 21

T 32(1,2,2)

(2,1,2)

(2,2,1)

Fig. 2. The composed G1‖G2‖G3 for Example 1.

Example 1: Consider the set of isomorphic token passing
modules {G1, G2, G3} shown in Figure 1.

This example can be thought of as a controller for
resource sharing where module i would have exclusive
access to a resource if and only if it possesses the token.
At initialization, all of the modules are at state 0 and no
modules possess a token. On the occurrence of event Ti, a
token is given to module i. Module i is then in state 1 can be
thought of as possessing the token, and the other modules
are in state 2 and do not possess a token. The token is
passed from module i to module j on the occurrence of
event T ij so that module i enters state 2 and j enters state
1. The composition G1‖G2‖G3 can be seen in Figure 2.

For G1‖G2‖G3 there are two classes of states that could
be considered equivalent with respect to permutations of
the component states. The two sets of equivalent state
classes are {(0, 0, 0)} and {(1, 2, 2), (2, 1, 2), (2, 2, 1)}. A
valid state labeling for the G1‖G2‖G3 automaton might
be that states {(1, 2, 2), (2, 1, 2), (2, 2, 1)} have proposition
labeling T to signify there is exactly one token in the system
and the state (0, 0, 0) has labeling F to signify that the
modules possess no tokens.

Note that there is a transition δ‖(xa, σ) = xb if and
only if for all state permutation operators Φ(·), there
exists an event σ′ such that δ‖(Φ(xa), σ′) = Φ(xb). More
specifically, consider the state transitions δ‖((0, 0, 0), T1) =
(1, 2, 2) and δ‖((0, 0, 0), T2) = (2, 1, 2). The pairs of
the starting and ending states are permutation equivalent.
Also, the events that drive these transitions are the same
event with different indices. Now consider the state transi-
tions δ‖((1, 2, 2), T 12) = (2, 1, 2) and δ‖((2, 2, 1), T 31) =
(1, 2, 2). Note that the initial and final composed states in
both of these transitions are also permutations of each other

and the events that drive these transitions are the same event
with different indices.

The intuition gained in Example 1 is that for some
special isomorphic module systems, there is a transition
δ‖(xa, σ) = xb, if and only if for all state permutation
operators Φ(·), there exists an event translation operator
ΠΦ(·) such that δ‖(Φ(xa),ΠΦ(σ)) = Φ(xb). That is, for
some systems, for any event that drives a transition between
two states in that system, then for any permutation of
those states, another event can be computed such that there
is a transition between the permuted states driven by the
computed event. This intuition can be used to define a
property below called permutation symmetry that forces a
large class of global properties to hold at states independent
of the composed state orderings.

Suppose a set of permutation operators
{Φ[(i1j1)(i2j2)···(imjm)](·)} are given for i1, j1, . . . , im, jm ∈
{1, . . . , n}. Suppose there is a class of doubly indexed
functions {πij(·) : Σ → Σ|i, j ∈ {1, . . . , n}} and define a
composition of these functions

Π[(i1j1)(i2j2)···(imjm)](σ)

= πi1j1 (πi2j2 (· · ·πimjm
(σ))) .

Definition 1: Suppose a set of functions {πij} are
given such that for all strings of module index pairs
(i1j1)(i2j2) · · · (imjm) and (i′1j

′
1)(i
′
2j
′
2) · · · (i

′
m′j′m′) such

that
(

Φ[(i1j1)(i2j2)···(imjm)](·) = Φ[(i′1j′
1
)(i′

2
j′
2
)···(i′

m′ j
′
m′)]

(·)
)

then
(

Π[(i1j1)(i2j2)···(imjm)](·) = Π[(i′1j′
1
)(i′

2
j′
2
)···(i′

m′ j
′
m′)]

(·)
)

.

A system composed of {G1, . . . , Gn} is said to have mod-
ular state permutation symmetry with respect to {πij} or
permutation symmetry for short if ∀i, j ∈ {1, . . . , n} and
x
‖
a, x
‖
b ∈ X‖,

(

δ‖(x‖a, σ) = x
‖
b

)

⇐⇒
(

δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b)
)

.

A fundamental result of group theory is that any permu-
tation operator can be constructed from the composition
of transposition operators [6]. Therefore, for any state
permutation operator Φ[(i1j1)(i2j2)···(imjm)](·), correspond-
ing event permutation operator Π[(i1j1)(i2j2)···(imjm)](·), and

permutation symmetric system G‖, then ∀x
‖
a, x
‖
b ∈ X‖, σ ∈

Σ‖,
(

δ‖(x
‖
a, σ) = x

‖
b

)

⇐⇒
(

δ‖
(

Φ[(i1j1)···(imjm)](x
‖
a),Π[(i1j1)···(imjm)](σ)

)

=

Φ[(i1j1)···(imjm)](x
‖
b)

)

.

The intuition behind the definition of permutation sym-
metry for G‖ is that for any state transition in G‖, if the
composed state ordering in the transition is permuted, then

there is a corresponding event such that there is a transition
between the permuted states. More formally, if there exists
a transition δ‖(x

‖
a, σ) = x

‖
b , then for any state transposition

operator φij(·), there is a language translation operator
πij(·) such that δ‖(φij(x

‖
a), πij(σ)) = φij(x

‖
b).

Note that with the restriction in Definition 1 on {πij},
Π−1

[(i1j1)(i2j2)···(imjm)](·) = Π[(imjm)···(isj2)(i1j1)](·). The
[(i1j1)(i2j2) · · · (imjm)] subscripts are sometimes dropped
on Φ[(i1j1)(i2j2)···(imjm)](·) and Π[(i1j1)(i2j2)···(imjm)](·)
when it can be done without ambiguity. If
Φx‖(·) = Φ[(i1j1)(i2j2)···(imjm)](·) then define
Πx‖(·) = Π[(i1j1)(i2j2)···(imjm)](·).

Using the notation of [4], a language L(G‖) has a
symmetric group of operators SΣ = {π : Σ → Σ} if
∀π ∈ Sσ, then L(G‖) = π(L(G‖)). This prompts the
following lemma and theorem.

Lemma 1: Suppose {G1, . . . , Gn} has permutation sym-
metry with respect to {πij}. Then

s ∈ L(G‖) ⇒ Π[(i1j1)(i2j2)···(imjm)](s) ∈ L(G‖).

Theorem 1: The set of operators {Π[(i1j1)(i2j2)···(imjm)]}
constructed from {πij} forms a symmetric group for the lan-
guage L(G‖) if {G1, . . . , Gn} has permutation symmetry
with respect to {πij}.

Theorem 1 shows that the language generated by an iso-
morphic module system with state permutation also contains
a type of symmetry such that the generated language is
identical no matter how the modules are permuted.

IV. PERMUTATION SYMMETRIC µ-CALCULUS

In the most commonly accepted version of the µ-calculus
as discussed in [2], a transition system M = (S, T,AP,L)
is given where S is a set of states, T is a set of transition
classes T ⊆ 2S×S , AP is a set of atomic propositions and
L : S → 2AP is a state labeling function. A transition class
Tσi

∈ T, Tσi
⊆ S × S can be thought of as the set of all

transitions of the same “type”, similar to how transitions
might be labeled by events in discrete-event systems. The
µ-calculus system also uses a set of relational variables
V AR : {Q1, Q2, . . .} where each relational variable Qi ∈
V AR can be assigned a subset of S. Alternatively, a
relational variable can be thought of as a variable set
of states Qi ⊆ S. Following the notation used in [2],
e : V AR → 2S denotes an environment where states are
assigned to the relational variables. Let Q be an arbitrary
element of {Q1, Q2, . . .}. The expression e[Q←W] is used
to denote a new environment that is the same as e except
e[Q←W](Q) = W . That is, with e[Q←W], the states in W

are assigned to Q.
The µ-calculus can be used to express a set of formulas

and a µ-calculus formula f can be said to hold at some
states in S, but not in others. The notation M, s |= f is
used if the formula f holds at state s in M . The expression
[[f]]Me also denotes the set of states in M where f holds
with environment e. The sets of formulas that can be

expressed in the µ-calculus are now recursively defined with
some notational definitions.

• If p ∈ AP , then p is a formula. An atomic proposition
holds at a state according to the state labeling function
L(·).

[[p]]Me = {s ∈ S|p ∈ L(s)}

• A relational variable Qi ∈ V AR is a formula. A
relational variable holds at a state if that state is
assigned to the relational variable.

[[Q]]Me = e(Q)

• If f and g are formulas, then ¬f , f ∨ g and f ∧ g are
formulas.

[[¬f]]Me = S \ [[f]]Me

[[f ∧ g]]Me = [[f]]Me ∩ [[g]]Me

[[f ∨ g]]Me = [[f]]Me ∪ [[g]]Me

• If f is a formula and Tσi
∈ T then [Tσi

]f and 〈Tσi
〉 are

formulas. The formula [Tσi
]f holds at a state s1 ∈ S

if for all s2 ∈ S such that (s1, s2) ∈ Tσi
, f holds at

s2. Similarly, 〈Tσi
〉f holds at a state s1 ∈ S if there

exists some s2 ∈ S such that (s1, s2) ∈ Tσi
and f

holds at s2.

[[〈Tσi
〉f]]Me =

{s1|∃s2 [((s1, s2) ∈ Tσi
) ∧ (s2 ∈ [[f]]Me)]}

[[[Tσi
] f]]Me =

{s1|∀s2 [((s1, s2) ∈ Tσi
) ∧ (s2 ∈ [[f]]Me)]}

• If Q ∈ V AR and f is a formula that is a function of
Q, then µQ.f and νQ.f are formulas, provided that f

is syntactically monotone with respect to Q. The least
fixpoint of states µQ.f is the set of states such that
if Q holds in those states, then f also holds in those
states. The greatest fixpoint νQ.f is similarly defined.
A formula f is said to be syntactically monotone with
respect to a relational variable Q if all occurrences of
Q fall under an even number of negations in f . Define
τ(W) to be [[f]]Me[Q←W]

[[µQ.f]]Me is the least fixpoint of τ(W)

[[νQ.f]]Me is the greatest fixpoint of τ(W)

A function τ is monotonic if S ⊆ S ′ ⇒ τ(S) ⊆
τ(S′). Because of the monotonicity of all possible functions
τ(W) = [[f]]Me[Q←W] there are simple methods for finding
the least and greatest fixpoints. To find the least fixpoint,
assign W0 := ∅,W1 := τ(W0), . . . and so on until Wi+1 =
Wi. Then Wi is the least fixpoint. For a k state system
the least fixed point will be found in less than k iterative

compositions of the τ(·) operation. Similarly, the greatest
fixpoint is found using a similar method by setting W0 = S.

Several important properties of the transition system M

can be easily expressed using the µ-calculus. For instance,
for a transition system M , M, s |= ∨i〈Tσi

〉True could be
used to express that a state s ∈ S does not deadlock. Also,
M, s |= νQ. (∨i〈Tσi

〉True) ∧ (∧i [Tσi
] Q) denotes that all

states reachable from s are deadlock free. Furthermore,
M, s0 |= νQ1. (µQ2. (m) ∨ (∨i〈Tσi

〉Q2)) ∧ (∧i [Tσi
] Q1)

can be used to express that all states reachable from s0 can
eventually lead to a state where an atomic proposition m

holds.
Given a µ-calculus formula f , the depth of f (denoted

by depth(f)) is defined recursively as follows. Let f1 and
f2 be two µ-calculus formulas and let Tσi

be a transition
class.

• If f ∈ AP or f ∈ V AR, then depth(f) = 0.
• If f = ¬f1, f = [Tσi

]f1, f = 〈Tσi
〉f1, f = µQ.f1 or

f = νQ.f1, then depth(f) = depth(f1) + 1.
• If f = f1 ∧ f2 or f = f1 ∨ f2, then depth(f) =

max{f1, f2} + 1.

Now that the standard µ-calculus and its properties have
been introduced, it is shown how the µ-calculus can be
restricted to express behavior in permutation symmetric
systems and still take advantage of the permutation sym-
metry such that two permutation equivalent states satisfy
versions of the same µ-calculus formulas. This restriction
of the µ-calculus for permutation symmetric systems and
permutation symmetric properties is called the permutation
symmetric µ-calculus.

As a small example how permutation symmetric formu-
las could be useful, consider a system with permutation
symmetry such that module i enters always enters a failure
state on the occurrence of local event σi when module
i is in state x1 and all other modules are in state x2.
In an n module system there are n permutations of the
modular state (x1, x2, . . . , x2) composed of one x1 state
and n − 1 x2 states. If were desired to verify that in this
system that no σi event could occur in all permutations
of the symmetric system structure, n different permutations
would need to be checked, but because of underlying system
symmetry it is only needed to verify that ¬〈Tσ1

〉 from
state (x1, x2, . . . , x2) and the verification of all of the other
redundant symmetric propositions could be avoided.

With this small example as motivation, transition
classes and relational variables are defined for G‖ so
that a µ-calculus formula f can be written for two
states x

‖
a, x
‖
b ∈ X‖ such that

(

φij(x
‖
a) = x

‖
b

)

⇒
(

G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f

)

.
The µ-calculus is restricted as follows.

• For all x
‖
a, x
‖
b such that SP (x

‖
a) = SP (x

‖
b), it is

required that L(x
‖
a) = L(x

‖
b).

• For all x
‖
a, x
‖
b , Q such that SP (x

‖
a) = SP (x

‖
b), it is

required that x
‖
a ∈ Q ⇐⇒ x

‖
b ∈ Q.

• For x
‖
a, x
‖
b ∈ X‖, σ1 ∈ Σ, if δ‖

(

SP (x
‖
a), σ1

)

=

Φ
x
‖
a
(x
‖
b)), then (x

‖
a, x
‖
b) is assigned to Tσ1

.

For the first bullet the state labeling function was previ-
ously restricted to be permutation independent in Section
2. For the second bullet the assignments to the relational
variables must be permutation independent as with the state
labeling function. The definition of the transition classes
in the third bullet ensures that all permutation equivalent
transitions (according to Φ(·) and Π(·) mappings) must be
in the same permutation class. Excepting these restrictions,
formulas in the permutation symmetric µ-calculus can then
be constructed in the usual manner. Permutation equivalent
states in permutation symmetric systems therefore satisfy
the same permutation symmetric µ-calculus formulas.

Theorem 2: Suppose a permutation symmetric system G‖

is given with two states x
‖
a, x
‖
b ∈ X‖ and a permutation

symmetric µ-calculus formula f . Then,
(

φij(x
‖
a) = x

‖
b

)

⇒
(

G‖, x‖a |= f ⇐⇒ G‖, x
‖
b |= f

)

V. PERMUTATION SYMMETRY QUOTIENT AUTOMATA

Given a set of automata {G1, . . . , Gn} such that the
size of their respective state spaces is bounded by k, the
composed automaton G1‖ · · · ‖Gn has kn reachable states
in the worst case. As n grows, this state space can become
unbearably large and it becomes progressively more diffi-
cult to perform any procedure that requires enumerations
over all reachable states of G1‖ · · · ‖Gn in a time-efficient
manner. Therefore, it would be impossible to efficiently
perform many verification procedures on the composed
system G1‖ · · · ‖Gn with respect to a global specification
K using currently known methods. To potentially avoid
these restrictions, a quotient automaton ~G, as seen in [4, 11],
is constructed from the modules {G1, . . . , Gn} that avoids
this problem. The automaton ~G has a predefined quotient
structure that does not need to be precomputed.

The automaton ~G is a 6-tuple ~G =
(

~X, ~x0, AP, L‖,Σ‖, ~δ
)

such that ~G uses the set of

the standard permutations ~X as its state space. A state ~x in
~G is also in G‖, so the same proposition labeling function
and proposition variable assignments can be used for states
in ~G and G‖. Let ~xo be the initial state of G1‖ · · · ‖Gn.
Assume that the transition structures of {G1, · · · , Gn} are
generalized such that if σ 6∈ Σi, then ∀x ∈ X, δi(x, σ) = x.
The state transition function ~δ : ~X → ~X is defined as
follows:

~δ(~x, σ) =







SP
((

δ1(~x
1, σ), . . . , δn(~xn, σ)

))

if δ1(~x
1, σ)! ∧ · · · ∧ δn(~xn, σ)!

undefined otherwise.







The definition of ~δ(·, ·) can be generalized to be defined
over strings of arbitrary length in the usual manner. The
isomorphic module system introduced in Example 1 can

be used to demonstrate the construction of a reduced state
space composed automaton ~G.

Example 2: Consider the isomorphic module system
G1, G2, G3 introduced in Example 1 above. The set of
standard representations of the sets of equivalent states is
{(0, 0, 0), (1, 2, 2)}. The reduced state space composed au-
tomaton ~G can be seen in Figure 3.

(1,2,2)
T 12

T 13

(0,0,0) T1, T2, T3

Fig. 3. The automaton ~G constructed from G1, G2, G3.

VI. VERIFYING SYMMETRIC µ-CALCULUS FORMULAS

It is now shown how the ~G system can be used to test
permutation symmetric µ-calculus propositions in the orig-
inal G‖ system. Suppose a set of automata {G1, . . . , Gn}
and a formula f in the restricted µ-calculus are given and
it is desired to test for a state x‖ of G‖ if G‖, x‖ |= f .

Suppose {Tσ1
, . . .} is the set of transition classes of G‖

for the restricted µ-calculus defined above. First, construct
the automaton ~G from {G1, . . . , Gn}.

A set of transition classes {~Tσ1
, . . .} is constructed from

{Tσ1
, . . .} as follows. For all (~x1, x

‖
2) ∈ Tσi

, (~x1, SP (x
‖
2))

is assigned to ~Tσi
.

Finally, a µ-calculus formula ~f is constructed from f ,
{Tσ1

, . . .} and {~Tσ1
, . . .} such that ~f is a copy of f with any

occurrence of Tσi
in f replaced with the corresponding ~Tσi

.
This formula construction can be used to test if G‖, ~x |= f

as indicated in Theorem 3.
Theorem 3: Let ~x be a state of a permutation symmetric

system G‖ and let f be a permutation symmetric µ-calculus
formula. From this system construct ~G, {~Tσ1

, . . .} and ~f as
described above. Then,

(

G‖~x |= f
)

⇐⇒
(

~G~x |= ~f
)

.

Due to the permutation symmetry of G‖ and f with
Theorem 2 and Theorem 3, if f holds at a state ~x, then
f holds at all states in the same permutation equivalence
class.

Corollary 1: Let x‖ be a state of a permutation symmet-
ric system G‖ and let f be a permutation symmetric µ-
calculus formula. From this system construct ~G, {~Tσ1

, . . .}
and ~f as described above and let ~x be SP (x‖). Then,

(

G‖x‖ |= f
)

⇐⇒
(

~G~x |= ~f
)

.

This corollary is important because µ-calculus proposi-
tions are very powerful and are expressive enough to be
more general than many common logics such as CTL*, CTL
and LTL. The ~G automaton also has a much smaller state
space than the G‖ automaton, so the state explosion problem
inherent to many modular systems is not as problematic; this
is demonstrated below in an example.

A version of the ~G automaton is presented in [11] for
a restricted class of permutation symmetric isomorphic

R
1 R

3
R

4

F

L
2

L
1

R
2

T σL
i

fi
T

ΣP \ σP
i

Ai

fi

fi

fi

T

σs
i

σ
p
i

T

ΣA \ Ai

Σp \ σ
p
i

R
5

T

ΣL \ σL
i

ΣL \ σL
i

ΣA \ Ai

ΣL \ σL
i

L
4

L
3

ΣA \ Ai

ri

ΣA \ Ai

T

ΣL \ σL
i

σL
i

ΣL \ σL
i

ΣA \ Ai

Σp \ σ
p
i

σL
i

ΣL \ σL
i

ΣA \ Ai

TΣp \ σ
p
i

Fig. 4. High Level UAV Swarm Communication State Automaton.

systems for testing nonblockingness and state reachability
in these systems. This paper demonstrates that the ~G of [11]
can be adapted to a larger class of symmetric systems with
more general µ-calculus specifications.

It should be apparent that the ~G constructed from the
isomorphic module system {G1, . . . , Gn} has a smaller
state space than the composed system G‖. Suppose that
k = |X|, the size of the state space of each individual
module. Following the approach in [11], it can be shown

that ~G has

(

k + n − 1
n

)

classes of states in the worst

case. Although this is still a large number of classes of
states that need to be verified, it is certainly smaller than
kn, which is the size of G‖ in the worst case. This allows
for a large real-world reduction in the computation time
required to verify propositions in the restricted µ-calculus.

VII. EXAMPLE

An example of a permutation symmetric distributed
leader selection protocol for a swarm of identical UAV’s
is now discussed. When in a normal operating mode the
UAV’s have one “leader” that relays communications be-
tween the platoon and the home base. The leader may enter
a failure state where it may not be able to communicate and
then the other platoon members should select a new leader.

A discrete-event system representation of a protocol for
an individual UAV can be seen in Figure 4. A UAV is in a
regular mode og operation if it is in an Ri state, leader mode
if it is in an Li state and in failure mode if it is in state F .
There should be at most one leader that communicates with
the platoon’s home base. Once in a failure state, a UAV can
reset into the initial state.

Starting from the initial state, when a private event σS
i

occurs in a UAV, the UAV is prompted to broadcast σ
p
i

to the other members of the platoon. It is assumed that
transmissions between platoon members are never lost.
When a leader j observes the broadcast event σ

p
i , it should

be acknowledged with the Aj event. If a σ
p
i event is not

acknowledged within a certain time, the global broadcast

timer event T occurs to signal to the platoon members that
a new leader may need to be selected as the previous leader
j may have entered a failure state due to the occurrence of
a private failure fj . If the previous leader j has not entered
the failure state, it broadcasts σL

j to signify that it is still
the leader. On the absence of an event in ΣL \ σL

i , i then
broadcasts σL

i to signify that it is declaring itself the new
platoon leader, and on the observation of this event, all other
regular platoon members return to the initial state. If UAV i

enters a failure state, it is reset on the occurrence of ri to the
initial state. Note that at initialization no platoon members
are declared leader.

The set ΣA denotes the set of acknowledgment events
that could be sent by the various modules when there are
in leader mode. The set Σp denotes the events the modules
broadcast when in regular mode to communicate with a
leader and ΣL is the set of events the modules broadcast
to declare that they are in leader mode. Note that ΣA, Σp

and ΣL all denote broadcast-type events that occur in all of
the modules, but on different transitions on each module.
For instance, the occurrence of σL

i in state R4 of module
i means that module i transitions to leader mode and state
L1. However, the occurrence of σL

i in state R4 of module
j means that module j remains in regular mode and returns
to state R1. Using the Ψij(·) notation introduced above,
Ψij(σ

L
i) = σL

j and Ψij(σ
L
j) = σL

i . This relationship with
the translation mapping also holds for events in ΣA and Σp.

The set of failure events and reset events are denoted
by Σf and Σr respectively. The set Σs denotes the set of
private events for each module to internally signal it would
like to broadcast a Σp event to the platoon. The events in
Σf , Σr and Σs are private to their respective modules and
occur in exactly one module each. Using the Ψij(·) notation
introduced above, Ψij(fi) = fj and Ψij(fj) is not defined.
This relationship with the translation mapping also holds
for events in Σr and Σs.

The timer alarm event T is a global unindexed event that
occurs in all modules simultaneously and for identical state
transitions. Therefore, Ψij(T) = T .

For this example, a permutation transition function can
be defined as follows for σ ∈ Σ:

πij(σ) =







Ψij(σ) if σ ∈ Σi

Ψji(σ) if σ ∈ Σj

σ if otherwise

Using the πij definition above, the UAV leader selection
protocol in Figure 4 is permutation symmetric. Therefore,
a quotient automaton can be constructed to test system
properties such as “It is possible for two modules to enter
leader mode at the same time?” For even relatively small
systems like the one in this example where the modules
have 10 local states, there is a significant reduction in the
computational difficulty of testing system properties due
to use of the quotient automaton. For a small platoon of
4 UAV’s, the normal G‖ automaton constructed from the

composition of the automaton in Figure 4 has 2707 states
while the reduced ~G automaton constructed for this example
has only 246 states. (These results were found using the
UMDES toolbox.) This is over a factor of 10 reduction in
the size of the automata and this reduction increases as more
automata are added. Testing a relatively simple property like
state reachability is linear in the size of the state space, but
there are most likely no polynomial time methods for testing
more complicated µ-calculus propositions. Therefore, the
reductions is state space size with the ~G are potentially
very important for “large scale” systems.

VIII. DISCUSSION

A class of isomorphic module systems and a state per-
mutation symmetry definition for these systems has been
introduced. A permutation symmetric µ-calculus was intro-
duced that was tailored for these permutation symmetric
systems. It was shown how a predefined quotient structure
can be used to more efficiently test if permutation sym-
metric µ-calculus propositions hold at states in permutation
symmetric systems. These constructions allow for a large
reduction in the real-world difficulty of performing many
verification tasks for discrete-event systems. It would be
interesting to extend this work to cases where systems are
not perfectly symmetric, but allow for some minor variation
in local behavior.

REFERENCES

[1] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Boston, MA, 1999.

[2] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The
MIT Press, Cambridge, MA, 2002.

[3] E.A. Emmerson and A.P. Sistla. Symmetry and model checking.
Formal Methods in System Design, 9(1/2):105–131, August 1996.

[4] J.M. Eyzell and J.E.R. Cury. Exploiting symmetry in the synthesis
of supervisors for discrete event systems. IEEE Trans. Auto. Contr.,
46(9):1500–1505, September 2001.

[5] P. Gohari and W.M. Wonham. On the complexity of supervisory
control design in the RW framework. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 30(5):643–652, 2000.

[6] I.N. Herstein. Topics in Algebra. John Wiley & Sons, Inc., 1982.
[7] C. Hoffman. Graph Isomorphism and Permutation Groups, LNCS

132. Springer-Verlag, 1982.
[8] J.F. Knight and K.M. Passino. Decidability of a temporal logic used

in discrete-event systems analysis. International Journal of Control,
52(6):1489–1506, 1990.

[9] F. Lin. Analysis and synthesis of discrete event systems using
temporal logic. Control Theory and Advanced Technologies, 9:341–
350, 1993.

[10] K. Rohloff and S. Lafortune. On the computational complexity of the
verification of modular discrete-event systems. In Proc. 41st IEEE
Conf. on Decision and Control, Las Vegas, Nevada, December 2002.

[11] K. Rohloff and S. Lafortune. The control and verification of similar
agents operating in a broadcast network. In Proc. 42nd IEEE Conf.
on Decision and Control, Maui, Hawaii, December 2003.

[12] K. Rohloff and S. Lafortune. Supervisor existence for modular
discrete-event systems. In Proc. 2nd IFAC Conf. on Control Systems
Design, Bratislava, Slovakia, September 2003.

[13] K. Rohloff and S. Lafortune. Symmetry reductions for a
class of discrete-event systems. Technical Report CGR04-
02, Department of Electrical Engineering and Computer
Science, University of Michigan, 2004. Available at
http://www.eecs.umich.edu/umdes/sym tKrep.ps.

[14] J.G. Thistle and W.M. Wonham. Synthesizing processes and sched-
ulers from temporal specifications. International Journal of Control,
44(4):943–976, 1986.

