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CHAPTER I

INTRODUCTION

Distributed systems are becoming increasingly more common and important in

the modern world. As such there has been considerable interest lately in both the

discrete-event systems and computer science communities in problems related to dis-

tributed systems. Examples of such systems include communication networks (wired

and ad hoc), sensor networks, intelligent transportation systems, automated man-

ufacturing systems and distributed software systems. In particular, computational

issues are becoming increasingly relevant to the control and verification of these

complex distributed systems. This thesis investigates the computational difficulty of

problems associated with verification and control of distributed systems modelled as

discrete-event systems and proposes methods for avoiding this computational diffi-

culty.

Straightforward procedures to solve many verification and control problems for

monolithic systems are well known in the discrete-event systems literature [10], but

the current standard methods for performing control and verification tasks on dis-

tributed systems generally involve converting the distributed system models into a

monolithic one through the use of composition operations. Unfortunately, the con-

version of distributed models to monolithic ones suffers due to the well-known “state

1
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explosion” problem. That is, when several finite-state systems are composed, the size

of the state space of the converted system is potentially exponential in the number

of components. Therefore, it may be desired that the system models be kept mod-

ular whenever possible. However, control and verification problems for distributed

systems are poorly understood if the monolithic conversions are to be avoided by the

solution methods for these problems. Consequently, there are few known algorithmic

methods for control and verification specialized for distributed systems.

An important subclass of distributed system problems are decentralized control

problems where a (possibly monolithic) system is supervised by a set of controllers.

As system operation evolves, the local controllers make observations of the system’s

behavior and maintain estimates of the system’s state based on the events the con-

trollers observe. The controllers use their knowledge of the estimated system states

to determine their local control actions which are combined globally to determine

what system behavior is allowed. Local controllers usually do not have full knowledge

of the system’s behavior and must commonly decide their control actions after only

viewing an observable subset of the system behavior. Decentralized control is com-

monly the most efficient or only method to control a system too large or complex to

be controlled by a single centralized controller. Like the general class of distributed

system problems, there are many important and not well understood decentralized

control problems for which algorithmic methods need to be developed.

The first main contribution of this thesis is to show that many important and

seemingly simple verification and control problems for decentralized control and dis-

tributed systems are PSPACE-complete. This means that these problems are most

likely computationally intractable and therefore there are no time-efficient general

methods for solving these problems. However, because of the overriding importance
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of many of these problems, efficient methods for dealing with these problems still

need to be developed. Therefore, with this groundwork on the fundamental diffi-

culty of these problems the rest of this thesis focuses on methods for avoiding the

computational difficulty of these problems.

The second main contribution of this thesis is a set of online decentralized control

protocols that have a common sufficient and easily testable safety condition. These

decentralized control protocols attempt to allow the controlled system to achieve

behavior that is safe and in a sense locally maximal with respect to a given specifi-

cation. There is no known method to synthesize safe globally maximal behavior for

decentralized control or even whether global maximal behavior is always possible.

The sufficient safety condition for this decentralized control protocol can be thought

of as a decentralized actuator selection problem. The control protocols shown here

are based on a new local observation state estimation procedure that accounts for

past local control actions and are developed for the general decentralized control

setting of [83]. In this setting controllable events are assigned to follow a “fusion by

union” or “fusion by intersection” global control policy.

The third main contribution of this thesis is to show heuristic methods for effi-

ciently approximating minimal sensor selections that are sufficient to solve controller

existence problems. These minimal sensor selections, even for centralized systems,

are shown to be computationally difficult to approximate as there are most likely no

polynomial time approximation methods. It is shown how to convert sensor selection

problems to a class of edge colored directed graph st-cut problems. Several heuristic

methods are shown that compute sufficient sensor selections given a system and spec-

ification. An open decentralized minimal communication controller problem is also

discussed and it is shown how to convert this problem to an edge colored directed
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graph st-cut problem.

The fourth main contribution of this thesis is a method for dealing with dis-

tributed systems where the system modules are isomorphic to one another. A form

of symmetry called state permutation symmetry for distributed systems is introduced

where the modules are identical to one another except for a relabelling of state tran-

sitions. This symmetry definition induces the construction of a special reduced state

quotient automaton used for the verification of global µ-calculus propositions when

the modules interact.

The fifth main contribution of this thesis is a discussion on a special subclass

of permutation symmetric systems where the subsystems are exact copies of one

another except for a relabelling of private events. These similar module systems

allow for a quotient automaton with an even more reduced state space for testing

state reachability properties. A decomposition procedure that efficiently converts

composed global models of these systems into their component subsystems is shown.

This special subclass of distributed systems has a concise set of necessary and suf-

ficient controller existence properties that allow for the time-efficient synthesis of

control policies for local and global specifications.

This thesis generally follows the framework of supervisory control theory for

discrete-event systems introduced in the seminal work of [54, 55]. The interested

reader may consult the text [10] for a general introduction to discrete-event systems

and supervisory controls theory. Because this thesis draws on several areas with

large and diverse literatures, a survey of previous relevant results is given in Chapter

II. A brief introduction to the necessary notation and background information is

presented in Chapter III. The computational complexity contributions of this thesis

are shown in Chapter IV. The decentralized online control protocols contribution is
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discussed in Chapter V and the sensor selection methods are presented in Chapter

VI. The contributions on permutation symmetric systems are in Chapter VII and

the discussion of the similar module systems is in Chapter VIII. The thesis closes

with a general discussion of the results and areas for future research in Chapter IX.



CHAPTER II

SURVEY OF PREVIOUS RESULTS

2.1 Chapter Overview

This chapter presents a survey of results in the discrete-event systems and com-

puter science literatures relevant to the work discussed in this thesis. First, a gen-

eral survey of earlier work on the supervisory control of monolithic and distributed

discrete-event systems is shown. Then, a survey of results related to connections

between distributed discrete-event systems and the theory of computation from com-

puter science is given. A survey of results related to supervisory control is given along

with a discussion of results related to sensor selection problems. This section closes

with a survey of results related to the exploitation of symmetry for the verification

and control of discrete state systems.

2.2 Supervisory Control and Distributed Discrete-Event Sys-

tems

The supervisory control of discrete-event systems framework used in this thesis

is based on a finite automaton modelling formalism that is generally considered the

simplest one for discrete-event systems that is expressive enough to model the behav-

ior of real-world systems in a reasonable manner. This framework was introduced in

6
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the seminal work of [54, 55] and later innovative work includes [13, 43, 44, 68]. The

text [10] gives a general introduction to supervisory control and discrete-event sys-

tem theory. When discussing distributed systems, the parallel composition operation

is used to model interaction between these systems, which is currently the standard

method to model the interaction between automata in discrete-event system theory.

Distributed system problems are currently receiving much attention from the

discrete-event systems research community; see, e.g., [7, 11, 29, 31, 40, 41, 43, 45,

46, 52, 78, 81, 80]. Some of the earlier work related to the supervision of distributed

systems can be seen in [43, 45, 53, 81, 78]. Properties of distributed discrete-event

systems where the modules have disjoint event sets are investigated in [52, 53]. Vari-

ous local specification and concurrent supervision problems, respectively, are investi-

gated in [29, 31]. The supervision of distributed systems using specific architectures

is discussed in [40, 41]. A form of distributed control where each controller in a

distributed system has a different objective is discussed in [11]. Situations when

local non-blocking behavior implies global non-blocking behavior (a property later

called non-conflictingness) are discussed in [46]. Incremental system verification for

distributed discrete-event systems with special system assumptions are discussed in

[7].

There has also recently been a large volume of work investigating connections

between theoretical computer science and the supervisory control of discrete-event

systems. Many of the system models used in supervisory control are based on ideas

that originated from computer science. Some notable examples of crossover work

between control theory and theoretical computer science include [5, 6, 8, 19, 23, 47,

56, 67]. This thesis discusses and explores further connections between these fields.
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2.3 Computational Complexity and Discrete-Event Systems

With the exception of [19], there has been little work investigating the compu-

tational complexity of distributed system supervisory control problems which shows

some NP-hardness results for distributed supervision problems. Some of the prob-

lems discussed in [19] (among others) are shown in Chapter IV of this thesis to be

PSPACE-complete. This gives a more exact understanding of the computational

complexity of these problems as PSPACE-complete problems are known to be NP-

hard, but not all NP-hard problems are PSPACE-complete. The complexity of ver-

ification for distributed systems using more complicated models such as temporal

logic and alternating tree automata are discussed in [22, 36, 37, 76]. Although re-

searchers in computer science have shown more complicated verification problems

are PSPACE-complete, Chapter IV shows that the supposedly simpler verification

problem for finite-state automata distributed systems is PSPACE-complete. Chapter

IV reports in part on work that was originally published in [58, 61, 64].

For a deeper introduction to the theory of computation and the properties of the

PSPACE problem class, consult one of the standard textbooks such as [15, 18]. Some

of the main proofs in Chapter IV are inspired by the automata intersection problem

initially investigated by Kozen [35]. Some other work on the automata intersection

problem is also shown in [3, 39]. Also from the computer science community, [9]

discusses the difficulty of coupled automata problems but does not discuss compu-

tational complexity nor the specific problems discussed here.

2.4 Decentralized Control

Several decentralized control laws for various discrete event systems have been

introduced in the literature. See for example [1, 13, 31, 38, 44, 48, 51, 68, 71, 78, 83].
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Several investigations have addressed decentralized control in a similar manner as in

this thesis but by allowing the local controllers to communicate [4, 56, 79]. Online

supervision for monolithic systems is discussed in [20, 71] under assumptions different

from discussed herein. There has been little or no discussion in the control litera-

ture related to the online supervision of distributed systems. It has recently been

discovered in [38, 73] that the problem of synthesizing safe and non-blocking decen-

tralized controllers for a discrete event system is undecidable, so when discussing safe

controller existence and synthesis problems, this thesis focuses on the safe controller

problem.

In Chapter V several online decentralized control protocols are shown that use

a new state estimation function. Generally, the decentralized control framework of

[43, 68] is assumed throughout this thesis, but in Chapter V the general decentral-

ized control framework of [83] is used. The generalized framework of Chapter V

assumes that controllable events follow either a “fusion by union” or “fusion by in-

tersection” global control policy. This distinction between the two control settings

will be discussed further in Chapter V.

Several of the new decentralized control protocols of Chapter V attempt to maxi-

mize the set of locally enabled events. Ben Hadj-Alouane, et al. [20] have done work

with maximal online control policies for centralized control systems, but their work

has not yet been applied to general decentralized control framework as is done in

Chapter V. This chapter reports in part on work that was originally published in

[60, 63].
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2.5 Sensor Selections

Variations of the sensor selection problem using frameworks similar to that of in

Chapter VI have been investigated in [12, 21, 30, 82]. The problem of designing an

observation function that is as coarse as possible is discussed in [12]. A projection

mapping is assumed in [12] that is different from the standard natural projection

operation used as the observation function in this thesis. Furthermore, optimiza-

tion and approximation methods are not discussed in [12]. The optimization of the

observable event set is discussed in [21] for achieving both observability and normal-

ity for a problem setting very similar to that discussed here. An exponential-time

algorithm is also shown in [21] for giving an optimal observable set.

It is shown in [82] that the decision problem version of the sensor selection prob-

lem is NP-complete, so there are most likely no algorithms to solve this problem in

polynomial time. Therefore, solving this optimization problem and finding the abso-

lute lowest cost observation set for large industrial systems cannot always be done in

a reasonable amount of time. An optimal sensor selection problem is also discussed

in [32], except that the observation function is different from the one assumed in this

thesis. Chapter VI reports in part on work originally presented in [33, 65].

2.6 Symmetric Systems

Many real-world distributed systems often exhibit a degree of similarity such that

they can be modelled as interacting distributed subsystems that are exact copies of

one another. Because it has been found that in general verification and control of

distributed systems is complicated if not impossible (see Chapter IV) one would

hope that if there is a degree of symmetry between the modules, control and ver-

ification problems would become simpler. Problems of interacting similar systems
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have received very little attention in the literature except for [17]. Group-theoretic

methods are used in [17] to define classes of states and transitions in centralized

systems that are equivalent under defined permutation operations. These classes of

equivalent states and transitions of a system are used to define a quotient automaton

that has a state space smaller than the original system. This quotient automaton

is used to perform various controller synthesis operations for the original system.

Unfortunately, finding the optimal partition of state equivalence classes as in [17] is

computationally difficult and is at least as difficult as the graph isomorphism prob-

lem [26]. This has induced several authors to attempt to design distributed systems

with special architectures so that certain types of symmetry are guaranteed to occur

a priori, therefore avoiding intensive symmetry optimality verification computations

[17, 62].

There are several definitions of the µ-calculus, but for the sake of regularity, the

discussions in this thesis are based on the commonly accepted µ-calculus in [14]. The

µ-calculus is a very general language for making specifications developed by the for-

mal methods community that is more general than many other common specification

logics such as LTL, CTL and CTL*. Researchers have begun to investigate uses of

the temporal logics in the field of discrete-event systems [34, 42, 72]. The verifica-

tion of LTL propositions for discrete-event systems is discussed in [72], and synthesis

methods for this setting are discussed in [42]. The decidability of testing whether

classes of temporal formulas within CTL* hold in a discrete-event system is discussed

in [34]. A version of the µ-calculus that allows one to solve some supervisory controls

problems has also been presented in [1].

The use of symmetry for testing µ-calculus propositions has been discussed in [16]

with a different system model and assumptions on the µ-calculus propositions used.
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It is discussed in [14] that there are most likely no polynomial time algorithms for

the µ-calculus model checking problem, so any methods for reducing the difficulty of

testing µ-calculus propositions are very useful.

Chapter VII introduces a symmetry definition for a special class of discrete-event

systems where the automata are isomorphic to one another. It is shown in this chap-

ter how to more efficiently perform verification tasks for these symmetric discrete-

event systems with respect to µ-calculus specifications. The permutation symmetry

definition induces a state equivalence class that can be used to construct a quotient

automaton. This quotient automaton may not always be the most efficient structure

for performing verification, but generally offers large reductions in the difficulty of

verifying many system properties. The work in Chapter VII was originally reported

in part in [59].

Chapter VIII investigates a special case of the systems discussed in Chapter VII

where the event alphabets are partitioned into sets of global and private events.

These systems were briefly mentioned in [17], but Chapter VIII presents work that

was in part originally presented in [57, 62].



CHAPTER III

NOTATIONAL AND BACKGROUND

INFORMATION

3.1 Chapter Overview

To aid the reader, this chapter reviews the notation used throughout this thesis.

First, the automata models used for distributed discrete-event systems are presented.

The supervisory control model is then shown, both in the standard setting of [43]

and in the generalized setting of [83]. A review of the theory of computational com-

plexity is presented and this chapter closes with a presentation of several results from

computer science on the computational difficulty of several important decision prob-

lems for automata. For more background information on discrete-event systems and

supervisory control, please consult [10]. See [15, 18, 27] for background information

on the theory of computation.

3.2 Distributed System Model

This thesis builds on previous work on automata problems from both the discrete-

event systems and computer science communities. Although the notation for au-

tomata problems used in computer science and discrete-event systems is similar,

there are subtle differences. In this thesis the notation of computer science theory

13
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is generally used when automata intersection problems are discussed and the nota-

tion of supervisory control is used when work related to discrete-event systems is

discussed.

The basic automaton system model G used in this thesis is defined is a 5-tuple

(XG, xG
o , ΣG, δG, XG

m) where XG is the set of states, xG
o is the initial state, ΣG is the

automaton event set, δG : XG × ΣG → XG is the (possibly partial) state transition

function, and XG
m is the set of “final” or “marked” states.

Deterministic systems and specification automata are generally assumed in this

thesis. The motivation for this distinction is discussed in Section 3.4. However,

this thesis does make use of nondeterministic automata at times. In this case the

transition function δG is defined such that δG : XG × ΣG → 2XG
where for a state

x ∈ XG and an event σ ∈ ΣG, δG(x, σ) ⊆ X represents the set of states G could be

in if a σ event were to occur at state x. Also, the notation is sometimes used for both

deterministic and nondeterministic automata such that for two states x, y ∈ XG and

an event σ ∈ Σ, x
σ
7→Gy denotes that there is a transition in G labelled by σ from x

to y. These transition definitions are also extended in the usual manner for strings

of transitions with labelled with strings in Σ∗ instead of single transitions labelled

by events.

For an automaton G, in theoretical computer science, the language accepted

(L(G)) by the automaton G is the set of all strings that lead to a final state. L(G)

is equivalent to the language marked (Lm(G)) in discrete-event system theory. The

language generated in discrete-event system theory (L(G)) is the set of strings whose

state transitions are defined by the transition function δG(·). Note that a script L is

used for discrete-event systems notation and a regular L for computer science nota-

tion. When δG(·) is a partial function, L(G) ⊂ Σ∗. L(G) is a prefix-closed language
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in that it contains all the prefixes of all its strings. The languages Lm(G) and L(G)

are not prefix-closed in general. For a language K, K denotes the set of the prefixes

of the strings in K. An automaton that accepts a prefix-closed language is called a

prefix-closed automaton. An automaton is said to be nonblocking if the prefix-closure

of its marked language is equal to its generated language, i.e., Lm(G) = L(G).

To review the parallel composition operation, consider G as defined above to-

gether with another automaton H = (XH , xH
o , ΣH , δH , XH

m ).

The parallel composition of G and H is denoted by G‖H:

G‖H := ((XG ×XH), (xG
o , xH

o ), ΣG ∪ ΣH , δG‖H , (XG
m ×XH

m ))

where

δG‖H((xG, xH), σ) =







































(δG(xG, σ), δG(xH , σ)) if δG(xG, σ)! ∧ δH(xH , σ)!

(δG(xG, σ), xH) if δG(xG, σ)! ∧ (σ 6∈ ΣH)

(xG, δH(xH , σ)) if δH(xH , σ)! ∧ (σ 6∈ ΣG)

undefined otherwise







































Note that the unary operator ! for f(α)! returns true if f(·) is defined for input α,

false otherwise. It is sometimes assumed without loss of generality that the automata

in this thesis have a common event set Σ unless explicitly stated otherwise. Self-

loops can always be added at all states for all events not initially in an automaton’s

event set. The phrases “composed automata” and “intersected automata” denote

the same concept - a set of automata interacting through parallel composition.

Given a set of h modules modelled as automata {H1, H2, . . . , Hh}, the script

notation Hh
1 denotes the set of the module automata {H1, H2, . . . , Hh} and the reg-

ular notation Hh
1 is used to denote the parallel composition H1‖H2‖ · · · ‖Hh. The

composed automaton Hh
1 accepts (generates) a string t if and only if t is accepted
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(generated) by all automata in Hh
1 = {H1, H2 . . . , Hh}. This implies that Lm(Hh

1 ) =

Lm(H1) ∩ · · · ∩ Lm(Hh). Similarly, for a set of k languages {K1, K2, . . . , Kk}, the

script notation Kk
1 denotes the set {K1, K2, . . . , Kk} and the regular notation Kk

1 to

denote the intersection of the languages K1 ∩ K2 ∩ · · · ∩ Kk. The notation L(Hh
1)

and Lm(Hh
1) is also used for the sets of languages {L(H1),L(H2), . . . ,L(Hh)} and

{Lm(H1),Lm(H2), . . . ,Lm(Hh)}, respectively.

Given two deterministic automata H1 and H2, simple polynomial time methods

are shown in [27] for testing if L(H1) ⊆ L(H2) or L(H1) = L(H2). Also, with the

above definition of the parallel composition operation the automaton H1‖H2 can be

constructed in polynomial time.

3.3 Supervisory Control Theory

Following the modelling formalisms of [54, 81], systems are modelled as finite-

state automata with external controllers. Control actions are enforced by selectively

disabling controllable events. Controllers are also realized as finite-state automata

that can observe some events and control a potentially different set of events. Con-

trollers should not be able to disable uncontrollable events and control actions should

not update on the occurrence of locally unobservable events.

Given a centralized controller S and a system G, the composed system of S

controlling G is denoted as the controlled system S/G. Furthermore, because parallel

controllers realized as finite-state automata are assumed, S/G is equivalent to S‖G.

Controller S is said to be nonblocking for system G if S/G is nonblocking, i.e.,

if Lm(S‖G) = L(S‖G).

As stated above, a controller may only observe a subset of the system events

Σo ⊆ Σ. A natural projection operation P : Σ → Σo is traditionally used to model
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a controller’s observations of system behavior. For the empty event ε, P (ε) = ε, and

for a string of events s and an event σ, P (sσ) = P (s)σ if σ ∈ Σo and P (sσ) = P (s)

otherwise. The inverse function P−1 : Σ∗o → 2Σ∗
is defined such that P−1(s) is the

set of strings with s as its projection. As system behavior progresses and a string of

events s is generated by the system, a controller with natural projection observation

function P (·) would observe P (s). The controller would then use observation pro-

jection P (s) to estimate the current system state and determine its control action.

A controller is said to be admissible if it only attempts to disable controllable events

and updates its control action on the occurrence of observable events.

Usually controllers are pre-computed in order to satisfy some specification. For

example, given a system G and a language specification K, a control automaton

S may be computed such that the behavior of the controlled system matches the

specification (Lm(S/G) = K), or is included in the specification (Lm(S/G) ⊆ K).

If it is desired that Lm(S/G) = K, then K is called a matching specification. If

it is desired that Lm(S/G) ⊆ K, then K is called a safety specification. For a

precomputed controller, all control actions are predetermined before the controller

is used. However, there is a concept called online control discussed in Chapter V

where the control actions are computed as system behavior progresses and are not

known before run-time.

3.3.1 Decentralized Control

For the case of multiple controllers (i.e., standard decentralized control) in the

framework of [43] an event is disabled if it is disabled by at least one controller. In

this case the actions of local controllers are combined globally by a “fusion by inter-

section” policy. See Figure 3.1 for a schematic of a system with a set decentralized
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controllers.

G

And

γn(s) ⊆ Σcnγ1(s) ⊆ Σc1

Pn(s)P1(s) s

Sn
1
(s)

SnS1

Observations

Global Control Actions

Figure 3.1: A schematic of a conjunctive decentralized control system

In Figure 3.1, the monolithic system G is controlled by n controllers, {S1, . . . , Sn}.

The controllers {S1, . . . , Sn} observe system events {Σo1, . . . , Σo1} and control events

{Σc1, . . . , Σc1} respectively. For every controller i there is also a defined local obser-

vation projection Pi : Σ → Σoi. Decentralized controller Si makes observations of

the system behavior s and generates control actions γi(s). The local control actions

{γ1(s), . . . , γn(s)} are combined using an intersection operation to form the global

control action that is enforced on the system G. Therefore, for this control system,

if an event is locally disabled by a controller Si, then it is globally disabled due to

the global intersections of control actions.

For a set of decentralized controllers {S1, . . . , Ss}, a similar notation for Ss
1 =

{S1, . . . , Ss} and Ss
1 = S1‖ · · · ‖Ss is used as seen above for Hh

1 and Hh
1 . Hence, a set

of controllers Ss
1 controlling G is equivalent to Ss

1/G. For the set of control automata

{S1, . . . , Ss}, let Σci and Σoi be the sets of events that are respectively controllable

and observable by Si. In this decentralized control setting let Σc = ∪n
i=1Σci and

Σuc = Σ \ Σc.

Three important properties related to decentralized controller existence are con-
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trollability, co-observability and Lm(G)-closure.

Definition 1 [54] Consider the languages K and M such that M = M and the set

of uncontrollable events Σuc. The language K is controllable with respect to M and

Σuc if KΣuc ∩M ⊆ K.

Definition 2 Consider the languages K and M . The language K is M -closed

if K = K ∩M .

Definition 3 [68] Consider the languages K and M such that M = M and the sets

of locally controllable, Σci, and observable Σoi events such that i ∈ {1, . . . , s}. The

language K is co-observable with respect to M , Pi and Σci, i ∈ {1, . . . , s} if for all

t ∈ K and for all σ ∈ Σc,

(

tσ /∈ K
)

and (tσ ∈M)⇒

∃i ∈ {1, . . . , s} such that P−1
i [Pi(t)] σ ∩K = ∅ and σ ∈ Σci.

The concept of co-observability captures the notion that one supervisor always

knows to disable an event when needed.1 In the case of centralized control as dis-

cussed in [44], co-observability is called observability. The above system properties

are central in the following controller existence theorem called the controllability and

co-observability theorem.

Theorem 1 [68] For a system G and a specification H such that Lm(H) ⊆ Lm(G),

sets of controllable events {Σc1, . . . , Σcs} and sets of observable events {Σo1, . . . , Σos}

there exists a set of partial observation controllers {S1, . . . , Ss} such that Lm(Ss
1/G) =

Lm(H) and L(Ss
1/G) = Lm(H) if and only if the following three conditions hold:

1In this thesis the terminology of control theory is used even though it may be counter to
naming conventions currently used in computer science theory. Namely, co-observability is not
non-observability.
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1. Lm(H) is controllable with respect to L(G) and Σuc.

2. Lm(H) is co-observable with respect to L(G), Σo1,. . . ,Σos and Σc1,. . . ,Σcs.

3. Lm(H) is Lm(G)-closed.

For languages generated by deterministic automata, controllability and Lm(G)-

closure can be decided in polynomial time using standard automata manipulation op-

erations. There is a method presented in [67] for deciding the co-observability of lan-

guages generated by deterministic automata. For the sake of the reader, this method

is shown in Appendix A for the two-controller case. The essence of this method is

that for a system G, a specification automaton H, sets of controllable events Σc1, Σc2

and sets of observable events Σo1, Σo2, an automaton M is constructed. For this

method, Lm(M) = ∅ if and only if Lm(H) is co-observable with respect to L(G),

Σo1, Σo2 and Σc1, Σc2.

The construction of M takes polynomial time if the number of controllers is

bounded. Therefore, for deterministic monolithic system problems with a bounded

number of controllers, controller existence can be decided in polynomial time.

A less restrictive version of Theorem 1 also holds for the case of generated lan-

guage specifications (and hence prefix-closed specifications) where the Lm(G)-closure

condition is disregarded.

3.4 Computational Complexity

This section presents a brief review of needed concepts from the theory of com-

putation. For a more thorough exposition of these topics, please consult one of the

standard texts in the field such as [15, 18, 27].

Problems are said to be in class P if they can be solved in polynomial time
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by a deterministic computation device such as a deterministic Turing machine or a

deterministic RAM machine. The exact type of computation device does not matter

as long as it is a “reasonable” computation device. Similarly, problems are said

to be in class NP if they can be solved in polynomial time by a nondeterministic

computation device. The class PSPACE includes all problems that can be solved by

a deterministic computation device using a polynomial amount of space. Similarly,

the class NPSPACE includes all problems that can be solved by a nondeterministic

computation device using a polynomial amount of space.

It is known that NP ⊆ PSPACE, but the inclusion is believed to be proper.

The NP vs. PSPACE problem is a major open problem in computer science similar

to the P vs. NP problem. EXP is the class of problems that can be solved by a Turing

machine in an exponential amount of time. It is known that PSPACE6=EXP and it is

believed that the sets PSPACE and EXP are incomparable. This implies that there

may be some problems in PSPACE that cannot be solved in an exponential amount

of time, but deciding if PSPACE and EXP are incomparable is another major open

problem in computer science. However, a well known result from complexity theory

is that PSPACE=NPSPACE [69]. This means that a Turing machine bounded using

to a polynomial amount of space cannot solve more problems if it operates in a

nondeterministic manner.

If a problem C is in PSPACE, it is then known that C ′ ∈ PSPACE where C ′

is the “complement” problem of C. In the discussions contained herein, showing a

language to be not co-observable (non-co-observable) is the complement problem of

showing that the language is co-observable.

The concept of a “polynomial-time many-one reduction” is used to denote that

one problem is “more difficult” than another. For two problems C ⊆ Γ∗c and D ⊆ Γ∗d,
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there is a polynomial-time many-one reduction from C to D (denoted C ≤p
m D) if

there exists a polynomial-time computable function f : Γ∗c → Γ∗d such that for each

x ∈ Γ∗c , x ∈ C if and only if f(x) ∈ D [15]. Intuitively, it can be thought that if

a polynomial-time many-one reduction exists, a solution method for problem D can

be used to solve problem C.

Problem D is called PSPACE-complete if it is in PSPACE and all problems in

PSPACE can be reduced to D. PSPACE-complete problems are problems that are

considered to be the “most difficult” of the problems in PSPACE and are at least

as hard as all NP-complete problems. Showing a problem to be PSPACE-complete

is considered strong evidence that the problem is computationally very difficult and

can be solved in polynomial time if and only if P=NP and NP=PSPACE.

Given a set of deterministic finite-state automata {A1, . . . , An} with a common

alphabet ΣA such that for i ∈ {1, . . . , n}, Ai = (XAi , xAi
o , ΣA, δAi , XAi

m ), Kozen

[35] demonstrates that the problem of deciding if Lm(A1‖ · · · ‖An) = ∅ is PSPACE-

complete. This problem is called the deterministic finite-state automata intersection

problem and is referred to as “DFA-Int”.

It is well-known (cf. [18]) that the problem of showing the language equivalence of

two nondeterministic finite-state automata is PSPACE-complete. With this informa-

tion it is also easily shown that for two automata A and B, deciding L(A) ⊆ L(B) for

the nondeterministic case is also PSPACE-complete because verifying L(A) ⊆ L(B)

and L(B) ⊆ L(A) also verifies that L(A) = L(B), a known PSPACE-complete prob-

lem. Because of these discouraging results for simple nondeterministic automata

comparison problems, deterministic automata are generally used in the rest of this

thesis. In the deterministic case L(A) ⊆ L(B) and L(A) = L(B) can be tested in

polynomial time [27].



CHAPTER IV

THE COMPUTATIONAL DIFFICULTY OF

DISTRIBUTED SYSTEMS PROBLEMS

4.1 Chapter Overview

This chapter investigates computational issues associated with the supervision of

distributed discrete-event systems. It is shown that in general many problems related

to the supervision of these systems are PSPACE-complete. This shows that although

there may be space-efficient methods of avoiding the state-explosion problem inherent

to concurrent processes, there are most likely no time-efficient solutions that would

aid in the study of “large-scale” systems. Computational difficulty results are shown

using a reduction from a special class of automata intersection problem introduced

here where accepted behavior is restricted to be prefix-closed. Deciding if there

exists a controller for a modular system to achieve a global specification is shown

to be PSPACE-complete. Several controller verification problems are shown to be

PSPACE-complete, even for prefix-closed cases. Controller admissibility and online

control operations are also discussed.

23
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4.2 Complexity of Automata Intersection Problems

Computational complexity results for several important classes of automata in-

tersection problems are now shown. When given two sets of interacting deterministic

finite-state automata Aa
1 and Bb

1, deciding L(Aa
1) ⊆ L(Bb

1) or L(Aa
1) = L(Bb

1) is in

PSPACE.

Proposition 1 Given an instance of two sets of interacting deterministic finite-state

automata Aa
1 and Bb

1 accepting languages not necessarily prefix-closed, the problem

of deciding the following expressions are in PSPACE:

1. L(Aa
1) ⊆ L(Bb

1)

2. L(Aa
1) = L(Bb

1)

Proof:

It is shown that the problem of deciding if L(Aa
1) 6⊆ L(Bb

1) is in NPSPACE. A

well known result from complexity theory is that PSPACE=NPSPACE [69]. This

means that a deterministic Turing machine bounded to a polynomial amount of space

cannot solve more problems if it operates in a nondeterministic manner. Showing a

problem to be in NPSPACE is sufficient to show that problem is also in PSPACE.

A nondeterministic algorithm is presented that uses a polynomial amount of space

to decide if there is a string s accepted by all A1, . . . , Aa that constitute Aa
1 but not by

all B1, . . . , Bb that constitute Bb
1. Initially, marker tokens are placed on all the start

states of A1, . . . , Aa, B1, . . . , Bb and events are generated nondeterministically from

the common alphabet Σ. As the events are generated the markers are moved to hold

the places of the current states of A1, . . . , Aa, B1, . . . , Bb to simulate the occurrence

of those events in the automata. If a generated event is ever undefined at the current
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state of an automaton, operation halts. If a string of events is generated such that the

current states in A1, . . . , Aa are marked and a current state in one of the automata

in B1, . . . , Bb in not marked, it is consequently known that L(Aa
1) 6⊆ L(Bb

1).

Keeping track of the current automata states and updating them as nondeter-

ministic events are generated requires less space than the encodings of Aa
1 and Bb

1 so

this operation takes a polynomial amount of space with respect to the problem en-

coding. Therefore, deciding L(Aa
1) 6⊆ L(Bb

1) is in NPSPACE. Therefore it is known

that deciding L(Aa
1) ⊆ L(Bb

1) is in coNPSPACE. Because PSPACE=coNPSPACE

[15] deciding if L(Aa
1) ⊆ L(Bb

1) is also in PSPACE.

By a similar construction, it can easily be shown that deciding L(Aa
1) = L(Bb

1) is

also in PSPACE.

The DFA-Int problem discussed in [35] is similar to the problem discussed in

Proposition 1. Kozen’s proof for DFA-Int depends on a reduction from the LBA

acceptance problem which is given a linear bounded automaton(LBA) Ψ and a string

x, to decide if Ψ accepts x. The LBA acceptance problem is a well-known PSPACE-

complete problem [27].

A linear bounded automaton Ψ is a special type of possibly nondeterministic

Turing machine with a bounded tape defined as follows:

Ψ = (Q, Σ, Γ, δ, qo, B, F, p)

where

Q is the finite set of symbols to represent the set of states of Ψ,

Σ is the finite set of input symbols,

Γ is the finite set of tape symbols,

δ : Q× Σ→ Q× Σ× {L,R} is the next move function,

qo is the start state symbol,
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$ is a blank symbol,

F is the set of accepting state symbols,

p is a polynomial function.

A linear bounded automaton operates in a manner similar to a regular Turing

machine except that the single input and work tape is constrained to use at most

p(n) cells where n = |x| is the length of the input x.

Kozen reduces the LBA acceptance problem to the DFA-Int problem by gener-

ating a set of automata BΨ,x that simulate the set of computations performed by Ψ

for a given input x. The string x is accepted by Ψ if and only if the automaton BΨ,x

equivalent to the parallel composition of the automata in BΨ,x accepts a non-empty

language.

Many topics related to modular plants and specifications in discrete-event sys-

tems deal with the prefix-closure of languages so it would be advantageous for us to

investigate whether automata intersection problems are PSPACE-complete for the

special case of automata accepting prefix-closed languages. Therefore, this chapter

expands the work in [35] by exploring parallel composition properties of automata

generating prefix-closed languages.

Theorem 2 Given a finite-state automaton A and a set of interacting finite-state

automata B1, . . . , Bb all accepting prefix-closed languages, the problem of deciding if

L(Bb
1) = L(A) is PSPACE-complete.

Proof: This proof is a modified version of the proof in [35] that shows the DFA-Int

problem is PSPACE-complete. Because neither are the proof of DFA-Int nor the

present modifications trivial, Kozen’s work is replicated and altered as necessary.
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Using the definition of Ψ seen above, the linear bounded automaton acceptance

problem for an instance of an LBA Ψ and a string x is reduced in polynomial time

to the prefix-closed case of deciding L(Bb
1) 6= L(A) for a given set of automata

{B1, . . . , Bb} and an automaton A. The comparison problems in Proposition 1 are

more general than the problem in this theorem so it is known that deciding L(Bb
1) =

L(A) for the prefix-closed case is in PSPACE. It is therefore sufficient to demonstrate

that the deterministic LBA acceptance problem can be reduced in polynomial-time

using a many-one mapping to the problem of deciding L(Bb
1) 6= L(A) for the prefix-

closed case.

Assume without loss of generality that Ψ has a unique accepting state qf and

that Ψ erases its work tape and moves its read/write head all the way to the left of

the tape before accepting. Also assume that Ψ takes an even number of steps before

accepting. These assumptions can be made without loss of generality because the

size of the Turing machine finite control will at most double with these modifications.

The instantaneous description (ID) of a Turing machine represents as a finite

string the current state of the Turing machine, the current contents of the work tape

and the location of the read/write head. Suppose y = y1y2 where y is the contents

of a Turing machine tape and y1 represents the content of the tape to the left of the

read/write head, and let the rest of y2 be the content of the tape to the right of the

read/write head. Let the first letter of y2 represent the tape cell being read by the

read/write head. If q represents the current state, an effective representation of the

ID would be the string y1qy2.

In this proof, the ID representation is padded with a string of normally unwritten

blank symbols $p(n)−(|y1|+|y2|) to make explicit in the representation of the ID the fact

that the LBA has a work tape of size p(n) where n is the length of the input string.
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Therefore with y = y1y2, an ID of the LBA would be y1qy2$
p(n)−(|y1|+|y2|).

If x is the input string to Ψ, the initial instantaneous description (IDo) would be

qox$p(n)−|x|. Because of the previous assumptions on how Ψ accepts a string, there is

a unique accepting instantaneous description IDf = qf$
p(n). The notation IDj `Ψ

IDi is used to represent that according to the transition rules of Ψ, instantaneous

description IDi follows in one step from instantaneous description IDj. It should

therefore be readily apparent that [x ∈ L(Ψ)] if an only if [∃(IDo, ID1, . . . , IDf )

such that ∀i ∈ [1, . . . , f ](IDi−1 `Ψ IDi)]. This means that a string x is accepted by

Ψ if and only if there is a sequence of instantaneous descriptions IDo `Ψ ID1 `Ψ

· · · `Ψ IDf starting with the initial instantaneous description IDo and finishing with

the accepting instantaneous description IDf .

Let ∆ = Γ ∪ Q ∪ {$} and let # be a previously unused symbol. To perform

this reduction from an instance of the LBA acceptance problem to an instance of

the prefix-closed automata intersection problem, a set of prefix-closed interacting

automata is constructed BΨ,x such that the automaton BΨ,x equivalent to the au-

tomaton formed by the parallel composition of the automata in BΨ,x accepts the

language

(((∆ ∪ {#})∗) \ ((∆ ∪ {#})∗ {##} (∆ ∪ {#})∗))

⋃

{#IDo#ID1# · · ·#IDf##} ⊂ (∆ ∪ {#})∗

if [∀i ∈ [1, . . . , f ](IDi−1 `Ψ IDi)],

(((∆ ∪ {#})∗) \ ((∆ ∪ {#})∗ {##} (∆ ∪ {#})∗))

otherwise.

BΨ,x always accepts all strings not containing ## and BΨ,x accepts a string

ending with ## if and only if there is a sequence of instantaneous descriptions from

IDo to IDf that represent a set of valid computations for Ψ.
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An automaton AΨ,x can be constructed in polynomial time with respect to the

encoding of Ψ and x such that

L(AΨ,x) = (((∆ ∪ {#})∗) \ ((∆ ∪ {#})∗ {##} (∆ ∪ {#})∗)).

Note that L(BΨ,x) and L(AΨ,x) are both prefix-closed by construction. For this

reduction L(BΨ,x) 6= L(AΨ,x) if and only if x ∈ L(Ψ) where BΨ,x and A are con-

structed in polynomial time from x and Ψ. Therefore deciding L(BΨ,x) = L(AΨ,x) is

PSPACE-complete because PSPACE = coPSPACE.

When the read/write head moves, the state updates, a symbol is written on the

current tape cell and the tape head should move exactly one cell to the left or the

right. Therefore, to verify that (IDi `Ψ IDj), it needs to be verified that the tape

contents in IDi and IDj are identical except for where the read/write head wrote to

the tape during the transition and that the read/write head moved exactly one tape

square to the left or right according to the next move function δ. With this in mind,

given a three element string α1α2α3 from IDi and a three element string β1β2β3 from

IDj both at the same relative locations in the instantaneous descriptions, it can be

verified in polynomial time that β1β2β3 can follow from α1α2α3. If this is verified

for all pairs of three element strings at the same locations in IDi and IDj, it can be

verified in polynomial time that (IDi `Ψ IDj).

Two sets of interacting automata, Beven and Bodd are now constructed. The

automata in Beven verify for a sequence of instantaneous descriptions IDi, . . . , IDj

that the instantaneous descriptions with odd indices follow from the instantaneous

descriptions with even indices. Similarly, the automata in Bodd verify for a sequence

of instantaneous descriptions IDi, . . . , IDj that the even instantaneous descriptions

follow from the odd instantaneous descriptions.
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With this in mind, Beven
i is constructed to accept the language

(

{#∆i−1α1α2α3∆
p(n)−i−2#∆i−1β1β2β3∆

p(n)−i−2}∗{##}
)

⋃

((∆ ∪ {#})∗ \ ((∆ ∪ {#})∗ {##} (∆ ∪ {#})∗))

where α1α2α3, β1β2β3 ∈ ∆3. A string (i.e., #ID0#ID1# · · ·#IDf##) containing

## is accepted by Beven
i only if the ith, (i + 1)st and (i + 2)nd symbols in the odd

instantaneous descriptions follow from the ith, (i + 1)st and (i + 2)nd symbols in the

even instantaneous descriptions.

Similarly, let us also construct Bodd
i to accept the language

({#∆p(n)+1}{#∆i−1η1η2η3∆
p(n)−i−2#∆i−1θ1θ2θ3∆

p(n)−i−2}∗{#∆p(n)+1##})

⋃

((∆ ∪ {#})∗ \ ((∆ ∪ {#})∗ {##} (∆ ∪ {#})∗))

where η1η2η3, θ1θ2θ3 ∈ ∆3. A string containing ## (i.e., #ID0#ID1# · · ·#IDf##)

is accepted by Bodd
i only if the ith, (i + 1)st and (i + 2)nd symbols in the even

instantaneous descriptions follow from the ith, (i + 1)st and (i + 2)nd symbols in

the odd instantaneous descriptions. Remember that it is assumed without loss of

generality that f is odd.

Let us construct Beven
i ’s and Bodd

i ’s for i ranging from 0 to (p(n) − 1). This

should take less than 6|∆|3p(n) states each, so this construction can be performed

in polynomial time with respect to the encodings of Ψ and x. Note that by their

constructions, the languages accepted by the Beven
i ’s and Bodd

i ’s are prefix-closed.

Define Beven = {Beven
0 , . . . , Beven

p(n)−1} and Bodd = {Bodd
0 , . . . , Bodd

p(n)−1}. these com-

posed automata are respectively equivalent to the automata (Beven
0 ‖ · · · ‖Beven

p(n)−1) and

(Bodd
0 ‖ · · · ‖B

odd
p(n)−1). Beven accepts a string (such as #IDi#IDi+1# · · ·#IDj##)

containing ## only if the odd instantaneous descriptions follow from the even in-

stantaneous descriptions. Likewise, Bodd accepts a string containing ## (notably

#IDi#IDi+1# · · ·#IDj## ) only if the even instantaneous descriptions follow from
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the odd instantaneous descriptions.

A final automaton Bfinal is constructed that accepts the prefix closure of the

following set of strings:

((∆ ∪ {#})∗ \ ((∆ ∪ {#})∗ {##} (∆ ∪ {#})∗))

⋃
(

{#IDo}{#∆p(n)+1}∗{#IDf##}
)

Bfinal accepts a string of instantaneous descriptions ending with ## only if the first

instantaneous description is IDo and the final instantaneous description is IDf . Note

that Bfinal also accepts a prefix-closed language. Constructing Bfinal takes less than

6|∆|3p(n) states, so this construction can be performed in polynomial time.

Let BΨ,x = {Bfinal}∪Beven∪Bodd. If there is a valid accepting computation for Ψ

with input x then ID0, ID1, . . . , IDf is a sequence of valid accepting computations

for Ψ and

#ID0#ID1# · · ·#IDf## is accepted by BΨ,x. Likewise, if a string containing ##

is accepted by BΨ,x, it must be the string #ID0#ID1# · · ·#IDf## representing a

valid computation on Ψ for accepting input x. A string containing ## is accepted by

all the automata in B	,§ if and only if there is a valid computation for Ψ that accepts

x. It is therefore known [x ∈ L(Ψ)] ⇐⇒ [L(BΨ,x) 6= L(AΨ,x)]. This completes the

many-one mapping.

AΨ,x and the components of BΨ,x can be constructed in polynomial time with

respect to the size of the encoding of x and Ψ. Therefore, the problem of deciding

L(Bb
1) = L(A) for the prefix-closed case is PSPACE-complete.

The primary alterations in the proof of Theorem 2 from the proof of DFA-Int

is that the automata in the Theorem 2 proof accept all prefix-closed strings not

containing the substring ## and they accept a string containing ## if and only if

their parts of the LBA computation are valid. Therefore a string containing ## is
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accepted by the construction in Theorem 2 if and only if a string x is accepted by Ψ.

The result of Theorem 2 is particularly discouraging. PSPACE-complete prob-

lems are thought to be rather difficult. However, it is well known that the problems

of deciding if L(A) ⊆ L(B) and L(A) = L(B) are in P for monolithic automata.

This observation prompts the following proposition.

Proposition 2 Given an instance of a deterministic finite-state automaton A not

necessarily accepting a prefix-closed language and a finite set of interacting determin-

istic finite-state automata Bb
1 = {B1, . . . , Bb} also not necessarily accepting prefix-

closed languages, the problem of deciding if L(A) ⊆ L(Bb
1) is in P.

Proof: This proposition is demonstrated by presenting a polynomial time procedure

to solve this problem.

Because the automata all have common alphabets

[L(A) ⊆ L(Bb
1)] ⇐⇒ [∀ i ∈ {1, . . . , b} [L(A) ⊆ L(Bi)]]

L(A) ⊆ L(Bi) can be verified in polynomial time with respect to the length of

the encoding of A and Bi, so [∀ i ∈ {1, . . . , b}, [L(A) ⊆ L(Bi)]] can be verified in

polynomial time with respect to the length of the encoding of A and Bb
1. Therefore

the problem of deciding L(A) ⊆ L(Bb
1) is in class P.

However, even with the positive results of Proposition 2, the converse problem is

very difficult. For the prefix closed case, given a finite set of interacting deterministic

finite-state automata Bb
1 = {B1, . . . , Bb} deciding if L(Bb

1) ⊆ L(A) is PSPACE-

complete.

Theorem 3 Given a finite-state automaton A and a set of interacting finite-state

automata Bb
1 = {B1, . . . , Bb} all generating prefix-closed languages, the problem of

deciding if L(Bb
1) ⊆ L(A) is PSPACE-complete.
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Proof: This problem is in PSPACE due to Proposition 1. The construction used in

this proof is identical to the proof used in Theorem 2 above. This construction is

not repeated for the sake of brevity. It can then be shown using BΨ,x and AΨ,x from

the construction in the proof of Theorem 2 that:

[x /∈ L(Ψ)] ⇐⇒ [L(BΨ,x) 6⊆ L(AΨ,x)]

Therefore, the problem of deciding L(Bb
1) 6⊆ L(AΨ,x) for the prefix-closed case

given {B1, . . . , Bb} and A is PSPACE-complete. Therefore, the problem of deciding

L(Bb
1) ⊆ L(AΨ,x) for the prefix-closed case is PSPACE-complete.

These complexity results can now be extended to the non-prefix-closed cases of

the problems discussed above.

Corollary 1 The problems of deciding if L(Bb
1) = L(A) and L(Bb

1) ⊆ L(A) given

Bb
1 and A for the non-prefix-closed case is PSPACE-complete.

Proof: It is easy to see that these problems are a special case of the problem in

Proposition 1 above, so these problems are in PSPACE. It should also be apparent

that these problems are more general than the decision problems in Theorem 2

and Theorem 3 above so these problems are in PSPACE and are PSPACE-hard;

consequently these problems are PSPACE-complete.

After Corollary 1 it should be readily apparent that the problems discussed in

Proposition 1 are PSPACE-complete.

4.3 Control of Discrete-Event Systems

The complexity results of Section 4.2 are now used to show complexity results

for several important supervisory control problems. First, the supervisory control
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theory concepts of controllability, M -closure, and co-observability in Section 3.3 are

extended to handle the cases where the systems and specifications are distributed.

Let Kk
1 andMm

1 be sets of languages. Let Σci and Σoi be the locally controllable

and observable event sets respectively for i ∈ {1, . . . , s}. Let Pi : Σ∗ → Σ∗oi be the

natural projection that erases events in Σ \ Σoi. Furthermore, let Σc = ∪s
i=1Σci and

Σuc = Σ \ Σc.

Definition 4 Consider the sets of languages Kk
1 andMm

1 such that M1 = M1,M2 =

M2, . . . ,Mm = Mm and the set of uncontrollable events Σuc. The set of languages

Kk
1 is modular controllable with respect to Mm

1 and Σuc if Kk
1 Σuc ∩Mm

1 ⊆ Kk
1 .

Definition 5 Consider the sets of languages Kk
1 and Mm

1 . The set of languages Kk
1

is modularMm
1 -closed if Kk

1 = Kk
1 ∩Mm

1 .

Definition 6 Consider the sets of languages Kk
1 andMm

1 such that M1 = M1,M2 =

M2, . . . ,Mm = Mm and the sets of locally controllable, Σci, and observable Σoi events

such that i ∈ {1, . . . , s}. The set of languages Kk
1 is modular co-observable with

respect to Mm
1 , Pi and Σci, i ∈ {1, . . . , s} if for all t ∈ Kk

1 and for all σ ∈ Σc,
(

tσ /∈ Kk
1

)

and (tσ ∈Mm
1 )⇒

∃i ∈ {1, . . . , s} such that P−1
i [Pi(t)] σ ∩Kk

1 = ∅ and σ ∈ Σci.

The following theorem for the existence of controllers for modular systems can

now be demonstrated using the extended modular definitions of controllability, co-

observability and language closure.

Theorem 4 For a given set of finite-state automata system modules Gg
1 and a set

of finite-state automata specification modules Hh
1 such that Hh

1 is nonblocking, there

exists a set of partial observation controllers {S1, S2, . . . , Ss} such that
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Lm(Ss
1/G

g
1) = Lm(Hh

1 ) and L(Ss
1/G

g
1) = L(Hh

1 )

if and only if the following three conditions hold:

1. Lm(Hh
1) is modular controllable with respect to L(Gg

1) and Σuc.

2. Lm(Hh
1) is modular co-observable with respect to L(Gg

1), P1, . . . , Ps and

Σc1, . . . , Σcs.

3. Lm(Hh
1) is modular Lm(Gg

1)-closed.

The proof of this theorem is constructive and is a generalization of the proof of

the Controllability and Co-Observability Theorem discussed in [10]; it depends on

a sample-path argument not shown here. This result says that a set of nonblock-

ing controllers S1, S2, . . . , Ss that achieves a set of modular specifications Hh
1 for a

modular system Gg
1 (i.e. Lm(Ss

1/G
g
1) = Lm(Hh

1 ) and L(Ss
1/G

g
1) = L(Hh

1 )) exists if

and only if the system is modular controllable, modular co-observable and modular

Lm(Gg
1)-closed. These properties completely characterize necessary and sufficient ex-

istence conditions for controllers of modular systems. In turn, these properties can

play a role in safe controller synthesis when existence conditions are not satisfied for

a controlled system to match a specification. Safe controller synthesis for monolithic

systems is discussed in [10].

Given Hh
1 , deciding if Hh

1 is nonblocking is a PSPACE-complete problem. This

can be shown using a simple reduction from the automata intersection problem pre-

sented in [35]. However, there may be enough foreknowledge to decide this property

holds in a computationally feasible manner. It is assumed in this chapter that the

modular specifications are given such that Hh
1 is nonblocking. If the specification is

blocking, no nonblocking controllers that achieves the specification can exist.
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Similarly, the astute reader will note that Lm(Hh
1 ) ⊆ Lm(Gg

1) is a necessary

condition for both Lm(Ss
1/G

g
1) = Lm(Hh

1 ) and Lm(Hh
1) to be modular Lm(Gg

1)-closed.

If Lm(Hh
1 ) 6⊆ Lm(Gg

1), H
h
1 can be replaced with Hh

1 ∪ G
g
1 so that the specification

behavior is strictly smaller than the specification behavior. H1‖ · · · ‖Hh‖G1‖ · · · ‖Gg

is the automaton equivalent of the new specification behavior. This substitution

will not alter the computational complexity of the problems discussed later in this

chapter.

It is also easy to show a more general theorem concerned only with prefix-closed

behavior when blocking is not a concern.

Theorem 5 For a given set of prefix-closed finite-state automata system modules

Gg
1 and a set of prefix-closed finite-state automata specification modules Hh

1 such that

L(Hh
1 ) 6= ∅, there exists a set of partial observation controllers {S1, S2, . . . , Ss} such

that L(Ss
1/G

g
1) = L(Hh

1 ) if and only if the following three conditions hold:

1. L(Hh
1) is modular controllable with respect to L(Gg

1) and Σuc.

2. L(Hh
1) is modular co-observable with respect to L(Gg

1), P1,. . . ,Ps and

Σc1,. . . ,Σcs.

3. L(Hh
1 ) ⊆ L(Gg

1)

As with Theorem 4, if Lm(Hh
1 ) 6⊆ Lm(Gg

1), then Hh
1 can be replaced with Hh

1 ∪

Gg
1 . This substitution will not alter the computational complexity of the problems

discussed later in this chapter related to this theorem.

The following proposition can now be shown:
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Proposition 3 Deciding modular controllability, modular co-observability and mod-

ular Mm
1 -closure for sets of languages specified by sets of finite-state automata is in

PSPACE.

Proof: Proving this proposition relies on a “token” argument similar to that em-

ployed by Kozen in [35] for proving automata intersection emptiness is in PSPACE.

Given a set of events Σuc and two sets of automata Hh
1 and Gg

1 , it is shown that the

problem of deciding modular controllability of Lm(Hh
1) with respect to L(Gg

1) and

Σuc is in PSPACE. Similar proofs exist to show deciding modular co-observability

and modularMm
1 -closure are in PSPACE but are not shown here due to space con-

siderations. Regarding controllability, it is sufficient to show the converse problem

of deciding non-controllability is in NPSPACE.

A nondeterministic string of events t is generated one event at a time and used

to model the state transitions in the finite-state automata in Gg
1 and Hh

1 starting

from their respective start-states. The current states of the automata in Gg
1 and Hh

1

need to be saved and updated as new events are generated. As each new event is

generated and added to t, it is tested if ∃σ ∈ Σuc such that

[∀j ∈ {1, . . . , g}|(tσ ∈ L(Gj))] ∧ [∀i ∈ {1, . . . , h}](t ∈ L(Hi))|]

∧ [∃l ∈ {1, . . . , h}|(tσ 6∈ Lm(Hi))].

If this property ever holds then modular controllability does not hold. All of

these operations take a polynomial amount of memory with respect to the encodings

of Gg
1 and Hh

1 . Because this problem is in NPSPACE, it is also in PSPACE [69].

It should be noted that if the number of controllers, plants and specifications are

bounded to be less than some constant k, then modular controllability, modular co-

observability and modularM-closure can then be decided in polynomial time if the

modular systems and specifications are given as deterministic finite-state automata.
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4.4 Existence Problems for the Control of Modular Systems

In this section the computational complexity of deciding controller existence for

modular systems under various assumptions is explored. It is assumed that the spec-

ifications are nonblocking and that the uncontrolled systems allow at least as much

behavior as the specifications (i.e., for the system automata Gg
1 and the specification

automata Hh
1 , Lm(Hh

1 ) ⊆ Lm(Gg
1) and L(Hh

1 ) ⊆ L(Gg
1) respectively). This section

shows one of the main contributions of this chapter: a large class of controller ex-

istence problems for modular discrete-event systems are PSPACE-complete. From

Theorem 4 and Proposition 3 demonstrated above, it is easy to see that deciding if

a decentralized controller exists for a modular specification and modular system is

in PSPACE.

Corollary 2 Given a set of finite-state automata system modules Gg
1 , a set of finite-

state automata specification modules Hh
1 , sets of observable events Σo1, . . . , Σos and

sets of controllable events Σc1, . . . , Σcs, the problem of deciding if there is a set of

decentralized controllers Ss
1 such that Lm(Ss

1/G
g
1) = Lm(Hh

1 ) and L(Ss
1/G

g
1) = L(Hh

1 )

is in PSPACE.

Similar problems for prefix-closure specifications as seen in Theorem 5 and cen-

tralized controllers as seen in [10] can also be decided in PSPACE. A relatively simple

problem is investigated: given a modular system and monolithic specification mark-

ing prefix-closed languages, is there a single full-observation controller such that the

system satisfies the specification? It is shown that even for this restricted subclass

of problems are PSPACE-complete.

Theorem 6 The problem of deciding if there is a full-observation controller S with

controllable event set Σc for a set of prefix-closed automata system modules Gg
1 and
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a prefix-closed specification automaton H such that L(S/Gg
1) = L(H) is PSPACE-

complete even if it is known that L(H) ⊆ L(Gg
1).

Proof: It is shown in Corollary 2 that this problem is in PSPACE. Here the problem

of deciding whether L(Bb
1) = L(A) is reduced to this problem where A and Bb

1 are

given prefix-closed finite-state automata. Let Σc = ∅. If there exists a controller S

such that L(S/Bb
1) = L(A) then L(Bb

1) = L(A). If there does not exist a controller

such that L(S/Bb
1) = L(A) then L(Bb

1) 6= L(A) because no event can be disabled.

Since deciding if L(Bb
1) = L(A) is PSPACE-complete even if it is known that L(A) ⊆

L(Bb
1) from Theorem 2, the controller existence problem is also PSPACE-complete.

These results are particularly disappointing because they show that a relatively

large and simple class of controller existence problems involving modular system

automata is PSPACE-complete. Due to Theorem 6 it should also be apparent that

deciding modular controllability for languages specified by finite-state automata is

PSPACE-complete because modular observability and modular Lm(Gg
1)-closure are

implied by full observation and prefix-closure, respectively.

For the case of full control (namely, Σc = Σ) and partial observation, a similar

proof method can be used to show that controller existence problem for a modular

system and a monolithic specifications is likewise PSPACE-complete. This implies

that deciding both modular observability and modular co-observability for languages

specified by deterministic finite-state automata is also PSPACE-complete.

If it is not known that L(Hh
1 ) 6= ∅ or that L(Hh

1 ) ⊆ L(Gg
1), controller existence

problems remain PSPACE-complete. Likewise, a large class of nonblocking controller

existence problems for modular systems specified by finite-state automata are also

PSPACE-complete due to Theorem 4 because the nonblocking controller problems
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are known to be at least as difficult as prefix-closed specification problems.

An interesting related controller existence problem is also discussed in [66] where

it is shown that the problem of deciding co-observability as introduced in [68] is

PSPACE-complete if the number of controllers is unbounded even if determinis-

tic monolithic systems and specifications are used. Due to the controllability and

co-observability theorem [68], this result implies that deciding the decentralized con-

troller existence problem is likewise PSPACE-complete.

4.5 Admissible Controllers

As stated before, a controller is admissible if it updates control actions on lo-

cally observable events and disables only locally controllable events. Note that a

controller’s admissibility when operating on a system is not related to that system’s

specification. For a monolithic discrete-event system, deciding if a controller automa-

ton S is admissible for a given system automaton G can be decided in polynomial

time. This is because testing admissibility of a parallel controller S is equivalent to

testing that all transitions occur on observable events and that L(S) is controllable

with respect to L(G) and Σuc [10]. This method of testing admissibility also holds

for modular systems. To test if a parallel controller S is admissible for a modular

system Gg
1 it is first tested if state transitions occur only on the occurrence of ob-

servable events and then it is necessary and sufficient to verify that L(S) is modular

controllable with respect to L(Gg
1) and Σuc. Testing that all state transitions in

the controller occur on observable events takes polynomial time, but, as was stated

earlier in the chapter, testing modular controllability of a monolithic specification

with respect to a modular finite-state automata system is PSPACE-complete. This

prompts the following theorem whose proof was outlined above.
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Theorem 7 Verifying the admissibility of a single controller with respect to a mod-

ular finite-state automata system is also PSPACE-complete.

When testing the admissibility of a decentralized control system {S1, . . . , Ss},

with respect to a modular system {G1, . . . , Gg} it needs to be verified first that all

state transitions in {S1, . . . , Ss} occur on locally observable events. It then needs to

be verified that each local controller disables only locally controllable events when the

other controllers are in operation. More formally, ∀i ∈ {1, . . . , s}, L(Si) is modular

controllable with respect to L(Ss
1 ∪ G

g
1 \ Si) and Σuci.

Besides having state transitions only on locally observable events, all local con-

trollers Si need to be controllable with respect the system it is modifying, i.e.,

Ss
1 ∪ G

g
1 \ Si. The following corollary should now be evident:

Corollary 3 The problem of testing the admissibility of decentralized control systems

specified by finite-state automata is PSPACE-complete.

4.6 Complexity of Modular Controller Verification Prob-

lems

The computational complexity of the language matching verification problem for

distributed systems is now discussed. For this problem, if given a distributed sys-

tem controlled by an admissible controller it should be found if the behavior of this

controlled system matches the behavior of a specification. This problem is investi-

gated using reductions from automata intersection problems. Simple extensions of

the results from Proposition 1 are first shown.

Proposition 4 Given sets of finite-state automata Ss
1 , G

g
1 and Hh

1 , verifying if

Lm(Ss
1/G

g
1) = Lm(Hh

1 ), Lm(Ss
1/G

g
1) ⊆ Lm(Hh

1 ) and Lm(Hh
1 ) ⊆ Lm(Ss

1/G
g
1) are all

problems in PSPACE.
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Proof: This proof is similar to the proof of Proposition 1 above. Using the previously

discussed definitions regarding controller operation for the supervisory control set-

up, the proof of this proposition should be apparent and is not included for the sake

of brevity.

Using the results of Section 4.2 and Proposition 4 the computational difficulty of

verifying a large class properties of distributed supervisory control systems can be

found.

Theorem 8 Given controller automata S and Ss
1 , uncontrolled system automata G

and Gg
1 and specification automata H and Hh

1 . Deciding the validity of each of the

following expressions is PSPACE-complete:

1. L(Ss
1/G) = L(H)

2. L(S/Gg
1) = L(H)

3. L(S/G) = L(Hh
1 )

4. L(Ss
1/G) ⊆ L(H)

5. L(S/Gg
1) ⊆ L(H)

6. L(Hh
1 ) ⊆ L(S/G)

Proof: The listed problems in this theorem are all special cases of the problems in

Proposition 4. Therefore these problems are in PSPACE.

The problem in Theorem 2 can be reduced to Problems 1, 2 and 3 in this theorem.

This reduction is not show for the sake of brevity, but should be readily apparent.

Therefore, Problems 1, 2 and 3 are PSPACE-complete.
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The problem in Theorem 3 can be reduced to Problems 4, 5 and 6 in this theorem.

This reduction is also not show for the sake of brevity, but should be readily apparent.

Therefore, Problems 4, 5 and 6 are like-wise PSPACE-complete.

It can be easily seen that the problems listed in Theorem 8 above are special

cases of several other problems in PSPACE, notably problems where the marking

properties of controlled modular discrete-event systems are verified. These problems

are too numerous to conveniently list, but their computational complexity can easily

be found as a consequence of Proposition 4 and Theorem 8. Although the listed

completeness results deal only with problems where either the controller, plant or

specification are modular, these results can be easily extended to cases where two

or three of the controller, plant and specification are modular. It should be noted

that if the number of controllers, plants and specifications is bounded to be less than

some constant k, then all of the verification problems listed here can be decided in

polynomial time.

Despite the seemingly overwhelming number of PSPACE-complete verification

problems, there are several important verification problems that can be decided in

polynomial time even when there is no restriction on the number of modules. It

has already been seen in Proposition 2 that given the finite-state automata Bb
1 and

A, verifying L(A) ⊆ L(Bb
1) is in P. This result can be used to prove the following

propositions.

Proposition 5 Given a controller automaton S, system automaton G and a set of

specification automata Hh
1 , the problem of verifying Lm(S/G) ⊆ Lm(Hh

1 ) is in P.

Proof: Because it is assumed without loss of generality that S, G and Hh
1 all have

common alphabets, it is known that
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Lm(S/G) ⊆ Lm(Hh
1 ) ⇐⇒ [∀ i ∈ {1, . . . , h} [Lm(S/G) ⊆ Lm(Hi)]]

Lm(S/G) ⊆ Lm(Hi) can be verified in polynomial time with respect to the en-

codings of S, G and Hi, so verifying Lm(S/G) ⊆ Lm(Hh
1 ) is also in P.

By similar reasoning, the following proposition can also be shown:

Proposition 6 Given a set of controllers S1, . . . , Ss, a set of finite-state automata

system modules G1, . . . , Gg and a finite-state automata specification H, the problem

of verifying Lm(H) ⊆ Lm(Ss
1/G

g
1) is in P.

Proof: Because it is assumed without loss of generality that Ss
1 , G

g
1 and H all have

common alphabets, it is known that

Lm(H) ⊆ Lm(Ss
1/G

g
1) ⇐⇒

[∀ i ∈ {1, . . . , s} [Lm(H) ⊆ Lm(Si)]] ∧ [∀ j ∈ {1, . . . , g} [Lm(H) ⊆ Lm(Gj)]]

Lm(H) ⊆ Lm(Si) and Lm(H) ⊆ Lm(Gj) can be verified in polynomial time with

respect to the encodings of Si, Gj and H, so verifying Lm(H) ⊆ Lm(Ss
1/G

g
1) is in P.

4.7 Online Control Actions

Previously there have been several attempts in the discrete-event systems com-

munity to use online control methods to synthesize controllers whose proper actions

are difficult to precompute. See for instance [83] and Chapter V where online meth-

ods for safe decentralized control are discussed. One might think that similar online

approaches might be used to synthesize safe controllers for modular systems that re-

strict behavior in a non-trivial manner, i.e., enable at least one event, but in general

this is not possible to do in an efficient manner. A further discouraging result of the

work presented earlier is that for a modular system Gg
1 and a modular specification
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Hh
1 , calculating if a single controllable event is safe to enable from the initial state is

PSPACE-complete. This problem is called the single event problem.

Theorem 9 Given a set of modular finite-state automata Gg
1 , a modular finite-state

automata specification Hh
1 , a set of controllable events Σc and a set of observable

events Σo, the problem of deciding if a controllable event σ is safe to be enabled at

the initial state is PSPACE-complete.

Proof: It is first shown that this decision problem is in PSPACE. Let S be a

controller that enables only σ at the initial state and disables all on the occurrence

of any more events. It has already been shown that verifying L(S/Gg
1) ⊆ L(Hh

1 ) is

in PSPACE, so the verification problem in Proposition 4 can be used to solve the

problem in this proposition.

It is now shown that this problem is PSPACE-complete. Suppose two arbitrary

sets of automata Bb
1 and Aa

1 are given. The PSPACE-complete problem of deciding

if L(Bb
1) ⊆ L(Aa

1) is reduced to the single event problem using a polynomial-time

many-one reduction. This will show that deciding if a single event is valid to be

enabled is PSPACE-complete.

Let Σ be the alphabets for Bb
1 and Aa

1 and let α be an event not in Σ. Suppose

for every Bi, i ∈ {1, . . . , b} an automaton B̆i is created from Bi such that L(B̆i) =

{α}L(Bi) in the following manner. Suppose x0i is the initial state of Bi. B̆i is a copy

Bi except a new start state x̆0i is created and the only transition from x̆0i is on the

occurrence of α and leads to x0i. This procedure is repeated to create Ăj from Aj for

j ∈ {1, . . . , a}. Let B̆b
1 be the system and let Ăa

1 be the specification. Let Σc = {α}

and let Σo be empty. It should be apparent that this construction can be completed

in polynomial time with respect to the encodings of Bb
1 and Aa

1.
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If L(Bb
1) ⊆ L(Aa

1) then it is known that α can be enabled at the initial state

and have a safe system because enabling α will not allow illegal behavior to occur.

Similarly, if L(Bb
1) 6⊆ L(Aa

1) then it is known that α can not be enabled at the initial

state and have a safe system because enabling α will lead to further illegal behavior

because L(B̆b
1) 6⊆ L(Ăa

1). So, L(Bb
1) ⊆ L(Aa

1) if and only if α can be enabled at the

initial state and have a safe system with respect to B̆b
1, Ă

a
1, Σc and Σo This completes

the polynomial-time many-one reduction.

Theorem 9 can be extended to show PSPACE-hardness or PSPACE-completeness

results for many common online control problems where multiple online control ac-

tions for safety or maximality are computed.

4.8 Discussion

It is shown in [19] that several controller existence problems with range specifi-

cations on distributed systems are NP-hard. The results of this chapter extend the

results in [19] using different reduction methods. This chapter has shown that a large

class of automata intersection problems are PSPACE-complete, even for supposedly

“simpler” prefix-closed cases. These automata intersection results were then used to

show many controller existence problems in the supervisory control of discrete-event

systems framework are likewise PSPACE-complete and with controller verification

problems. Deciding controller admissibility is also PSPACE-complete for modular

systems. Similarly, it is shown that in an online control setting that calculating safe

control actions for distributed systems are PSPACE-hard.

Despite the fact that there are most likely no time-efficient general methods to

solve many distributed systems problems (unless P=PSPACE), methods still need

to be developed to solve many of these problems. One possible solution might be
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to focus research efforts on important subclasses of these problems that might have

particular real-world relevance. For instance, it might be helpful to look at spe-

cific network architectures or at problems involving systems amenable to divide-

and-conquer approaches. The remainder of this thesis focuses on investigating these

special subproblems and other efforts to avoid the computational difficulty shown

in this chapter. Due to the results of [66] it is known that in general decentral-

ized control systems cannot be synthesized in polynomial time for systems to match

specification. The next chapter discusses methods for avoiding this computational

difficulty through the use of online decentralized control protocols for monolithic sys-

tems with easily testable sufficient safety conditions. Later chapters focus on other

ways of avoiding computational difficulty such as using heuristic methods to solve

difficult sensor selection problems as in Chapter VI and using symmetry reductions

when distributed systems contain a type of symmetry as in Chapter VII and Chapter

VIII.



CHAPTER V

ONLINE DECENTRALIZED CONTROL OF

DISCRETE-EVENT SYSTEMS

5.1 Chapter Overview

This chapter discusses several online decentralized control protocols that can be

used to control systems and attempts to achieve maximal subsets of safe system

behavior. These protocols have a common sufficient safety condition that is a form

of a sensor and actuator selection problem. A generalized control architecture is

used where controllable events are said to follow either “fusion by union” or “fusion

by intersection” policies. This generalized architecture allows for a larger class of

systems to be modelled. The new control protocols make use of a new state estimator

used with decentralized controllers that takes past control actions into account. This

new state estimator is then the basis of the several new control protocols. Two of

these decentralized control protocols generate maximal local control actions that

allow an amount of “steering” of the controlled system. Several properties of these

locally maximal control protocols are discussed.

48
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5.2 System Assumptions and General Decentralized Control

As previously stated, this chapter assumes a more general version of decentral-

ized control introduced in [83] where the controllable events Σc are partitioned into

event sets Σcd and Σce that respectively follow either “fusion by union” or “fusion

by intersection” protocols. If a “fusion by union” event is enabled by any local con-

trollers, then it is enabled globally (hence the e subscript on Σce). The Σce events are

also called the “permissive” events. Conversely, if a “fusion by intersection” event is

enabled by at least one controller, then it is enabled globally. The set Σcd denotes

the fusion by intersection events and its events are also called the “anti-permissive”

events. See Figure 5.2 for a schematic of a system with general decentralized control.

Controller 1 Controller n System

OrAnd

Or
γ1(s) ∩ Σcd

γn(s) ∩ Σcd

γ1(s) ∩ Σce

γ1(s) γn(s)

Behavior Observations

Pn(s)P1(s)

γn(s) ∩ Σce Control Action

s

Σuc

Figure 5.1: A schematic of a general decentralized control system.

The concept referred to as co-observability in Definition 3 is called “C&P co-

observability” in [83] and is relevant to events that follow the fusion by intersection

policy for locally enabled events. A dual property called D&A co-observability, de-

fined below, is relevant to events that follow the fusion by union policy for locally

enabled events.

Definition 7 [83] A language K is D&A co-observable with respect to M , Pi, and
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Σci, i ∈ {1, . . . , n} if for all t ∈ K and for all σ ∈ Σc = ∪n
i=1Σci,

tσ ∈ K ⇒

(∃i ∈ I)
[[(

P−1
i (Pi(t)) ∩K

)

σ ∩M ⊆ K
]

∧ [σ ∈ Σci]
]

.

Similar to theM automaton method of [67], there is a method in [83] for deciding

the D&A co-observability of languages generated by deterministic automata. This

method is shown in Appendix B for the two-controller case. The essence of this

method is that for a system G, a specification automata H, sets of controllable events

Σc1, Σc2 and sets of observable events Σo1, Σo2, an automatonMd is constructed and

Lm(Md) = ∅ if and only if the Lm(H) is D&A co-observable with respect to L(G),

Σo1, Σo2 and Σc1, Σc2.

In [83] the term general co-observability is introduced that combines C&P co-

observability and D&A co-observability.

Definition 8 [83] A language K is has the property of general co-observability w.r.t.

M , Pi, Σcdi and Σcei, i ∈ {1, . . . , n} if

1.K is C&P co-observable w.r.t. M , Pi and Σcei, i ∈ {1, . . . , n}.

2.K is D&A co-observable w.r.t. M , Pi and Σcdi, i ∈ {1, . . . , n}.

In [83] there is a version of the controllability and co-observability theorem (The-

orem 1) where general co-observability replaces co-observability in the set of nec-

essary and sufficient conditions for general decentralized controller existence. Like

C&P co-observability and D&A co-observability, general co-observability can be de-

cided in polynomial time for languages specified by finite automata if the number of

controllers is bounded. If given a system G, a specification automaton H, sets of con-

trollable events Σce1, Σce2, Σcd1, Σcd2 and sets of observable events Σo1, Σo2, construct

M from G, H, Σce1, Σce2 and Σo1, Σo2 as in Appendix A and construct the automaton
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Md from G, H, Σcd1, Σcd2 and Σo1, Σo2 as in Appendix B. Then, Lm(M) = ∅ and

Lm(Md) = ∅ if and only if Lm(H) is general co-observable with respect to L(G),

Σo1, Σo2 and Σce1, Σce2, Σcd1, Σcd2. Therefore, general co-observability can be tested

in the amount of time it takes to constructM andMd.

This chapter deals exclusively with prefix-closed regular languages, so without loss

of generality, this chapter uses the terminology that as system behavior progresses,

the “state” of a system is the string of events generated by the system. Furthermore,

the actions of a control protocol are considered to be a function γ : Σ∗ → 2Σc of the

observed string of events generated by the system. However, due to the regularity

assumption, the local control actions can be calculated from the state of some finite

observer automaton when the control schemes are implemented. Also, because of the

prefix-closure assumptions, this chapter exclusively investigates the safety properties

of the control protocols when operating on a monolithic system G. The “possible”

system states are those states the system could eventually enter if no control is

present, i.e., all stings in L(G). A state estimate is a set of possible states the system

may be in at a given instance. A “state estimator” is a function that returns an

estimate of the current system state during system operation. For instance, using

standard notation, if P−1
i (Pi(s)) is a set of strings that an observer i considers could

have occurred in the system after observing string Pi(s), the set P−1
i (Pi(s)) is called

an estimate of the current system state. The control actions can be thought to be

indirectly functions of the string of events generated by the system.

Suppose during the course of controller operation the string of events s has oc-

curred in the system and that controller i enables a set of events γi(s). An event

σ ∈ γi(s) is called a “don’t care” event if the possible future behavior of the system

after s is not altered if σ were to be disabled. That is, enabling σ after s does not
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contribute to system behavior.

Due to the controllability and co-observability theorem, if a specification is con-

trollable and co-observable with respect to a system, then there exists a set of decen-

tralized controllers such that the controlled system can match the specification. If a

safety specification language accepted by a finite state automaton is not controllable,

an automaton accepting a maximal controllable sublanguage of the original language

can be found in polynomial time. However, if a language accepted by a finite state

automaton is not co-observable, there is no known method to find an automaton

accepting a maximal co-observable sublanguage of that language or even if such an

automaton exists at all.

5.3 Previous General Decentralized Control Work

There has been previous work in [83] on an online decentralized control protocol

called gdec in the general decentralized control framework. This control protocol is

formulated such that if a string s is generated by the system, each local controller i

enforces the control action γgdec
i (s) for a control specification K:

γgdec
i (s) =

{

σ ∈ Σcdi :
(

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) ⊆ K
}

∪ (5.1)

{

σ ∈ Σcei : P−1
i (Pi(s))σ ∩K 6= ∅

}

∪

Σuc ∪ Σce \ Σcei.

Notice that in γgdec
i (s), the set P−1

i (Pi(s))σ is an estimate of what states the system

may be in immediately after event σ has occurred (and before any unobservable

events have occurred).

In the definition of γgdec
i (s), the set

{

σ ∈ Σcei : P−1
i (Pi(s))σ ∩K 6= ∅

}

represents

all of the permissive events that i can control and leaves enabled. If P−1
i (Pi(s))σ∩K
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is an empty set, then when the event σ occurs in any of the current estimated states

(P−1
i (Pi(s))), the resulting state of the system will not be in the legal set of states

(K). Naturally, if
(

P−1
i (Pi(s))σ ∩K 6= ∅

)

holds, then σ can lead from a current

legal estimated system state to another legal system state and so, σ is admissible as

a permissive event and should be enabled. If σ is never possible in any of the system

states,
(

P−1
i (Pi(s))σ ∩ L(G) = ∅

)

holds. In this case, σ is a “don’t care” event, and

σ is not enabled because

(

P−1
i (Pi(s))σ ∩ L(G) = ∅

)

⇒
(

P−1
i (Pi(s))σ ∩K = ∅

)

.

Also in γgdec
i (s), the set

{

σ ∈ Σcdi :
(

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) ⊆ K
}

identifies

the set of all anti-permissive events that i can control and enables.
(

P−1
i (Pi(s)) ∩K

)

identifies all estimated current system states that are legal. The set

((

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G)
)

identifies all possible and likely states the system could

be in if the event σ were to occur at a legal state. Note that
(

P−1
i (Pi(s)) ∩K

)

σ

could be too large of a state estimate and might include behavior that is impos-

sible even in the uncontrolled system, so there are some system states which may

be disregarded. If a string is not possible, it will obviously not be legal, but un-

reachable system states need not be considered calculating a control strategy. If

((

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) ⊆ K
)

holds it is known that any occurrence of σ at the

current system state will not lead from legal to illegal behavior.

Note that it is possible that
((

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) = ∅
)

. This happens

when σ cannot occur in any legal system states and yet still leads to a possible

system state. In this case, anti-permissive events that lead to other illegal states

could be enabled using the γgdec
i (s) control protocol. This can be disregarded if σ

is enabled or not in these “don’t care” situations if generating safe sublanguages of
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L(G) is the only concern because it is assumed the system is always in a legal state.

In this chapter online decentralized control protocols that improve upon γgdec
i (s)

are shown by upgrading the controller’s state estimation ability. For the general

decentralized control protocol described above, the expression P−1
i (Pi(s)) operates

as a state estimate for the ith controller. As was indicated above, P−1
i (Pi(s)) may

include strings that are not possible in the uncontrolled system so P−1
i (Pi(s)) could

be a generous overestimate of the current system state. Because P−1
i (Pi(s)) is too

large, controller i, using the P−1
i (Pi(s)) state estimate, could disable anti-permissive

events unnecessarily. Intuitively, if a more accurate state estimate could be obtained,

a supervisor could enable more anti-permissive and hence achieve a larger legal sub-

language.

5.4 Improved State Estimator

A new state estimation function is now developed for use with decentralized con-

trol protocols. It is assumed that the state estimator makes observations of system

behavior with respect to observation function (Pi(·)) and observes local control ac-

tions (γi(·)). No assumptions are made on the local control action γi(·) or the actions

of other controllers except that all controllers are admissible. If an event is disabled

by the local controller that no other controller can enable, the local state estimator

could disregard behavior progressing from that event when calculating the controlled

unobservable reach from the current estimated states. Therefore, all unobservable

events that controller i enables at state s (γi(s)) should be considered possible.

When calculating the state estimate in this manner, the state estimator needs

to be sure that all events that could be enabled by other controller are considered

possible so that the true system state is guaranteed to be in a controller’s state
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estimate. This prompts the definition of a “valid” state estimate, seen below.

Definition 9 Valid State Estimate: A state estimate of a system such that the

estimate includes all states the system could be in.

It needs to be ensured that all state estimates used for control are valid. There-

fore, a state estimator needs to be as conservative as possible when deciding if an

event will be enabled by any other controller. For the rest of this chapter, the

simplifying definition of Σ−i
cd ≡ ∪j∈I,j 6=iΣcdj is used.

In the framework of general decentralized control, any unobservable event in Σcd

that can be enabled by a local controller other than i (∪j∈I,j 6=iΣcdj)should be con-

sidered possible. Even though a local control action γi(s) may locally disable events

in Σ−i
cd , other controllers may enable those events without i observing. Furthermore,

unobservable events in the set Σuc ∪Σce \Σcei should also always be considered pos-

sible, but events in this set should also always be enabled by the local control action

γi(·) if i is a valid controller and does not try to disable events it cannot control.

Because of the assumption of the admissibility of γi(·), the set Σuc ∪ Σce \ Σcei is

not included in the list of possible events the state estimate should consider possible

because γi(·) should already be included.

If any event in Σcei is disabled by i, then no other controller can enable that

event and therefore, unobservable events in Σcei \ γi(·) do not need to be consid-

ered possible because no other controller could enabled them globally. By similar

reasoning, unobservable events in Σcdi \
[

γi(·) ∪ Σ−i
cd

]

do not need to be considered

possible. Now, to combine all the statements just made about the unobservable con-

trolled reach of the system, the set of all events that are considered possible to be

enabled globally can be expressed as
(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi and the set of all strings
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that could occur after the last observable event without the knowledge of i is included

in
[(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi

]∗
.

The function PSi : Σ∗ → 2Σ∗
is used to express this new state estimator con-

structed from controller γi(·). The formal definition for PSi(s) can be seen below

and is necessarily recursive because the state estimate is continually updated as i

observes events and alters γi(·) is updated.

Definition 10

PSi(s) =











[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G) for s = ε

(

PSi(s
′)Pi(σ)

[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
∩ L(G) for s = s′σ, s 6= ε

(5.2)

Before any events have been observed, the set of all unobservable strings that

could have occurred with knowledge of the initial local control action γi(ε) can be

expressed as PSi(ε) =
[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G). It is assumed in this the-

sis that control actions can be updated instantaneously with respect to the occur-

rence of unobservable events. Therefore, local control actions can be calculated

before unobservable events occur. In the definition of PSi(·), the intersection of

[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
with L(G) ensures that i considers only possible unobserv-

able strings likely to have occurred.

Now, suppose the system has been operating for a while and string s′ has occurred

in the system. Controller i would then have PSi(s
′) as a state estimate. Now

suppose an event σ ∈ Σoi were to occur. Because σ is observable Pi(σ) = σ. After

σ occurs, but before any unobservable events were to occur i would believe the

system would be in a state in the set PSi(s
′)Pi(σ). After the control action takes

at affect at state s′σ, controller i knows only strings in
[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗

can occur. So, controller i infers a string in
(

PSi(s
′)Pi(σ)

[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
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could have occurred. Intersecting this set with the possible language, L(G) produces

the state estimate
(

PSi(s
′)Pi(σ)

[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
∩L(G). Therefore, if σ is

observable to i,

PSi(s
′σ) =

(

PSi(s
′)Pi(σ)

[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
∩ L(G).

Suppose now that σ is not observable to i. Therefore, Pi(σ) = ε and γi(s
′σ) =

γi(s
′). With these facts, it should be evident that

(

PSi(s
′)Pi(σ)

[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
∩ L(G)

=
(

PSi(s
′)

[(

γi(s
′) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
∩ L(G)

= PSi(s
′).

So if σ is not observable to i,

PSi(s
′σ) =

(

PSi(s
′)Pi(σ)

[(

γi(s
′σ) ∪ Σ−i

cd

)

∩ Σuoi

]∗)
∩ L(G).

and PSi(s
′σ) = PSi(s

′), which should necessarily true because a controller should

not change its state estimate on unobservable events.

It should be fairly intuitive from the above discussion that PSi(s) returns a valid

state estimate. The essence of the proof is that when calculating PSi(s), the only

events not considered possible to occur after the control action is updated are events

that are guaranteed not to occur.

Now that the PSi(s) state estimator has been introduced, it is shown that the set

of states considered likely by PSi(s) is always at least as small as P−1
i (Pi(s)). The

proof for this statement is based on the fact that PSi(s) considers at most the same

number of unobservable events likely to occur as P−1
i (Pi(s)) as system operation

evolves.
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Theorem 10 PSi(s) ⊆ P−1
i (Pi(s)).

Proof: PSi(s) represents all the strings i believes could have occurred when past

control actions are taken into account. P−1
i (Pi(s)) represents all the strings i believes

could have occurred where control action is not taken into account. This lemma is

proved by induction on the length of the string s.

Base:

|s| = 0, or s = ε.

PSi(ε) =
[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G).

P−1
i (Pi(ε)) = Σ∗uoi.

[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G) ⊆ Σ∗uoi.

PSi(ε) ⊆ P−1
i (Pi(ε)), which demonstrates the base of the induction proof.

Induction hypothesis:

For |s′| = n− 1.

PSi(s
′) ⊆ P−1

i (Pi(s
′)).

Induction step:

For |s| = n.

Let s = s′σ so |s′| = n− 1.

P−1
i (Pi(s)) = P−1

i (Pi(s
′))Pi(σ)Σ∗uoi.

PSi(s) =
(

PSi(s
′)Pi(σ)

[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗)
∩ L(G).

PSi(s
′) ⊆ PSi(s

′), by the induction hypothesis.

PSi(s
′)Pi(σ) ⊆ P−1

i (Pi(s
′))Pi(σ).

PSi(s
′)Pi(σ)Σ∗uoi ⊆ P−1

i (Pi(s
′))Pi(σ)Σ∗uoi.

PSi(s
′)Pi(σ)

[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
⊆ PSi(s

′)Pi(σ)Σ∗uoi.

PSi(s
′)Pi(σ)

[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗
⊆ P−1

i (Pi(s
′))Pi(σ)Σ∗uoi.

(

PSi(s
′)Pi(σ)

[(

γi(ε) ∪ Σ−i
cd

)

∩ Σuoi

]∗)
∩ L(G).
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⊆ P−1
i (Pi(s

′))Pi(σ)Σ∗uoi.

PSi(s) ⊆ P−1
i (Pi(s)).

5.5 Memory Based Non-maximal Control Protocol

Now that an improved state estimator for general decentralized control systems

has been defined, it shown how to use this estimator to devise an online decentralized

control protocol. The gdec protocol is first reviewed. Remember that this protocol

uses P−1
i (Pi(s)) as its state estimator:

γgdec
i (s) =

{

σ ∈ Σcdi :
(

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : P−1
i (Pi(s))σ ∩K 6= ∅

}

∪

Σuc ∪ Σce \ Σcei.

Let s = s′α. The event α may or may not be observable.

γgdec
i (s′α) =

{

σ ∈ Σcdi :
(

P−1
i (Pi(s

′α)) ∩K
)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : P−1
i (Pi(s

′α))σ ∩K 6= ∅
}

∪

Σuc ∪ Σce \ Σcei.

Therefore,

γgdec
i (s′α) =

{

σ ∈ Σcdi :
(

P−1
i (Pi(s

′))Pi(α)Σ∗uoi ∩K
)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : P−1
i (Pi(s

′))Pi(α)Σ∗uoiσ ∩K 6= ∅
}

∪

Σuc ∪ Σce \ Σcei.

When calculating γgdec
i (s), the possible uncontrolled and unobserved behavior of

the system after the last event is calculated in order to compute which events should



60

be disabled. In [83] the set of strings Σ∗uoi is used to represent the set of all strings

unobservable to i that could occur after the last observable event if the system were

not controlled. As before, it is assumed that the control action is updated imme-

diately upon the observation of new events. Note that for γgdec
i (s), state estimate

P−1
i (Pi(s

′))Pi(α) represents all states the system could be in immediately after the

last event has occurred and before any more unobservable events occur. This state

estimate does not change with the occurrence of unobservable events.

The gdec protocol is now modified to take advantage of the PS(·) state estimator.

For this control protocol, the P−1
i (Pi(s

′)) state estimator from γgdec(s) is replaced

with the PSi(s
′) estimator. Then, for this new protocol, if after s′ has occurred

in the system and the next event observed is α, strings in Σ∗uoi could occur if no

controllers were operating. Therefore, (PSi(s
′)Pi(α)Σ∗uoi) would include all system

behavior i would need to consider as possible when calculating its local control action

after α is observed. This prompts the definition of PS+
i (s), as seen below. The set

(PSi(s
′)Pi(α)Σ∗uoi) is intersected with the uncontrolled system behavior L(G) to

assure that the controller only accounts for possible behavior. The projection Pi(α)

is used instead of α to represent the last event to occur in the system because if α

were unobservable to i, it must be true that PS+
i (s′α) = PS+

i (s′). This ensures that

control actions cannot be updated on the occurrence of unobservable events.

At initialization, ε is the current system state and Σ∗uoi ∩ L(G) includes all un-

observable and uncontrolled behavior of the system that needs to be accounted for

when calculating the initial local control action. Therefore, due to the recursive na-

ture of the PS+
i (s) definition, PS+

i (ε) is defined separately for deciding the initial

control action.
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Definition 11

PS+
i (s) =











Σ∗uoi ∩ L(G) for s = ε

(PSi(s
′)Pi(σ)Σ∗uoi) ∩ L(G) for s = s′σ, s 6= ε

(5.3)

The set PSi(s) represents all strings controller i considers could have occurred

with knowledge of all past control actions taken by i. PS+
i (s) represents the set

of all strings controller i considers could have occurred if no control action is taken

by i after the last observable event. The set PS+
i (s) can be used to determine

which events need to be disabled. The gdec control protocol is now rewritten to take

advantage of this improved state estimator.

Definition 12 gmdec: General Memory Based Decentralized Control Protocol

γgmdec
i (s) =

{

σ ∈ Σcdi :
(

PS+
i (s) ∩K

)

σ ∩ L(G) ⊆ K
}

(5.4)

∪
{

σ ∈ Σcei : PS+
i (s)σ ∩K 6= ∅

}

∪Σuc ∪ Σce \ Σcei.

The notation is used that Sgmdec(s) is the global control action generated by

combining all of the memory based local control protocols {γgmdec
1 (s), . . . , γgmdec

n (s)}

in the same manner that gdec combines all of its local control protocol s according

to the general decentralized control protocol. An anti-permissive event (σd ∈ Σcd) is

globally enabled by Sgmdec(s) if and only if there is some (i ∈ I) such that σd ∈ γgmdec
i .

A permissive event (σe ∈ Σce) is enabled by Sgmdec(s) if and only if there is no (i ∈ I)

such that σe ∈ γgmdec
i . The language generated by the global control protocol Sgmdec

operating on the system G is represented as L(Sgmdec/G).

Consider the following example of this gmdec control protocol being used with a

system and compared with the behavior of gdec.
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Example 1 Suppose there are two controllers for the uncontrolled system G seen

in Figure 5.2. Suppose further that K = L(H). The controllers have the following

properties:

Σo1 = {φ} , Σo2 = ∅, Σc1 = {α, β} , Σc2 = {φ, θ} , Σuc = ∅, Σce = {β, φ, θ},

Σcd = {α}.

φ

φ

β

α

θθ

α

α

β

βφ

φ
H:G:

Figure 5.2: The uncontrolled system G and desired system H for Example 1.

The two languages L(Sgmdec/G) and L(Sgdec/G) are now compared as system

behavior is simulated:

To calculate L(Sgmdec/G) : To calculate L(Sgdec/G) :

PS+
1 (ε) = {ε, θ, θα, α, αφ, αφβ} P−1

1 (P1(ε)) ∩ L(G)

γgmdec
1 (ε) = {β, φ, θ} = {ε, θ, θα, α, αφ, αφβ}

PS1(ε) = {ε, θ} γgdec
1 (ε) = {β, φ, θ}

PS+
1 (φ) = {φ, φβ} P−1

1 (P1(φ)) ∩ L(G)

γgmdec
1 (φ) = {α, β, φ, θ} = {φ, φβ, αφ, αφβ}

PS1(φ) = {φ, φβ} γgdec
1 (φ) = {α, φ, θ}

PS+
2 (ε) = {ε, φ, φβ, θ, θα, α, αφ, αφβ} P−1

2 (P2(ε)) ∩ L(G)

γgmdec
2 (ε) = {β, φ, θ} = {ε, φ, φβ, θ, θα, α, αφ, αφβ}

PS2(ε) = {ε, φ, φβ, θ, θα, α, αφ, αφβ} γgdec
2 (ε) = {β, φ, θ}

Therefore, L(Sgmdec/G) = {ε, φ, φβ, θ} Therefore, L(Sgdec/G) = {ε, φ, θ}.

These systems can be seen in Figure 5.3.

For this problem instance, L(Sgdec/G) ⊂ L(Sgmdec/G). Using gmdec, controller
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1 remembers α was not enabled at the initial state and therefore knows the system is

not at state αφ after φ is observed. Therefore, gmdec legally enables β at state φ,

but gdec cannot do this because controller 1 using gdec does not know if φ or αφ has

occurred after φ has been observed.

φ

θ

Sgmdec/G:
β

φ

Sgdec/G:

Figure 5.3: Sgdec/G and Sgmdec/G for Example 1.

5.5.1 Language Properties

Several properties of the language generated by systems using the gmdec control

protocol are now investigated. A sufficient safety condition is shown after demon-

strating several necessary lemmas. Let K represent the legal language to be achieved

by controlling the system G. As usual, L(G) represents the possible behavior of G.

Lemma 1 PSi(s) ⊆ PS+
i (s)

Proof: PSi(s) represents all the strings i believes could have occurred where all

events are controlled. PS+
i (s) represents all the strings i believes could have occurred

where all events after the last observed event are uncontrolled.

(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi ⊆ Σuoi.

[(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi

]∗
⊆ Σ∗uoi.

(

PSi(s
′)Pi(σ)

[(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi

]∗)
⊆ (PSi(s

′)Pi(σ)Σ∗uoi).

(

PSi(s
′)Pi(σ)

[(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi

]∗)
∩ L(G) ⊆.

(PSi(s
′)Pi(σ)Σ∗uoi) ∩ L(G).
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PSi(s) ⊆ PS+
i (s).

Lemma 2 PS+
i (s) ⊆ P−1

i (Pi(s))

Proof: PS+
i (s) represents all the strings i believes could have occurred where past

control actions are taken into account. P−1
i (Pi(s)) represents all the strings i believes

could have occurred where the control action after the last observable event is not

taken into account. This lemma is proved by induction on the length of the string s.

Base:

|s| = 0, or s = ε.

PS+
i (ε) = Σ∗uoi ∩ L(G).

P−1
i (Pi(ε)) = Σ∗uoi.

Σ∗uoi ∩ L(G) ⊆ Σ∗uoi.

PS+
i (ε) ⊆ P−1

i (Pi(ε)).

Induction hypothesis:

for |s′| = n− 1.

PS+
i (s′) ⊆ P−1

i (Pi(s
′)).

Induction step:

for |s| = n.

Let s = s′σ so |s′| = n− 1.

P−1
i (Pi(s)) = P−1

i (Pi(s
′))Pi(σ)Σ∗uoi.

PS+
i (s) = (PSi(s

′)Pi(σ)Σ∗uoi) ∩ L(G).

PSi(s
′) ⊆ PS+

i (s′).

PSi(s
′)Pi(σ)Σ∗uoi ⊆ PS+

i (s′)Pi(σ)Σ∗uoi ⊆ P−1
i (Pi(s

′))Pi(σ)Σ∗uoi.

(PSi(s
′)Pi(σ)Σ∗uoi) ∩ L(G) ⊆ P−1

i (Pi(s
′))Pi(σ)Σ∗uoi.

PS+
i (s) ⊆ P−1

i (Pi(s)) which completes the proof by induction.
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If K is controllable and co-observable, then K = L(Sgmdec/G). This statement is

proved later in this chapter because the proof depends on properties comparing the

languages L(Sgmdec/G) and L(Sgdec/G). It is assumed without loss of generality that

K is controllable as an automaton generating the supremal controllable sublanguage

of the language specified by a finite state automaton can be computed in polynomial

time. Unfortunately, there is no known algorithm to compute a maximal controllable

and co-observable sublanguage of K if one exists. However, if K is controllable but

not co-observable, gmdec can be used to attempt to achieve as large a sublanguage

of K as possible, thereby satisfying the main safety condition.

A sufficient condition for the safety of the gmdec protocol when used with a

system G and a language specification K that is not co-observable is provided

here and is the same as the one in [68] for gdec. It is based on the fact that if

(Σter (Lm (M)) ⊆ Σcd) holds then no permissive events will lead to illegal behav-

ior. To review, all events that lead to a marked state in the M automaton violate

C&P co-observability for the system if Σ = Σce. If all events that violate C&P co-

observability from theM automaton are assigned to be anti-permissive, those events

will never lead to illegal behavior in the original system.

Anti-permissive events are enabled only when a controller is sure they will not

lead to illegal behavior. Therefore, anti-permissive events, by their very nature in

general decentralized control, never lead to illegal behavior. All permissive events

not identified by theM automaton will also not lead to illegal behavior because they

do not violate co-observability. There will always be at least one controller for those

valid permissive events that will know to and can disable those events in time if they

could lead to illegal behavior. Furthermore, because K is assumed to be controllable,

uncontrollable events will never lead to from legal to illegal states.
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Theorem 11 Σter (Lm (M)) ⊆ Σcd ⇒ L(Sgmdec/G) ⊆ K

Proof: It is sufficient to prove that (s ∈ L(Sgmdec/G)) ⇒
(

s ∈ K
)

given the condi-

tion Σter (Lm (M)) ⊆ Σcd. Without loss of generality, K is assumed to be non-empty

and controllable. This lemma is proved by induction on the length of the string s.

Base:

|s| = 0, or s = ε.

Because K can be assumed to be nonempty, so ε ∈ K and ε ∈ L(Sgmdec/G).

Therefore, (ε ∈ L(Sgmdec/G))⇒
(

ε ∈ K
)

.

Induction hypothesis:

|s′| = n− 1.

(s′ ∈ L(Sgmdec/G))⇒
(

s′ ∈ K
)

.

Induction step:

Let s = s′σ so |s′| = n− 1 and |s| = n.

The induction step is broken down into three cases, σ ∈ Σuc, σ ∈ Σce, σ ∈ Σcd.

Case 1 : σ ∈ Σuc

For all s′ ∈ L(G) and i ∈ I, Σuc ⊆ γi(s
′), so Σuc ⊆ Sgmdec(s

′).

Therefore, if s′σ ∈ L(G), then s′σ ∈ L(Sgmdec/G).

Also, because K is controllable, s′σ ∈ L(G) and s′ ∈ K, then s′σ ∈ K.

so, if σ ∈ Σuc, (s ∈ L(Sgmdec/G))⇒
(

s ∈ K
)

.

The next two cases are proved by contradiction.

Case 2 : σ ∈ Σce

Assume there exists a string s′ ∈ L(Sgmdec/G) ∩K and σ ∈ Σce such that s′σ ∈

L(Sgmdec/G) and s′σ /∈ K.
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Since Σter (Lm (M)) ⊆ Σcd and Σcd ∩ Σce = ∅, Σter (Lm (M)) ∩ Σce = ∅.

Therefore, K is C&P co-observable w.r.t. L(G), Σo1, Σce1, . . . , Σon, Σcen.

By definition of C&P co-observability:

(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

(∃i ∈ I)
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
]

.

PS+
i (s′) ⊆ P−1

i (Pi(s
′)).

⇒ PS+
i (s′)σ ⊆ P−1

i (Pi(s
′))σ.

⇒ PS+
i (s′)σ ∩K ⊆ P−1

i (Pi(s
′))σ ∩K.

⇒
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

⇒
(

PS+
i (s′)σ ∩K = ∅

)

.

Therefore:

(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

∃i ∈ I
(

PS+
i (s′)σ ∩K = ∅

)

∧ (σ ∈ Σcei)
]

.

⇒ σ /∈ Sgmdec (s′).

⇒ s′σ /∈ L(Sgmdec/G).

This contradicts the assumption that s′σ ∈ L(Sgmdec/G), so if σ ∈ Σce,

(s ∈ L(Sgmdec/G))⇒
(

s ∈ K
)

.

Case 3 : σ ∈ Σcd

Assume there exists a string s′ ∈ L(Sgmdec/G) ∩K and σ ∈ Σcd such that s′σ ∈

L(Sgmdec/G) and s′σ /∈ K. It has been shown that (∀i ∈ I) s′ ∈ PS+
i (s′). This

property follows from the fact that PSi is a valid state estimate, but for the sake of

brevity, this property is not demonstrated here.

Because s′ ∈ K, (∀i ∈ I) s′ ∈ PS+
i (s′) ∩K.

Therefore:(∀i ∈ I) s′σ ∈
(

PS+
i (s′) ∩K

)

σ.

Furthermore, (∀i ∈ I) (s′σ ∈ L(Sgmdec/G))⇒ (s′σ ∈ L(G)).

So, (∀i ∈ I) s′σ ∈
(

PS+
i (s′) ∩K

)

σ ∩ L(G) and s′σ /∈ K.

⇒
[

(∀i ∈ I)
((

PS+
i (s′) ∩K

)

σ ∩ L(G) 6⊆ K
)]

.
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⇒
[

(∀i ∈ I)
((

PS+
i (s′) ∩K

)

σ ∩ L(G) 6⊆ K
)

∨ (σ /∈ Σcdi)
]

.

⇒ σ /∈ Sgmdec (s′).

⇒ s′σ /∈ L(Sgmdec/G).

This contradicts the assumption that s′σ ∈ L(Sgmdec/G), so if σ ∈ Σcd,

(s ∈ L(Sgmdec/G))⇒
(

s ∈ K
)

.

So, for all cases (s ∈ L(Sgmdec/G)) ⇒
(

s ∈ K
)

, which concludes the induction

proof and demonstrates that

Σter (Lm (M)) ⊆ Σcd ⇒ L(Sgmdec/G) ⊆ K.

Note that the safety condition (Σter (Lm (M)) ⊆ Σcd) is in a sense a sensor

and actuator selection condition. That is, the sets of locally observable events

{Σo1, . . . , Σon} and the partition of controllable events {Σce, Σcd} need to be cho-

sen such that for theM automaton construction, the only state transitions into the

dump state are driven by events in Σcd. This prompts the interesting subproblem of

finding the optimal cost sensor/actuator selection such that the safety condition is

satisfied. A simpler but computationally similar version of this problem is discussed

in Chapter VI.

It is shown in [83] that given a sufficient safety condition for L(S1
gdec/G) and

L(S2
gdec/G), Σ2

cd ⊆ Σ1
cd ⇒ L(S1

gdec/G) ⊆ L(S2
gdec/G). This property states that if

more events are assigned to be anti-permissive, the behavior generated by a system

controlled with the gdec protocol will be smaller. In other words, a more restrictive

event partitioning will lead to a smaller generated language using the gdec control

scheme. It would seem intuitive that this property would also hold for L(Sgmdec/G).
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However, this is not always the case. In general, given a sufficient safety condition

for L(S1
gmdec/G) and L(S2

gmdec/G), Σ2
cd ⊆ Σ1

cd 6⇒ L(S1
gmdec/G) ⊆ L(S2

gmdec/G).

Proposition 7 Given L(S1
gmdec/G) ⊆ K and L(S2

gmdec/G) ⊆ K, Σ2
cd ⊆ Σ1

cd 6⇒

L(S1
gmdec/G) ⊆ L(S2

gmdec/G).

Proof: This proposition is demonstrated by example. Suppose there are two con-

trollers (a and b) for the uncontrolled system G seen in Figure 5.4 and in the example

above. As before, K = L(H).

φθ

θ

α

θ

θ

φ

G:

α

φ

α

H:

α

β

β

β

α

φ

θ

Figure 5.4: The system G and specification H for the proof of Proposition 7.

The controllers have the following properties:

Σoa = {φ} , Σob = ∅, Σca = {α, d} , Σcb = {α, β, θ} , Σuc = {θ}.

First, let’s construct the language generated by using the following partition on

the controllable events:

Σ1
ce = {α}, Σ1

cd = {θ, β}.

L(S1
gmdec/G), the language generated using Σ1

cd and Σ1
ce was calculated in the

example above. L(S1
gmdec/G) = {ε, α, φ}.

This system can be seen in Figure 5.5.

Now the language generated is calculated by using the following partition on the

controllable events:
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Σ2
ce = ∅, Σ2

cd = {α, θ, β}.

Note that Σ1
cd ⊆ Σ2

cd.

To calculate L(S2
gmdec/G), the language generated using Σ2

cd and Σ2
ce :

PS+2
a (ε) = {ε, θ, θα, θαθ, α, αθ, αθα}.

γ2
a(ε) = {φ}.

PS2
a(ε) = {ε, θ}.

PS+2
a (φ) = {φ, φβ}.

γ2
a(φ) = {φ, β}.

PS2
a(φ) = {φ, φβ}.

PS+2
b (ε) = {ε, θ, θα, θαθ, α, αθ, αθα, αθφ, αθφβ, φ, φβ}.

γ2
b (ε) = {φ}.

PS2
b (ε) = {ε, θ, θα, θαθ, α, αθ, αθα, αθφ, αθφβ, φ, φβ}.

Therefore, L(S2
gmdec/G) = {ε, φ, φβ}. This system also can be seen in Figure 5.5.

So, L(S1
gmdec/G) 6⊆ L(S2

gmdec/G) in this case.

φ

α

φ

β

S1
gmdec/G: S2

gmdec/G:

Figure 5.5: Resulting systems when gmdec operates on system G of Proposition 7.

Therefore, given L(S1
gmdec/G) ⊆ K and L(S2

gmdec/G) ⊆ K,

Σ2
cd ⊆ Σ1

cd 6⇒ L(S1
gmdec/G) ⊆ L(S2

gmdec/G). (5.5)



71

At first, this result may seem counter-intuitive. A less restrictive control pro-

tocol should lead to a larger generated language, but this is obviously not the case

for gmdec. The reason for this lies in the calculation of the state estimate, PSi(s).

When controller i calculates PSi(s),
(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi are all events that could

have occurred without being observed by i after the calculation of each control ac-

tion. Even though Σ2
cd ⊆ Σ1

cd, it may be the case that PS2
i (s) 6⊆ PS1

i (s) because

(

Σ2
cd ⊆ Σ1

cd 6⇒
(

γ1
i (s) ∪j∈I,j 6=i Σ1

cdj

)

∩ Σuoi ⊆
(

γ2
i (s) ∪j∈I,j 6=i Σ2

cdj

)

∩ Σuoi

)

, as was seen

in the example above. If PS1
i (s) is not contained in PS2

i (s), anti-permissive events

that would be disabled in system 1 could be enabled in system 2. However, a con-

dition could be found that guarantees PS1
i (s) ⊆ PS2

i (s) for all i, anti-permissive

events that are enabled in system 1 could be disabled in system 2, so L(S1
gmdec/G)

would included in L(S2
gmdec/G). This curious property is discussed further later in

the chapter.

5.5.2 Language Comparisons

Now that some of the basic properties of the gmdec control scheme have been

introduced, it is interesting to see how the languages generated by gmdec compare to

the languages generated by the gdec control scheme. A controller that accounts for its

past control actions should be able to better control a system than a controller that

bases its control actions only on the inverse projection of the observed string. Given

that a sufficient safety condition has been met, a memory-based control protocol

generates a language at least as large as the language generated by a conventional

gdec protocol.

Theorem 12 Given that L(Sgdec/G) is safe, L(Sgdec/G) ⊆ L(Sgmdec/G).
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Proof: This proof is based on induction on the length of the strings s to show that

given L(Sgdec/G) is safe, (s ∈ L(Sgdec/G))⇒ (s ∈ L(Sgmdec/G)).

Base:

|s| = 0, or s = ε.

Assuming without loss of generality that neither language is empty,

(ε ∈ L(Sgdec/G)) and (ε ∈ L(Sgmdec/G)).

Therefore, (ε ∈ L(Sgdec/G))⇒ (ε ∈ L(Sgmdec/G)).

Induction hypothesis:

|s′| = n− 1.

(s′ ∈ L(Sgdec/G))⇒ (s′ ∈ L(Sgmdec/G)).

Induction step:

Let s = s′σ so |s′| = n−1 and |s| = n. The induction step is completed in several

cases.

Case 1 : σ ∈ Σuc

(σ ∈ Σuc)⇒ (σ ∈ Sgdec(s
′)) ∧ (σ ∈ Sgmdec(s

′)).

Because L(Sgdec/G) is controllable:

(s′ ∈ L(Sgdec/G)) ∧ (s′σ ∈ L(G))⇔ (s′σ ∈ L(Sgdec/G)).

Because L(Sgmdec/G) is controllable:

(s′ ∈ L(Sgmdec/G)) ∧ (s′σ ∈ L(G))⇔ (s′σ ∈ L(Sgmdec/G)).

So, in this case, (s ∈ L(Sgdec/G))⇒ (s ∈ L(Sgmdec/G)).

Case 2 : σ ∈ Σcd

It was shown above that PS+
i (s′) ⊆ P−1

i (Pi(s
′)).

⇒ PS+
i (s′) ∩K ⊆ P−1

i (Pi(s
′)) ∩K.
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⇒
(

PS+
i (s′) ∩K

)

σ ⊆
(

P−1
i (Pi(s

′)) ∩K
)

σ.

⇒
(

PS+
i (s′) ∩K

)

σ ∩ L(G) ⊆
(

P−1
i (Pi(s

′)) ∩K
)

σ ∩ L(G).

⇒







((

P−1
i (Pi(s

′)) ∩K
)

σ ∩ L(G) ⊆ K
)

⇒

((

PS+
i (s′) ∩K

)

σ ∩ L(G) ⊆ K
)






.

(s′σ ∈ L(Sgdec/G))⇒ (σ ∈ Sgdec(s
′)).

⇒ (∃i ∈ I)
[((

P−1
i (Pi(s

′)) ∩K
)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi)
]

.

⇒ (∃i ∈ I)
[((

PS+
i (s′) ∩K

)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi)
]

.

⇒ (σ ∈ Sgmdec(s
′)).

⇒ (s′σ ∈ L(Sgmdec/G)).

So, in this case, (s ∈ L(Sgdec/G))⇒ (s ∈ L(Sgmdec/G)).

Case 3 : (σ ∈ Σce)

∀i ∈ I : s′ ∈ PS+
i (s′), so ∀i ∈ I : s′σ ∈ PS+

i (s′)σ.

Suppose (s′σ ∈ L(Sgdec/G)).

⇒ s′σ ∈ K by the safety condition

⇒ ∀i ∈ I : s′σ ∈ PS+
i (s′)σ ∩K.

⇒ ∀i ∈ I : PS+
i (s′)σ ∩K 6= ∅.

⇒ ∀i ∈ I :
(

PS+
i (s′)σ ∩K 6= ∅

)

.

⇒ (σ ∈ Sgmdec(s
′)).

⇒ (s ∈ L(Sgmdec/G)).

So, in this case, (s ∈ L(Sgdec/G))⇒ (s ∈ L(Sgmdec/G)).

(s ∈ L(Sgdec/G)) ⇒ (s ∈ L(Sgmdec/G)) holds in all cases and this completes the

induction proof that given L(Sgdec/G) is safe, L(Sgdec/G) ⊆ L(Sgmdec/G).

If L(Sgdec/G) 6⊆ K and after the string s illegal behavior were about to occur, it

may be the case that gdec would enable illegal events when gmdec would leave those
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events disabled which is why the safety condition is required for the above proof. An

intuitive corollary to the theorem just demonstrated is that if Σter (Lm (M)) ⊆ Σcd,

then the memory based control protocol will generate a safe language no smaller

than that generated by the standard general decentralized control protocol of [83].

Corollary 4 Σter (Lm (M)) ⊆ Σcd ⇒ L(Sgdec/G) ⊆ L(Sgmdec/G) ⊆ K.

Proof: The proof of this corollary is a direct consequence of the following:

Σter (Lm (M)) ⊆ Σcd ⇒ L(Sgmdec/G) ⊆ K.

Σter (Lm (M)) ⊆ Σcd ⇒ L(Sgdec/G) ⊆ K.

L(Sgdec/G) ⊆ K ⇒ L(Sgdec/G) ⊆ L(Sgmdec/G).

For all of the comparisons between L(Sgdec/G) and L(Sgmdec/G), it has not been

demonstrated that L(Sgdec/G) is strictly smaller than L(Sgmdec/G). This property

does not hold, in general. There may be some problem instances where gmdec and

gdec generate the same language.

Corollary 5
(

L(Sgdec/G) = K
)

⇒ (L(Sgmdec/G) = L(Sgdec/G))

Proof: If L(Sgdec/G) = K then L(Sgdec/G) is safe and (L(Sgdec/G) ⊆ L(Sgmdec/G))

holds by Theorem 12.

It remains to be shown that (L(Sgmdec/G) ⊆ L(Sgdec/G)). This property is shown

by contradiction. Suppose there exists t = t′σ such that

(t′ ∈ L(Sgmdec/G)) ∧ (t′ ∈ L(Sgdec/G)) ∧ (t ∈ L(Sgmdec/G)) ∧ (t /∈ L(Sgdec/G)) .

This proof is broken down into three cases based on the event σ.

Case 1 : σ ∈ Σuc
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Because σ is uncontrollable, (σ ∈ Sgmdec (t′)) ∧ (σ ∈ Sgdec (t′)).

(t ∈ L(Sgmdec/G)) ⇒ (t ∈ L(G)), but (t /∈ L(Sgdec/G)) and L(Sgdec/G) is con-

trollable. This is a contradiction, so the assumptions do not hold in this case.

Case 2 : σ ∈ Σcd

(t′ ∈ L(Sgmdec/G)) ∧ (t ∈ L(Sgmdec/G)).

⇒
(

∃i ∈ I :
((

PS+
i (t′) ∩K

)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi)
)

.

It must also be true that (t′σ ∈ L(G)) ∧
(

t′σ /∈ K
)

.

However,

∀i ∈ I :
((

t′ ∈ PS+
i (t′)

)

∧
(

t′ ∈ K
))

∨ (σ /∈ Σcdi).

⇒ ∀i ∈ I :
(

t′ ∈
(

PS+
i (t′) ∩K

))

∨ (σ /∈ Σcdi).

⇒ ∀i ∈ I :
(

t′σ ∈
(

PS+
i (t′) ∩K

)

σ
)

∨ (σ /∈ Σcdi).

⇒ ∀i ∈ I :
(

t′σ ∈
(

PS+
i (t′) ∩K

)

σ ∩ L(G)
)

∨ (σ /∈ Σcdi).

⇒ ∀i ∈ I :
((

PS+
i (t′) ∩K

)

σ ∩ L(G) 6⊆ K
)

∨ (σ /∈ Σcdi).

This contradicts the assumptions which do not hold in this case.

Case 3 : σ ∈ Σce

(t′ ∈ L(Sgmdec/G)) ∧ (t ∈ L(Sgmdec/G)).

⇒
(

∀i ∈ I :
(

PS+
i (t′)σ ∩K 6= ∅

)

∨ (σ /∈ Σcei)
)

.

(t′ ∈ L(Sgdec/G)) ∧ (t /∈ L(Sgdec/G)).

⇒
(

∃i ∈ I :
(

P−1
i (Pi(t

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
)

.

∀i ∈ I : PS+
i (t′) ⊆ P−1

i (Pi(t
′)).

⇒ ∀i ∈ I : PS+
i (t′)σ ⊆ P−1

i (Pi(t
′))σ.

⇒ ∀i ∈ I : PS+
i (t′)σ ∩K ⊆ P−1

i (Pi(t
′))σ ∩K.

⇒







(

∃i ∈ I :
(

P−1
i (Pi(t

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
)

⇒

(

∃i ∈ I :
(

PS+
i (t′)σ ∩K = ∅

)

∧ (σ ∈ Σcei)
)






.
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This contradicts the assumptions, which do not hold in this case and in all cases.

Therefore (L(Sgmdec/G) ⊆ L(Sgdec/G)) which implies (L(Sgmdec/G) = L(Sgdec/G)).

The above corollary can also be used to show that if K is controllable and co-

observable, then K = L(Sgmdec/G).

Corollary 6 (K controllable and co-observable)⇒
(

K = L(Sgmdec/G)
)

Proof: From [83], (K controllable and co-observable)⇒
(

K = L(Sgdec/G)
)

As has already seen in Corollary 5 that

(

L(Sgdec/G) = K
)

⇒ (L(Sgmdec/G) = L(Sgdec/G)) .

Therefore, (K controllable and co-observable)⇒
(

K = L(Sgmdec/G)
)

.

As has already been shown, under some conditions L(Sgdec/G) and L(Sgmdec/G)

are equal. However, what if
(

L(Sgdec/G) 6= K
)

? Will the language generated by

gmdec always be larger than the language generated by gdec in this case? In short,

no. The state estimate PSi(s) used for the gmdec control protocol might gain an

advantage over P−1(Pi(s)) only when PSi(s) can consider an anti-permissive event

not feasible to be enabled globally when calculating the unobservable reach of the

controlled system state.

Permissive events are disabled only when the local controller knows for sure they

will lead to illegal behavior, so those events are never disabled when they lead to

possibly legal behavior, and so, permissive events are never considered impossible in

estimating the unobservable reach of the system under control.

A sufficient condition for when the gmdec control scheme performs the same

as the gdec controller is shown below. The proofs of the lemmas and theorem are
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based on the intuition that permissive events could be considered possible by the

state estimate even though they may lead to illegal behavior. Therefore, for the

gmdec control protocol, the state estimate PSi(s) can only gain knowledge that

P−1
i (Pi(s)) does not have in the context of the control protocol only when there

are unobservable anti-permissive events that are privately controlled and disabled so

that those events are known to be disabled globally. This prompts the lemmas seen

below that show
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

⇒
(

P−1
i (Pi(s)) ∩K = PS+

i (s) ∩K
)

∧

(

P−1
i (Pi(s))σ ∩K = PS+

i (s)σ ∩K
)

. The intersection of the state estimates with K

demonstrates the “context” of the gmdec control protocol, i.e., it is used to pre-

vent the system transitioning from legal states to illegal states and hence it is only

concerned with behavior that occurs when the system is in a legal state.

Lemma 3 Given two sets of strings, A,B : AB ∩KB ∩K = AB ∩K.

Proof: This proof is broken down into two cases. First it is shown that

((

AB ∩KB ∩K
)

⊆
(

AB ∩K
))

.

and then it is shown that

((

AB ∩K
)

⊆
(

AB ∩KB ∩K
))

.

Case 1 :
(

AB ∩KB ∩K
)

⊆
(

AB ∩K
)

This case is trivial and should be obvious.

Case 2 :
((

AB ∩K
)

⊆
(

AB ∩KB ∩K
))

This case is proved by contradiction. There exists a string t = t′s such that

(t′ ∈ A)∧ (s ∈ B). Suppose:
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(

t ∈ AB ∩K
)

∧
(

t /∈ AB ∩KB ∩K
)

.

⇒
(

t ∈ K
)

∧
(

t /∈ KB
)

.

⇒
(

t′ ∈ K
)

∧
(

t /∈ KB
)

.

⇒
(

t′s ∈ KB
)

∧
(

t /∈ KB
)

.

⇒
(

t′s ∈ KB
)

∧
(

t′s /∈ KB
)

.

This is a contradiction and therefore
((

AB ∩K
)

⊆
(

AB ∩KB ∩K
))

. This com-

pletes both cases of the proof that AB ∩KB ∩K = AB ∩K.

Lemma 4







(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

⇒

(

P−1
i (Pi(s)) ∩K = PSi(s) ∩K

)







Proof: This proof is broken down into two parts. First it is shown that

(

P−1
i (Pi(s)) ∩K ⊆ PSi(s) ∩K

)

.

and then it is shown that

(

P−1
i (Pi(s)) ∩K ⊇ PSi(s) ∩K

)

.

Case 1 : To show
(

PSi(s) ∩K ⊆ P−1
i (Pi(s)) ∩K

)

:

It has already been shown that PSi(s) ⊆ P−1
i (Pi(s)).

PSi(s) ⊆ P−1
i (Pi(s)).

⇒ PSi(s) ∩K ⊆ P−1
i (Pi(s)) ∩K.

so, this case holds.

Case 2 : To show
(

P−1
i (Pi(s)) ∩K ⊆ PSi(s) ∩K

)

:

To start off with some preliminary simplification:
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(

γi(s) ∪ Σ−i
cd

)

=















{

σ ∈ Σcdi :
(

PS+
i (s) ∩K

)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : PS+
i (s)σ ∩K 6= ∅

}

∪

Σuc ∪ Σ−i
cd ∪ Σce \ Σcei















.

For the sake of simplicity, the following functions are defined to represent a su-

pervisor’s local anti-permissive control action and local permissive control action

respectively.

Definition 13

γd
i (s) =

{

σ ∈ Σcdi :
(

PS+
i (s) ∩K

)

σ ∩ L(G) ⊆ K
}

(5.6)

Definition 14

γe
i (s) =

{

σ ∈ Σcei : PS+
i (s)σ ∩K 6= ∅

}

(5.7)

(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi can now be rewritten in the following manner:

(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi =
(

γe
i (s) ∪ γd

i (s) ∪ Σuc ∪ Σce \ Σcei ∪ Σ−i
cd

)

∩ Σuoi.

=
((

γe
i (s) ∪ γd

i (s) ∪ Σuc ∪ Σce \ Σcei

)

∩ Σuoi

)

∪
(

Σ−i
cd ∩ Σuoi

)

.

=
((

γe
i (s) ∪ γd

i (s) ∪ Σuc ∪ Σce \ Σcei

)

∩ Σuoi

)

∪ (Σcd ∩ Σuoi) by the hypothesis.

=
(

γe
i (s) ∪ γd

i (s) ∪ Σuc ∪ Σcd ∪ Σce \ Σcei

)

∩ Σuoi.

=
(

γe
i (s) ∪ Σuc ∪

(

γd
i (s) ∪ Σcd

)

∪ Σce \ Σcei

)

∩ Σuoi.

= (γe
i (s) ∪ Σuc ∪ Σcd ∪ Σce \ Σcei) ∩ Σuoi.

= (γe
i (s) ∪ (Σuc ∪ Σcd ∪ Σce) \ Σcei) ∩ Σuoi.

= (γe
i (s) ∪ Σ \ Σcei) ∩ Σuoi.

= (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi.

Now, PSi(ε) ∩K and PSi(s) ∩K can be rewritten as follows:

PSi(ε) ∩K = [(Σ \ (Σcei \ γe
i (s))) ∩ Σuoi]

∗ ∩K.

PSi(s) ∩K = (PSi(s
′)Pi(σ) [(Σ \ (Σcei \ γe

i (s))) ∩ Σuoi]
∗) ∩K.
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Now, to demonstrate
(

P−1
i (Pi(s)) ∩K ⊆ PSi(s) ∩K

)

, a proof based on induction

on the string s is used to show
(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

.

Base:

|s| = 0, or s = ε.

The base case
(

t ∈ P−1
i (Pi(ε)) ∩K

)

⇒
(

t ∈ PSi(ε) ∩K
)

is proved by induction

on the length of string t.

Base (of the Base):

|t| = 0, or t = ε.

PSi(ε) ∩K = [(Σ \ (Σcei \ γe
i (ε))) ∩ Σuoi]

∗ ∩K.

P−1
i (Pi(ε)) ∩K = Σ∗uoi ∩K.

Both PSi(ε)∩K and P−1
i (Pi(ε))∩K are prefix closed and without loss of gener-

ality, both languages are assumed to be nonempty. This implies
(

ε ∈ PSi(ε) ∩K
)

∧

(

ε ∈ P−1
i (Pi(ε)) ∩K

)

. Therefore
(

ε ∈ P−1
i (Pi(ε)) ∩K

)

⇒
(

ε ∈ PSi(ε) ∩K
)

and

the base case of the base holds.

Induction hypothesis (of the Base):

|t′| = m− 1.

(

t′ ∈ P−1
i (Pi(ε)) ∩K

)

⇒
(

t′ ∈ PSi(ε) ∩K
)

.

Induction step (of the Base):

Let t = t′σ so |t′| = m− 1 and |t| = m.

The induction step (of the Base) is proved by contradiction.

Assume
(

t ∈ P−1
i (Pi(ε)) ∩K

)

∧
(

t /∈ PSi(ε) ∩K
)

.

⇒
(

t ∈ P−1
i (Pi(ε)) ∩K

)

∧
(

t ∈ K
)

∧
(

t /∈ PSi(ε) ∩K
)

.

⇒
(

t ∈ P−1
i (Pi(ε)) ∩K

)

∧
(

t′ ∈ P−1
i (Pi(ε)) ∩K

)

∧ (t /∈ PSi(ε)).

⇒
(

t ∈ P−1
i (Pi(ε)) ∩K

)

∧ (t /∈ PSi(ε)) ∧
(

t′ ∈ PSi(ε) ∩K
)

.
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⇒







(

t ∈ P−1
i (Pi(ε)) ∩K

)

∧ (t /∈ PSi(ε)) ∧
(

t′ ∈ PSi(ε) ∩K
)

∧

(σ /∈ (Σ \ (Σcei \ γe
i (ε))) ∩ Σuoi) ∧ (σ ∈ Σuoi)







because σ must considered impossible in the unobservable reach of the system by

the initial assumptions.

⇒







(

Σ∗uoiσ ∩K 6= ∅
)

∧ (t /∈ PSi(ε)) ∧ (t′ ∈ PSi(ε))∧

(σ /∈ (Σ \ (Σcei \ γe
i (ε))) ∩ Σuoi) ∧ (σ ∈ Σuoi)






.

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧ (t /∈ PSi(ε)) ∧ (t′ ∈ PSi(ε)) ∧ (σ ∈ Σcei\γ
e
i (ε)).

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧ (t /∈ PSi(ε)) ∧ (σ ∈ Σcei\γ
e
i (ε)).

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧ (σ ∈ Σcei and not enabled by i).

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧
(

PS+
i (ε)σ ∩K = ∅

)

.

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧
(

(Σ∗uoi ∩ L(G)) σ ∩K = ∅
)

.

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧
(

Σ∗uoiσ ∩ L(G)σ ∩K = ∅
)

.

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧
(

Σ∗uoiσ ∩ L(G)σ ∩ L(G) ∩K = ∅
)

.

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧
(

Σ∗uoiσ ∩ L(G) ∩K = ∅
)

by Lemma 3.

⇒
(

Σ∗uoiσ ∩K 6= ∅
)

∧
(

Σ∗uoiσ ∩K = ∅
)

.

This is a contradiction, so the assumption does not hold, which completes the

proof by contradiction. Therefore,

(

t ∈ P−1
i (Pi(ε)) ∩K

)

⇒
(

t ∈ PSi(ε) ∩K
)

which completes the proof by induction for the base case of

(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

.

Induction hypothesis for the proof of:

(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

:

|s′| = n− 1.

(

t ∈ P−1
i (Pi(s

′)) ∩K
)

⇒
(

t ∈ PSi(s
′) ∩K

)

.
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Induction step for the proof of:

(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

:

Let s = s′σ such that |s′| = n− 1 and |s| = n.

P−1
i (Pi(s)) ∩K = P−1

i (Pi(s
′))Pi(σ)Σ∗uoi ∩K.

PSi(s) ∩K = (PSi(s
′)Pi(σ) [(γe

i (s) ∪ Σ \ Σcei) ∩ Σuoi]
∗) ∩K.

The induction step needs to be proved for two cases, Pi(σ) = ε, and Pi(σ) = σ.

Case 3 : Pi(σ) = ε

This case is trivial. If Pi(σ) = ε, then P−1
i (Pi(s)) ∩ K = P−1

i (Pi(s
′)) ∩ K and

PSi(s) ∩ K = PSi(s
′) ∩ K. By simple substitution with the induction hypothesis,

(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

.

Case 4 : Pi(σ) = σ

Let u = u′σ, v = v′α and t = uv such that Pi(s
′) = Pi(u

′) and Pi(v) = ε. A u

and v exist for all t such that t ∈ P−1
i (Pi(s)) ∩K.

t ∈ P−1
i (Pi(s)) ∩K.

⇒ u′σv ∈ P−1
i (Pi(s

′))σΣ∗uoi ∩K.

t ∈ PSi(s) ∩K.

⇒
(

u′σv ∈ PSi(s
′)σ

[(

γi(s) ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩K

)

.

This case is proved by induction on the length of the string v.

Base:

|v| = 0, or v = ε.

u′σv = u′σ.

(

u′σ ∈ P−1
i (Pi(s

′))σ ∩K
)

.

⇒
(

u′σ ∈ P−1
i (Pi(s

′))σ ∩K
)

∧
(

u′σ ∈ K
)

.
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⇒
(

u′σ ∈ P−1
i (Pi(s

′))σ ∩K
)

∧
(

u′ ∈ K
)

.

⇒
(

u′σ ∈ P−1
i (Pi(s

′))σ ∩K
)

∧
(

u′σ ∈ Kσ
)

.

⇒
(

u′σ ∈ P−1
i (Pi(s

′))σ ∩Kσ ∩K
)

.

⇒
(

u′σ ∈ P−1
i (Pi(s

′))σ ∩Kσ
)

.

⇒
(

u′σ ∈
(

P−1
i (Pi(s

′)) ∩K
)

σ
)

.

⇒
(

u′ ∈
(

P−1
i (Pi(s

′)) ∩K
))

.

⇒
(

u′ ∈
(

PSi(s
′) ∩K

))

because |u′| < n and the (original) induction hypothesis.

⇒
(

u′σ ∈
(

PSi(s
′) ∩K

)

σ
)

.

⇒
(

u′σ ∈ PSi(s
′)σ ∩Kσ

)

.

⇒
(

u′σ ∈ PSi(s
′)σ ∩Kσ ∩K

)

.

⇒
(

u′σ ∈ PSi(s
′)σ ∩K

)

by the Lemma 3.

So the base case of the (original) induction step holds.

Induction Hypothesis (of the induction step):

|v′| = q − 1.

(

u′σv′ ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

u′σv′ ∈ PSi(s) ∩K
)

.

The induction step (of the Base) is proved by contradiction.

Let v = v′α so |v′| = q − 1 and |v| = q.

Assume
(

u′σv ∈ P−1
i (Pi(s)) ∩K

)

∧
(

u′σv /∈ PSi(s) ∩K
)

.

⇒
(

u′σv ∈ P−1
i (Pi(s)) ∩K

)

∧
(

u′σv ∈ K
)

∧ (u′σv /∈ PSi(s)).

⇒







(

u′σv ∈ P−1
i (Pi(s)) ∩K

)

∧ (u′σv /∈ PSi(s))∧

(

u′σv′ ∈ P−1
i (Pi(s)) ∩K

)






.

⇒















(

u′σv ∈ P−1
i (Pi(s)) ∩K

)

∧ (u′σv /∈ PSi(s))∧

(

u′σv′ ∈ PSi(s) ∩K
)

∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















because σ must consid-

ered possible in the unobservable reach of the system by the initial assumptions.
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⇒















(

P−1
i (Pi(s))α ∩K 6= ∅

)

∧ (u′σv /∈ PSi(s))∧

(u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















.

⇒















(

P−1
i (Pi(s

′))σΣ∗uoiα ∩K 6= ∅
)

∧ (u′σv /∈ PSi(s))∧

(u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















.

⇒















(

∃w ∈ P−1
i (Pi(s

′))σΣ∗uoiα ∩K
)

∧ (u′σv /∈ PSi(s))∧

(u′σv′ ∈ PSi(s))

∧ (α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















,

⇒















(

∃w ∈ P−1
i (Pi(s

′))σΣ∗uoiα ∩KσΣ∗uoiα ∩K
)

∧

(u′σv /∈ PSi(s)) ∧ (u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















by the Lemma 3.

⇒















(

∃w ∈
(

P−1
i (Pi(s

′)) ∩K
)

σΣ∗uoiα ∩K
)

∧

(u′σv /∈ PSi(s)) ∧ (u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















.

⇒















(

∃w ∈
(

PSi(s
′)) ∩K

)

σΣ∗uoiα ∩K
)

∧

(u′σv /∈ PSi(s)) ∧ (u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















.

⇒















(

∃w ∈ PSi(s
′))σΣ∗uoiα ∩KσΣ∗uoiα ∩K

)

∧

(u′σv /∈ PSi(s)) ∧ (u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















by the induction hypothe-

sis.

⇒















(

∃w ∈ PSi(s
′))σΣ∗uoiα ∩K

)

∧

(u′σv /∈ PSi(s)) ∧ (u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















by the Lemma 3.
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⇒















(

PSi(s
′))σΣ∗uoiα ∩K 6= ∅

)

∧

(u′σv /∈ PSi(s)) ∧ (u′σv′ ∈ PSi(s))∧

(α /∈ (Σ \ (Σcei \ γe
i (s))) ∩ Σuoi) ∧ (α ∈ Σuoi)















.

⇒







(

PSi(s
′))σΣ∗uoiα ∩K 6= ∅

)

∧ (u′σv /∈ PSi(s))∧

(u′σv′ ∈ PSi(s)) ∧ (α ∈ Σcei\γ
e
i (s))






.

⇒
(

PSi(s
′))σΣ∗uoiα ∩K 6= ∅

)

∧ (u′σv /∈ PSi(s)) ∧ (α ∈ Σcei\γ
e
i (s)).

⇒
(

PSi(s
′))σΣ∗uoiα ∩K 6= ∅

)

∧ (α ∈ Σcei and not enabled by i).

⇒
(

PSi(s
′))σΣ∗uoiα ∩K 6= ∅

)

∧
(

PS+
i (s)α ∩K = ∅

)

.

⇒
(

PSi(s
′))σΣ∗uoiα ∩Kα ∩K 6= ∅

)

∧
(

PS+
i (s)α ∩K = ∅

)

by the Lemma 3.

⇒
(

PSi(s
′))σΣ∗uoiα ∩ L(G)α ∩K 6= ∅

)

∧
(

PS+
i (s)α ∩K = ∅

)

.

⇒
(

(PSi(s
′))σΣ∗uoi ∩ L(G)) α ∩K 6= ∅

)

∧
(

PS+
i (s)α ∩K = ∅

)

.

⇒
(

PS+
i (s)α ∩K 6= ∅

)

∧
(

PS+
i (s)α ∩K = ∅

)

.

This is a contradiction, so the assumption does not hold, which completes the

proof by contradiction. Therefore,
(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

which

completes the proof by induction for the induction hypothesis of

(

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
)

.

This completes the induction proof that

((

t ∈ P−1
i (Pi(s)) ∩K

)

⇒
(

t ∈ PSi(s) ∩K
))

.

It has now been shown that

(

P−1
i (Pi(s)) ∩K ⊆ PSi(s) ∩K

)

(5.8)

(

P−1
i (Pi(s)) ∩K ⊇ PSi(s) ∩K

)

. (5.9)

This holds if and only if

P−1
i (Pi(s)) ∩K = PSi(s) ∩K (5.10)
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which completes the proof of this lemma.

Lemma 5







(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

⇒

(

P−1
i (Pi(s)) ∩K = PS+

i (s) ∩K
)







Proof: It has already been shown that:






(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

⇒

(

P−1
i (Pi(s)) ∩K = PSi(s) ∩K

)






.

⇒
(

P−1
i (Pi(s)) ∩K

)

Σ∗uoi =
(

PSi(s) ∩K
)

Σ∗uoi.

⇒ P−1
i (Pi(s))Σ

∗
uoi ∩KΣ∗uoi = PSi(s)Σ

∗
uoi ∩KΣ∗uoi.

⇒ P−1
i (Pi(s))Σ

∗
uoi ∩KΣ∗uoi ∩K = PSi(s)Σ

∗
uoi ∩KΣ∗uoi ∩K.

⇒ P−1
i (Pi(s))Σ

∗
uoi ∩K = PSi(s)Σ

∗
uoi ∩K by the Lemma 3.

⇒ P−1
i (Pi(s))Σ

∗
uoi ∩K = PSi(s)Σ

∗
uoi ∩ L(G) ∩K.

⇒ P−1
i (Pi(s)) ∩K = PS+

i (s) ∩K.

This completes the proof of this lemma.

Lemma 6







(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

⇒

(

P−1
i (Pi(s))σ ∩K = PS+

i (s)σ ∩K
)







Proof: This proof is broken down into two cases.

Case 1 : Pi(s) = ε

P−1
i (Pi(s))σ ∩K = Σ∗uoiσ ∩K.

PS+
i (s)σ ∩K = (Σ∗uoi ∩ L(G)) σ ∩K.

PS+
i (s)σ ∩K = (Σ∗uoi ∩ L(G)) σ ∩ L(G) ∩K.

PS+
i (s)σ ∩K = Σ∗uoiσ ∩ L(G)σ ∩ L(G) ∩K.

PS+
i (s)σ ∩K = Σ∗uoiσ ∩ L(G) ∩K by the Lemma 3.

PS+
i (s)σ ∩K = Σ∗uoiσ ∩K.

So in this case,
(

P−1
i (Pi(s))σ ∩K = PS+

i (s)σ ∩K
)

.
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Case 2 : Pi(s) 6= ε

It has already been shown that:






(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

⇒

(

P−1
i (Pi(s)) ∩K = PSi(s) ∩K

)






.

⇒
(

P−1
i (Pi(s)) ∩K

)

Σ∗uoiσ =
(

PSi(s) ∩K
)

Σ∗uoiσ.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩KΣ∗uoiσ = PSi(s)Σ

∗
uoiσ ∩KΣ∗uoiσ.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩KΣ∗uoiσ ∩K = PSi(s)Σ

∗
uoiσ ∩KΣ∗uoiσ ∩K.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩K = PSi(s)Σ

∗
uoiσ ∩K by the Lemma 3.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩K = PSi(s)Σ

∗
uoiσ ∩ L(G) ∩K.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩K = PSi(s)Σ

∗
uoiσ ∩ L(G)σ ∩ L(G) ∩K by the Lemma 3.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩K = (PSi(s)Σ

∗
uoi ∩ L(G)) σ ∩ L(G) ∩K.

⇒ P−1
i (Pi(s))Σ

∗
uoiσ ∩K = (PSi(s)Σ

∗
uoi ∩ L(G)) σ ∩K.

⇒ P−1
i (Pi(s))σ ∩K = PS+

i (s)σ ∩K.

This completes the proof of this lemma.

With the above lemmas, the theorem below follows from simple manipulation of

the definitions.

Theorem 13







[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

⇒

L(Sgdec/G) = L(Sgmdec/G)






.

Proof: It has already been shown that:






[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

⇒

(

P−1
i (Pi(s)) ∩K = PS+

i (s) ∩K
)






.

and







[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

⇒

(

P−1
i (Pi(s))σ ∩K = PS+

i (s)σ ∩K
)






.

By definition:
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γgdec
i (s) =







{

σ ∈ Σcdi :
(

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : P−1
i (Pi(s))σ ∩K 6= ∅

}

∪ Σuc ∪ Σce \ Σcei






.

γgmdec
i (s) =







{

σ ∈ Σcdi :
(

PS+
i (s) ∩K

)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : PS+
i (s)σ ∩K 6= ∅

}

∪ Σuc ∪ Σce \ Σcei






.

=







{

σ ∈ Σcdi :
(

P−1
i (Pi(s)) ∩K

)

σ ∩ L(G) ⊆ K
}

∪

{

σ ∈ Σcei : P−1
i (Pi(s))σ ∩K 6= ∅

}

∪ Σuc ∪ Σce \ Σcei






by substitution.

= γgdec
i (s).

So, γgdec
i (s) = γgdec

i (s) for all i ∈ I.

⇒ Sgdec(s) = Sgmdec(s).

⇒ L(Sgdec/G) = L(Sgmdec/G).

This completes the proof.

It has previously been shown that Σter (Lm (M)) ⊆ Σ2
cd ⊆ Σ1

cd 6⇒ L(S1
gmdec/G) ⊆

L(S2
gmdec/G), but if (L(Sgdec/G) = L(Sgmdec/G)) holds, then the implication will also

hold. The previous theorem now prompts the following corollary.

Corollary 7 Given
[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

and Σ2
cd ⊆ Σ1

cd,

L(S1
gmdec/G) ⊆ K, L(S2

gmdec/G) ⊆ K. Therefore L(S1
gmdec/G) ⊆ L(S2

gmdec/G)

5.6 VLP-GM Algorithm

An interesting deficiency of the gdec and gmdec control protocols discussed above

is that the local control actions are not always maximal with respect to a controller’s

state estimate. When computing a control action, gmdec looks at the uncontrolled

and unobservable reach of the system from the current set of estimated states. It

might occur that some of the events disabled by gmdec could be legally enabled.

This issue is illustrated by the example below.
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Example 2 Consider the uncontrolled system G and desired controlled system H

seen in Figure 5.6 such that L(H) = K.

κ

G:

β α

α β

κ

α

H:

β

κ

Figure 5.6: Uncontrolled system G and desired system H for Example 2.

The system has two controllers and the following properties:

Σo = ∅.

Σcd1 = ∅, Σce1 = {β}, Σcd2 = {α, κ}, Σce2 = ∅.

The gmdec controller introduced above would have local control actions γ1 (ε) =

{β} and γ2 (ε) = {β}. The global control action would be Sgmdec(ε) = {β}.

However, there is a valid control action the second controller might take that is

strictly larger than γ2 (ε) = {β}. Suppose controller 2 were to take the control action

γ2 (ε) = {β, κ}.

Controller 2 knows that event α is globally disabled because only controller 2 can

enable α. Therefore, controller 2 knows κ is a valid event to enable. This control

action will result in a generated language that is larger than the language generated

by gmdec.

The resulting controlled systems can be seen in Figure 5.7. The controlled system

with the modified control action for controller 2 is denoted by Smod/G.

Obviously, in this example, the gmdec control protocol does not generate maximal

local control actions for its given state estimate.
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β

Smod/G:

β

κ

Sgmdec/G:

Figure 5.7: Sgmdec/G and Sgdec/G for Example 2.

Note that the gmdec and gdec control protocols locally enable all of their events

at the same instance, but what if a control protocol were to locally enable its events

one-by-one? It has already been seen in the example that the gmdec control protocol

might not enable all events locally possible. Might a new control protocol that enables

events one-by-one be able to generate local control actions that are locally maximal?

For this new scheme, a local controller could initially enable all events that are

required to be enabled no matter the situation: uncontrollable events and permissive

events the local controller cannot control. A local controller could then test to enable

locally controllable events sequentially. The controller would select an event to test

for enabling and if the event is admissible as an enabled event, that event would

be added to the control action and controller would move on to the next event.

As events are tested to be enabled, the unobservable controlled reach is likewise

expanded to include the behavior of the newly enabled events. To determine the

order in which events are tested to be enabled, the controllers could use an ordered

list of controllable events that might reflect the relative desirability of enabling those

events. Notice that this briefly outlined the control algorithm is a greedy algorithm;

as events are enabled locally, they are not disabled until the next control action is

calculated.
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A similar approach to developing a maximal control protocol for permissive cen-

tralized control under partial observation was developed by Ben Hadj-Alouane, et.al.

[10] and called VLP-PO for “Variable Lookahead Protocols under Partial Observa-

tion”. VLP-PO uses an iterative algorithm to generate maximal control protocols

that enable as many events as possible at each control step. VLP-PO also takes

an event ordering into account when determining the enabled events by attempting

to enable events one-by-one in a predetermined order. Furthermore VLP-PO is a

“greedy” control protocol in that once an event is enabled, it is never disabled until

a new control action is calculated.

In this section of the chapter, the VLP-PO algorithm is extended to the general

decentralized architecture for a new algorithm called VLP-GM meaning “Variable

Lookahead Protocols for General decentralized Memory-based control”. VLP-GM

calculates a supervisor’s local control action based on a state estimate similar to

PSi(s) introduced in section 3 above.

VLP-GM is an iterative greedy procedure like VLP-PO in that events are enabled

one-by-one, but once an event is enabled, it is never disabled until another event is

observed and a new control action is calculated. VLP-GM necessarily accounts for

the possibility that the ith controller might not be the only controller with authority

over some the controllable events similar to gmdec above. When a controller i uses

VLP-GM to calculate local control actions, it considers the possibility that other local

controllers may enable anti-permissive events that the ith controller would disable.

Furthermore, when a controller attempts to enable an event, the controller needs to

be sure that the unobservable behavior of all events previously enabled would still

be valid after that new event is enabled.
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Because of the prioritization of controllable events, when an event is enabled, it

could cause some already enabled to become illegal. This point is illustrated in the

following example.

Example 3 For this example, consider the branch of the uncontrolled system seen

in Figure 5.8.

321 4
β αλ α

Figure 5.8: A branch of the automaton representing the system in Example 3.

Suppose λ is observable to controller i, but α and β are not. Suppose that after

λ occurs, controller i knows that the system could only be in system state 1. Suppose

further that all states are legal except for state 4 and that controller i places a high

priority on enabling the event α. Let β be a permissive event and α be an anti-

permissive event. Under the gmdec control protocol, controller i’s action would be

to enable β and disable α, but this would not be the case for VLP-GM. Because

controller i places a high priority on α, α would be tested to be enabled first.

Initially, β would not be enabled, so it would be valid for i to enable α. After α

is enabled, the controller would then test β. In itself, β would be a valid event to

enable because it leads to the legal state 3, but by enabling β, α could then lead to an

illegal state. Therefore, β could not be enabled in this situation using VLP-GM, but

α could be.

As with the previously discussed gmdec control protocol, for VLP-GM introduced

below, PSi is an iteratively updated state estimate and represents all states that the

local controller estimates the system could be in after the control action is calcu-



93

lated. On initialization, before any control action is taken, PSi should be set to {ε}.

As before, it is assumed that the controllers operate instantaneously with respect to

system operation so the controllers can be calculate control actions before any un-

observable events occur. The set NSi represents all strings that could have occurred

if there were no unobservable events after the last observable event. Notice that for

initialization purposes, the last event to occur could be considered the empty event,

ε.

After initialization, the VLP-GM algorithm for i needs to be run only once after

events observable to i occur because it is assumed that the local controllers have no

knowledge of the observations or control actions of the other controllers. The set

γinit represents the initial control action of i, i.e., all events that need to be enabled

no matter what control action is taken. EventOrdering is an ordered list of the

controllable events and represents the relative importance of enabling those events

The symbol γi represents the local control action taken by i.

Algorithm 1 V LP −GM (σ ∈ Σoi ∪ {ε})

NSi = PSiσ ∩ L(G);

γinit = (Σuc ∪ Σce \ Σcei)

γi = ControlAction(γinit, NSi, EventOrdering);

PSi = NSi

[(

γi ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G);

RETURN γi;

END

Inside VLP-GM, the algorithm ControlAction calculates the next control action

to be taken by i after the event σ observable to i occurs. ControlAction can be seen

below and attempts to greedily enable the events ranked highest in EventOrdering
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first. Note that because of the ordering of the events in EventOrdering, a controller

could in a manner “steer” the system by allowing events with a higher priority more

chances to become enabled. The EventOrdering list does not necessarily need to

have the same ordering for all controllers in a set of decentralized controllers running

VLP-GM and differences in order may reflect some local control priorities. It is

always assumed that EventOrdering is constant for all local controllers, but the

results of this chapter hold for the more general event lists.

Seen below, the ControlAction algorithm is the greedy iterative part of VLP-GM

that calculates what events can be enabled from an ordered lest of events EList.

NSi is the same variable as above in the VLP-GM algorithm and represents what

states the system could be in before any unobservable events occur. The set ACTi

represents all events that ControlAction has already enabled and naturally ACTi is

initialized to γinit in VLP-GM. After the ControlAction algorithm has completed,

the final value for ACTi is used to update γi. ControlAction is greedy in that once

an event is enabled and added to ACTi, that event is never disabled until the next

control action is calculated.

ControlAction operates by cycling through all events in the event list, EList,

from high priority to low. If an event is enabled, it is added to ACTi and removed

from EList so it will not be considered again. If a high priority event is not enabled,

that event is skipped but left on the list for later consideration and the next lowest

priority event is tested.

If the lower priority event is enabled, it is added to ACTi and removed from

EList, but then ControlAction cycles back to the top of the EList to see if any

high priority events can be enabled due to the enabling of the lower priority event.

Algorithm 2 ControlAction(γinit, NSi, EList)
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ACTi = γinit;

EList = (EventOrdering − γinit) ∩ Σci;

Pt = 1;

While(Pt ≤ |EList|) do

{

If Admissible(NSi, EList.P t, ACTi)

{

ACTi = ACTi ∪ {EList.P t} ;

EList = EList− EList.P t;

Pt = 1;

}

Else

P t + +;

}

RETURN ACTi;

END

If an event is a “don’t care” it is not enabled by VLP-GM, so an event that is

initially “don’t care” could become viable as more events are enabled. Also, enabling

a lower priority event may cause a previously unenabled permissive higher priority

event to become legal, so ControlAction needs to continually check its unenabled

high priority events as more low priority events are enabled. Consider the following

example.

Example 4 In Figure 5.9, let G be the uncontrolled system and H be the desired

controlled system for this example. The system could be controlled by several con-
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trollers, but only consider the actions of the ith controller are considered. Suppose ρ,

τ and µ are permissive events and that controller i can observe no events. Suppose

further that ρ has a higher priority than µ. When VLP-GM executes for controller

i, the high-priority permissive event ρ is tested first and not enabled because µ is

initially disabled and ρ will never lead to a legal state in this system. Next, the lower

priority event µ is tested and deemed valid so it is added to ACTi. Now ρ leads to at

least one legal system state in the unobservable reach of the system using the control

action ACTi ∪ {ρ}. When ρ is retested, it can now be enabled and added to ACTi

even though previously it was inadmissible as an enabled event because of its “don’t

care” status.

τ

ρ
µ

µ ρ
µ

H:G:

Figure 5.9: The uncontrolled system and desired system of Example 4.

When VLP-GM enables events, VLP-GM needs to make sure that not only that

the event in itself is valid to be enabled, but VLP-GM also needs to make sure that

if an event is enabled that event won’t cause other, already enabled events to become

illegal as with the system in Figure 5.9 above.

The function Admissible determines if an individual event σ should be enabled

given a set of states that the control operation will be starting from, NSi, and the

set of events currently enabled by i, ACTi.

The algorithm Admissible tests to see that all events in (ACTi ∪ {σ}) ∩ Σci are

still validly enabled if σ were to be enabled. To do this, Admissible looks at the
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state estimate RS+
i which is constructed from NSi by calculating the unobservable

reach after NSi if
(

ACTi ∪ {σ} ∪ Σ−i
cd

)

were enabled. RS+
i represents what behavior

could occur in the system if σ were added to ACTi.

Events in ACTi∪{σ} should be assumed to enabled when calculating RS+
i . To be

on the safe side, controller i also assumes that all events in Σ−i
cd are enabled globally

when calculating RS+
i because another controller could enable those events without

the knowledge of i. After RS+
i has been calculated, the system looks to see that all

events in (ACTi ∪ {σ})∩Σcei lead at least once to legal behavior and that all events

in (ACTi ∪ {σ}) ∩Σcdi always lead to legal behavior. If this condition holds, then σ

can be legally added to ACTi.

It is important to note that the Admissible algorithm does not label “don’t care”

events as admissible. If a “don’t care” event were enabled, it would add nothing to

the control action and could possibly hinder other events from being enabled. This

is reflected in the line ¬
[

∅ ⊂
(

RS+
i ∩K

)

α ∩ L(G) ⊆ K
]

for testing anti-permissive

events in Admissible. If
(

∅ =
(

RS+
i ∩K

)

α ∩ L(G)
)

were true for an anti-permissive

event α then α would never lead from a legal state to another legal state using the

current control action. This test for “don’t care” events is an improvement over

the gdec and gmdec control schemes because they could enable “don’t care” events

unnecessarily.

Admissible returns true if σ can be enabled and false if σ should not be enabled.

The algorithm for Admissible can be seen below.

Algorithm 3 Admissible(NSi, σ, ACTi)

RS+
i = NSi

[(

ACTi ∪ {σ} ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G);

Output = True;

For all α ∈ (ACTi ∪ {σ}) ∩ Σci
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{

If α is anti− permissive

{

If ¬
[

∅ ⊂
(

RS+
i ∩K

)

α ∩ L(G) ⊆ K
]

Output = False;

}

Else (α is permissive)

{

If
[(

RS+
i α ∩K

)

= ∅
]

Output = False;

}

}

RETURN Output;

END

It is now demonstrated that the VLP-GM protocol generates a local maximal

control protocol.

Theorem 14 Excluding “don’t care” events, the local control action generated by

VLP-GM at s (γi) is maximal.

Proof: The proof of this theorem is a direct consequence of the construction of the

VLP-GM algorithm. At every system state s, every event in Σci\ACTi is tested for

inclusion in the final ACTi and is rejected. If an event could be included in ACTi and

is not, then that event is either not admissible or it would alter the admissibility of an

event already in ACTi, so there is no control protocol strictly larger than VLP-GM.
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It can also be noted that supremal local control actions for VLP-GM do not exist

in general. This point is illustrated in the following example.

Example 5 For this example, consider a branch of the uncontrolled system seen in

Figure 5.10.

1

2

3 4

5

β
α

α

α
λ

β

Figure 5.10: A branch of the automaton representing the system in Example 5.

Suppose λ is observable to controller i, but α and β are not. Suppose that after

λ occurs, controller i knows that the system could only be in system state 1. Suppose

further that all states are legal except for state 4. Let α and β be anti-permissive

events that only i can control. VLP-GM would make two different control decision

for i depending on EventOrdering. If α were the high priority event, then α would

be the only event enabled by i out of {α, β}, but if β were the high priority event, then

β would be the only event enabled by i out of {α, β}. It can therefore be seen that two

maximal control protocols exist for controller i and the choice of EventOrdering is

not trivial because supremal local VLP-GM control actions do not exist in general.

Another added advantage of VLP-GM is that when control actions are computed

in an online manner, the algorithm has polynomial time complexity at each step.

To see this, suppose the system G is a finite automata. This can be done because

as stated earlier in the thesis regular legal and possible languages are discussed

exclusively in this thesis. Let all states of the system G be included in the set X and as

usual, Σ and Σci represents all system events and events controllable by i respectively.
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For this discussion of computational complexity, the states of the system in VLP-GM

are no longer the strings generated by the system, but the states of the automata.

Using standard algorithms for finite automata, the NSi = PSiσ ∩ L(G) step, when

converted to an equivalent expression for automata is of the order O (|X|) and the

PSi = NSi

[(

γi ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G)step, also when converted to an equivalent

expression for automata is of the order O (|X| |Σuoi|).

For the ControlAction algorithm, in the worst case, the algorithm will always

enable only the last event on EList, and will continue to cycle through EList until

the list. In the worst case there will be |EList| ∗ (|EList| − 1) /2 iterations of the

while loop. |EList| = |Σci|, so |EList| ∗ (|EList| − 1) /2 ∈ O
(

|Σci|
2) and the code

inside the while-loop will be executed on the order of O
(

|Σci|
2) times. Other than

the Admissible function, all steps in ControlAction are of O (1).

In the Admissible function, the step

RS+
i = NSi

[

ACTi ∪ {σ} ∪ Σ−i
cd ∩ Σuoi

]∗
∩ L(G), when converted to a finite au-

tomata expression, as with the similar steps for VLP-GM discussed earlier, is of the

order O (|X| |Σuoi|). There is another loop in the Admissible function that is iter-

ated at most |Σci| times. The step to check the admissibility of permissive events,

[(

PS+
i α ∩K

)

= ∅
]

, when converted to equivalent expressions for finite automata, is

of the order O (|X|) because the concatenation and intersection operations are of the

order O (|X|) and performed sequentially, while the test for the empty set is an ele-

mentary operation. Similarly, the step to check the admissibility of anti-permissive

events,
[

∅ ⊂
(

PS+
i ∩K

)

α ∩ L(G) ⊆ K
]

, is also of the order O (|X|) because the con-

catenation, intersection and inclusion test operations are of the order O (|X|) and

performed sequentially, while the test for the empty set is an elementary operation.

Therefore, the Admissible function is of the order O (max (|X| |Σuoi| , |X| |Σci|)) and
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ControlAction is computed on the order of O
(

|Σci|
2 max (|X| |Σuoi| , |X| |Σci|)

)

=

O
(

max
(

|X| |Σuoi| |Σci|
2 , |X| |Σci|

3)). Finally, the VLP-GM algorithm takes order

O
(

max
(

|X| |Σuoi| |Σci|
2 , |X| |Σci|

3 , |X|
))

to complete. Therefore, the VLP-GM can

be run in polynomial time.

5.6.1 Language Properties

Now that the VLP-GM control protocol has been introduced, several properties

of languages generated by this control protocol are discussed. To start, a sufficient

safety condition is provided for VLP-GM given K, a legal sublanguage of L(G) where

G is the uncontrolled system.

The proof of the safety theorem seen below for VLP-GM is very similar to the

safety theorem introduced above for gmdec and relies on the fact that Σter (Lm (M))

identifies all events that violate C&P co-observability when Σc = Σce. First, a

preliminary lemma needs to be proved that shows the incremental state estimates

used by VLP-GM are indeed at least as small as the traditional inverse projection

state estimate. This lemma is similar to Lemma 2 above where it was shown that

PS+
i (s) ⊆ P−1

i (Pi(s)).

Lemma 7 For all ΣA, NSi [ΣA ∩ Σuoi]
∗ ∩ L(G) ⊆ P−1

i (Pi(s)) where NSi is the set

calculated in the VLP-GM protocol by the ith controller the last time VLP-GM was

run and s is the state of the system.

Proof: This lemma is proved by induction on the number of events observed by i.

It is assumed that the system has passed initialization, so ε ∈ s.

Base:

|Pi (s)| = 0.

s ∈ Σ∗uoi. Then NSi = {ε} and P−1
i (Pi(s)) = Σ∗uoi.
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[ΣA ∩ Σuoi]
∗ ⊆ Σ∗uoi, so NSi [ΣA ∩ Σuoi]

∗ ⊆ P−1
i (Pi(s)) holds in this case.

Induction Hypothesis:

|Pi (s)| = n− 1.

NSi [ΣA ∩ Σuoi]
∗ ⊆ P−1

i (Pi(s)) holds when s contains n events observable to i.

Induction Step:

|Pi (s)| = n.

Let s = s′αu where s contains n events observable to i, α is observable to i and u ∈

Σ∗uoi. |Pi (s
′)| = n−1. Before α has occurred, PSi = NSi

[(

γi ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩L(G).

It should be noted that due to the induction hypothesis, PSi ⊆ P−1
i (Pi(s

′)).

After α has occurred, NSi is updated to NSi = PSiα ∩ L(G).

PSi ⊆ P−1
i (Pi(s

′)).

PSiα ⊆ P−1
i (Pi(s

′))α.

PSiα ∩ L(G) ⊆ P−1
i (Pi(s

′))α.

NSi ⊆ P−1
i (Pi(s

′))α.

NSiΣ
∗
uoi ⊆ P−1

i (Pi(s
′))αΣ∗uoi.

NSi [ΣA ∩ Σuoi]
∗ ⊆ NSiΣ

∗
uoi.

NSi [ΣA ∩ Σuoi]
∗ ∩ L(G) ⊆ NSi [ΣA ∩ Σuoi]

∗.

P−1
i (Pi(s

′))αΣ∗uoi = P−1
i (Pi(s

′αu)) = P−1
i (Pi(s)).

so, NSi [ΣA ∩ Σuoi]
∗∩L(G) ⊆ P−1

i (Pi(s)) holds when s contains n events observ-

able to i, which completes the proof by induction.

The previous lemma is used in the safety proof below due to the condition that

VLP-GM enables events iteratively and so the PS+
i (s) ⊆ P−1

i (Pi(s)) property could

not have been used previously in proving the safety of gmdec. Except for this distinc-

tion, the safety proof below is very similar to the safety proof for VLP-GM. Without

loss of generality K is assumed to be controllable.
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Theorem 15 Σter (Lm (M)) ⊆ Σcd ⇒ L(SV LPGM/G) ⊆ K

Proof: To prove this theorem, it is shown that given Σter (Lm (M)) ⊆ Σcd, s ∈

L(SV LPGM/G)⇒ s ∈ K. This statement is proved by induction on the string s.

Base:

|s| = 0, s = ε.

L(SV LPGM/G) and K are non-empty, so ε ∈ L(SV LPGM/G) and ε ∈ K. There-

fore, ε ∈ L(SV LPGM/G)⇒ ε ∈ K is valid and the base case holds.

Induction hypothesis:

|s| = n− 1.

Assume s ∈ L(SV LPGM/G)⇒ s ∈ K holds.

Induction step:

|s| = n.

Let s = s′σ.

The induction step is broken down into three exhaustive cases based on the

classification of σ: (σ ∈ Σuc), (σ ∈ Σcd), (σ ∈ Σce).

Case 1 : σ ∈ Σuc

s′σ ∈ L(SV LPGM/G)⇒ (s′σ ∈ L(G)) ∧ (s′ ∈ L(SV LPGM/G)).

⇒ (s′σ ∈ L(G)) ∧
(

s′ ∈ K
)

by the induction hypothesis.

K is assumed to be controllable, so (s′σ ∈ L(G)) ∧
(

s′ ∈ K
)

⇒
(

s′σ ∈ K
)

.

Which completes the proof of this case that s ∈ L(SV LPGM/G)⇒ s ∈ K.

Case 2 : σ ∈ Σcd

Assume there exists a string s′ ∈ L(SV LPGM/G) ∩ K and σ ∈ Σce such that

s′σ ∈ L(SV LPGM/G) and s′σ /∈ K.
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Intuitively, after s′ has occurred:

s′ ∈ NSi

[(

γi ∪ {σ} ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G) for all controllers.

Let RS+
i = NSi

[(

γi ∪ {σ} ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G) after s′ has occurred σ first

needs to be tested if it is valid to be enabled by any controller.

Because s′ ∈ K, for all i ∈ I, s′ ∈ RS+
i ∩K.

Therefore: s′σ ∈
(

RS+
i ∩K

)

σ.

Furthermore, (s′σ ∈ L(SV LPGM/G))⇒ (s′σ ∈ L(G)).

So, s′σ ∈
(

RS+
i (s′) ∩K

)

σ ∩ L(G) and s′σ /∈ K for all i ∈ I.

If σ were enabled, there must be some controller such that:

((

RS+
i ∩K

)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi) holds, but:

[

(∀i ∈ I)
((

RS+
i ∩K

)

σ ∩ L(G) 6⊆ K
)]

.

⇒
[

(∀i ∈ I)
((

RS+
i ∩K

)

σ ∩ L(G) 6⊆ K
)

∨ (σ /∈ Σcdi)
]

, so σ is not valid to be

enabled by any controller after s′ has occurred.

⇒ σ /∈ SV LPGM (s′).

⇒ s′σ /∈ L(SV LPGM/G).

This contradicts the assumption that s′σ ∈ L(SV LPGM/G), so if σ ∈ Σcd,

(s ∈ L(SV LPGM/G))⇒
(

s ∈ K
)

.

Case 3 : σ ∈ Σce

This case is proved by contradiction.

Suppose s′σ ∈ L(SV LPGM/G), s′ ∈ L(SV LPGM/G), s′σ /∈ K, s′ ∈ K.

Since Σter (Lm (M)) ⊆ Σcd and Σcd ∩ Σce = ∅, Σter (Lm (M)) ∩ Σce = ∅.

Therefore, K is C&P co-observable w.r.t. L(G), Σo1, Σce1, . . . , Σon, Σcen.

By definition of C&P co-observability:

(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

(∃i ∈ I)
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
]

.
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After s′ has occurred, for all controllers:

NSi

[(

γi ∪ {σ} ∪
(

Σ−i
cd

))

∩ Σuoi

]∗
∩ L(G) ⊆ P−1

i (Pi(s
′)).

Let RS+
i = NSi

[(

γi ∪ {σ} ∪
(

Σ−i
cd

))

∩ Σuoi

]∗
∩ L(G). The event σ first needs to

be tested if it is valid to be enabled by at least one controller.

RS+
i ⊆ P−1

i (Pi(s
′)) by the Lemma 7.

⇒ RS+
i σ ⊆ P−1

i (Pi(s
′))σ.

⇒ RS+
i σ ∩K ⊆ P−1

i (Pi(s
′))σ ∩K.

⇒
[(

P−1
i (Pi(s

′))σ ∩K = ∅
)

⇒
(

RS+
i σ ∩K = ∅

)]

.

(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

(∃i ∈ I)
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
]

.

⇒
[

(∃i ∈ I)
(

RS+
i σ ∩K = ∅

)

∧ (σ ∈ Σcei)
]

, so σ is invalid to be enabled by at

least one controller.

⇒ σ /∈ SV LPGM (s′).

⇒ s′σ /∈ L(SV LPGM/G).

This contradicts the assumption that s′σ ∈ L(SV LPGM/G), so if σ ∈ Σce,

(s ∈ L(SV LPGM/G))⇒
(

s ∈ K
)

which completes the proof by induction that (s ∈ L(SV LPGM/G))⇒
(

s ∈ K
)

, so

Σter (Lm (M)) ⊆ Σcd ⇒ L(SV LPGM/G) ⊆ K. (5.11)

As an interesting side note, the VLP-GM protocol may use maximal local control

actions to generate sublanguages of K, but does the VLP-GM protocol necessarily

generate maximal controllable and co-observable sublanguages of K? In general, no.

Consider the following theorem which is demonstrated by example.

Theorem 16 The VLP-GM control scheme cannot in general generate a maximal
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controllable and co-observable sublanguage of K over a system G if a sufficient safety

condition is satisfied.

Proof: To prove this theorem, let us examine the following example. Consider the

uncontrolled system G and desired controlled system H seen in Figure 5.11.

H:G:

α β

β β αα

Figure 5.11: Uncontrolled system G and desired system H for Theorem 15.

As before, L(H) = K.

Suppose two controllers using the VLP-GM control scheme attempt to achieve

K over G with the following properties:

Σo1 = ∅.

Σce1 = ∅.

Σcd1 = {α, β}.

Σo2 = ∅.

Σce2 = ∅.

Σcd2 = {α, β}.

{α, β} = Σter (Lm (M)) ⊆ Σcd = {α, β}, so this system is safe.

After using the VLP-GM protocol to calculate the control actions, for all per-

mutations of the event orderings, γ1(ε) = γ2(ε) = ∅, so SV LPGM (ε) = ∅ and

L(SV LPGM/G) = {ε}.
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Two maximal controllable and co-observable sublanguages exist for this problem;

L1 = {ε, α} and L2 = {ε, β}. The VLP-GM protocol does not generate a maximal

controllable and co-observable sublanguage for this problem for any event ordering,

so the VLP-GM control scheme cannot in general generate a maximal controllable

and co-observable sublanguage of K over a system G if a sufficient safety condition

is satisfied.

With the above theorem, an interesting open problem is to demonstrate a suffi-

cient condition such that a locally maximal control protocol will generate a maximal

controllable and co-observable sublanguage.

5.6.2 Language Comparison

Now that the VLP-GM control algorithm has been introduced and it has been

shown that the local enabling protocols of VLP-GM are maximal for the controllers’

given information, one would think that the languages generated using the VLP-

GM control algorithm would automatically be at least as large as the languages

generated by the gmdec and gdec protocols. However, this is not always the case. No

general statements can be made comparing the safe languages generated by VLP-GM

with those generated by gmdec and gdec. There are some problem instances where

VLP-GM generates larger safe languages than gdec and gmdec, but there are also

problem instances where the language generated by VLP-GM is incomparable with

the languages generated by gdec and gmdec. Surprisingly, there are also examples

where VLP-GM generates languages strictly smaller than the languages generated by

gdec and gmdec due to the fact that VLP-GM is only locally maximal in its control

decisions. Three examples are now shown to demonstrate these three cases.

Example 6 VLP-GM generates a language larger than the languages generated by
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gdec and gmdec.

Consider the uncontrolled system G and desired controlled system H seen in Fig-

ure 5.12.

α

β

β

G:

α

α

φ

β

β

β α

H:

α

φ

θ

Figure 5.12: The uncontrolled system G and desired system H of Example 6.

The system has two controllers and the following properties:

Σo = ∅, Σuc = ∅, Σc1 = {α, β, θ} , Σc2 = {θ, φ} , Σcd = {α, β}, Σce = {φ, θ}.

Σcd1 = {α, β}, Σce1 = {θ} , Σcd2 = ∅, Σce2 = {θ, φ},

EventOrdering = {α, β, θ, φ}.

Note that Σter (Lm (M)) = {α, β}, so this system is safe.

The languages generated Sgmdec and Sgdec are first investigated.

(Σo = ∅)⇒
[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

⇒ (L(Sgdec/G) = L(Sgmdec/G)) .

γgmdec
1 (ε) = γgdec

1 (ε) = {φ}, γgmdec
2 (ε) = γgdec

2 (ε) = {φ}.

Therefore, Sgmdec (ε) = Sgdec (ε) = {φ} and L(Sgmdec/G) = L(Sgdec/G) = {ε, φ}.

Now to investigate the language generated by VLP-GM.

γV LPGM
1 (ε) = {α, φ}, γV LPGM

2 (ε) = {φ}.

Therefore, SV LPGM (ε) = {α, φ} and L(SV LPGM/G) = {ε, α, φ}.

L(SV LPGM/G) = {ε, α, φ} , L(Sgmdec/G) = L(Sgdec/G) = {ε, φ}.

So, for this problem, L(SV LPGM/G) is larger than L(Sgmdec/G) or L(Sgdec/G).
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In the previous example, L(SV LPGM/G) is larger than L(Sgmdec/G) or L(Sgdec/G),

which is what was hoped to have happened. Notice that in the previous example,

[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

, but L(SV LPGM/G) is larger than L(Sgmdec/G)

or L(Sgdec/G). This therefore implies that
[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

is not

a sufficient condition for L(SV LPGM/G) to be equal to L(Sgdec/G). It would seem

that the property of VLP-GM to be locally maximal when enabling events would

lead to larger languages than gdec and gmdec. However, as will be seen in the next

example, this is not always the case.

Example 7 VLP-GM generates a language incomparable with the languages gener-

ated by gdec and gmdec.

Consider the uncontrolled system G and desired controlled system H seen in Fig-

ure 5.13.

β

α

γα α

β

σ

α

β

σ

α

β

β

α

G: H:

Figure 5.13: The uncontrolled system G and desired system H of Example 7.

The system has two controllers and the following properties:

Σo = ∅, Σuc = {σ} , Σc1 = {α, β} , Σc2 = {γ} , Σcd = {β, γ}, Σce = {α}.

Σcd1 = {β}, Σce1 = {α} , Σcd2 = {γ}, Σce2 = ∅, EventOrdering = {γ, β, α}.

Σter (Lm (M)) = {β, γ}, so this system is safe.

The languages generated Sgmdec and Sgdec first need to be investigated.

(Σo = ∅)⇒
[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

⇒ (L(Sgdec/G) = L(Sgmdec/G)) .
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γgmdec
1 (ε) = γgdec

1 (ε) = {σ, α}, γgmdec
2 (ε) = γgdec

2 (ε) = {σ, α}.

Therefore, Sgmdec (ε) = Sgdec (ε) = {σ, α} and L(Sgmdec/G) = L(Sgdec/G) =

{ε, α, σ}.

Now to investigate the language generated by VLP-GM.

γV LPGM
1 (ε) = {σ, β}, γV LPGM

2 (ε) = {σ, α}.

Therefore, SV LPGM (ε) = {σ, β} and L(SV LPGM/G) = {ε, β, σ, σβ}.

L(SV LPGM/G) = {ε, β, σ, σβ} , L(Sgmdec/G) = L(Sgdec/G) = {ε, α, σ}.

So, for this problem instance, L(SV LPGM/G) is incomparable with L(Sgmdec/G)

and L(Sgdec/G).

In the example above both the gmdec and gdec local controllers enable α because

α is permissive and leads to at least one legal state in the controllers’ unobservable

reach. β is not enabled by gmdec or gdec because β leads to an illegal state in

controller one’s unobservable reach and β is an anti-permissive event. On the other

hand, for VLP-GM, β is tested before α by controller one under the VLP-GM scheme.

Therefore, β gets enabled by controller one. When controller one tests event α, α is

inadmissible because if α, were enabled, β would no longer be a valid enabled event

by controller one. Because α is a permissive event and controller one disables it, α

becomes disabled globally. This example should show that VLP-GM can generate

a language incomparable to the languages generated by gmdec or gdec; controllers

using the VLP-GM protocol can enable high priority events that would normally

be disabled by the other control schemes and the high-priority events could cause

low-priority events that are normally enabled by gmdec or gdec to be disabled be-

cause enabling the low-priority evens would make the high-priority events to become

inadmissible.
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Now, to show an example where even though the languages are safe, the controlled

language L(SV LPGM/G) is strictly smaller than L(Sgmdec/G) and L(Sgdec/G).

Example 8 VLP-GM generates a language strictly smaller than the languages gen-

erated by gdec and gmdec.

Suppose there are two controllers (1 and 2) for the uncontrolled system G seen

in Figure 5.14. Suppose further that K = L(H).

The controllers have the following properties:

φα

G:
β θ

β α

β

φ

θ

H:
α

Figure 5.14: The uncontrolled system G and desired system H of Example 8.

Σo1 = {θ} Σo2 = {φ} Σc1 = {α, β} Σc2 = {β} Σuc = {φ, θ} Σce = {α} Σcd = {β}

EList = {β, α}.

First, the language K is controllable and co-observable. Therefore, by [83] and

Corollary 4, K = {ε, β, βθ, α, αφ} = L(Sgdec/G) = L(Sgmdec/G).

For the language generated by the VLP-GM control scheme:

γV LPGM
1 (ε) = {φ, θ, β}.

γV LPGM
1 (βθ) = {φ, θ}.

γV LPGM
2 (ε) = {φ, θ, α, β}.

SV LPGM (ε) = {φ, θ, β}.

SV LPGM (βθ) = {φ, θ, β}.

L(SV LPGM/G) = {ε, β, βθ}.
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From this example, it is evident that L(SV LPGM/G) ⊆ L(Sgdec/G). This is due

to the fact that the initial control action of 1, VLP-GM tests and enables event β

before event α so that when α is tested, α is not valid to be enabled.

It should also be noted in the last example that the specification language is

controllable and co-observable, but L(SV LPGM/G) 6= K. This should demonstrate a

further deficiency in VLP-GM. Not only will VLP-GM sometimes generate smaller

languages than gdec, VLP-GM will not always be able to achieve controllable and

co-observable sublanguages exactly.

Even though for some cases the controlled behavior L(SV LPGM/G) may be strictly

smaller than L(Sgdec/G) and L(Sgmdec/G), the extra control to steer the system

granted by the VLP-GM scheme makes it advantageous to use at times. In the last

example, VLP-GM tries too hard to enable β at all local controllers at the expense

of no controller ever enabling α. This can be explained by the observation that

VLP-GM is trying too hard to enable the high-priority events at all local sites at the

expense of never enabling the low priority events.

The previous three examples showed that no general statements can be made

comparing L(SV LPGM/G) with L(Sgmdec/G) and L(Sgdec/G). There are problem

instances where VLP-GM generates a larger language than gmdec or gdec as there

may be problem instances where VLP-GM generates a smaller language than gmdec

or gdec. Except for the case where K is controllable and co-observable, it remains

an open problem to show when it might be better to use VLP-GM versus gdec or

gmdec. An improvement upon VLP-GM is now attempted using new algorithm that

will always generates control actions locally at least as well as gdec.
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5.7 VLP-GM2 Algorithm

It may be surprising and disappointing that the languages generated by VLP-GM

may be smaller than the languages generated by gdec, but is it possible to modify

the VLP-GM algorithm to get improved behavior? What if elements of the gmdec

protocol were to combined with elements of the VLP-GM algorithm? Would this

combination always give a larger generated language when controlling systems? As

a controller using this hypothetical protocol is given state estimates, the controller

would need to calculate safe control actions. The controller could start by enabling

all events that gmdec would enable for that state estimate. After removing all the

“don’t care” events from the gmdec control action that are guaranteed not to modify

the controlled behavior, the controller could then iteratively enable more events

in the same manner as VLP-GM. Might this control method have some desirable

maximality properties? This new outlined combination of control protocols is called

VLP-GM2 which can be seen below.

Algorithm 4 V LP −GM2 (σ ∈ Σoi ∪ {ε})

NSi = PSiσ ∩ L(G);

γgmdec = γgmdec
i (NSi) ;

γfilt = controlF ilter (NSi, γgmdec, Σci)

γi = ControlAction(γfilt, NSi, EventOrdering);

PSi = NSi

[(

γi ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G);

RETURN γi;

END

VLP-GM2 calculates control action at initialization and on the occurrence of

locally observable events. PSi is a state estimate very similar to the PSi used in
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VLP-GM. On start-up, PSi is set to {ε}. Also as before, NSi represents where

the system might be before any unobservable events occur. The state estimate NSi

is passed to γgmdec
i to calculate the initial control action - all events that gmdec

would enable if PS+
i (s) = NSiΣ

∗
uoi ∩ L(G) where s is the string of events generated

by the system. Because some of these events are “don’t care” they will not add

any extra behavior to the system. Therefore, these events need to be filtered from

the local control action in the controlF ilter algorithm discussed later. The filtered

initial control action is returned in the variable γfilt and passed to ControlAction.

ControlAction then attempts to enable more events in the flavor of the VLP-GM

algorithm such that γfilt is the initial control action and more events are iteratively

tested and possibly added to this active event set as discussed earlier.

The following algorithm calculates the control action of gmdec given the current

state estimate before unobservable events occur, NSi

Algorithm 5 γgmdec
i (NSi)

γuc
i = Σuc ∪ Σce\Σcei;

PSgmdec
i = NSiΣ

∗
uoi ∩ L(G)

γd
i =

{

σ ∈ Σcdi : ∅ ⊂
(

PSgmdec
i ∩K

)

σ ∩ L(G) ⊆ K
}

γe
i =

{

σ ∈ Σcei : PSgmdec
i σ ∩K 6= ∅

}

RETURN
(

γuc
i ∪ γd

i ∪ γe
i

)

The following controlF ilter algorithm filters out all of the “don’t care” events

from the γ control action. This ensures that all events that are locally enabled

could add to the behavior of the system. Notice that NSi

[(

γ ∪ Σ−i
cd

)

∩ Σuoi

]∗
=

NSi

[(

γfilt ∪ Σ−i
cd

)

∩ Σuoi

]∗
. This statement is given without proof, but can be eas-

ily shown because (γ − γfilt) contains only “don’t care” events for the given state
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estimate. The algorithm tests if an event σ should be filtered out by searching over

all states in NSi

[(

γ ∪ Σ−i
cd

)

∩ Σuoi

]∗
and making sure that σ leads at least once to

another possible state. When implemented to control a finite automata system, the

controlF ilter algorithm is in O(|X|max(|Σuoi|, |Σci|)).

Algorithm 6 controlF ilter (NSi, γ, Σci)

γfilt =
{

σ ∈ Σci|NSi

[(

γ ∪ Σ−i
cd

)

∩ Σuoi

]∗
σ ∩ L(G) 6= ∅

}

∪ Σuc ∪ Σce\Σcei;

RETURN γfilt;

As would be expected, VLP-GM2 can be run in polynomial time when the al-

gorithm is used to update a control action on the occurrence of a locally observable

event. The controlF ilter algorithm is in O(|X|max(|Σuoi|, |Σci|)). As discussed

earlier, γgmdec
i is also in O(|X|max(|Σuoi|, |Σci|)) and updating NSi and PSi are in

O(|X||Σuoi|). As for VLP-GM, ControlAction is in O(|X||Σci|
2 max(|Σuoi|, |Σci|)).

Therefore, VLP-GM2 is in O(|Σci|
2 max(|X||Σuoi|, |X||Σci|)). As would be ex-

pected, VLP-GM2 would be exponential in |X| if used to calculate all possible local

control actions because control actions would be determined by an observer automa-

ton.

Theorem 17 Excluding “don’t care” events, the local control action generated by

VLP-GM2 at s is maximal for its provided state estimate.

Proof: The proof of this theorem is a direct consequence of the construction of the

VLP-GM2 algorithm. At every system state s, every event in Σci\ACTi has been

tested for inclusion in the final ACTi and is rejected. If an event could be included

in ACTi and is not, then that event is either not admissible or it would alter the

admissibility of an event already in ACTi, so there is no control protocol strictly

larger than VLP-GM2.
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It should be noted that VLP-GM2 is similar to VLP-GM because both of these

control protocols enable a locally maximal set of events possible for its given state

estimate. Although it is not shown, supremal control actions can be shown to not

exist in general for VLP-GM2 by an example such as 5.

As will be shown later, by initially enabling all events that gmdec does, VLP-

GM2 partially avoids the pitfall of trying too hard to enable the high priority events

locally so that VLP-GM2 generates controlled languages always at least as large as

gdec if gdec generates a safe language.

5.7.1 Language Properties

Now to explore some properties of the languages generated by using the VLP-

GM2 algorithm to control a system G with specification language K. First a sufficient

safety condition is shown that is identical to the safety conditions of the previously

discussed control protocols in this chapter after some a necessary lemma used for

comparing the state estimators of gdec and VLP-GM2.

Lemma 8 For all ΣA, NSi [ΣA ∩ Σuoi]
∗ ∩ L(G) ⊆ P−1

i (Pi(s)) where NSi is the set

calculated in the VLP-GM2 protocol by the ith controller the last time VLP-GM was

run and s is the state of the system.

Proof: This lemma is proved by induction on the number of events observed by i.

It is assumed that the system has passed initialization, so ε ∈ s

Base:

|Pi (s)| = 0.

s ∈ Σ∗uoi. Then NSi = {ε} and P−1
i (Pi(s)) = Σ∗uoi.

[ΣA ∩ Σuoi]
∗ ⊆ Σ∗uoi, so NSi [ΣA ∩ Σuoi]

∗ ⊆ P−1
i (Pi(s)) holds in this case.

Induction Hypothesis:
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|Pi (s)| = n− 1.

NSi [ΣA ∩ Σuoi]
∗ ⊆ P−1

i (Pi(s)) holds when s contains n events observable to i.

Induction Step:

|Pi (s)| = n.

Let s = s′αu where s contains n events observable to i, α is observable to i and u ∈

Σ∗uoi. |Pi (s
′)| = n−1. Before α has occurred, PSi = NSi

[(

γi ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩L(G).

It should be noted that due to the induction hypothesis, PSi ⊆ P−1
i (Pi(s

′)).

After α has occurred,NSi is updated to NSi = PSiα ∩ L(G).

PSi ⊆ P−1
i (Pi(s

′)).

PSiα ⊆ P−1
i (Pi(s

′))α.

PSiα ∩ L(G) ⊆ P−1
i (Pi(s

′))α.

NSi ⊆ P−1
i (Pi(s

′))α.

NSiΣ
∗
uoi ⊆ P−1

i (Pi(s
′))αΣ∗uoi.

NSi [ΣA ∩ Σuoi]
∗ ⊆ NSiΣ

∗
uoi.

NSi [ΣA ∩ Σuoi]
∗ ∩ L(G) ⊆ NSi [ΣA ∩ Σuoi]

∗.

P−1
i (Pi(s

′))αΣ∗uoi = P−1
i (Pi(s

′αu)) = P−1
i (Pi(s)).

so, NSi [ΣA ∩ Σuoi]
∗∩L(G) ⊆ P−1

i (Pi(s)) holds when s contains n events observ-

able to i, which completes the proof by induction.

As before, it is assumed without loss of generality that K is controllable but not

necessarily co-observable. A sufficient safety condition for VLP-GM2 can now be

proved.

Theorem 18 Σter (Lm (M)) ⊆ Σcd ⇒ L(SV LPGM2/G) ⊆ K

Proof: To prove this theorem, it is shown that given Σter (Lm (M)) ⊆ Σcd, s ∈

L(SV LPGM/G)⇒ s ∈ K. This statement is proved by induction on the string s.
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Base:

|s| = 0, s = ε.

Without loss of generality, L(SV LPGM2/G) and K are assumed to be non-empty,

so ε ∈ L(SV LPGM/G) and ε ∈ K. Therefore, ε ∈ L(SV LPGM/G) ⇒ ε ∈ K is valid

and the base case holds.

Induction hypothesis:

|s| = n− 1.

Assume s ∈ L(SV LPGM/G)⇒ s ∈ K holds.

Induction step:

|s| = n.

Let s = s′σ.

The induction step is broken down into three exhaustive cases based on the

classification of σ: (σ ∈ Σuc), (σ ∈ Σcd), (σ ∈ Σce).

Case 1 : σ ∈ Σuc

s′σ ∈ L(SV LPGM2/G)⇒ (s′σ ∈ L(G)) ∧ (s′ ∈ L(SV LPGM2/G)).

⇒ (s′σ ∈ L(G)) ∧
(

s′ ∈ K
)

by the induction hypothesis

K is assumed to be controllable, so (s′σ ∈ L(G)) ∧
(

s′ ∈ K
)

⇒
(

s′σ ∈ K
)

.

Which completes the proof of this case that s ∈ L(SV LPGM2/G)⇒ s ∈ K.

Case 2 : σ ∈ Σcd

Assume there exists a string s′ ∈ L(SV LPGM2/G) ∩ K and σ ∈ Σcd such that

s′σ ∈ L(SV LPGM2/G), s′σ ∈ L(S/G) and s′σ /∈ K

First suppose σ was enabled by the gmdec step of VLP-GM2.

Intuitively, after s′ has occurred, s′ ∈ NSi.
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⇒ (∀i ∈ I) [s′ ∈ NSiΣ
∗
uoi].

⇒ (∀i ∈ I) [s′ ∈ NSiΣ
∗
uoi ∩ L(G)].

⇒ (∀i ∈ I)
[

s′ ∈ PSgmdec
i

]

.

⇒ (∀i ∈ I)
[

s′ ∈
(

PSgmdec
i ∩K

)]

.

⇒ (∀i ∈ I)
[

s′σ ∈
(

PSgmdec
i ∩K

)

σ
]

.

⇒ (∀i ∈ I)
[

s′σ ∈
(

PSgmdec
i ∩K

)

σ ∩ L(G)
]

.

⇒ (∀i ∈ I)
[(

PSgmdec
i ∩K

)

σ ∩ L(G) 6⊆ K
]

.

Thus, it is obviously impossible that σ is enabled by any controller at the gmdec

step of VLP-GM2.

Now suppose σ was enabled by the AdditionalControlAction step of VLP-GM2.

Intuitively, after s′ has occurred, s′ ∈ NSi

[(

γi ∪ {σ} ∪
(

Σ−i
cd

))

∩ Σuoi

]∗
∩ L(G)

for all controllers.

Let RS+
i = NSi

[(

γi ∪ {σ} ∪
(

Σ−i
cd

))

∩ Σuoi

]∗
∩ L(G) after s′ has occurred. We

need to test to see if σ is valid to be enabled by any controller.

Because s′ ∈ K, for all i ∈ I, s′ ∈ RS+
i ∩K.

Therefore: s′σ ∈
(

RS+
i ∩K

)

σ.

So, s′σ ∈
(

RS+
i (s′) ∩K

)

σ ∩ L(G) and s′σ /∈ K for all i ∈ I.

If σ were enabled, there must be some controller such that

((

RS+
i ∩K

)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi) .

holds, but:

[

(∀i ∈ I)
((

RS+
i ∩K

)

σ ∩ L(G) 6⊆ K
)]

.

⇒
[

(∀i ∈ I)
((

RS+
i ∩K

)

σ ∩ L(G) 6⊆ K
)

∨ (σ /∈ Σcdi)
]

, so σ is not valid to be

enabled by any controller at the AdditionalControlAction step of VLP-GM2 after

s′ has occurred.
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⇒ σ /∈ SV LPGM2 (s′).

⇒ s′σ /∈ L(SV LPGM2/G).

This contradicts the assumption that s′σ ∈ L(SV LPGM2/G), so if σ ∈ Σcd,

(s ∈ L(SV LPGM2/G))⇒
(

s ∈ K
)

.

Case 3 : σ ∈ Σce

This case is proved by contradiction. Suppose s′σ ∈ L(SV LPGM2/G), s′ ∈

L(SV LPGM2/G), s′σ /∈ K, s′ ∈ K.

Since Σter (Lm (M)) ⊆ Σcd and Σcd ∩ Σce = ∅, Σter (Lm (M)) ∩ Σce = ∅.

Therefore, K is C&P co-observable w.r.t. L(G), Σo1, Σce1, . . . , Σon, Σcen.

By definition of C&P co-observability,

(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

(∃i ∈ I)
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
]

.

First suppose σ was enabled by the gmdec step of VLP-GM2.

NSi [ΣA ∩ Σuoi]
∗ ∩ L(G) ⊆ P−1

i (Pi(s)) for all ΣA by Lemma 8.

⇒ NSiΣ
∗
uoi ∩ L(G) ⊆ P−1

i (Pi(s)).

⇒ PSgmdec
i ⊆ P−1

i (Pi(s)).

⇒ PSgmdec
i σ ⊆ P−1

i (Pi(s
′))σ.

⇒ PSgmdec
i σ ∩K ⊆ P−1

i (Pi(s
′))σ ∩K.

⇒
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

⇒
(

PSgmdec
i σ ∩K = ∅

)

.

Therefore,
(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

∃i ∈ I
(

PSgmdec
i σ ∩K = ∅

)

∧ (σ ∈ Σcei)
]

.

Thus, it is obviously impossible that σ is enabled by any controller at the gmdec

step of VLP-GM2.

Now suppose σ was enabled by the AdditionalControlAction step of VLP-GM2.
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After s′ has occurred, for all controllers: NSi

[

γi ∪ {σ} ∪ Σ−i
cd ∩ Σuoi

]∗
∩ L(G) ⊆

P−1
i (Pi(s

′)).

Let RS+
i = NSi

[(

γi ∪ {σ} ∪ Σ−i
cd

)

∩ Σuoi

]∗
∩ L(G). The event σ needs to be

tested to see if it is valid to be enabled by at least one controller.

RS+
i ⊆ P−1

i (Pi(s
′)) by the Lemma 8.

⇒ RS+
i σ ⊆ P−1

i (Pi(s
′))σ.

⇒ RS+
i σ ∩K ⊆ P−1

i (Pi(s
′))σ ∩K.

⇒
[(

P−1
i (Pi(s

′))σ ∩K = ∅
)

⇒
(

RS+
i σ ∩K = ∅

)]

.

(

s′ ∈ K
)

∧
(

s′σ /∈ K
)

⇒
[

(∃i ∈ I)
(

P−1
i (Pi(s

′))σ ∩K = ∅
)

∧ (σ ∈ Σcei)
]

.

⇒
[

(∃i ∈ I)
(

RS+
i σ ∩K = ∅

)

∧ (σ ∈ Σcei)
]

, so σ is invalid to be enabled by at

least one controller in the AdditionalControlAction step of VLP-GM2.

⇒ σ /∈ SV LPGM2 (s′).

⇒ s′σ /∈ L(SV LPGM2/G).

This contradicts the assumption that s′σ ∈ L(SV LPGM2/G), so if σ ∈ Σce,

(s ∈ L(SV LPGM2/G))⇒
(

s ∈ K
)

.

This completes the proof by induction. Therefore,

Σter (Lm (M)) ⊆ Σcd ⇒ L(SV LPGM2/G) ⊆ K. (5.12)

Now that a sufficient safety condition has been shown for VLP-GM2, it is demon-

strated that VLP-GM2 always generates a language at least as large as the one

generated by gdec.

Theorem 19 Given that L(Sgdec/G) is safe, L(Sgdec/G) ⊆ L(SV LPGM2/G).
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Proof: This proof is based on induction on the length of the strings s to show that

given L(Sgdec/G) is safe, (s ∈ L(Sgdec/G))⇒ (s ∈ L(SV LPGM2/G)).

Base:

|s| = 0, or s = ε.

It is assumed that (ε ∈ L(Sgdec/G)) and (ε ∈ L(SV LPGM2/G)) without loss of

generality so that neither language is empty.

Therefore, (ε ∈ L(Sgdec/G))⇒ (ε ∈ L(SV LPGM2/G)).

Induction hypothesis:

|s′| = n− 1.

(s′ ∈ L(Sgdec/G))⇒ (s′ ∈ L(SV LPGM2/G)).

Induction step:

Let s = s′σ so |s′| = n−1 and |s| = n. The induction step is completed in several

cases.

Case 1 : σ ∈ Σuc

(σ ∈ Σuc)⇒ (σ ∈ Sgdec(s
′)) ∧ (σ ∈ SV LPGM2(s

′)).

Because L(Sgdec/G) is controllable,

(s′ ∈ L(Sgdec/G)) ∧ (s′σ ∈ L(G))⇔ (s′σ ∈ L(Sgdec/G)) .

Because L(SV LPGM2/G) is controllable, (s′ ∈ L(SV LPGM2/G)) ∧ (s′σ ∈ L(G))⇔

(s′σ ∈ L(SV LPGM2/G)).

So, in this case, (s ∈ L(Sgdec/G))⇒ (s ∈ L(SV LPGM2/G)).

Case 2 : σ ∈ Σcd

Previously, it was shown that NSi [ΣA ∩ Σuoi]
∗ ∩ L(G) ⊆ P−1

i (Pi(s)) for any ΣA.
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Let PSgmdec
i = NSiΣ

∗
uoi ∩ L(G).

PSgmdec
i ⊆ P−1

i (Pi(s)).

⇒ PSgmdec
i ∩K ⊆ P−1

i (Pi(s
′)) ∩K.

⇒
(

PSgmdec
i ∩K

)

σ ⊆
(

P−1
i (Pi(s

′)) ∩K
)

σ.

⇒
(

PSgmdec
i ∩K

)

σ ∩ L(G) ⊆
(

P−1
i (Pi(s

′)) ∩K
)

σ ∩ L(G).

⇒
(

((

P−1
i (Pi(s

′)) ∩K
)

σ ∩ L(G) ⊆ K
)

⇒
((

PSgmdec
i ∩K

)

σ ∩ L(G) ⊆ K
))

.

(s′σ ∈ L(Sgdec/G))⇒ (σ ∈ Sgdec(s
′)).

⇒ (∃i ∈ I)
[((

P−1
i (Pi(s

′)) ∩K
)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi)
]

.

⇒ (∃i ∈ I)
[((

PSgmdec
i ∩K

)

σ ∩ L(G) ⊆ K
)

∧ (σ ∈ Σcdi)
]

.

⇒ (∃i ∈ I)
(

σ ∈ γgmdec
i (NSi)

)

.

Furthermore,

(s′ ∈ L(SV LPGM2/G)) ∧
(

s′ ∈ NSi

[(

γgmdecΣ
−i
cd

)

∩ Σuoi

]∗)
∧ (s′σ ∈ L(Sgdec/G)) .

⇒
(

s′σ ∈ NSi

[(

γgmdecΣ
−i
cd

)

∩ Σuoi

]∗
∩ L(S/G)

)

, so σ is not removed by the con-

trol filtering operation.

⇒ (σ ∈ SV LPGM2(s
′)).

⇒ (s′σ ∈ L(SV LPGM2/G)).

So, in this case, (s ∈ L(Sgdec/G))⇒ (s ∈ L(SV LPGM2/G)).

Case 3 : (σ ∈ Σce)

After the system has been operating and the string s′ has occurred, ∀i ∈ I : s′ ∈

NSiΣ
∗
uoi ∩ L(G), so ∀i ∈ I : s′σ ∈ PSgmdec

i σ

Suppose (s′σ ∈ L(Sgdec/G)).

⇒ s′σ ∈ K by the safety condition.

⇒ ∀i ∈ I : s′σ ∈ PSgmdec
i σ ∩K.
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⇒ ∀i ∈ I : PSgmdec
i σ ∩K 6= ∅.

⇒ ∀i ∈ I :
(

PSgmdec
i σ ∩K 6= ∅

)

.

⇒ (∀i ∈ I)
(

σ ∈ γgmdec
i (NSi)

)

.

Furthermore,

(s′ ∈ L(SV LPGM2/G)) ∧
(

s′ ∈ NSi

[(

γgmdecΣ
−i
cd

)

∩ Σuoi

]∗)
∧ (s′σ ∈ L(Sgdec/G)) .

⇒
(

s′σ ∈ NSi

[(

γgmdecΣ
−i
cd

)

∩ Σuoi

]∗
∩ L(S/G)

)

, so σ is not removed by the con-

trol filtering operation.

⇒ (σ ∈ SV LPGM2(s
′)).

⇒ (s ∈ L(SV LPGM2/G)).

So, in this case, (s ∈ L(Sgdec/G))⇒ (s ∈ L(SV LPGM2/G)).

(s ∈ L(Sgdec/G)) ⇒ (s ∈ L(SV LPGM2/G)) holds in all cases and this completes

the induction proof that given L(Sgdec/G) is safe, L(Sgdec/G) ⊆ L(SV LPGM2/G).

This theorem can be used to prove another corollary very similar to one for gmdec.

Notably, is K is controllable and co-observable then K will be achieved exactly by

VLP-GM2.

Corollary 8
(

K is controllable and co-observable
)

⇒
(

L(SV LPGM2/G) = K
)

∧ (L(SV LPGM2/G) = L(Sgdec/G))

Proof:
(

K is controllable and co-observable
)

.

⇒ (Σter (Lm (M)) ⊆ Σcd) ∧
(

L(Sgdec/G) = K
)

.

⇒
(

L(Sgdec/G) ⊆ L(SV LPGM2/G) ⊆ K
)

∧
(

L(Sgdec/G) = K
)

.

⇒
(

L(SV LPGM2/G) = K
)

∧ (L(Sgdec/G) = L(SV LPGM2/G)).

It should be apparent to the reader that many language properties are shared by

gmdec and VLP-GM2 as would be expected by their similar constructions.
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However, the languages generated by these two control protocols are not always

equal, as would be expected. For one, gmdec is not afforded a degree of steering as

with VLP-GM2 and furthermore, gmdec is never guaranteed to have a locally max-

imal control protocol like VLP-GM2. A natural question to ask when one considers

the “local maximality” properties of VLP-GM2 is whether VLP-GM2 generates a

language always at least as large as the language generated by gmdec. Sadly, this

is not always the case. As is shown in the next three examples, L(SV LPGM2/G)

may be strictly larger than L(Sgmdec/G), L(SV LPGM2/G) and L(Sgmdec/G) may be

incomparable and L(SV LPGM2/G) may be strictly smaller than L(Sgmdec/G).

Example 9 L(Sgmdec/G) ⊂ L(SV LPGM2/G)

Remember Example 6 above. For this example L(Sgmdec/G) = {ε, φ}.

γV LPGM2
1 (ε) = {α, φ}, γV LPGM2

2 (ε) = {φ}.

Therefore, SV LPGM2 (ε) = {α, φ} and L(SV LPGM2/G) = {ε, α, φ}.

L(SV LPGM2/G) = {ε, α, φ} , L(Sgmdec/G) = L(Sgdec/G) = {ε, φ}.

So, for this problem instance, L(SV LPGM2/G) is strictly larger than L(Sgmdec/G).

Notice that in the previous example, if for all i ∈ I
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

,

but L(SV LPGM2/G) is larger than L(Sgmdec/G) or L(Sgdec/G). This therefore implies

that
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

is not a sufficient condition for L(SV LPGM2/G) to be

equal to L(Sgdec/G). Because L(SV LPGM2/G) has been shown to always be at least

as large as L(Sgdec/G) when L(Sgdec/G) is safe, if
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)

holds

for a problem instance, VLP-GM2 would be guaranteed to allow at least as much

behavior as gmdec. Therefore VLP-GM2 would be a good algorithm to control a

system when
[

(∀i ∈ I)
(

Σuoi ∩ Σ−i
cd = Σuoi ∩ Σcd

)]

.
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Now, to move onto the next example where L(SV LPGM2/G) and L(Sgmdec/G) are

incomparable.

Example 10 L(SV LPGM2/G) and L(Sgmdec/G) are incomparable

βG: H:

κ

φ

α

αθ

φ

κ

β

θ

φα
κ

β

θ
κ

Figure 5.15: The uncontrolled system G and desired system H of Example 10.

Suppose the system G in Figure 5.15 is controlled by the decentralized control

systems gmdec and VLP-GM2 with two controllers and the following properties:

Σuc = {κ}, Σcd = {α, β, φ, θ}, Σcd = ∅, Σc1 = {α, β, φ}, Σc2 = {θ}, Σo1 = {κ},

Σo2 = ∅.

EList = [φ, α, β, θ] , K = L(H).

For the gmdec control scheme:

γgmdec
1 (ε) = {κ}.

γgmdec
1 (κ) = {β, κ}.

γgmdec
2 (ε) = {κ}.

Therefore, L(Sgmdec/G) = {ε, κ, κβ}.

With the V LPGM2 control scheme:

γV LPGM2
1 (ε) = {κ, φ}.

γV LPGM2
1 (κ) = {κ}.
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γV LPGM2
2 (ε) = {κ}.

Therefore, L(SV LPGM2/G) = {ε, κ, φ}.

Obviously, L(SV LPGM2/G) and L(Sgmdec/G) are incomparable.

An even more disappointing result with L(SV LPGM2/G) is that there may be

times when the language generated by VLP-GM2 may be strictly smaller than the

language generated by gmdec. This possibility is demonstrated by the example

below.

Example 11 L(SV LPGM2/G) ⊂ L(Sgmdec/G)

βG: H:

κ

φ

α

θ α

φ

κ

β

φ

β

κ
αθ

θ

κ

Figure 5.16: The uncontrolled system G and desired system H of Example 11.

Supposes the system G in Figure 5.16 is controlled by decentralized control system

with two controllers and the following properties

Σuc = {κ}, Σcd = {α, β, φ, θ}, Σcd = ∅, Σc1 = {α, β, φ}, Σc2 = {θ}, Σo1 = {κ},

Σo2 = ∅.

The control priority is EList = [α, φ, β, θ].

For the gmdec control scheme:

γgmdec
1 (ε) = {κ}.

γgmdec
1 (κ) = {β, κ}.
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γgmdec
2 (ε) = {κ}.

Therefore, L(Sgmdec/G) = {ε, κ, κβ}.

With the V LPGM2 control scheme:

γV LPGM2
1 (ε) = {κ, α}.

γV LPGM2
1 (κ) = {κ}.

γV LPGM2
2 (ε) = {κ}.

Therefore, L(SV LPGM2/G) = {ε, κ} and L(SV LPGM2/G) ⊂ L(Sgmdec/G).

In this specific example, under the gmdec control scheme, controller 1 initially

disables the α event and can disregard any events that may occur after α could have

occurred. This is why controller 1 can disregard the illegal β event. For both control

schemes, neither controller communicates and controller 1 does not know that the θ

events have been disabled by controller 2, so controller 1 does not know to disregard

all events that could occur after θ. Therefore, when V LP − GM2 enables α, even

though event α will never happen, controller 1 needs to account for the behavior of

the illegal β event and hence disables β globally.

The languages generated by VLP-GM2 may be smaller than the language gener-

ated by gmdec for the same reasons that VLP-GM may generate smaller languages

than gdec or gmdec. Because the VLP-GM2 algorithm locally enables more events

early on compared to gmdec, local controllers using VLP-GM2 have a larger state

estimate than gmdec after more behavior has occurred. Because of its larger state

estimate, VLP-GM2 is less likely to enable as many anti-permissive events as gmdec

after system behavior has progressed. This could cause VLP-GM2 to generate a

language strictly smaller than the language generated by gmdec.
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5.8 Conclusion

In this chapter an improved state-estimator for general decentralized controllers

is introduced. The state estimator improves upon previous work because it takes

past control actions into account when calculating the set of likely current states.

This chapter also introduced several online decentralized control protocols that

attempt to generate maximal safe behavior with respect to a given specification that

may not be co-observable. These control protocols all have a testable sufficient safety

condition that can be used to aid in selecting the proper sensors and actuators. That

is, the sets of locally observable events {Σo1, . . . , Σon} and the partition of controllable

events {Σce, Σcd} need to be chosen such that for theM automaton construction the

only state transitions into the dump state are driven by events in Σcd. It would be

interesting to find a method that minimizes the cost of this sensor/actuator selection.

A simplified but computationally similar version of this selection problem is discussed

in Chapter VI.

The gmdec control protocol is one of the new online protocols and is the result of

combining this new state estimator with the gdec control scheme of [83]. The gmdec

control method generates legal languages at least as large as the gdec controller

when gdec is safe, but under some conditions gmdec produces languages equal to

those generated by the gdec controller. In general, for the gmdec controller, allowing

more events to be labelled as permissive does not imply a larger legal language will

be generated.

Besides gmdec, another control scheme, VLP-GM, is introduced. VLP-GM is an

iterative, greedy algorithm that produces maximal local control protocols. VLP-GM

also has a sufficient safety condition similar to one for gmdec and gdec. The languages
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generated by VLP-GM are in general incomparable with the languages generated by

gmdec or gdec. It remains an open problem to develop sufficient conditions when

a maximal controllable and co-observable sublanguage can be achieved by general

decentralized control and to find sufficient conditions when a control scheme can

generate a maximal controllable and co-observable sublanguage on-line.

To attempt to make up for some of the deficiencies of VLP-GM, the VLP-GM2

algorithm was introduced. The VLP-GM2 algorithm combines parts of gmdec with

VLP-GM to create a “steerable” control algorithm that always performs at least as

well as gdec. VLP-GM2 has many beneficial properties similar to gmdec, but there

are times when gmdec could generate larger languages than VLP-GM2. It remains

an open problem to find when the languages generated by VLP-GM2 are at least as

large as gmdec.



CHAPTER VI

APPROXIMATING MINIMAL CARDINALITY

SENSOR SELECTIONS

6.1 Chapter Overview

This chapter discusses the approximation properties of a minimal cardinality sen-

sor selection that is sufficient for a specification language to be observable with re-

spect to a system. It is assumed that the specification language and system are given

as finite state automata. This sensor selection problem most likely does not have

provably accurate polynomial time solution approximation algorithms. A method

is shown to convert this minimal cardinality sensor selection problem into a type

of directed-graph st-cut problem. Several polynomial time heuristic algorithms are

shown for approximating solutions to this problem. It is then shown how these

methods can be used to solve a similar communicating controller problem.

6.2 Approximation Problems and Discrete-Event Systems

When synthesizing a controller for a system to achieve a specification, a control

engineer may be able to choose the set of sensors used by the controller. In the

framework of supervisory control, a set Σo ⊆ Σ is called a sufficient sensor selection

with respect to G, H and Σc if L(H) is observable with respect to L(G), Σo and Σc.

131
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A sufficient sensor selection is also called an observability set. Therefore, if Σo is a

sufficient sensor selection and L(H) is controllable with respect to L(G) and Σc, then

there exists an admissible controller S such that L(S/G) = L(H). Due to economic

reasons such as the cost of purchasing and installing sensors, the number of sensors

used by a controller should be kept to a minimum as long as the sensor selection is

sufficient. The problem of finding this minimal cardinality sufficient sensor selection

is called the minimal cardinality sensor selection problem.

Problem 1 Minimal Cardinality Sensor Selection: Given G, H and Σc ⊆ Σ, find

a sufficient sensor selection Σmin
o such that for any other sufficient sensor selection

Σo, |Σ
min
o | ≤ |Σo|.

If there were some cost associated with selecting a sensor (as specified by some

cost function cost : Σ → <+), a generalized version of Problem 1 would be to find

a sufficient sensor selection with minimal cost. Although this chapter exclusively

discusses the cardinality minimization problem, the methods shown here for dealing

with this problem can be easily extended to the sensor cost minimization problem.

A simple example of the sensor selection problem is now shown.

Example 12 Consider the system and specification seen in Figure 6.1. Suppose that

Σc = {α}. There are several sufficient sensor selections for this specification with

respect to the given system: {α}, {β, γ}, {γ, λ}, {β, λ}. However, {α} is the minimal

cardinality sufficient sensor selection.

Now suppose that the cost of using the sensors is non-uniform, such that

cost(α) = 7, cost(β) = 4, cost(γ) = 5, cost(λ) = 2.

With these sensor costs, the minimal cost sensor selection that makes the specification

observable is {β, λ}.
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β β

γ λ

γ

λ

α
1 2 3 4 5

α
β β

γ λ

γ

λ

1 2 3 4 5

H:

G:

6
α

Figure 6.1: The system G and specification H of Example 12.

Because of the NP-completeness of Problem 1 the minimal cardinality sensor se-

lection can not always be found in a computationally efficient manner [84]. However,

a sufficient sensor selection Σo may still need to be found reasonably efficiently such

that the cardinality of Σo is as close to |Σmin
o | as possible. Fortunately, some NP-

complete minimization problems have fairly accurate polynomial time approximation

algorithms [2, 77]. This means sufficient and approximate solutions can be found for

many computationally difficult problems in a reasonable amount of time. However,

not all NP-complete minimization problems are believed to have this property [2, 77].

To better quantify what is meant by an approximation to Problem 1, suppose

P is the set of instances of Problem 1. Let p ∈ P be a specific problem instance

corresponding to the system G, the specification H and a set of controllable events Σc.

Let Σmin
o (p) denote the solution of this problem instance. When an approximation

algorithm A is given an input p, A returns ΣA
o (p), a sufficient sensor selection with

respect to G, H and Σc. The measure the utility of the approximation ΣA
o (p) is the
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ratio |ΣA
o (p)|/|Σmin

o (p)| and this ratio should ideally be as small as possible. Problem

1 is said to have r-approximation algorithm if

∀p ∈ P, |ΣA
o (p)|/|Σmin

o (p)| ≤ r. (6.1)

This r-approximation notation also holds for other approximation problems. For

a deeper discussion of these topics, see [2]. An important subclass of computation

problems in the NP-complete class is the APX problem class formally defined below.

Definition 15 The APX Problem Class: [2] A problem P is in APX if it is NP-

complete and there is some constant r ∈ <, r ≥ 1 such that for all problem instances

there exists a polynomial time r-approximate algorithm for P .

6.3 The Complexity of Minimal Cardinality Sensor Selection

Approximations

It is now shown that the minimal cardinality sensor selection problem is not in

APX using the minimal set cover problem. The minimal set covering problem is a

fundamental problem in computer science used to show the computational difficulty

of many other problems. For this problem a set S = {γ1, . . . , γn} is given along with

a set of subsets C = {C1, . . . , Cm} ⊆ 2S, and the problem is to find a set covering

Cmin = {Ci1 , . . . , Cik} ⊆ C such that Ci1 ∪ · · · ∪ Cik = S and for any other covering

subset C ′ = {Ck1 , . . . , Ckl
} ⊆ C such that Ck1 ∪ · · · ∪ Ckl

= S, |Cmin| ≤ |C
′|. The set

Cmin is called the minimal set covering. It is known that the minimal set covering

problem is NP-complete [18], and this problem is not in APX [2]. This result can be

used to show that minimal cardinality sensor selection problem is also not in APX.

Theorem 20 The minimal cardinality sensor selection problem is not in APX.
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Proof: This theorem is demonstrated using a proof by contradiction. Suppose the

minimal cardinality sensor selection problem is in APX. Then there is an algorithm

Ao that when given an instance of the minimal cardinality sensor selection problem,

returns an approximation of the minimal cardinality sensor selection whose cardinal-

ity is within a constant ratio r of the cardinality of the minimal cardinality sensor

selection in polynomial time. It is now shown how algorithm Ao can be used to

construct an algorithm Asc that when given an instance of the set cover problem,

returns an approximation of the minimal set cover whose cardinality is within a

constant ratio r of the cardinality of the minimal set cover in polynomial time.

Given an instance of the set cover problem, i.e., a set S = {γ1, . . . , γn} and

a set of subsets C = {C1, . . . , Cm} ⊆ 2S, assume without loss of generality that

C1 ∪ · · · ∪ Cm = S. Put an arbitrary ordering on the subsets of S such that C1 <

. . . < Cm. For an element γi let Ci = {C i
1, . . . , C

i
ji
} represent the subsets that contain

γi. That is, ∀C i
k ∈ Ci, γi ∈ C i

k. Furthermore, assume that C i
1 ≤ . . . ≤ C i

ji
. Now,

for the sets {C1, . . . , Cn} construct the automaton G seen in Figure 6.2 where the ith

branch of the initial state represents the ordered list of sets that contain γi and α is

a symbol not already used.

The G automaton can be constructed in polynomial time with respect to the

size of the encoding of the set cover problem, and therefore G also has a polynomial

number of states. Note that the automaton G may be nondeterministic, but it can be

converted to a deterministic automaton accepting the same language by iteratively

merging state transitions with the same label at the same parent node until the

automaton is deterministic. That is, if x1

Ck
j
7→Gx2 and x1

Cl
j
7→Gx3 such that Ck

j = C l
j and

x2 6= x3, then merge the states x2 and x3 and remove the x1

Cl
j
7→Gx3 transition. Because

the number of states is bounded by a polynomial, this determinization procedure will
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α

C1
1
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C1
2

α

C2
j2
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2

α

Cn
jn

Cn
2

α

C2
1

Cn
1

G :

Figure 6.2: The G automaton used in proof of Theorem 20.

halt in a polynomial amount of time.

Let H be a copy of automaton G with all occurrences of α removed except for

the α at the initial state. Let G be the system automaton, let H the specification

automaton and let Σc = {α}.

Suppose there exists a string of events C i
1C

i
2 . . . C i

ji
such that no events in this

string are observed. Then the system is unobservable because a controller would

not know to disable the α event after C i
1C

i
2 . . . C i

ji
occurred. In this case L(H) is

not observable with respect to L(G), Σc and Σo where Σo = {C1
o , . . . , C

p
o} and there

exists some event γi such that for all Cq
o ∈ Σo, γi 6∈ Cq

o . Therefore {C1
o , . . . , C

p
o} = C ′

does not form set cover for S.
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Similarly, if every string of events C i
1C

i
2 . . . C i

ji
contains at least one event that

is observed, then a controller would always know to disable α after the string of

events C i
1C

i
2 . . . C i

ji
occurs. Therefore, for every event γi, there must be an event in

C i
1C

i
2 . . . C i

ji
that is observable. Hence, if L(H) is observable with respect to L(G),

Σc and Σo where Σo = {C1
o , . . . , C

p
o}, then {C1

o , . . . , C
p
o} = C ′ forms a set cover for

S. This is because for any γi, there exists a Cq
o such that γi ∈ Cq

o .

Then, for the given construction of G and H, a set of events Σo ∈ 2Σ is a sufficient

sensor selection with respect to G, H and Σc if and only if the corresponding set C ′ is

a set cover for S. Furthermore, the cardinality of the minimal sensor selection is equal

to the cardinality of the corresponding minimal set cover. Therefore, |Σmin
o | = |Cmin|.

Suppose algorithm Ao is run with the construction of G, H and Σc and the

observability set Σ′o is returned. It is known that |Σ′o|/|Σ
min
o | ≤ r because of the

assumption on Ao. The set Σ′o can then be used to calculate a set C ′ using the

construction above such that |C ′|/|Cmin| ≤ r. The problem instance G, H and Σc

can be constructed in polynomial time and it was assumed the algorithm Ao can be

run in polynomial time. This implies there exists a polynomial time algorithm to find

an approximation to the minimal set cover such that the ratio of the cardinality of the

approximation to the cardinality of the minimal set cover is bound by a constant r.

This implies by definition that the minimal set cover problem is in APX, which forms

a contradiction. Therefore, there does not exist an algorithm Ao that when given

an instance of the minimal cardinality sensor selection problem, returns a set whose

cardinality is within a constant ratio r of the cardinality of the minimal cardinality

sensor selection in polynomial time unless P=NP. Finally, the minimal cardinality

sensor selection problem is not in APX.
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This theorem shows that the minimal cardinality sensor selection problem is

difficult to approximate in a time efficient manner. It was also shown in [33] that

the sensor selection problem admits no 2log(1−ε) n approximation for any ε > 0 unless

NP ⊆ DTIME(npolylog n). It follows from this result that if solutions to the sensor

selection problem can be found with better than a 2log(1−ε) n-approximation, then a

method has been found for solving NP-complete problems in quasi-polynomial time.

This lower bound on the ability to approximate minimal sensor selections is generally

considered to be a very poor lower bound in the computer science community because

as ε approaches 0, then 2log(1−ε) n approaches n. However, because of the fundamental

importance of this problem, usable methods need to be developed to approximate

the minimal cardinality sensor selections. This prompts the algorithms presented in

the rest of this chapter for approximating solutions to the minimal cardinality sensor

selection problem.

6.4 A Randomized Descent Approximation Algorithm

A randomized descent algorithm for approximating minimal cardinality sensor

selections is now shown. Consider the set of system events Σ and its power set 2Σ.

The process of finding the minimum cardinality sufficient sensor selection Σmin
o ⊆ Σ is

effectively a search over the power set of Σ, 2Σ. An interesting property of observable

systems is that for any set of observable events Σo ⊆ Σ such that L(H) is observable

with respect to L(G), Σo and Σc, then for any Σ′o such that Σo ⊆ Σ′o ⊆ Σ, L(H) is

observable with respect to L(G), Σ′o and Σc and |Σo| ≤ |Σ
′
o|. That is, all supersets

of sufficient sensor selections are also sufficient sensor selections.

Given a set of events Σo such that L(H) is observable with respect to L(G), Σo

and Σc, it may be possible that there does not exist an event σ ∈ Σo such that L(H)
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is observable with respect to L(G), Σo\{σ} and Σc. In this case Σo is called a locally

minimal sufficient sensor selection. For a given system there may possibly be many

locally minimal sufficient sensor selections, but these locally minimal sufficient sensor

selections may not all be minimal cardinality sufficient sensor selections. Consider

the following example.

Example 13 Recall the system in Example 12. For this system and specification,

Σo = {β, γ} is a sufficient sensor selection if Σc = {α} and it is locally minimal, but

the minimal cardinality sensor selection is Σo = {α} if Σc = {α}.

Consider how the power set 2Σ forms a lattice with respect to the partial ordering

of the subsets of Σ. It is assumed that L(H) is never observable with respect to L(G),

∅ and Σc (i.e. the trivial case). Let n = |Σ|. Therefore, for every path on the lattice

formed by 2Σ from Σ ⊇ Σ1 ⊇ · · · ⊇ Σn ⊇ ∅, there is a boundary observability set Σi

such that for any Σ′i ⊇ Σi, L(H) is observable with respect to L(G), Σ′i and Σc and

for any Σ′i+1 ⊆ Σi+1, L(H) is not observable with respect to L(G), Σ′i+1 and Σc.

Therefore, for the sets of all paths Σ ⊇ Σ1 ⊇ · · · ⊇ Σn ⊇ ∅ in the lattice

formed by 2Σ, the set of boundary sets of these paths forms a frontier between the

sets of events that make the system observable and the sets of events that make

the system unobservable. The minimum cost observability set is somewhere on this

boundary. Note that not all members of this set of boundaries are locally minimal

sensor selections.

Example 14 Figure 6.3 shows that lattice constructed for the system and specifica-

tion of Example 12. All of the sensor selections above the dotted line are sufficient,

but all of the sensor selections below the line are deficient.
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{β} {γ}{α}

∅

{λ}

{β, γ}{α, λ}{α, γ}{α, β} {β, λ} {γ, λ}

{α, β, γ} {α, β, λ} {β, γ, λ}{α, γ, λ}

{α, β, γ, λ}

Figure 6.3: The sensor selection lattice of Example 14.

Finding a locally minimal sensor selection for a system is fairly easy. This could be

done by initializing the set of observable events to be Σ, and events could iteratively

be removed from the observability set until no more events could be removed without

the system becoming unobservable. This is exactly what is done in the following

randomized algorithm.

Algorithm 7 Randomized Local Minima Search Algorithm (RanLocMin):

Input: G, H, Σc.

Σtest ⇐ Σ;

Σo ⇐ Σ;

Repeat:

{

Randomly remove σ ∈ Σtest from Σtest and Σo.

If L(G) is not observable w.r.t. L(H), Σc and Σo, return σ to Σo.
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}

Until Σtest = ∅.

Return: Σo.

Starting with an observability set Σ, the algorithm randomly chooses an observed

event σ and tries making it unobservable. It is assumed that the events have a uni-

form probability of being chosen on any iteration of the algorithm. If after removing

σ the system is no longer observable, then σ needs to be observed no matter what

other events are removed. This is because if Σa is not an observability set, then any

Σ′a ⊆ Σa can not be an observability set. If after removing σ the system is still ob-

servable, then σ is permanently removed from the observability set. This algorithm

is iterated until no events can be removed from the observability set. Because no

events can be removed from the returned observability set without violating system

observability, that observability set is a local minimum.

Suppose Algorithm 7 finds the global minimum with probability p, which may

be quite low, but it would be desired to find the global minimum with probability

r ∈ (p, 1). The probability of finding the global minimum using Algorithm 7 could

be boosted through iteration as in Algorithm 8 below.

Algorithm 8 Iterated Randomized Minima Search Algorithm (ItRanMin):

Input: G, H, Σc.

Σo ⇐ Σ

Repeat k times:

{

Σf ⇐ RanLocMin(G,H, Σc)

if |Σf | ≤ |Σo|, then Σo ⇐ Σf
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}

Return: Σo.

Algorithm 8 makes k calls to Algorithm 7 and hence takes k times as long as

Algorithm 7. This prompts the question of what value of k should be chosen such

that a global minima is found with probability at least r using Algorithm 8? It

would be helpful to have k as small as possible such that a minimal cardinality

sensor selection is found with high probability.

If Algorithm 7 finds a global minimum with probability p, this algorithm does not

find a global minimum with probability (1−p). Hence, over the k trials of Algorithm

8, the probability that a global minimum is not found is (1 − p)k. It is well known

that (1 − p)k ≤ exp(−pk) based on the convex analysis that exp(−x) − 1 + x ≥

0 ∀x ∈ [0,∞). So, if it is desired that the iterated randomized local minima search

algorithm returns a non-global minima with probability at most (1− p)k ≤ (1− r),

then k needs to be found such that exp(−pk) = (1− r), or k =
ln( 1

(1−r))
p

.

Unfortunately, p may be very small in the worst case. Consider the situation

when |Σ| = n and n is even. As with the system in Figure 6.3, for all Σo ⊂ Σ such

that |Σo| ≥ n/2, Σo is a sufficient sensor selection and no other sensor selections are

sufficient except for exactly one subset, Σmin
o ⊆ Σ where |Σmin

o | = n− 1. Therefore,

for this example, during the operation of Algorithm 7, any set Σa ⊂ Σ such that

|Σa| = n/2 can be selected as a sensor selection by this algorithm.

Notice that for this example there are exactly (n/2 + 1) sets Σ′o ⊂ Σ such that

Σmin
o ⊂ Σ′o and |Σ′o| = n/2. Therefore, a set Σ′o as discussed above has probability

n/2+1

( n
n/2)

of being used as a sensor selection in Algorithm 7.

Also notice due to the construction of Algorithm 7, for this example if during

the operation of Algorithm 7 one of these sets Σ′o is selected as a sensor selection,
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then Algorithm 7 will necessarily return Σmin
o upon termination. Furthermore, if

Algorithm 7 does not choose one of these sets Σ′o as a sensor selection, then Algorithm

7 will not return Σmin
o upon termination. This means that Σmin

o has probability n/2+1

( n
n/2)

of being chosen for this example by Algorithm 7.

Therefore, for this construction, the probability that Σmin
o is found by the ran-

domized local minimum search algorithm is n/2+1

( n
n/2)

. Therefore, for n reasonably large:

p =
n/2 + 1
(

n
n/2

)

≤
n

(

n
n/2

)

=
n

(

n!
(n/2)!(n/2)!

)

=
n

n
(

n−1
n/2
· · · n−i

(n/2+1)−i
· · · n/2+1

2

)

=

(

n/2

n− 1
· · ·

(n/2 + 1)− i

n− i
· · ·

2

n/2 + 1

)

≤ (1/2)n/2−1

Therefore, p is exponential in −n in the worst case and therefore in the worst case,

k would have to be exponentially large in order to obtain an arbitrarily high proba-

bility of finding a minimum cardinality sensor selection with Algorithm 8. However,

worst-case scenarios are rather unusual and this algorithm helps us gain insight into

the problem. The more iterations that are taken in Algorithm 8 the closer of an ap-

proximation is obtained of the global minimum. In the hypothetical example above

with the nearly flat frontier, a very close approximation to the global minimum is

obtained after one iteration of the randomized search algorithm.
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6.5 The Graph Cutting Problem

Observability can be tested using a method similar to the M construction seen

in Appendix A. This method was originally outlined for the case of observability

in [74] (without explicitly giving the M automaton construction), but a modified

version is shown below that can be used to convert sensor selection problems into a

special type of graph cutting problem called an “edge colored directed-graph st-cut

problem”.

For this edge colored directed-graph st-cut problem, assume an edge-colored di-

rected graph D = (V,A,C) where V is a set of vertices, A ⊆ V × V are directed

edges and C = {c1, . . . , cp} is the set of colors. Each edge is assigned a color in C.

The directed graph in Figure 6.4 is an example of an edge colored directed graph

where the edges are assigned colors {α, β, γ, lambda}.

γ

β

ts

λ
λ

β

γβ

α

α

Figure 6.4: An example of an edge colored directed graph.

Let Ai be the edges having color ci. Given I ⊆ C, let AI = ∪ci∈IAi. For two

nodes s, t ∈ V such that there is a path of directed edges from s to t, then I is a

colored st-cut if (V, (A \ AI), C) has no path from s to t. As seen in Figure 6.5,

I = {β, γ} is a colored st-cut for the graph in Figure 6.4.

The minimal colored cut problem for edge colored directed graphs can now be
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γ

β

ts

λ
λ

β

γβ

α

α

Figure 6.5: The colored cut I = {β, γ} for the graph in Figure 6.4.

defined.

Problem 2 Minimal Colored Cut: For an edge colored directed graph D = (V,A,C)

and two vertices, s, t ∈ V , find a colored st-cut Imin ⊆ C such that for any other

colored st-cut I ⊆ C, |Imin| ≤ |I|.

It is now shown how to convert an instance of a colored cut problem into an

instance of a sensor selection problem. Suppose an edge colored directed graph

D = (V,A,C) and two vertices s, t are given. A system G, specification H and

controllable event set Σc are now constructed from D. For the colors C = {c1, . . . , cp},

let the event set Σ include a corresponding set of events {σ1, . . . , σp}. such that color

ci is paired with event σi. Let γ be another event and define Σ = {σ1, . . . , σp, γ}.

Also define XG = V ∪ {s′, s′′, t′} where s′, s′′, t′ are states not in V . Let xG
0 = s. To

define the state transition function, let v1, v2 be any vertices except s. If (v1, v2) ∈ Ai,

then v1
σi7→Gv2. If (s, v2) ∈ Ai, then s

σi7→Gv2 and s′′
σi7→Gv2. If (v1, s) ∈ Ai, then v1

σi7→Gs′′.

For simplicity it is assumed that (s, s) 6∈ A. Also, transitions are added such that

s
γ
7→Gs′ and t

γ
7→Gt′. Let H be a copy of G except that δH(t, γ) is undefined. Let

Σc = {γ}.
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An example of such a system construction for converting a directed graph D to

a system and specification G and H is given in Figure 6.6.

2

1

tS

S’

S’’

2

1

t

t’S’

S’’

2

1

tS S

βH:

β

α

α

αα

αα

α

βG:

β

α

D:

β

β

γγ γ

Figure 6.6: A directed graph D and the systems G and H constructed from it.

In the system above, γ must be enabled at s and be disabled at t. There is

a control conflict if there is a path in G from s to t where no event is observed.

Therefore, as system behavior progresses, if any event is observed, then γ can be

disabled. Hence, a set of colors I = {ca, . . . , cz} is a colored cut for D if and only if

selecting the sensors {σa, . . . , σz} corresponding to I makes the system observable.

Therefore any approximation algorithm for the sensor selection problem can also be

used with the same absolute effectiveness for the colored cut problem.

The converse construction is now shown to convert an instance of Problem 1 to an

instance of Problem 2. Suppose H = (XH , xH
0 , Σ, δH), G = (XG, xG

0 , Σ, δG), Σo and

Σc are given and it is desired to test if L(H) is observable with respect to L(G), Σo

and Σc. This is done by constructing an automatonMΣo(X
MΣo , x

MΣo
0 , ΣMΣo , δMΣo )
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that is a modification of M automaton method for testing observability and co-

observability in [67, 74]. The MΣo automaton is effectively a nondeterministic sim-

ulation of estimates an observer may make of unobservable system behavior with

respect to a specification based on imperfect predictions of occurrences of unobserv-

able events (Σ \ Σo) in the system.

Let Σ′ be a copy of the event set Σ where for every event σ ∈ Σ, there is a

corresponding event σ′ ∈ Σ′. The following are then defined, XMΣo := XH ×XH ×

XG ∪ {d},x
MΣo
0 := (xH

0 , xH
0 , xG

0 )and ΣMΣo := Σ ∪ Σ′.

Suppose a string of events s has been simulated to occur in the system G byMΣo

and the simulation is at state (x1, x2, x3) ∈ XMΣo . State x3 represents the true state

of the system G and x2 represents the corresponding state of the specification H after

s has occurred. States x2 and x3 always update simultaneously. However, as was

stated above, the observer attempts to predict the occurrence of system events and

the state x1 represents the observer’s estimate of the possible state of the specification

based on imperfect predictions of the simulated system behavior s.

Furthermore, at state (x1, x2, x3) of the simulation, if an event σ is correctly pre-

dicted by the observer in the simulation, there is a transition from (x1, x2, x3) labelled

by σ where all of the component states of (x1, x2, x3) update on the occurrence of σ

according to the transition rules of H, H and G respectively. A correct prediction

may occur for either observable or unobservable events.

However, if an event σ occurs in the system that is not predicted correctly by the

observer in the simulation, there is a transition from (x1, x2, x3) labelled by σ′ where

the x2, x3 component states of (x1, x2, x3) update on the occurrence of σ according to

the transition rules of H and G respectively. Similarly, if an event σ does not occur

in the system but is incorrectly predicted to occur by the observer in the simulation,
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there is a transition from (x1, x2, x3) labelled by σ′ where the x1 component state

of (x1, x2, x3) updates on the occurrence of σ according to the transition rules of

H. Therefore, the MΣo simulation is nondeterministic in that unobservable event

occurrences cannot be perfectly predicted. In correct predictions only occur for

unobservable events.

If theMΣo simulation ever reaches a composed state where the observer believes

the occurrence of a controllable event is allowed by the specification due to the

properties of state x1, but in reality it is not due to x2, yet still possible due to x3,

then there is a control conflict. This possibility is captured by the (∗) condition such

that if the simulation could reach a state (x1, x2, x3) where (∗) holds, then illegal

controllable behavior could occur in the system without an observer being able to

resolve the control conflict.

δH(x1, σ) is defined if σ ∈ Σc

δH(x2, σ) is not defined

δG(x3, σ) is defined



























(∗)

The nondeterministic transition relation δMΣo is now more formally defined as fol-

lows.

For σ 6∈ Σo and its Σ′ equivalent, σ′,

δMΣo ((x1, x2, x3), σ
′) =











(δH(x1, σ), x2, x3)

(x1, δ
H(x2, σ), δG(x3, σ))











.

For σ ∈ Σ,

δMΣo ((x1, x2, x3), σ) =










(δH(x1, σ), δH(x2, σ), δG(x3, σ))

d if (∗)











.
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For σ ∈ Σ, δMΣo (d, σ) is undefined. The MΣo automaton here is modified from

the original in [74] in that Σ′ transitions replace some Σ transitions. These σ′ ∈

Σ′ transitions correspond to transitions that would not exist if σ ∈ Σ \ Σo were

to be made observable. The MΣo automaton construction prompts the following

proposition which follows from the results in [74].

Proposition 8 The state d is reachable in MΣo if and only if L(H) is observable

with respect to L(G), Σo and Σc.

An example is now given of anMΣo automaton construction.

Example 15 Recall the system and specification shown in Example 12. The M∅

automaton constructed for this system and specification with Σc = {alpha} can be

seen in Figure 6.7.

In theMΣo simulation, a transition labelled by an event in Σ occurs if an event

occurrence in H and G is correctly predicted by the observer even if the event is not

observable, and a transition labelled by an event in Σ′ occurs if the prediction is not

correct. Therefore, if aMΣo automaton is constructed and a previously unobservable

event σ is made observable,MΣo∪{σ} could be constructed fromMΣo by cutting all

σ′ transitions, and corresponding to the σ event.

Lemma 9 The automaton MΣo can be constructed from M∅ by iteratively cutting

Σ′o labelled transitions in M∅.

Proof: This lemma is shown by a proof by induction on the cardinality of Σo.

Base: Suppose Σo = ∅. This case is trivial asMΣo =M∅.

Induction hypothesis: For |Σo| = n, theMΣo automaton can be constructed from

M∅ by iteratively cutting Σ′o labelled transitions inM∅.
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d

2,5,5β′, λ′ γ′, λ′

α′
3,1,1 3,2,2 3,3,3 3,4,4 3,5,5β′, γ′ β′, λ′

α′
4,1,1 4,2,2 4,3,3 4,4,4 4,5,5

2,4,4

α′
1,1,1 1,2,2 1,3,3 1,4,4 1,5,5β′, γ′ β′, λ′ γ′, λ′

α′
2,1,1 2,2,2 2,3,3

β′, γ′

β, γ

β′, γ′

γ′, λ′

β′, λ′ β′, λ′ β′, λ′ β′, λ′ β′, λ′

β, λ

γ′, λ′ γ′, λ′ γ′, λ′ γ′, λ′ γ′, λ′
γ, λ

M∅:

β′, γ′

β′, λ′ γ′, λ′

α′
5,1,1 5,2,2 5,3,3 5,4,4 5,5,5β′, γ′ β′, λ′

α′

β′, γ′

α

γ′, λ′

β′, γ′ β′, γ′ β′, γ′

α′ α′ α′ α′

Figure 6.7: TheM∅ machine constructed from G and H of Example 12.

Induction step: Let |Σo| = n. From the induction hypothesis it is known that

theMΣo automaton can be constructed fromM∅ by iteratively cutting Σ′o labelled

transitions inM∅.

Let σ be some event in Σ\Σo. From the construction ofMΣo andM(Σo∪{σ}), the

only difference in the transition structure of these two automata is that transitions

labelled by σ′ are absent in M(Σo∪{σ}). Therefore the M(Σo∪{σ}) automaton can be

constructed from MΣo by cutting all σ′ labelled transitions in MΣo . Hence, the

M(Σo∪{σ}) automaton can be constructed from M∅ by iteratively cutting Σ′o ∪ {σ
′}

labelled transitions inM∅.

Lemma 9 shows that the sensor selection problem is really a type of colored cut

problem. Suppose the automaton M∅ is considered to be a colored directed graph
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as introduced above such that the transition labels are defined to be edge colors. A

colored x
M∅
0 d-cut forM∅ where only Σ′ transitions are cut corresponds to a sufficient

sensor selection for observability to hold. This prompts the following theorem.

Theorem 21 L(H) is observable with respect to L(G), Σo and Σc if and only if

Σ′o ⊆ Σ′ is a colored x
M∅
0 d-cut for M∅.

Proof: This proof is demonstrated in two parts. Suppose that L(H) is observable

with respect to L(G), Σo and Σc. Therefore d is not reachable inMΣo . From Lemma

9 the automatonMΣo can be constructed fromM∅ by iteratively cutting Σ′o labelled

transitions inM∅. Hence, Σ′o is a colored x
M∅
0 d-cut inM∅.

Now suppose that L(H) is not observable with respect to L(G), Σo and Σc.

Therefore d is reachable in MΣo . From Lemma 9 the automaton MΣo can be con-

structed fromM∅ by iteratively cutting Σ′o labelled transitions inM∅. Hence, Σ′o is

a not a colored x
M∅
0 d-cut inM∅.

The M∅ cut problem is not in the same form as in Problem 2 as Σ labelled

transitions will never be cut in theM∅ automaton of Theorem 21 by making events

observable. To counter this difference, the following construction is used which per-

forms a form of state condensation and hides the Σ transitions inM∅.

To start, constructMΣo from H, G, Σc and Σo. Define:

XMΣo
x =

{

yMΣo |∃t ∈ Σ∗ such that xMΣo
t
7→MΣo

yMΣo

}

.

Notice the x subscript on X
MΣo
x . The set X

MΣo
x represents all states that could be

reached from xMΣo in MΣo if only Σ transitions were allowed. These are the same

transitions inMΣo that could not be cut by making more events observable. Due to

this, the states in X
MΣo
x would be reachable from xMΣo according to the transition

rules ofMΣo no matter what events are made observable.
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With this in mind, the following nondeterministic automaton M̃Σo is constructed

from MΣo such that if there is two states xMΣo , yMΣo and some string of transi-

tions labelled by sσ′ ∈ Σ∗Σ′ such that according to the transition rules of MΣo ,

xMΣo
sσ′

7→MΣo
yMΣo , then according to the transition rules of M̃Σo , xMΣo

σ′

7→M̃Σo
yMΣo .

This construction effectively condenses all MΣo states reachable by Σ transitions.

However, it is assumed that d 6∈ X
MΣo
x0 . Let M̃Σo = (XM̃Σo , x

M̃Σo
0 , ΣM̃Σo , δM̃Σo ),

where XM̃Σo := XH ×XH ×XG ∪ {d}, x
M̃Σo
0 := (xH

0 , xH
0 , xG

0 ) and ΣM̃Σo := Σ.

The transition relation δM̃Σo is defined as follows. Suppose there exists three

states xMΣo , yMΣo , zMΣo ∈ XMΣo and σ ∈ Σ such that if zMΣo ∈ X
MΣo
x and

zMΣo
σ′

7→MΣo
yMΣo ,

δM̃Σo (xMΣo , σ) =











yMΣo if d 6∈ X
MΣo
y

d if d ∈ X
MΣo
y











.

An example is now given of an M̃Σo automaton construction.

Example 16 Recall the system and specification shown in Example 12 and the re-

sulting MΣo automaton seen in Figure 6.7. The corresponding M̃∅ automaton con-

structed for this system and specification with Σc = {alpha} can be seen in Figure

6.8.

The M̃Σo automaton is really a colored directed graph where states are vertices,

transitions are directed edges and the transition labels are the colors. This prompts

one of the main results of this chapter.

Theorem 22 Given an M̃∅ automaton constructed from H, G, Σc and ∅ as the set

of observable events, L(H) is observable with respect to L(G), Σo and Σc if and only

if Σo is a colored x
M̃∅
0 d-cut in the colored directed graph M̃∅.
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d

γ′, λ′

α′
3,1,1 3,2,2 3,3,3 3,4,4 3,5,5β′, γ′ β′, λ′

α′
4,1,1 4,2,2 4,3,3 4,4,4 4,5,5β′, γ′ β′, λ′ γ′, λ′

α′

β′, λ′

α′
1,1,1 1,2,2 1,3,3 1,4,4 1,5,5β′, γ′ β′, λ′ γ′, λ′

α′
2,1,1 2,2,2 2,3,3 2,4,4 2,5,5

5,1,1

γ′, λ′ γ′, λ′ γ′, λ′ γ′, λ′ γ′, λ′

M̃∅:

γ′, λ′

γ′, λ′

γ′, λ′

γ′, λ′β′, λ′

β′, λ′

γ′, λ′

β′, λ′

β′, γ′

β′, γ′
β′, λ′

γ′, λ′

β′, λ′

5,2,2 5,3,3 5,4,4 5,5,5β′, γ′ β′, λ′

α′

β′, γ′

γ′, λ′

β′, γ′ β′, γ′ β′, γ′ β′, γ′
β′, γ′

γ′, λ′

β′, λ′ β′, λ′ β′, λ′ β′, λ′

α′ α′ α′ α′

Figure 6.8: The M̃∅ machine constructed from G and H of Example 12.

Proof: It has already been shown that L(H) is observable with respect to L(G),

Σo and Σc if and only if Σ′o is a colored x
M∅
0 d-cut in the colored directed graphM∅.

Therefore it is sufficient to show that Σo is a colored x
M̃∅
0 d-cut in the colored directed

graph M̃∅ if and only if Σ′o is a colored x
M∅
0 d-cut in the colored directed graphM∅.

Define a natural projection operation P ′ : Σ∪Σ′ → Σ′. Also define the translation

operator Ψ̃ : Σ′ → Σ such that Ψ̃(σ′) = σ. Both of these functions are extended in

the usual manner to be defined over strings. Also define the function P̃ : Σ∪Σ′ → Σ

that is the composition of P ′(·) and Ψ̃(·), i.e., P̃ (σ) = Ψ̃(P ′(σ)). These functions

also have the normally defined inverse operations.

First, suppose that Σ′o is not a colored x
M∅
0 d-cut in the colored directed graph
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M∅. Then there exists a string of transitions labelled by s ∈ (Σ ∪ Σ′)∗ such that

x
M∅
0

s
7→M∅

d. Due to the construction of M̃∅, x
M̃∅
0

P̃ (s)
7→ M̃∅

d.

Now suppose that Σ′o is not a colored x
M̃∅
0 d-cut in the colored directed graph M̃∅.

Then there exists a string of transitions labelled by s ∈ Σ∗ such that x
M̃∅
0

s
7→M̃∅

d. Due

to the construction of M̃∅, there exists some string t ∈ P̃−1(s) such that x
M∅
0

t
7→M∅

d.

With the shown conversions between the graph cutting problem and the sensor

selection problem any methods developed to calculate approximate solutions to one

problem can be used to calculate approximate solutions to the other problem.

Due the construction of theMΣo automaton, it should be apparent that |XM| ≤

|XG| ∗ |XH |2 + 1. Furthermore, at each state xMΣo
∈ XMΣo

, the number of state

transitions is at most three times the maximum number of output state transitions

in any state of G or H. If EG is the set of state transitions in G and EH is the

number of state transitions in H, let e = max{|EG|, |EH |}. Therefore MΣo can be

constructed in time and space in O(e ∗ |XG| ∗ |XH |2) using standard breadth-first

digraph construction algorithms. Therefore, because reachability can be tested in

polynomial time, the observability of L(H) with respect to L(G), Σo and Σc can be

tested in polynomial time [74].

6.6 A Deterministic Greedy Graph Cutting Method

An algorithm is now shown for approximating the solution to the minimal sensor

selection problem. This algorithm is based on the M̃∅ construction seen above for a

system G, a specification H and a set of controllable events Σc. After constructing

M̃∅, events are made observable in order to cut all paths from x
M̃∅
o to d in M̃∅.

A utility function is now used to decide which events to make observable deter-
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mining the relative desirability of cutting a set of transitions associated with an event

in M̃∅. Starting with a trim version of M̃∅, suppose in this automaton it is desirable

to find the “probability” P(σ,M̃∅) that a “randomly” selected path from x
M̃∅
o to d

contains an edge labelled by σ. The term “probability” and “randomly” are used

in a loose and intuitive manner in order to develop an understanding for the solu-

tion method for this problem while avoiding the explicit definition of a probability

distribution function at this time. Naturally it would be desirable to cut transitions

associated with events that have the highest probability of occurrence as specified

by P(σ,M̃∅). If an event has a high probability of occurring on a run of the M̃∅

automaton leading to the d state, then it is desirable to observe occurrences of that

event as observing that event would cut the “most” paths to the d state in M̃∅ that

should be avoided. This prompts the following greedy approximation algorithm.

Algorithm 9 Deterministic Greedy Approximation Algorithm (DetGrAprx)

Input: G = (XG, Σ, δG, xG
0 ), H = (XH , Σ, δH , xH

0 ), Σc ⊆ Σ;

Σo ← ∅;

i← 1;

Construct M̃Σo;

M̃T
Σo
← Trim(M̃Σo);

While Lm(M̃T
Σo

) 6= ∅;

{

σi ← arg maxσ∈Σ\Σo

(

P
(

σ,M̃T
Σo

))

;

ρi ← P
(

σi,M̃
T
Σo

)

;

Σo ← Σo ∪ {σi};

k ← i;

i← i + 1;
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Construct M̃Σo;

M̃T
Σo
← Trim(M̃Σo);

}

Return Σo;

The relative probabilities {ρ1, . . . , ρk} associated with the events {σ1, . . . , σk} as

the events are selected are stored for later analysis of the accuracy of the found

approximation |Σo|. It now needs to be shown how P
(

σ,M̃T
Σo

)

is calculated. This

is done by converting M̃T
Σo

into a stochastic automaton. At each state x ∈ XM̃
T
Σo ,

suppose there are κx output transitions. Note that there may be multiple transitions

with the same label. Assign the probability 1
κx

to each output transition of x. That

probability assignment models that all the output transitions of a state have the same

probability of being followed. Therefore, using standard methods from stochastic

systems theory [25], P(σ,M̃T
Σo

) denotes the probability that a random walk in the

stochastic version of M̃T
Σo

with uniform probability assignments starting at x
M̃T

Σo
o ,

traverses a σ transition on its way to d. It should be noted that this probability can

be computed in polynomial time using standard methods [25].

Algorithm 9 iteratively chooses events with the highest probability of occurrence

in M̃T
Σo

over the sets of all x
M̃T

Σo
o d paths, adds that event to Σo and removes all

transitions associated with that event. The M̃T
Σo

automaton is trimmed as events

are made observable until there is no path from the initial state to the marked state

d. Therefore, as Σo is updated, the next M̃T
Σo

can be calculated in polynomial time.

Algorithm 9 runs in polynomial time with respect to the size of the encodings of G

and H and the algorithm iterates at most k ≤ |Σ| times.

The deterministic greedy algorithm is now analyzed to obtain a bound on the

ratio of the cardinality of the sensor selection Σo returned by Algorithm 9 to the
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cardinality of the minimal observability set. This analysis relies on the {ρ1, . . . , ρk}

probabilities saved during the operation of Algorithm 9. The set Σmini
o denotes the

minimum cardinality observability set that could be chosen at iteration i given that

events in Σi
o are already selected to be observed. Naturally, Σmin1

o = Σmin
o .

Lemma 10 In Algorithm 9, on the ith iteration,

1

P
(

σi,M̃Σi
o

) ≤ |Σmini
o |

Proof: Let Σmini
o = {γ1

i , . . . γ
ki
i }. Also, for γj

i ,M̃
T
Σi

o
, j ∈ {1, . . . , ki}, let values of

αj
i ∈

(

0,P
(

γj
i ,M̃Σi

o

)]

be chosen such that
∑ki

j=1 αj
i = 1. Because Algorithm 9 is a

greedy algorithm, σi has the highest probability of any event not previously chosen

for observation on round i, i.e.,

∀j ∈ {1, . . . , ki}
(

P
(

σi,M̃Σi
o

)

≥ P
(

γj
i ,M̃Σi

o

))

⇒ ∀j ∈ {1, . . . , ki}





1

P
(

σi,M̃Σi
o

) ≤
1

P
(

γj
i ,M̃Σi

o

)





⇒ ∀j ∈ {1, . . . , ki}





1

P
(

σi,M̃Σi
o

) ≤
1

αj
i





⇒ ∀j ∈ {1, . . . , ki}





αj
i

P
(

σi,M̃Σi
o

) ≤ 1





⇒
ki

∑

j=1

αj
i

P
(

σi,M̃Σi
o

) ≤
ki

∑

j=1

1

⇒
1

P
(

σi,M̃Σi
o

)

ki
∑

j=1

αj
i ≤ |Σ

mini
o |

⇒
1

P
(

σi,M̃Σi
o

) ≤ |Σmini
o |.
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Lemma 10 can now be used to show the following result on the closeness of the

cost of the approximation to the minimum cost observability set.

Theorem 23 For the observability set Σo returned by Algorithm 9 and the minimum

sensor selection Σmin
o ,

|Σo|

|Σmin
o |
≤

|Σo|
∑

i=1

ρi

where {ρ1, . . . ρk} are the iterative probabilities stored during the operation of Algo-

rithm 9.

Proof: It has already been shown in Lemma 10 that:

1

P
(

σ,M̃Σi
o

) ≤ |Σmini
o | ⇒ 1 ≤ |Σmini

o |P
(

σ,M̃Σi
o

)

⇒ 1 ≤ |Σmini
o |ρi

⇒ |Σo| ≤

|Σo|
∑

i=1

|Σmini
o |ρi

⇒
|Σo|

|Σmin
o |
≤

|Σo|
∑

i=1

ρi

Because of Theorem 23, a bound on the closeness of the approximation returned

by Algorithm 9 can be calculated. Unfortunately
∑k

i=1 ρi can be on the order of n−ε

in the worst case where n is the number of system events and ε is some constant

greater than 0. A lower bound on the closeness of the bound on the approximation

ratio shown in Theorem 23 is now shown.

Theorem 24 From a set {ρ1, . . . , ρk} calculated from a running of Algorithm 9,

k
∑

i=1

ρi ≥ Hk

where Hk is the sum of the harmonic series k−1, (k − 1)−1, . . . , 1.
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Proof: Suppose the events chosen to be observable by Algorithm 9, the events in Σo

are chosen in the order σ1, . . . , σk. In the automaton M̃Σi
o
, the transition labelled

by σi has probability ρi of occurring on a random path from x
M̃

Σi
o

o to d. Before the

event σi is chosen, there are k− i + 1 events left to be chosen in the set {σi, . . . , σk}.

All unique paths from x
M̃

Σi
o

o to d in M̃Σi
o

must contain at least one state transition

with a label in {σi, . . . , σk}.

Therefore,

k
∑

j=i

P(σj,M̃Σi
o
) ≥ 1.

Because σi has the highest probability of occurring on a path from x
M̃

Σi
o

o to d in

M̃Σi
o
,

ρi ≥

∑k
j=i P(σj,M̃Σi

o
)

k − i + 1
⇒ ρi ≥

1

k − i + 1

⇒
1

∑

i=k

ρi ≥
1

∑

i=k

1

k − i + 1

⇒
k

∑

i=1

ρi ≥ Hk.

Although Theorem 24 puts a lower bound on the guarantee of the approxima-

tion ratio show in Theorem 23, it is not implied that Algorithm 9 cannot have an

approximation ratio better than Hk.

6.6.1 A Randomized Greedy Algorithm

A randomized greedy minimal sensor selection algorithm is now given that com-

bines elements of Algorithms 7 and 9. As with Algorithm 7, this new algorithm ran-

domly enables events to be made observable, but uses the utility function P(σ, M̃Σo)
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to weight the probability distribution of a sensor being selected. Therefore, an event

with a relatively high probability of occurring over the set of all paths to d in M̃Σo

will have a higher probability of being added to the observable events when sensors

are being selected.

Algorithm 10 Randomized Weighted Observability Set Search Algorithm (Ran-

WObs):

Input: G = (XG, Σ, δG, xG
0 ), H = (XH , Σ, δH , xH

0 ), Σc ⊆ Σ

Σo ← ∅;

Construct M̃Σo from G, H, Σc and Σo;

i← 1;

M̃T
Σo
← Trim(M̃T

Σo
);

While Lm(M̃T
Σo

) 6= ∅;

{

For all σ ∈ Σ \ Σo

{

Pr(σ)←
P(σ,M̃T

Σo)
∑

γ∈Σ\Σo(P(γ,M̃T
Σo))

;

}

Randomly select σi ∈ Σ \ Σo according to probability distribution Pr(σ);

k ← i;

Remove σi labelled transitions in M̃T
Σo

;

Σo ← Σo ∪ {σi};

i← i + 1;

M̃T
Σo
← Trim(M̃T

Σo
);

}

Return Σo;
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Algorithm 10 can be iterated multiple times using a method similar to that in

Algorithm 8 to obtain multiple approximations to the minimum cost observability

set. Unlike the deterministic approximation algorithm, Algorithm 9, Algorithm 10

may not always return the same approximation.

6.7 Integer and Linear Programming Methods

Another approach to approximating the minimal sensor selection is to use integer

programming based methods. This section discusses how to convert the minimal

cost sensor selection problem to an integer programming problem. First the integer

programming problem is introduced.

Problem 3 The Integer Programming Problem: Given a z element row vector C,

a y × z matrix A and a y element column vector B, find a z element column vector

~x ∈ {0, 1}z that minimizes C~x subject to A~x ≥ B.

The integer programming problem is known to be NP-complete, but there is a

vast literature on efficiently calculating approximate solutions to this problem as

outlined in [49, 77]. Once the sensor selection problem is in the form of an integer

programming problem, these already developed methods can be used to find solutions

to the sensor selection problem.

6.7.1 Problem Conversion

It is now shown how to convert the sensor selection problem to an integer pro-

gramming problem. Suppose a system automaton G, a specification automaton H

and a set of controllable events Σc are given. From this the automaton M̃∅ and

M̃Σo can be constructed for some Σo ⊆ Σ. Note that for the sets of reachable states,

XM̃Σo ⊆ XM̃∅ . That is, some reachable states in M̃∅ may not be reachable in M̃Σo .
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To convert a sensor selection problem to an integer programming problem, the

events in Σ and states in XM̃∅ are be treated as binary variables. The events in

the set Σo ⊆ Σ are all assigned 1, 0 is assigned to all events in Σ \ Σo, and for all

states x ∈ XM̃∅ such that x is reachable from x
M̃∅
o according to the transition rules

of M̃Σo , then x = 1. Note that x
M̃∅
o = x

M̃Σo
o .

To express the validity of variable assignments as a set of inequalities, suppose

that in M̃∅ there is an event σi1 ∈ Σ and two states xi2 , xi3 ∈ XM̃∅ such that

xi2

σi17→M̃∅
xi3 . Therefore, using the variable assignments described above, this transi-

tion can be written as an inequality xi3 ≥ xi2 − σi1 . This represents the property for

the automaton M̃Σo , if xi2 is reachable in M̃Σo and there is a transition caused by

an unobserved event σi1 that leads to xi3 , then xi3 should also be reachable. This

inequality can be manipulated so that xi3 − xi2 + σi1 ≥ 0.

Therefore, if all of the state transitions in M̃∅ are expressed as integer inequalities

and the initial state x
M̃∅
o is constrained to be reachable (that is, assigned to be 1),

then the problem is to find the minimal cardinality set of events assigned to be

observable (that is, assigned to be 1) such that the d state does not have to be

assigned 1. This set of conditions can now be converted into an integer programming

problem. Let a vector ~x be defined such that if Σ = {σ1, . . . , σk} and XM̃∅ =
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{x0, x1, . . . , xn−1, d}:

~x =



















































σ1

...

σk

x0

x1

...

xn−1

d



















































.

Therefore, z = k + n.

The row vector C can be a z element constant vector such that for all i ∈

{1, . . . , k}, the ith entry of C is 1 and all other entries of C are 0.

C =

[

1 · · · 1 0 0 · · · 0 0

]

Therefore, minimizing C~x is equivalent to minimizing the cardinality of a sensor

selection.

For the constraint matrices, suppose there are e transitions in M̃∅. Let y = e+2.

Therefore, let B be a column vector of (e + 1) 0’s and a 1 at the row corresponding
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to x
M̃∅
0 .

B =











































0

...

0

1

0

...

0











































.

With the constraint matrix A below, the element assigned 1 in the B vector ensures

that the initial state is forced to be reachable and the last 0 element ensures that

the dump state is constrained to not be reachable.

The constraint matrix A is a y × z matrix and encodes the state reachability

conditions depending on the observability of events. Let the transitions be ordered

from 1 to e, such that transition l is from the l2th state to the l3th state on the

occurrence of the l1th event. Then, entry (l, l1) is assigned to be 1, entry (l, (k + l3))

is assigned to be 1 and entry (l, (k + l2)) is assigned to be −1. All entries of A not

corresponding to a transition are assigned 0. This ensures the constraint equation

A~x ≥ B satisfies that for all transitions, xl3−xl2 +σl1 ≥ 0. The bottom two rows of A

is all zeros, except for the (y, z) element which is assigned to be −1, and (y−1, l
x
M̃∅
0

)

is assigned to be 1, if l
x
M̃∅
0

represents the row of ~x corresponding to the x
M̃∅
0 state.

This constrains the d state to not be reachable and the initial state to be reachable.

That is, the x
M̃∅
0 ≥ 1 and −d ≥ 0, so that d ≤ 0.

Using this formulation of A, B, C and ~x, the sensor selection problem is now in

the form of an integer programming problem such that C~x is minimized as long as

A~x ≥ B.
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As a simple example of how to convert a graph cutting problem into an integer

programming problem, consider the M̃∅ automaton seen in Figure 6.9.

M̃∅ :

α

β

dx
M̃∅
0

Figure 6.9: An example of a M̃∅ automaton.

It is assumed that the system events have uniform cost of being observed. There-

fore,

~x =





















α

β

x
M̃∅
o

d





















A =





















1 0 −1 1

0 1 −1 1

0 0 1 0

0 0 0 −1





















B =





















0

0

1

0





















C =

[

1 1 0 0

]

.
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6.8 Applications to Minimal Communication Decentralized

Control

An approximation problem for communicating decentralized control systems is

now investigated where several controllers make local observations of a system and

enforce local control actions that are combined globally using an intersection opera-

tion. That is, if an event is disabled by any one controller, then it is disabled by all

controllers. It is assumed that the controllers communicate such that the occurrence

of a subset of the system events observed by the controllers are communicated to the

other controllers, and the problem is to find the minimal cardinality set of events

that need to be communicated in order to solve a control task. This is a special case

of the communicating controller open problem discussed in [75]. The computational

methods developed for the centralized control problem discussed in the sections above

can be intuitively applied to the communicating controller problem discussed here.

This sections investigates two controller systems, but the results presented can be

generalized to n controller systems.

For this problem a system G and a specification H are given with sets of events

Σc1, Σc2 locally controlled by the controllers and events Σo1, Σo2 locally observed

by the controllers. Suppose that L(H) is not co-observable with respect to L(G),

Σo1, Σo2 and Σc1, Σc2. Therefore there does not exist a pair of controllers S1, S2 such

that L(S1 ∧ S2/G) = L(H).

However, it may be possible that controller 1 might be able to communicate its

observations of a subset of the locally observable events Σo12 ⊆ Σo1 to controller 2

and controller 2 might be able to communicate its observations of a subset of the

locally observable events Σo21 ⊆ Σo2 to controller 1 such that L(H) would then be co-

observable with respect to L(G), (Σo1 ∪ Σo21) , (Σo2 ∪ Σo12) and Σc1, Σc2. Then, if the
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occurrence of all Σo21 events are communicated to controller 1 and the occurrence of

all Σo12 events are communicated to controller 2, there would exists communicating

controllers S1, S2 such that L(S1 ∧ S2/G) = L(H).

Using this intuition, the sets of communicated events Σo12, Σo21 are called suffi-

cient if L(H) is co-observable with respect to L(G), (Σo1 ∪ Σo21) , (Σo2 ∪ Σo12) and

Σc1, Σc2. As above in this chapter, it is generally assumed that L(H) is controllable.

This prompts the following communication minimization problem definition.

Problem 4 Minimal Cardinality Communication Selection: Given a system G, a

specification H and controllable events Σc1, Σc2 ⊆ Σ, find a sufficient communica-

tion selection Σmin
o12 , Σmin

o21 such that for any other sufficient communication selection

Σo12, Σo21,

|Σmin
o12 |+ |Σ

min
o21 | ≤ |Σo12|+ |Σo21|.

It is assumed that L(H) is always co-observable with respect to the system L(G),

the observed events with full communication (Σo1 ∪ Σo2) , (Σo1 ∪ Σo2) and the con-

trollable events Σc1, Σc2. If this does not hold, then there are no solutions to the

communicating controller problem. It is now shown how to convert Problem 4 into

a type of graph cutting problem.

6.8.1 Graph Cutting for Communication Selection

Problem 4 is a modification of Problem 1 and there exists a similar M̃Σo12,Σo21

construction for converting the communication selection problem to a type of graph

cutting problem. Consider the following construction for the two controller case that

can be extended for the n controller case.

The MΣo12,Σo21 automaton is effectively a nondeterministic simulation of a pair

of observers predicting unobservable system behavior with respect to a specification
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and the communicated events Σo12, Σo21. These estimates are based on imperfect

predictions of occurrences of locally unobservable and uncommunicated events (Σ \

(Σo1 ∪ Σo21) for observer 1) in the system.

Let Σ1, Σ2 and Σ′ be copies of the event set Σ where for every event σ ∈ Σ, there

is are corresponding events σ1 ∈ Σ1, σ2 ∈ Σ2 and σ′ ∈ Σ′. The following can then be

defined.

MΣo12,Σo21 =

(XMΣo12,Σo21 , x
MΣo12,Σo21
0 , (Σ ∪ Σ1 ∪ Σ2 ∪ Σ′), δMΣo12,Σo21 , X

MΣo12,Σo21
m )

where

XMΣo12,Σo21 := XH ×XH ×XH ×GG ∪ {d},

x
MΣo12,Σo21
0 := (xH

0 , xH
0 , xH

0 , xG
0 ),

X
MΣo12,Σo21
m := {d}.

Suppose a string of events s has been simulated to occur in the system G by

MΣo12,Σo21 and the simulation is at state (x1, x2, x3, x4) ∈ XMΣo12,Σo21 . State x4 rep-

resents the true state of the system G and x3 represents the corresponding state of the

specification H after s has occurred. States x3 and x4 always update simultaneously.

However, as was stated above, the local observers attempt to predict the occurrence

of locally unobserved and uncommunicated system events. States x1 and x2 rep-

resents the estimates of the possible state of the specification based on imperfect

predictions of the simulated system behavior s for observer 1 and 2 respectively.

Furthermore, at state (x1, x2, x3, x4) of the simulation, if an event σ is correctly

predicted by both observers in the simulation, there is a transition from (x1, x2, x3, x4)
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labelled by σ where all of the component states of (x1, x2, x3, x4) update on the

occurrence of σ according to the transition rules of H, H and G respectively. A

correct prediction may occur for either observable or unobservable events.

However, if an event σ occurs in the system that is not predicted correctly by ei-

ther of the observers in the simulation, there is transition from (x1, x2, x3, x4) labelled

by σ′ where in the resultant state the x3, x4 component states of (x1, x2, x3, x4) up-

date on the occurrence of σ according to the transition rules of H and G respectively.

This can only occur if σ is in Σ\ (Σo1∪Σo2). Similarly, if an event σ ∈ Σ\ (Σo1∪Σo2)

does not occur in the system but is incorrectly predicted to occur by an observer

in the simulation, there is a transition from (x1, x2, x3, x4) labelled by σ′ where the

x1 component state of (x1, x2, x3, x4) updates on the occurrence of σ according to

the transition rules of H. Also, there is a transition from (x1, x2, x3, x4) labelled

by σ′ where the x2 component state of (x1, x2, x3, x4) updates on the occurrence of

σ according to the transition rules of H if observer 2 predicts incorrectly. In the

MΣo12, Σo21 construction the Σ′ transitions would not be removed by having the

controller communicate more events.

Similar to the Σ′ transitions, the Σ1 and Σ2 transitions are those transitions

that correspond to events are respectively observed by controller 2 and 1, but not

observed by both and would be removed if those events were communicated between

the controllers.

Therefore, if an event σ occurs in the system that is not predicted correctly by

controller 1, but is observed by controller 2, there is a σ1 labelled transition from

(x1, x2, x3, x4) where in the resultant state the x2, x3, x4 component states update on

the occurrence of σ according to the transition rules of H and G respectively. This

can only occur if σ is in Σo2 \ (Σo1∪Σo21). Similarly, if an event σ ∈ Σo2 \ (Σo1∪Σo21)
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does not occur in the system but is incorrectly predicted to occur by observer 1 in

the simulation, there is a transition from (x1, x2, x3, x4) labelled by σ1 where the x1

component state of (x1, x2, x3, x4) updates on the occurrence of σ according to the

transition rules of H.

If an event σ occurs in the system that is not predicted correctly by controller 2,

but is observed by controller 1, there is transition from (x1, x2, x3, x4) labelled by σ2

where in the resultant state the x1, x3, x4 component states of (x1, x2, x3, x4) update

on the occurrence of σ according to the transition rules of H and G respectively. This

can only occur if σ is in Σo1 \ (Σo2∪Σo12). Similarly, if an event σ ∈ Σo1 \ (Σo2∪Σo12)

does not occur in the system but is incorrectly predicted to occur by observer 2 in

the simulation, there is a transition from (x1, x2, x3, x4) labelled by σ2 where the x2

component state of (x1, x2, x3, x4) updates on the occurrence of σ according to the

transition rules of H.

If theMΣo12, Σo21 simulation ever reaches a composed state where both observers

believe the occurrence of a controllable event σ ∈ Σc is allowed by the specification

due to the properties of states x1 and x2, but in reality it is not due to x3, yet still

possible due to x4, then there is a control conflict. This possibility is captured by

the (∗) condition such that if the simulation could reach a state (x1, x2, x3, x4) where

(∗) holds, then illegal controllable behavior could occur in the system without either

observer being able to resolve the control conflict.

δH(x1, σ) is defined if σ ∈ Σc1

δH(x2, σ) is defined if σ ∈ Σc2

δH(x3, σ) is not defined

δG(x4, σ) is defined







































. (∗)

The transition relation δMΣo12,Σo21 is defined as follows.
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For σ ∈ Σ,

δMΣo12,Σo21 ((x1, x2, x3, x4), σ) =










(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ))

d if (∗)











.

For σ ∈ Σ \ (Σo1 ∪ Σo2),

δMΣo12,Σo21 ((x1, x2, x3, x4), σ
′) =






































(δH(x1, σ), x2, x3, x4)

(x1, δ
H(x2, σ), x3, x4)

(x1, x2, δ
H(x3, σ), δG(x4, σ))

d if (∗)







































.

For σ ∈ Σo2 \ (Σo1 ∪ Σo21) and the corresponding σ1 ∈ Σ1,

δMΣo12,Σo21 ((x1, x2, x3, x4), σ1) =










(δH(x1, σ), x2, x3, x4)

(x1, δ
H(x2, σ), δH(x3, σ), δG(x4, σ))











.

For σ ∈ Σo1 \ (Σo2 ∪ Σo12) and the corresponding σ2 ∈ Σ2,

δMΣo12,Σo21 ((x1, x2, x3, x4), σ2) =










(x1, δ
H(x2, σ), x3, x4)

(δH(x1, σ), x2, δ
H(x3, σ), δG(x4, σ))











.

For σ ∈ Σ, δMΣo12,Σo21 (d, σ) is undefined.

The construction forMΣo12,Σo21 is different from the one in [67] in that σ1 and σ2

transitions correspond to state estimation updates that could be removed if σ obser-

vances would be communicated between the controllers. TheMΣo12,Σo21 construction

prompts the following corollary to the main result of [67].
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Corollary 9 The state d is reachable from the initial state inMΣo12,Σo21 if and only

if L(H) is co-observable with respect to L(G), (Σo1 ∪ Σo21), (Σo2 ∪ Σo12), Σc1 and

Σc2.

Note that theM(Σo12∪{σ}),Σo21 automaton can be constructed from theMΣo12,Σo21

automaton by cutting all transitions labelled by σ1 and theMΣo12,(Σo21∪{σ}) automa-

ton can be constructed from theMΣo12,Σo21 automaton by cutting all transitions la-

belled by σ2. Therefore, the act of controller i communicating all occurrences of event

σ to controller j corresponds to trimming all σj labelled transitions inMΣo12,Σo21 .

For the set of events Σoij ⊆ Σ, let Σoij
j ⊆ Σj represent the corresponding set of

events such that σ ∈ Σoij if and only if σj ∈ Σoij
j . A set of events Σo21

1 ∪ Σo12
2 is a

x
M∅,∅

0 d-cut in M∅,∅ if and only if Lm(MΣo12,Σo21) = ∅ and consequently L(H) is co-

observable with respect to L(G), (Σo1 ∪ Σo21), (Σo2 ∪ Σo12), Σc1 and Σc2. Therefore,

the pair of sets (Σmin
o12 , Σmin

o21 ) is the smallest cardinality communication selection if

and only if the corresponding events Σo21min
1 ∪ Σo12min

2 ⊆ Σ1 ∪ Σ2 is the smallest

cardinality x
M∅,∅

0 d-cut in M∅,∅ when restricted to cutting transitions labelled with

events in Σ1 ∪ Σ2.

As with theMΣo construction given above this realization converts the commu-

nicating controller selection problem into a type of graph cutting problem as long

as only events in Σ1 and Σ2 are cut. There is a M̃Σo12,Σo21 construction that can be

used to convert this graph cutting problem into a true edge-colored directed graph

st-cut problem.

Define:

X
MΣo12,Σo21
x =

{

yMΣo12,Σo21 |∃t ∈ (Σ ∪ Σ′)∗, xMΣo12,Σo21
t
7→MΣo12,Σo21

yMΣo12,Σo21

}

.

X
MΣo12,Σo21
x represents all states that could be reached from xMΣo12,Σo21 inMΣo12,Σo21
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if only Σ transitions were allowed. The states in X
MΣo12,Σo21
x would be reachable from

xMΣo12,Σo21 inMΣo12,Σo21 no matter what events are communicated between the con-

trollers because only transitions labelled by events in Σ1∪Σ2 can be cut inMΣo12,Σo21

through the communication of events. With this in mind, the following nondeter-

ministic automaton M̃Σo12,Σo21 is constructed from MΣo12,Σo21 . It is assumed that

d 6∈ X
MΣo12,Σo21
x0 . Let M̃Σo12,Σo21 = (XM̃Σo12,Σo21 , x

M̃Σo12,Σo21
0 , ΣM̃Σo12,Σo21 , δM̃Σo12,Σo21 ),

where XM̃Σo12,Σo21 := XH × XH × XH × XG ∪ {d}, x
M̃Σo12,Σo21
0 := (xH

0 , xH
0 , xH

0 , xG
0 )

and ΣM̃Σo12,Σo21 := Σ1 ∪ Σ2.

The transition relation δM̃Σo12,Σo21 is defined as follows. Suppose there exists

three states xMΣo12,Σo21 , yMΣo12,Σo21 , zMΣo12,Σo21 ∈ XMΣo12,Σo21 and σ ∈ Σ such that

zMΣo12,Σo21 ∈ X
MΣo12,Σo21
x , zMΣo12,Σo21

σi7→MΣo12,Σo21
yMΣo12,Σo21 where σi ∈ Σ1∪Σ2. Then,

δM̃Σo12,Σo21 (xMΣo12,Σo21 , σi) =











yMΣo12,Σo21 if d 6∈ X
MΣo12,Σo21
y

d if d ∈ X
MΣo12,Σo21
y











The M̃Σo12,Σo21 automaton is really a colored directed graph where states are vertices,

transitions are directed edges and the transition labels are the colors. This prompts

another of the main contributions of this chapter.

Theorem 25 Given an M̃∅,∅ automaton constructed from H, G, Σo1, Σo2, Σc1, Σc2

and ∅, ∅ as the sets of communicated events, L(H) is co-observable with respect to

L(G), (Σo1 ∪ Σo21) , (Σo2 ∪ Σo12) and Σc1, Σc2 if and only if Σo21
1 ∪ Σo12

2 is a colored

x
M̃∅,∅

0 d-cut in the colored directed graph M̃∅,∅.

Proof: L(H) is co-observable with respect to L(G), (Σo1 ∪ Σo21) , (Σo2 ∪ Σo12) and

Σc1, Σc2 if and only if Σo21
1 ∪Σo12

2 is a colored x
M∅,∅

0 d-cut in the colored directed graph

M∅,∅. Therefore it is sufficient to show that Σo21
1 ∪ Σo12

2 is a colored x
M̃∅,∅

0 d-cut in
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the colored directed graph M̃∅,∅ if and only if Σo21
1 ∪ Σo12

2 is a colored x
M∅,∅

0 d-cut in

the colored directed graphM∅,∅

Define the natural projection P12 : Σ ∪ Σ1 ∪ Σ2 ∪ Σ′ → Σ1 ∪ Σ2. Suppose that

Σo21
1 ∪ Σo12

2 is not a colored x
M∅,∅

0 d-cut in the colored directed graph M∅,∅. Then

there exists a string of transitions labelled by s ∈ (Σ ∪ Σ1 ∪ Σ2 ∪ Σ′)∗ such that

x
M∅,∅

0
s
7→M∅,∅

d. Due to the construction of M̃∅,∅, x
M̃∅,∅

0

P12(s)
7→ M̃∅,∅

d.

Now suppose that Σo21
1 ∪Σo12

2 is not a colored x
M̃∅,∅

0 d-cut in the colored directed

graph M̃∅,∅. Then, there exists a string of transitions labelled by s ∈ (Σo21
1 ∪ Σo12

2 )
∗

such that x
M̃∅,∅

0
s
7→M̃∅,∅

d. Due to the construction of M̃∅,∅, there exists some string of

transitions labelled by t ∈ P̃−1
12 (s) such that x

M∅,∅

0
t
7→M∅,∅

d.

With the shown conversion between the graph cutting problem and the sensor se-

lection problem the methods outlined above to approximate minimal solutions to the

graph cutting problem can be used to approximate solutions to the communication se-

lection problem. The M̃∅,∅ automaton shown above can be constructed in polynomial

time, but this most likely does not hold if the number of controllers is unbounded.

This is due to the result in [66] that the problem of deciding co-observability for

systems with an unbounded number of controllers is PSPACE-complete.

6.9 Discussion

This chapter has shown results related to the approximation of minimal sensor

selections for centralized supervisory control synthesis. It was shown that minimal

sensor selections cannot be approximated within a constant factor in polynomial

time unless P=NP. It was shown how to convert the sensor selection problem into an

edge colored directed graph st-cut problem. Several deterministic and randomized

heuristic approximation methods for this directed graph problem were shown and a
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conversion of the directed graph problem to an integer programming problem was

given. An open communicating controller problem was also discussed and it was

shown how to convert this minimal communication decentralized control problem

into an edge colored directed graph st-cut problem. Therefore the methods discussed

in this chapter for dealing with the edge colored directed graph st-cut problem can

be used to solve the minimal communication problem.



CHAPTER VII

SYMMETRIC DISTRIBUTED

DISCRETE-EVENT SYSTEMS

7.1 Chapter Overview

This chapter discussed issues related to the verification of distributed discrete-

event systems composed of isomorphic modules. A finite state automaton system

model is assumed where a set of atomic propositions are defined on the states. A

type of symmetry is defined for these modular systems and a restriction of the µ-

calculus designed for these modular systems is introduced. A procedure is shown to

reduce the time and space complexity of testing if states of these symmetric modular

systems satisfy propositions in this µ-calculus. An example of a symmetric modular

UAV platoon leader system is then discussed.

7.2 Chapter Assumptions

As many distributed systems problems have already been found to be generally

computationally difficult as shown in Chapter IV, this chapter investigates an impor-

tant special case where the various system modules are exact copies of one another

except for the renaming of events. Systems modelled this way could be thought of

intuitively in the context of the object orientation paradigm in computer science.

176
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Each system module is an instantiation of a generic system object. The scope of

some of the behavior of the modules is private and does not affect the other mod-

ules, while each of the modules might have some public behavior with global scope

that is relevant to other modules. The system events may or may not be renamed in

the various instantiations of the modules in order to reflect if behavior is coordinated

among several modules on the occurrence of that event. These models can be used

to represent several important systems such as swarms of Unmanned Aerial Vehicles

(henceforth called UAV’s), computer networks and resource sharing manufacturing

systems.

The models used in this chapter are generalized from the standard model intro-

duced in [54] to permit more atomic propositions on the module states than state

marking. This model extension is inspired by the work in the formal methods com-

munity in computer science. See [14, 28] for an introduction to formal methods.

A method is given for reducing the inherent complexity of testing the specialized

µ-calculus propositions for permutation symmetric systems by constructing quotient

structures that are equivalent with respect to µ-calculus propositions for symmetric

systems. Previously, group-theoretic methods have been used in [17] to define classes

of states and transitions in a system that are equivalent under defined permutation

operations. Finding classes of equivalent states as in [17] is computationally rather

difficult and is at least as difficult as the graph isomorphism problem [26]. This has

induced several authors to attempt the design distributed systems with special archi-

tectures so that special types of symmetry are guaranteed to occur a priori, therefore

avoiding intensive symmetry verification procedures [17, 62]. This chapter expands

on this approach by discussing classes of distributed systems that are assumed to

contain a type of symmetry called “permutation symmetry”. The quotient automa-
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ton presented here for verifying properties on permutation symmetric systems was

also discussed in [62], but for a more restricted class of systems.

7.3 Specialized Modelling and Notational Definitions

This chapter uses a distributed system model called an “isomorphic module sys-

tem” that is a modification of the standard supervisory control discrete-event system

model used above. The distributed systems are composed of sets of interacting au-

tomata {G1, . . . , Gn}, and each automaton Gi = (X, x0, AP, L, Σi, δi) models the

behavior of a single module in the system. The set X is a set of system states and x0

is the initial state. AP is a set of atomic propositions and L : X → 2AP maps a state

to the set of propositions that hold at that state. Σi is the set of events relevant to

the behavior of module Gi and δi : X×Σi → X is the state transition function. The

isomorphic module systems can now be formally defined.

Definition 16 Suppose a set of automata {G1, . . . , Gn} are given such that ∀i ∈

{1, . . . , n}, Gi = (X, x0, AP, L, Σi, δi). The automata {G1, . . . , Gn} form an isomor-

phic module system if the automata are isomorphic to one another when the state

transition labellings are disregarded.

As stated, the system modules, {G1, . . . , Gn}, are isomorphic to one another, but

that isomorphism does not extend to transition labelling. That is, the module Gj is a

copy of Gi except that the local transition labels Σi are replaced with the respective

events from Σj according to a predefined translation mapping Ψij : Σi → Σj. The

function Ψij(·) translates a string of events relevant to module i to a string of events

relevant to module j. To formalize, for x ∈ X, γ ∈ Σi, the transition function is

defined as δi(x, γ) = δj(x, Ψij(γ)). The function Ψij(·), which is assumed to be

one-to-one, is also extended in the usual manner for strings and languages.
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The inverse translation function is defined as Ψ−1
ij (·) = Ψji(·). Note that it is

possible that σ ∈ Σi ∩ Σj but Ψij(σ) 6= σ. For an event σi ∈ Σi, the notation σj is

used to represent Ψij(σi) when it can be done without ambiguity.

Note that the set of system states, X, is not indexed nor are the atomic propo-

sitions AP or the state labelling function L. Therefore, when two modules are at

the same local system state, the same atomic propositions hold at both states. If

the system state labels are restricted to a binary state marking (i.e., to AP = {m}),

then this model is equivalent to the commonly used model in supervisory control

theory [54].

An extended parallel composition operation, denoted by ‖, is used to model the

interaction between modules. For a set of isomorphic modules {G1, . . . , Gn}, the

interaction of these modules is the system

G‖ = G1‖ · · · ‖Gn

= (X‖, x
‖
0, AP, L‖, Σ, δ‖).

The X‖, x
‖
0 and δ‖ components are defined in the usual manner for the parallel

composition operation. Let Σ = Σ1 ∪ · · · ∪ Σn. The states of the composed system

G1‖ · · · ‖Gn (i.e., x‖ ∈ X‖) are called composed states. The individual states of a

module (i.e., x ∈ X) are called module states. The composed states are n-tuples of

the module states.

For a composed state n-tuple x‖, the ith module state is represented as x‖
i
. A

transposition operator φij : X‖ → X‖ is defined where φij(x
‖) is x‖ with the ith and

jth module states swapped. The composed state labelling function L‖ : X‖ → 2AP

is not predefined except to require that for

φij(x
‖
a) = x

‖
b ⇒ L‖(x‖a) = L‖(x

‖
b). (7.1)
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A fundamental result of group theory [24] is that any permutation operator can

be constructed from the composition of transposition operators. Therefore, a state

permutation operator is constructed as follows from a set of transposition operators

for a given input x‖ ∈ X‖:

Φ[(i1j1)(i2j2)···(imjm)](x
‖) = φi1j1

(

φi2j2

(

· · ·φimjm

(

x‖
)))

. (7.2)

Given a state x‖, the set of all possible permutation operators Φ[··· ](·) can be

used to define the set of composed states that are permutations of the components

in the n-tuple x‖. These states are called the permutation equivalent states of x‖.

Given a state space X = {x1, . . . , xk} for an isomorphic module system G1, . . . , Gn,

an arbitrary ordering can be placed on the states in X such that x1 < x2 < · · · < xk.

Therefore, for any set of permutation equivalent states from X‖, there is always one

state such that the module states of the composed states have the correct relative

order with respect to the ordering x‖1 ≤ x‖2 ≤ · · · ≤ x‖n. This state is called the

standard permutation of all states in its equivalence class. A function SP : X ‖ →

X‖ is defined such that when given an n-tuple composed state z‖, SP (z‖) = y‖ is

another composed state with the same module states as z‖ in the correct order, i.e.

{z‖1, z‖2, · · · , z‖n} = {y‖1, y‖2, · · · , y‖n} and y‖1 ≤ y‖2 ≤ · · · ≤ y‖n. Hence, SP (·) is

called the standard permutation operator.

Let ~X = {x‖ ∈ X‖|x‖ = SP (x‖)} be the set of standard permutations. The

inverse function SP−1 : ~X → 2X‖
returns the set of states that has the input as its

standard permutation. Note that the initial state x
‖
0 is its own standard permutation

because x
‖
0 = (x0, . . . , x0). Also note that using the notation just defined, the above

mentioned requirement on the composed state labelling function that for x
‖
a, x
‖
b ∈ X‖,

i, j ∈ {1, . . . , n} if φij(x
‖
a) = x

‖
b , then L‖(x

‖
a) = L‖(x

‖
b)[Equation 7.1] can be rephrased
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T 12, T 32

T 21, T 23

T1, T2

0 1 2

G2:

T 13, T 23

T 31, T 32

T3

T1, T2

0 1 2

G3:

T2T1

T 21, T 31

T 12, T 13

T2, T3

0 1 2

G1:

Figure 7.1: Modules G1, G2, G3 for Example 17.

as follows for all ~x ∈ ~X and x‖ ∈ X‖

x‖ ∈ SP−1(~x)⇒ L‖(x‖) = L‖(~x). (7.3)

For all x‖ ∈ X‖ there is a (non-unique) string of index pairs
[

(ix
‖

1 jx‖

1 )(ix
‖

2 jx‖

2 ) · · · (ix
‖

m jx‖

m )
]

such that Φ[

(ix
‖

1 jx‖
1 )(ix

‖
2 jx‖

2 )···(ix
‖

m jx‖
m )

](x‖) = SP (x‖). This

string of index pairs defines a permutation operator Φx‖(·) : X‖ → X‖ such that

Φx‖(·) = Φ[

(ix
‖

1 jx‖
1 )(ix

‖
2 jx‖

2 )···(ix
‖

m jx‖
m )

](·). Therefore, Φx‖(x‖) = SP (x‖).

7.4 Modular Symmetry

A special symmetry property for isomorphic module systems is now defined. Con-

sider the following simple example.

Example 17 Consider the set of isomorphic token passing modules {G1, G2, G3}

shown in Figure 7.1.

This example can be thought of as a controller for resource sharing modules

{G1, G2, G3} where module Gi would have exclusive access to a resource if and only
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T 23
(0,0,0)

T 31

T1

T2

T3

T 12

T 13

T 21

T 32
(1,2,2)

(2,1,2)

(2,2,1)

Figure 7.2: The composed G1‖G2‖G3 for Example 17.

if it possesses the token. A module possesses a token if and only if it is in state 1.

At initialization, all of the modules are at state 0 and no modules possess tokens. On

the occurrence of event Ti, a token is given to module Gi and module Gi enters state

1. The other modules enter state 2. The token is passed from module Gi to module

Gj on the occurrence of event T ij so that module Gi enters state 2 and Gj enters

state 1. The composition G1‖G2‖G3 can be seen in Figure 7.2.

For G1‖G2‖G3 there are two classes of states that could be considered equivalent

with respect to permutations of the component states. The two sets of equivalent

state classes are {(0, 0, 0)} and {(1, 2, 2), (2, 1, 2), (2, 2, 1)}. A valid state labelling

for the G1‖G2‖G3 automaton might be that states {(1, 2, 2), (2, 1, 2), (2, 2, 1)} have

proposition labelling T to signify there is exactly one token in the system and the

state (0, 0, 0) has proposition labelling F to signify that no modules possess tokens.

Note that there is a transition δ‖(xa, σ) = xb if and only if for all state permutation

operators Φ(·), there exists an event σ′ such that δ‖(Φ(xa), σ
′) = Φ(xb). More specif-

ically, consider the state transitions δ‖((0, 0, 0), T1) = (1, 2, 2) and δ‖((0, 0, 0), T2) =
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(2, 1, 2). For this pair of global transitions the starting and ending states are permu-

tation equivalent. Also, the events that drive these transitions are the same event

with different indices. Now consider the state transitions δ‖((1, 2, 2), T 12) = (2, 1, 2)

and δ‖((2, 2, 1), T 31) = (1, 2, 2). Note that the initial and final composed states in

both of this pair of transitions are also permutations of each other and the events

that drive these transitions are the same event with different indices.

The intuition gained in Example 17 is that for some special isomorphic module

systems, there is a type of symmetry such that there is a transition δ‖(xa, σ) = xb

if and only if for any state permutation operator, Φ(·), there exists exactly one

transition labelled by an event σΦ such that δ‖(Φ(xa), σΦ) = Φ(xb). Therefore,

corresponding to Φ(·) there should be an event translation operator ΠΦ : Σ →

Σ to calculate ΠΦ(σ) such that δ‖(Φ(xa), ΠΦ(σ)) = Φ(xb) for any other transition

δ‖(xa, σ) = xb.

Consequently, for systems containing this kind of symmetry, if there is a transi-

tion between two states labelled by an event (that is δ‖(xa, σ) = xb), then for any

permutation on those states (Φ(·)), another unique transition exists labelled by event

(ΠΦ(σ)) that can be computed by a translation operator (ΠΦ(·)) such that there is

a transition between the permuted states driven by the computed event (that is,

δ‖(Φ(xa), ΠΦ(σ)) = Φ(xb)). The definition of the event translation operator ΠΦ(·)

should also be able to be extendable to strings of arbitrary length. This intuition

is used to define a property below called permutation symmetry below that forces a

large class of global properties to hold at states independent of the composed state

orderings.

Let there be a set of permutation operators {Φ[(i1j1)(i2j2)···(imjm)](·)} for the indices

i1, j1, . . . , im, jm ∈ {1, . . . , n}. Suppose there is a class of doubly indexed functions
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{πij(·) : Σ → Σ|i, j ∈ {1, . . . , n}} and define the composition of these functions as

was done above for the transposition operations. Namely:

Π[(i1j1)(i2j2)···(imjm)](σ) = πi1j1 (πi2j2 (· · · πimjm (σ))) . (7.4)

Definition 17 Modular State Permutation Symmetry: Suppose there is a set of

functions {πij} such that for all strings of module index pairs (i1j1)(i2j2) · · · (imjm)

and (i′1j
′
1)(i

′
2j
′
2) · · · (i

′
m′j′m′) such that

(

Φ[(i1j1)(i2j2)···(imjm)](·) = Φ[(i′1j′1)(i′2j′2)···(i
′
m′j

′
m′ )](·)

)

(7.5)

then

(

Π[(i1j1)(i2j2)···(imjm)](·) = Π[(i′1j′1)(i′2j′2)···(i′
m′j

′
m′ )](·)

)

. (7.6)

A system composed of {G1, . . . , Gn} is said to have modular state permutation

symmetry with respect to {πij} (or permutation symmetry for short) if ∀i, j ∈

{1, . . . , n}, x
‖
a, x
‖
b ∈ X‖,

(

δ‖(x‖a, σ) = x
‖
b

)

⇐⇒
(

δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b)

)

. (7.7)

It is now discussed how the token passing system in Example 17 has permutation

symmetry.

Example 18 Consider the set of isomorphic token passing modules {G1, G2, G3}

discussed in Example 17. According to Definition 17, it is required to define the

event translation function in order to demonstrate permutation symmetry for this
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system. Suppose i, j, k ∈ {1, 2, 3} such that i,j and k are not equal:

πij :

























































Ti → Tj

Tj → Ti

Tk → Tk

T ij → T ji

T ik → T jk

T ji → T ij

T jk → T ik

T ki → T kj

T kj → T ki

























































.

With this definition of the {πij(·)} mapping, it is straightforward to verify that

the system G1‖G2‖G3 is permutation symmetric with respect to {πij(·)}.

As a demonstration of the symmetry exhibited by the transition structure in this

example, consider the φ13(·) transposition operator. For the string of transitions

labelled by T1T13T32T32T21, due to the π13(·) mapping as defined above,

π13(T1T13T32T32T21) = T3T31T12T12T23.

Also,

φ13((0, 0, 0)) = (0, 0, 0),

φ13((1, 2, 2)) = (2, 2, 1).

Because G1‖G2‖G3 is permutation symmetric with respect to {πij},

δG1‖G2‖G3((0, 0, 0), T1T13T32T32T21) = (1, 2, 2),

δG1‖G2‖G3((0, 0, 0), T3T31T12T12T23) = (2, 2, 1).
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The intuition behind the definition of permutation symmetry for G‖ is that for

any state transition in G‖ between two states x
‖
a, x
‖
b on the occurrence of an event σ,

such that δ‖(x
‖
a, σ) = x

‖
b , then for any state transposition operator φij(·), there is an

event translation function πij(·) such that δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b).

Also, because all permutation operators are compositions of transpositions oper-

ator, for any state permutation operator Φ[(i1j1)(i2j2)···(imjm)](·), corresponding event

permutation operator Π[(i1j1)(i2j2)···(imjm)](·), and permutation symmetric system G‖,

then ∀x
‖
a, x
‖
b ∈ X‖, σ ∈ Σ‖,

(

δ‖(x‖a, σ) = x
‖
b

)

⇐⇒ (7.8)

(

δ‖
(

Φ[(i1j1)···(imjm)](x
‖
a), Π[(i1j1)···(imjm)](σ)

)

= Φ[(i1j1)···(imjm)](x
‖
b)

)

.

Furthermore, due to Equations 7.5 and 7.6, the definition of permutation sym-

metry ensures that for any two strings of module index pairs (i1j1)(i2j2) · · · (imjm)

and (i′1j
′
1)(i

′
2j
′
2) · · · (i

′
m′j′m′) that define the same permutation operators

Φ[(i1j1)(i2j2)···(imjm)](·) = Φ[(i′1j′1)(i′2j′2)···(i
′
m′j

′
m′ )](·)

then for the strings of pairs (i1j1)(i2j2) · · · (imjm) and (i′1j
′
1)(i

′
2j
′
2) · · · (i

′
m′j′m′) and an

event σ there will be exactly one transition labelled by an event σ ′ such that

σ′ = Π[(i1j1)(i2j2)···(imjm)](σ) = Π[(i′1j′1)(i′2j′2)···(i′
m′j

′
m′ )](σ).

Furthermore, the event σ′ ensures that

(

δ‖(x‖a, σ) = x
‖
b

)

⇐⇒
(

δ‖
(

Φ[(i1j1)···(imjm)](x
‖
a), σ

′
)

= Φ[(i1j1)···(imjm)](x
‖
b)

)

.

If in the definition of state permutation symmetry Equation 7.5 did not im-

ply Equation 7.6, then it would be ambiguous if the unique transition correspond-

ing to δ‖
(

x
‖
a, σ

)

= x
‖
b from Φ[(i1j1)···(imjm)](x

‖
a) to Φ[(i1j1)···(imjm)](x

‖
b) is labelled by

Π[(i1j1)···(imjm)](σ) or Π[(i′1j′1)···(i′mj′m)](σ).
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Note that for a permutation symmetric system with a set of event translation

functions {πij(·)}, the inverse functions Π−1
[(i1j1)(i2j2)···(imjm)](·) Can be easily found

because Φ−1
[(i1j1)(i2j2)···(imjm)](·) = Φ[(imjm)···(i2j2)(i1j1)](·). Therefore, due to the definition

of permutation symmetry, Π−1
[(i1j1)(i2j2)···(imjm)](·) = Π[(imjm)···(i2j2)(i1j1)](·).

The subscripts [(i1j1)(i2j2) · · · (imjm)] on the functions Φ[(i1j1)(i2j2)···(imjm)](·) and

Π[(i1j1)(i2j2)···(imjm)](·) are sometimes dropped when it can be done so without ambi-

guity. If Φx‖(·) = Φ[(i1j1)(i2j2)···(imjm)](·) then define Πx‖(·) = Π[(i1j1)(i2j2)···(imjm)](·).

Using the notation of [17], a language L(G‖) has a symmetric group of operators

SΣ = {π : Σ→ Σ} if ∀π ∈ SΣ, then L(G‖) = π(L(G‖)). This prompts the following

lemma and theorem.

Lemma 11 Suppose {G1, . . . , Gn} has permutation symmetry with respect to {πij}.

Then

s ∈ L(G‖)⇒ Π[(i1j1)(i2j2)···(imjm)](s) ∈ L(G‖). (7.9)

Proof: From the definition of permutation symmetry,

(

δ‖(x‖a, σ) = x
‖
b

)

⇐⇒
(

δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b)

)

.

With the construction of Φ and Π and due to Equation 7.8,

(

δ‖(x‖a, σ) = x
‖
b

)

⇐⇒

(

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
a), Π[(i1j1)(i2j2)···(imjm)](σ)) = Φ[(i1j1)(i2j2)···(imjm)](x

‖
b)

)

.

The rest of this lemma is shown with proof by induction on the length of s that if

δ‖(x
‖
0, s) = x

‖
|s|, then

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
0), Π[(i1j1)(i2j2)···(imjm)](s)) = Φ[(i1j1)(i2j2)···(imjm)](x

‖
|s|)
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and

s ∈ L(G‖)⇒ Π[(i1j1)(i2j2)···(imjm)](s) ∈ L(G‖).

.

Base of induction: Suppose s = σ.

From above, if δ‖(x
‖
0, σ) = x

‖
1, then

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
0), Π[(i1j1)(i2j2)···(imjm)](σ)) = Φ[(i1j1)(i2j2)···(imjm)](x

‖
1).

Therefore,

σ ∈ L(G‖)⇒ Π[(i1j1)(i2j2)···(imjm)](σ) ∈ L(G‖).

Induction hypothesis: Suppose |s| = l. If there exists a state x
‖
l such that

δ‖(x
‖
0, s) = x

‖
l then

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
0), Π[(i1j1)(i2j2)···(imjm)](s)) = Φ[(i1j1)(i2j2)···(imjm)](x

‖
l ).

and

s ∈ L(G‖)⇒ Π[(i1j1)(i2j2)···(imjm)](s) ∈ L(G‖).

.

Induction step: Suppose |s′| = l + 1 and s′ = sσ. Suppose there exists a state

x
‖
l+1 such that δ‖(x

‖
0, s
′) = x

‖
l+1. Then there is also a state x

‖
l such that δ‖(x

‖
0, s) = x

‖
l

and δ‖(x
‖
l , σ) = x

‖
l+1. From the induction hypothesis it is known that

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
0), Π[(i1j1)(i2j2)···(imjm)](s)) = Φ[(i1j1)(i2j2)···(imjm)](x

‖
l )

and from Equation 7.8

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
l ), Π[(i1j1)(i2j2)···(imjm)](σ)) = Φ[(i1j1)(i2j2)···(imjm)](x

‖
l+1).
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Therefore, by combining these two results,

δ‖(Φ[(i1j1)(i2j2)···(imjm)](x
‖
0), Π[(i1j1)(i2j2)···(imjm)](s

′)) = Φ[(i1j1)(i2j2)···(imjm)](x
‖
l+1).

Hence,

s′ ∈ L(G‖)⇒ Π[(i1j1)(i2j2)···(imjm)](s
′) ∈ L(G‖).

.

Theorem 26 The set of operators {Π[(i1j1)(i2j2)···(imjm)]} constructed from {πij} forms

a symmetric group for the language L(G‖) if {G1, . . . , Gn} has permutation symmetry

with respect to {πij}.

Proof: It is first shown that L(G‖) ⊆ Π[(imjm)···(i2j2)(i1j1)](L(G‖)). Suppose s ∈

L(G‖). This implies that Π[(i1j1)(i2j2)···(imjm)](s) ∈ L(G‖) from Lemma 11. Therefore,

s ∈ Π−1
[(i1j1)(i2j2)···(imjm)](L(G‖)). This implies that L(G‖) ⊆ Π[(imjm)···(i2j2)(i1j1)](L(G‖)).

The reverse inclusion can be shown to hold by similar methods.

Theorem 26 shows that the language generated by an isomorphic module system

with state permutation symmetry also contains a type of language symmetry with

respect to the event translation operators {πij(·)}. That is, for any i, j, πij(L(G‖)) =

L(G‖) even though the πij(·) function is not an identity map in general.

7.5 Permutation Symmetric µ-Calculus

In the most commonly accepted version of the µ-calculus as discussed in [14], a

transition system M = (S, T,AP, L) is given where S is a set of states, T is a set of

transition classes T ⊆ 2S×S, AP is a set of atomic propositions and L : S → 2AP is

a state labelling function. A transition class Tσi
∈ T, Tσi

⊆ S × S can be thought of
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as the set of all transitions of the same “type”, similar to how transitions might be

labelled in discrete-event systems. The µ-calculus system also uses a set of relational

variables V AR = {Q1, Q2, . . .} where each relational variable Qi ∈ V AR can be

assigned a subset of S. Alternatively, a relational variable can be thought of as a

variable set of states Qi ⊆ S. Following the notation used in [14], e : V AR → 2S

denotes an environment where states are assigned to the relational variables. Let Q

be an arbitrary element of {Q1, Q2, . . .}. The notation e[Q←W ] is used to denote a

new environment that is the same as e except e[Q←W ](Q) = W . That is, with e[Q←W ],

the states in W are assigned to Q.

The µ-calculus can be used to express a set of formulas and a µ-calculus formula

f can be said to hold at some states in S, but not in others. The notation used is

that M, s |= f if the formula f holds at state s in M . The set [[f ]]Me denotes the

states in M where f holds with environment e. The sets of formulas that can hold

in the µ-calculus are now recursively defined simultaneously with some notational

definitions.

• If p ∈ AP , then p is a formula. An atomic proposition holds at a state according

to the state labelling function L(·).

[[p]]Me = {s ∈ S|p ∈ L(s)} (7.10)

• A relational variable Qi ∈ V AR is a formula. A relational variable holds at a

state if that state is assigned to the relational variable.

[[Q]]Me = e(Q) (7.11)

• If f and g are formulas, then ¬f , f ∨ g and f ∧ g are formulas. The formula

¬f holds in the set of states where f does not hold, f ∨ g holds in the set of
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states where f or g hold and f ∧ g holds the set of states where f and g hold.

[[¬f ]]Me = S \ [[f ]]Me (7.12)

[[f ∧ g]]Me = [[f ]]Me ∩ [[g]]Me (7.13)

[[f ∨ g]]Me = [[f ]]Me ∪ [[g]]Me (7.14)

• If f is a formula and Tσi
∈ T then [Tσi

]f and 〈Tσi
〉 are formulas. The formula

[Tσi
]f holds at a state s1 ∈ S if for all s2 ∈ S such that (s1, s2) ∈ Tσi

, f holds

at s2. Similarly, 〈Tσi
〉f holds at a state s1 ∈ S if there exists some s2 ∈ S such

that (s1, s2) ∈ Tσi
and f holds at s2.

[[〈Tσi
〉f ]]Me = {s1|∃s2 [((s1, s2) ∈ Tσi

) ∧ (s2 ∈ [[f ]]Me)]} (7.15)

[[[Tσi
] f ]]Me = {s1|∀s2 [((s1, s2) ∈ Tσi

) ∧ (s2 ∈ [[f ]]Me)]} (7.16)

• If Q ∈ V AR and f is a formula that is a function of Q, then µQ.f and νQ.f

are formulas, provided that f is syntactically monotone with respect to Q.

The least fixpoint of states µQ.f is the set of states such that if Q holds in

those states, then f also holds in those states. The greatest fixpoint νQ.f is

similarly defined. A formula f is said to be syntactically monotone with respect

to a relational variable Q if all occurrences of Q fall under an even number of

negations in f .

[[µQ.f ]]Me is the least fixpoint of τ(W ) = [[f ]]Me[Q←W ] (7.17)

[[νQ.f ]]Me is the greatest fixpoint of τ(W ) = [[f ]]Me[Q←W ] (7.18)
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A function τ is monotonic if S ⊆ S ′ ⇒ τ(S) ⊆ τ(S ′). Because of the monotonicity

of all possible functions τ(W ) = [[f ]]Me[Q←W ], there are simple methods for finding

the least and greatest fixpoints. To find the least fixpoint, assign W0 := ∅,W1 :=

τ(W0), . . . and so on until Wi+1 = Wi. Then Wi is the least fixpoint. For a k state

system, the least fixed point will be found in less than k iterative compositions of the

τ(·) operation. Similarly, to find the greatest fixpoint, let W0 := S,W1 := τ(W0), . . .

until the first i is found such that Wi+1 = Wi. Then Wi is the greatest fixpoint and

this fixpoint will be found in less than k steps in a k state system.

Several important properties of the transition system M can be easily expressed

using the µ-calculus. For instance, for a transition system M , the expression M, s |=

∨i〈Tσi
〉True is used to denote that a state s ∈ S does not deadlock. Also, M, s |=

νQ. (∨i〈Tσi
〉True)∧ (∧i [Tσi

] Q) denotes that all states reachable from s are deadlock

free. Furthermore, M, s0 |= νQ1. (µQ2. (m) ∨ (∨i〈Tσi
〉Q2))∧ (∧i [Tσi

] Q1) can be used

to express that all states reachable from s0 can eventually lead to a state where an

atomic proposition called marking (m) holds. In supervisory control theory, systems

that satisfy this last property are said to be non-blocking.

Given a µ-calculus formula f , the depth of f (denoted by depth(f)) is defined

recursively as follows. Let f1 and f2 be two µ-calculus formulas and let Tσi
be a

transition class.

• If f ∈ AP or f ∈ V AR, then depth(f) = 0.

• If f = ¬f1, f = [Tσi
]f1, f = 〈Tσi

〉f1, f = µQ.f1 or f = νQ.f1, then depth(f) =

depth(f1) + 1.

• If f = f1 ∧ f2 or f = f1 ∨ f2, then depth(f) = max{f1, f2}+ 1.

Now that the standard µ-calculus and its properties have been introduced, it
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is shown how the µ-calculus can be restricted to take advantage of permutation

symmetry of systems such that two permutation equivalent states satisfy versions

of the same µ-calculus formulas. This restriction of the µ-calculus for permutation

symmetric systems and permutation symmetric properties is called the permutation

symmetric µ-calculus.

As a small example how these permutation symmetric formulas could be useful,

consider a system with permutation symmetry, such that module i always enters a

failure state on the occurrence of local event σi when module i is in state x1 and all

other modules are in state x2. In an n module system there are n permutations of the

modular state (x1, x2, . . . , x2) composed of one x1 state and (n−1) states labelled x2.

To verify that in this system that no σi event could occur in all permutations of the

symmetric system structure, it would be sufficient to check n different permutations,

but because of underlying system symmetry it is only needed to verify that ¬〈Tσ1〉

from state (x1, x2, . . . , x2) and avoid verifying all of the other redundant symmetric

propositions.

Motivated by the previous example, the transition classes and relational variables

for G‖ are defined so that µ-calculus formulas can be written such that for two states

x
‖
a, x
‖
b ∈ X‖ and µ-calculus formula f ,

(

φij(x
‖
a) = x

‖
b

)

⇒
(

G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f

)

.

The µ-calculus is restricted as follows.

• For all x
‖
a, x
‖
b ∈ X‖ such that SP (x

‖
a) = SP (x

‖
b), L(x

‖
a) = L(x

‖
b).

• For all x
‖
a, x
‖
b ∈ X‖ and Q ∈ V AR such that SP (x

‖
a) = SP (x

‖
b), x

‖
a ∈ Q ⇐⇒

x
‖
b ∈ Q.

• For x
‖
a, x
‖
b ∈ X‖, σ1 ∈ Σ, if δ‖

(

SP (x
‖
a), σ1

)

= Φ
x
‖
a
(x
‖
b), then assign (x

‖
a, x
‖
b) to
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Tσ1 .

For the first bullet the state labelling function was previously restricted to be

permutation independent in Section 7.3. In the second bullet, the assignments to

the relational variables must be permutation independent as with the state labelling

function. The definition of the transition classes in the third bullet ensures that

all permutation equivalent transitions (according to Φ(·) and Π(·) mappings) must

be in the same permutation class. Excepting these restrictions, formulas in the

permutation symmetric µ-calculus can then be constructed in the usual manner.

Permutation equivalent states in permutation symmetric systems satisfy the same

permutation symmetric µ-calculus formulas.

Theorem 27 Suppose a permutation symmetric system G‖ is given with two states

x
‖
a, x
‖
b ∈ X‖ and a permutation symmetric µ-calculus formula f . Then

(

φij(x
‖
a) = x

‖
b

)

⇒
(

G‖, x‖a |= f ⇐⇒ G‖, x
‖
b |= f

)

. (7.19)

Proof: This theorem is demonstrated using a proof by generalized induction on the

depth of f .

Base of induction: Suppose depth(f) = 0. Then f is either an atomic proposition

or a relational variable. Due to the restrictions on the permutation symmetric sys-

tems and permutation symmetric µ-calculus, the proposition labelling and relational

variable assignments for x
‖
a and x

‖
b must be identical.

Induction hypothesis: For a formula f such that depth(f) ≤ n, φij(x
‖
a) = x

‖
b ⇒

(

G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f

)

.

Induction step: Suppose depth(f) = n + 1. The induction step is demon-

strated in 7 cases. Let f1 and f2 be any formulas such that depth(f1) = n and

depth(f2) ≤ n. From the induction hypothesis it is known that φij(x
‖
a) = x

‖
b ⇒
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(

G‖, x
‖
a |= f1 ⇐⇒ G‖, x

‖
b |= f1

)

∧
(

G‖, x
‖
a |= f2 ⇐⇒ G‖, x

‖
b |= f2

)

Suppose in gen-

eral that φij(x
‖
a) = x

‖
b .

Case 1 : f = ¬f1.

It is already known from the induction hypothesis that

G‖, x‖a |= f1 ⇐⇒ G‖, x
‖
b |= f1

⇒ G‖, x
‖
a 6|= f1 ⇐⇒ G‖, x

‖
b 6|= f1

⇒ G‖, x
‖
a |= ¬f1 ⇐⇒ G‖, x

‖
b |= ¬f1

⇒ G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f .

Case 2 : f = f1 ∧ f2.

It is already known from the induction hypothesis that

(

G‖, x‖a |= f1 ⇐⇒ G‖, x
‖
b |= f1

)

∧
(

G‖, x‖a |= f2 ⇐⇒ G‖, x
‖
b |= f2

)

⇒
(

G‖, x
‖
a |= f1 ∧ f2 ⇐⇒ G‖, x

‖
b |= f1 ∧ f2

)

⇒ G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f .

Case 3 : f = f1 ∨ f2.

It is already known from the induction hypothesis that

(

G‖, x‖a |= f1 ⇐⇒ G‖, x
‖
b |= f1

)

∧
(

G‖, x‖a |= f2 ⇐⇒ G‖, x
‖
b |= f2

)

⇒
(

G‖, x
‖
a |= f1 ∨ f2 ⇐⇒ G‖, x

‖
b |= f1 ∨ f2

)

⇒ G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f .

Case 4 : f = 〈Tσi
〉f1.
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Suppose that φij(x
′‖
a) = x′

‖
b . Due to the definition of Tσi

in the restricted µ-calculus,

(x
‖
a, x′

‖
a) ∈ Tσi

⇐⇒ (x
‖
b , x
′‖
b) ∈ Tσi

. It is already known from the induction hypoth-

esis that
(

G‖, x′‖a |= f1

)

⇐⇒
(

G‖, x′
‖
b |= f1

)

⇒







((

∃x′‖a|(x
‖
a, x′

‖
a) ∈ Tσi

)

⇐⇒
(

∃x′
‖
b |(x

‖
b , x
′‖
b) ∈ Tσi

))

∧
(

G‖, x′‖a |= f1 ⇐⇒ G‖, x′
‖
b |= f1

)







⇒ G‖, x
‖
a |= 〈Tσi

〉f1 ⇐⇒ G‖, x
‖
b |= 〈Tσi

〉f1

⇒ G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f .

Case 5 : f = [Tσi
]f1.

For all x′‖a, x
′‖
b such that φij(x

′‖
a) = x′

‖
b , (x

‖
a, x′

‖
a) ∈ Tσi

⇐⇒ (x
‖
b , x
′‖
b) ∈ Tσi

due to the

definition of Tσi
in the restricted µ-calculus. It is already known from the induction

hypothesis that G‖, x′‖a |= f1 ⇐⇒ G‖, x′
‖
b |= f1

⇒







((

∀x′‖a|(x
‖
a, x′

‖
a) ∈ Tσi

)

⇐⇒
(

∀x′
‖
b |(x

‖
b , x
′‖
b) ∈ Tσi

))

∧
(

G‖, x′‖a |= f1 ⇐⇒ G‖, x′
‖
b |= f1

)







⇒ G‖, x
‖
a |= [Tσi

]f1 ⇐⇒ G‖, x
‖
b |= [Tσi

]f1

⇒ G‖, x
‖
a |= f ⇐⇒ G‖, x

‖
b |= f .

Case 6 : f = µQ.f1.

Let τ(W ) = [[f1]]G‖e[Q←W ]. It is already known from the induction hypothesis that

G‖, x
‖
a |= f1 ⇐⇒ G‖, x

‖
b |= f1, so that for any valid permutation symmetric evalu-

ation e[Q←W ] in the restricted µ-calculus, it is known from the induction hypothesis

that x
‖
a ∈ τ(W ) ⇐⇒ x

‖
b ∈ τ(W ). Let [[µQ.f ]]G‖e be the least fixpoint of τ(W ).

Therefore, x
‖
a ∈ [[µQ.f ]]G‖e ⇐⇒ x

‖
b ∈ [[µQ.f ]]G‖e.

Case 7 : f = νQ.f1.

This case can be demonstrated using an argument similar to that for Case 6. This

completes the proof by induction.
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7.6 Permutation Symmetry Quotient Automata

Given a set of automata {G1, . . . , Gn} such that the size of their respective state

spaces is bounded by k, the composed automaton G1‖ · · · ‖Gn has kn reachable states

in the worst case. As n grows, this state space can become unbearably large and

procedures that require an enumeration over all of the reachable states of G1‖ · · · ‖Gn

would take a lot of time. Therefore procedures for solving many control and veri-

fication problems on the composed system G1‖ · · · ‖Gn are time intensive using the

currently known methods.

However, for many types of systems a quotient automaton construction based on

state permutation equivalences can be used to greatly decrease computation time

when testing if properties hold at various system states [14]. In general, defining a

quotient automaton with the smallest state space for verifying system properties for a

given system is generally computationally difficult. In this section a nondeterministic

quotient automaton ~G that avoids these computational difficulties is constructed from

the modules {G1, . . . , Gn}. A version of this quotient automaton for the standard

supervisory control model was shown in [17, 62]. In [17] it was not shown how this

quotient automaton could be used to more efficiently verify µ-calculus properties of

systems.

The automaton ~G has a predefined quotient structure that does not need to be

computed. Although this quotient structure may not have the smallest state space,

it generally leads to a significant decrease in the computational difficulty of testing

symmetric µ-calculus formulas on permutation symmetric systems.

The automaton ~G is a 6-tuple ~G =
(

~X, ~x0, AP, L‖, Σ‖, ~δ
)

such that ~G uses the

set of the standard permutations ~X as defined above as its state space. A state ~x in
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~G is also in G‖, so the same set of atomic propositions and state labelling function

are used for ~G and G‖. Let ~xo be the initial state of G1‖ · · · ‖Gn. Assume that

the transition structures of {G1, · · · , Gn} are generalized such that if σ 6∈ Σi, then

∀x ∈ X, δi(x, σ) = x. The nondeterministic state transition function ~δ : ~X → ~X is

defined as follows:

~δ(~x, σ) =











SP ((δ1(~x
1, σ), . . . , δn(~xn, σ))) if δ1(~x

1, σ)! ∧ · · · ∧ δn(~xn, σ)!

undefined otherwise.











The definition of ~δ(·, ·) can be extended to allows strings of arbitrary length using

the usual methods. The isomorphic module system introduced in Example 17 is now

used to demonstrate the construction of a reduced state space composed automaton

~G.

Example 19 Consider the isomorphic module system G1, G2, G3 introduced in Ex-

ample 17 above. The set of standard permutations of the sets of equivalent states is

{(0, 0, 0), (1, 2, 2)}. The reduced state space composed automaton ~G can be seen in

Figure 7.3.

(1,2,2)
T 12

T 13

(0,0,0)
T1, T2, T3

Figure 7.3: The automaton ~G constructed from G1, G2, G3.

7.7 Verifying Symmetric µ-Calculus Formulas

It is now shown that the ~G automaton constructed from the set of modules

{G1, . . . , Gn} can be used to test permutation symmetric µ-calculus propositions in
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the original G‖ system. Suppose there is a formula f in the restricted µ-calculus

and it is desired to test if for a state x‖ of G‖ whether or not G‖, x‖ |= f . Suppose

also that {Tσ1 , . . .} is the set of transition classes of G‖ for the restricted µ-calculus

defined above. First, the automaton ~G is constructed from {G1, . . . , Gn}. The set

of transition classes {~Tσ1 , . . .} is then constructed such that for all (~x1, x
‖
2) ∈ Tσi

,

(~x1, SP (x
‖
2)) is assigned to ~Tσi

.

Finally construct a µ-calculus formula ~f from f , {Tσ1 , . . .} and {~Tσ1 , . . .} such

that ~f is a copy of f with any occurrence of Tσi
in f replaced with the corresponding

~Tσi
. This formula construction can be used to test if G‖, ~x |= f as indicated in

Theorem 28.

Theorem 28 Let ~x be a state of a permutation symmetric system G‖ and let f be a

permutation symmetric µ-calculus formula. From this system construct ~G, {~Tσ1 , . . .}

and ~f as described above. Then,

(

G‖~x |= f
)

⇐⇒
(

~G~x |= ~f
)

. (7.20)

Proof: This theorem is demonstrated using a proof by generalized induction on the

depth of f .

Base of induction:

Suppose depth(f) = 0. Then f is either an atomic proposition or a relational variable.

Due to the construction of G‖ and ~G, the proposition labelling and relational variable

assignments for ~x are identical in both systems.

Induction hypothesis:

For a formula f such that depth(f) ≤ n,
(

G‖~x |= f
)

⇐⇒
(

~G~x |= ~f
)

Induction step:

Suppose depth(f) = n + 1. The induction step is demonstrated in 7 cases. Let f1



200

and f2 be any formulas such that depth(f1) = n and depth(f2) ≤ n. It is known from

the induction hypothesis that
(

G‖~x |= f1

)

⇐⇒
(

~G~x |= ~f1

)

and
(

G‖~x |= f1

)

⇐⇒
(

~G~x |= ~f1

)

.

Case 1 : f = ¬f1.

(

G‖~x |= f1

)

⇐⇒
(

~G~x |= ~f1

)

⇒
(

G‖~x 6|= f1

)

⇐⇒
(

~G~x 6|= ~f1

)

⇒
(

G‖~x |= ¬f1

)

⇐⇒
(

~G~x |= ¬~f1

)

.

Case 2 : f = f1 ∧ f2.

(

(

G‖~x |= f1

)

⇐⇒
(

~G~x |= ~f1

))

∧
(

(

G‖~x |= f2

)

⇐⇒
(

~G~x |= ~f2

))

⇒
((

G‖~x |= f1

)

∧
(

G‖~x |= f2

))

⇐⇒
((

~G~x |= ~f1

)

∧
(

~G~x |= ~f2

))

⇒
(

(

G‖~x |= f1 ∧ f2

)

⇐⇒
(

~G~x |= ~f1 ∧ ~f2

))

Case 3 : f = f1 ∨ f2.

(

(

G‖~x |= f1

)

⇐⇒
(

~G~x |= ~f1

))

∧
(

(

G‖~x |= f2

)

⇐⇒
(

~G~x |= ~f2

))

⇒
((

G‖~x |= f1

)

∨
(

G‖~x |= f2

))

⇐⇒
((

~G~x |= ~f1

)

∨
(

~G~x |= ~f2

))

⇒
(

(

G‖~x |= f1 ∨ f2

)

⇐⇒
(

~G~x |= ~f1 ∨ ~f2

))

Case 4 : f = 〈Tσi
〉f1.

Suppose that G‖~x |= 〈Tσi
〉f1. Then there is a state x

‖
1 such that G‖x

‖
1 |= f1 and

(~x, x
‖
1) ∈ Tσi

. Due to the definition of ~Tσi
, (~x, SP (x

‖
1)) ∈ ~Tσi

. From Theorem 27,

G‖SP (x
‖
1) |= f1 and because of the induction hypothesis, ~GSP (x‖) |= ~f1. Therefore,

~G~x |= 〈~Tσi
〉~f1.

Now, suppose that ~G~x |= 〈~Tσi
〉~f1. Therefore, there is a state ~x′ such that (~x, ~x′) ∈

~Tσi
and ~G~x′ |= ~f1. By the induction hypothesis, G‖~x′ |= f1. By the definition of
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~Tσi
, there is a state x‖ such that SP (x‖) = ~x′ and (~x, x‖) ∈ Tσi

. Furthermore, by

Theorem 27, G‖x‖ |= f1 . Therefore, G‖~x |= 〈Tσi
〉f1.

Overall,
(

G‖~x |= 〈Tσi
〉f1

)

⇐⇒
(

~G~x |= 〈~Tσi
〉~f1

)

.

Case 5 : f = [Tσi
]f1.

Suppose that G‖~x 6|= [Tσi
]f1. Then there is a state x

‖
1 such that G‖x

‖
1 6|= f1 and

(~x, x
‖
1) ∈ Tσi

. Due to the definition of ~Tσi
, (~x, SP (x

‖
1)) ∈ ~Tσi

. From Theorem 27,

G‖SP (x
‖
1) 6|= f1 and because of the induction hypothesis, ~GSP (x

‖
1) 6|= ~f1. Therefore,

~G~x 6|= 〈~Tσi
〉~f1.

Now, suppose that ~G~x 6|= [~Tσi
]~f1. Therefore, there is a state ~x′ such that (~x, ~x′) ∈

~Tσi
and ~G~x′ 6|= ~f1. By the induction hypothesis, G‖~x′ 6|= f1. By the definition of

~Tσi
, there is a state x

‖
2 such that SP (x

‖
2) = ~x′ and (~x, x

‖
2) ∈ Tσi

. Furthermore, by

Theorem 27, G‖x
‖
2 6|= f1 . Therefore, G‖~x 6|= [Tσi

]f1.

Overall,
(

G‖~x |= [Tσi
]f1

)

⇐⇒
(

~G~x |= [~Tσi
]~f1

)

.

Case 6 : f = µQ.f1.

Let W ‖ be a permutation symmetric relational variable assignment for G‖ and let

~W = SP (W ‖). Define τ ‖(W ‖) = [[f1]]G‖e[Q←W ‖] and ~τ( ~W ) = [[f1]] ~Ge[Q← ~W ]. It is

known from the induction hypothesis and Theorem 27 that if SP (W ‖) = ~W then

SP (τ ‖(W ‖)) = ~τ( ~W ) and τ ‖(W ‖) must be permutation symmetric. Therefore define

the following series:

W
‖
i =











∅ if i = 0

τ ‖(W
‖
i−1) if i > 0

(7.21)

~Wi =











∅ if i = 0

~τ( ~Wi−1) if i > 0

(7.22)
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SP (W
‖
0 ) = ~W0

⇒ SP (W
‖
1 ) = ~W1

⇒ SP (W
‖
2 ) = ~W2

. . .

⇒ SP (W
‖
i ) = ~Wi.

Also, because of the inherent permutation symmetry of W
‖
i ,

(

∅ = W
‖
i \W

‖
i−1

)

⇐⇒
(

∅ = SP (W
‖
i ) \ SP (W

‖
i−1)

)

.

Therefore,
(

W
‖
i = W

‖
i−1

)

⇐⇒
(

~Wi = ~Wi−1

)

Hence, the least fixpoint of τ ‖(W ‖)

corresponds to the least fixpoint of ~τ( ~W ). So, if [[µQ.f ]]G‖e is the least fixpoint of

τ ‖(W ‖) and [[µQ.f ]] ~Ge is the least fixpoint of ~τ( ~W ), then x‖ ∈ [[µQ.f1]]G‖e ⇐⇒ ~x ∈

[[µQ.~f1]] ~Ge.

Case 7 : f = νQ.f1.

This case follows from the same reasoning for Case 6. Redefine the following series:

W
‖
i =











X‖ if i = 0

τ ‖(W
‖
i−1) if i > 0

(7.23)

~Wi =











SP (X‖) if i = 0

~τ( ~Wi−1) if i > 0

(7.24)

SP (W
‖
0 ) = ~W0

⇒ SP (W
‖
1 ) = ~W1

⇒ SP (W
‖
2 ) = ~W2

. . .

⇒ SP (W
‖
i ) = ~Wi.
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Also, because of the inherent permutation symmetry of W
‖
i ,

(

∅ = W
‖
i−1 \W

‖
i

)

⇐⇒
(

∅ = SP (W
‖
i−1) \ SP (W

‖
i )

)

.

Therefore,
(

W
‖
i = W

‖
i−1

)

⇐⇒
(

~Wi = ~Wi−1

)

Therefore, the greatest fixpoint of

τ ‖(W ‖) corresponds to the greatest fixpoint of ~τ( ~W ). So, if [[νQ.f ]]G‖e is the great-

est fixpoint of τ ‖(W ‖) and [[νQ.f ]] ~Ge is the greatest fixpoint of ~τ( ~W ), then x‖ ∈

[[νQ.f1]]G‖e ⇐⇒ ~x ∈ [[νQ. ~f1]] ~Ge. This completes the proof by induction.

Due to the permutation symmetry of G‖ and f with Theorem 27 and Theorem 28,

if f holds at a state ~x, then f holds at all states in the same permutation equivalence

class.

Corollary 10 Let x‖ be a state of a permutation symmetric system G‖ and let f be a

permutation symmetric µ-calculus formula. From this system construct ~G, {~Tσ1 , . . .}

and ~f as described above and let ~x be SP (x‖). Then,

(

G‖x‖ |= f
)

⇐⇒
(

~G~x |= ~f
)

. (7.25)

This corollary is important because the symmetric µ-calculus is very powerful

and is more general than many other common logics such as CTL*, CTL and LTL.

The ~G automaton also has a much smaller state space than the G‖ automaton, so

the state explosion problem inherent to many modular systems is not as problematic;

this is demonstrated below in an example in Section 7.8.

Given a set of modules {G1, . . . , Gn} such that G‖ is permutation symmetric,

what is being saved through the use of the quotient automaton ~G? What is an

upper limit on the size of the state space of ~G? This question is equivalent to the

question from bag theory [50] where given a bag that can contain n objects and a set

of k elements, how many ways are there to fill the bag? This problem can be reduced
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to a bin and ball problem from combinatorics where given (k − 1) balls and (n + 1)

bins, how many unique ways are there to fill the bins? This problem is discussed in

[70] where it is shown that there are







k + n− 1

n






=

(

(k + n− 1)!

(k − 1)!n!

)

(7.26)

ways to fill the bins and therefore there are the same number of classes of states that

need to be verified to check a global property.

Although Equation 7.26 indicates that there are still a large number of classes of

states that need to be verified, it is rather smaller than kn and generally there is a

reduction in state space on the order of k!. The reduction in computational difficulty

for verification is demonstrated with an example in the next section.

7.8 UAV Leader Selection Protocol Example

Another example of a permutation symmetric system is now presented. Consider

a platoon of UAV’s that are assigned to scout over some unknown territory. The

UAV’s are all identical to one another and have three modes of operation: regular,

leader and failed. Every platoon should have at most one leader that coordinates the

behavior of the other members of the platoon and in turn communicates with the

platoon’s home base. Because the platoon members are identical, all UAV’s have the

capability to become leaders. However, it is assumed that during platoon operation,

a failure event may occur in a leader causing it to enter a failure state. Once a UAV

is in a failure state it may be able to reset into the regular mode of operation.

A permutation symmetric leader selection protocol for an UAV swarm is discussed

and can be seen in Figure 7.4. A UAV is in regular mode if it is in an Ri state, leader

mode if it is in an Li state and in failure mode if it is in state F .
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R1 R3
R4

F

L2

L1

R2

Σp \ σp
i

T

ΣACK \ ACKi

σL
i

firi

ΣACK \ ACKi

T

T

ΣP \ σP
i

ACKi

ΣACK \ ACKi
Σp \ σp

i

fi

fi

fi

T

σs
i

σp
i

T

ΣACK \ ACKi

Σp \ σp
i

R5

T
σL

i

σL
i

ΣL \ σL
i

T

ΣL \ σL
i

ΣL \ σL
i

ΣL \ σL
i

ΣL \ σL
i

ΣACK \ ACKi

ΣL \ σL
i

L4

L3

ΣACK \ ACKi

Figure 7.4: High Level UAV Swarm Leader Protocol for Platoon Member i.
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Starting from the initial state in the regular mode of operation, when a private

event σS
i occurs in a UAV, the UAV is prompted to broadcast σp

i to the other members

of the platoon. It is assumed that the platoon always remains in radio contact with

one another and that transmissions are never lost. When a leader j observes the

broadcast event σp
i , it should be acknowledged with the ACKj event. If a σp

i event is

not acknowledged within a certain time, the timer event global broadcast T occurs

to signal to the platoon members that a new leader may need to be selected as the

previous leader j may have entered a failure state due to the occurrence of a private

failure fj. If the previous leader j has not entered the failure state, it broadcasts σL
j

to signify that it is still the leader. On the absence of an event in ΣL \ σL
i , platoon

member i then broadcasts σL
i to signify that it is declaring itself the new platoon

leader, and on the observation of this event, all other regular platoon members return

to the initial state. If UAV i enters a failure state, it is reset on the occurrence of

ri to the initial state. Note that at initialization no platoon members are declared

leader.

The events ΣACK are used to denote the set of acknowledgment events that could

be sent by the various modules when they are in leader mode. The set Σp denotes the

events the modules broadcast when in regular mode to communicate with a leader

and ΣL is the set of events the modules broadcast to declare that they are in leader

mode. Note that ΣACK , Σp and ΣL all denote broadcast-type events that occur in

all of the modules, but on different transitions in each module. For instance, the

occurrence of σL
i in state R4 of module i means that module i transitions to leader

mode and state L1. However, the occurrence of σL
i in state R4 of module j means

that module j remains in regular mode and returns to state R1. Using the Ψij(·)

notation introduced above, Ψij(σ
L
i ) = σL

j and Ψij(σ
L
j ) = σL

i . This relationship with
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the translation mapping also holds for events in ΣACK and Σp.

The set of failure events and reset events are denoted by Σf and Σr respectively.

The set Σs denotes the set of private events for each module to internally signal it

would like to broadcast a Σp event to the platoon. The events in Σf , Σr and Σs

are private to their respective modules and occur in exactly one module each. Using

the Ψij(·) notation introduced above, Ψij(fi) = fj and Ψij(fj) is not defined. This

relationship with the translation mapping also holds for events in Σr and Σs.

The timer alarm event T is a global unindexed event that occurs in all modules

simultaneously and for identical state transitions. Therefore, Ψij(T ) = T .

The set of system events for platoon member i is defined to be Σi = {T, fi, ri} ∪

ΣL ∪ ΣACK ∪ ΣP .

The system described in this example is not in the class of systems discussed in

[62] as there are events that are broadcast between the modules of the system. For

example, the ΣACK events are broadcast between modules, but they are not “global”

events in the sense of [62].

For this example an event translation function can be defined as follows for σ ∈ Σ:

πij(σ) =



























Ψij(σ) if σ ∈ Σi

Ψji(σ) if σ ∈ Σj

σ if otherwise

Using the πij definition above, the UAV leader selection protocol in Figure 7.4 is

permutation symmetric as defined in Definition 17. Therefore, a quotient automaton

can be constructed for testing system properties such as “It is possible for two mod-

ules to enter leader mode at the same time”. For even relatively small systems like

the one in this example where the modules have 10 local states there is a significant
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reduction in the computational difficulty of testing system properties due to use of

the quotient automaton. For a small platoon of 4 UAV’s, the normal G‖ automaton

constructed from the composition of the automaton in Figure 7.4 has 2707 states

while the reduced ~G automaton constructed for this example has only 246 states.

(These results were found using the UMDES toolbox.) This is over a factor of 10

reduction in the automaton’s complexity and this reduction increases as more au-

tomata are added. Testing a relatively simple property like state reachability is linear

in the size of the state space, and there are most likely no polynomial time methods

for testing more complicated µ-calculus formulas. Therefore, the reductions is state

space size with the ~G are potentially very important for “large scale” systems.

7.9 Discussion

This chapter introduced a class of isomorphic module systems and a state per-

mutation symmetry definition for these distributed systems. A permutation sym-

metric µ-calculus was introduced that was tailored for these permutation symmetric

systems. It was shown how a predefined quotient structure can be used to more

efficiently test if permutation symmetric µ-calculus propositions hold at states in

permutation symmetric systems. The next chapter builds on this work by discussing

a special class of permutation symmetric systems where the behavior of each module

is partitioned to be either global or private in behavior.



CHAPTER VIII

ISOMORPHIC DISTRIBUTED

DISCRETE-EVENT SYSTEMS

8.1 Chapter Overview

This chapter explores the properties of a special class of distributed systems

where each module’s behavior is represented as a language over a set of events par-

titioned into private and global events. A private event represents behavior that

forces a state update only in the module where it occurs. In contrast, all modules

must coordinate their respective behaviors on the occurrence of global events. This

model is a special case of the permutation symmetric systems in Chapter VII and is

presented in the standard supervisory control framework discussed in Chapter III.

This class of distributed systems is referred to as similar module systems hereafter.

A time efficient decomposition operation is given for constructing the subsystems of

a composed similar module system that is a large improvement on current known

methods.

Control properties of these distributed systems are also discussed. It is assumed

that when the modules are controlled, they are controlled locally with exactly one

controller per module such that the controllers make local observations of the behav-

ior of a module and enforce local control actions. Also, the controllers enforce the

209
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same control policy at each of their respective subsystems. There is no communica-

tion between controllers besides the implicit communication due to the occurrence

of observable global events. Necessary and sufficient conditions for achieving local

and global specifications in this setting are identified. Methods are given for verify-

ing the local and global behavior of these systems with respect to regular language

specifications.

8.2 Similar Module Systems

This chapter discusses the properties of similar module systems {G1, . . . , Gn},

using the standard supervisory control model Gi = (X, x0, Σi, δi, Xm) outlined in

Chapter III. These systems are a special case of the permutation symmetric systems

of Chapter VII where state markings are the only proposition labellings allowed on

the states and the module event sets Σi are partitioned into the distinct subsets

Σg and Σpi, the (unique) global event set and the private event set for module

i, respectively. The private event sets Σp1, . . . , Σpn are copies of one another for

G1, . . . , Gn, respectively such that for all i, j,i 6= j, Σpi ∩Σpj = ∅. It is assumed that

Σg ∩ Σpi = ∅ and Σ denotes Σ1 ∪ · · · ∪ Σn. For the set of modules {G1, . . . , Gn} an

automaton G‖ = G1‖ · · · ‖Gn can be constructed as with the systems in Chapter VII

such that G‖ = (X‖, x
‖
0, Σ, δ‖, X

‖
m) and the only atomic proposition labelling on the

states is a binary state marking as specified by X
‖
m.

For any σi ∈ Σpi there are corresponding events Ψi1(σi) ∈ Σp1, . . . , Ψin(σi) ∈

Σpn in the other private event sets. The one-to-one mapping Ψij(·) is extended for

notational simplicity in this setting to Ψij : Σ → Σ so that the private event set of

module i is mapped to the jth private event set, the private event set of module j is

mapped to the ith private event set and all other events (namely, global events) are
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mapped to themselves. The function Ψij(·) is extended in the usual manner to map

strings of events and languages. Note that Ψii(·) is the identity function and Ψii(·) =

Ψij(Ψij(·)). As an example of the operation of the Ψij(·) function, suppose there are

system event sets Σi = {ai, bi, d, g} and Σj = {aj, bj, d, g}. For these alphabets

Σg = {d, g}, Σp1 = {ai, bi} and Σp2 = {aj, bj}. Then, Ψij(dgaiajbjgbi) = dgajaibigbj.

Example 20 shows a simple example of the systems discussed in this chapter.

Example 20 Consider the 2 module similar module system composed G1 and G2

seen in Figure 8.1. The relevant event sets are: Σg = {γ, λ}, Σp1 = {α1, β1} and

Σp2 = {α2, β2}. G1 and G2 are both locally non-blocking and deadlock free.

G1 :

1

2

3

γ

λ

α1

β1

G2 :

1

2

3

γ

λ

α2

β2

Figure 8.1: The automata G1 and G2.

Pi : Σ∗ → Σ∗i is the natural projection such that Pi(s) is the string s with events

in Σ \ Σi erased. Similarly, let Ppi : Σ∗ → Σ∗pi be the natural projection that erases

events in Σ\Σpi and let Pg : Σ∗ → Σ∗g be the natural projection that erases events in

Σ\Σg. All modules Gi ∈ {G1, . . . , Gn} have the same transition structure except that

transitions labelled with private events are relabelled according to the Ψij(·) function.

To formalize, let Gi = (X, x0, Σi, δi, Xm). For x ∈ X, γ ∈ Σi, δi(x, γ) = δj(x, Ψij(γ))

if it is defined.

The automata {G1, . . . , Gn} model the private behaviors of the modules of the
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similar module systems, but G1‖ · · · ‖Gn is used to model the global networked be-

havior of the systems where the private behaviors of the modules {G1, . . . , Gn} are

coordinated on the occurrence of common global events in Σg, according to the par-

allel composition operation. Example 21 shows the automaton G1‖G2 constructed

from the automata in Example 20.

Example 21 Consider the composed system G1‖G2 as seen in Figure 8.2.

α2

β2

β1

α1

β1

λ

γ

(1,1)

(1,3)

(3,1)

(1,2)
(2,1)

(2,2)

(2,3)

(3,2)

(3,3)β2

α2

α2

β2 α1

β1

α1

Figure 8.2: The automaton G1‖G2.

The automaton G1‖G2 has a large degree of symmetry due to the similarity of

the component automata G1 and G2. In fact, the modular system has permutation

symmetry. Consider the states (1, 2) and (2, 1). These states are reached by the oc-

currence of α2 and α1 events respectively. Consider also the (2, 3) and (3, 2) states.

If the subscript labels of the events in the strings leading to state (2, 3) are swapped

then the resulting string will lead to state (3, 2). Any property of state (2, 3) is also

held by state (3, 2) because the swapping is being done on the order of parallel compo-

sition of the component automata when state locations are swapped. This operation

is valid because the parallel composition operation is commutative and therefore the
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order of parallel composition is arbitrary. The various similar modules are identical

with respect to a renaming of private events.

For G1‖G2 there are six classes of states that could be considered equivalent with

respect to a reordering of the component states. The six sets of equivalent state classes

are {(1, 1)},{(1, 2), (2, 1)},{(1, 3), (3, 1)},{(2, 2)}, {(2, 3), (3, 2)} and {(3, 3)}.

These similar module systems are a special case of the permutation symmetric

systems in Chapter VII.

Theorem 29 If a similar module system {G1, . . . , Gn} is given as outlined above,

then G‖ is permutation symmetric with respect to the following transposition trans-

lation operator.

πij(σ) =



























Ψij(σ) if σ ∈ Σpi

Ψji(σ) if σ ∈ Σpj

σ if otherwise

(8.1)

Proof: This proof uses notation from Chapter VII. Suppose there are two states x
‖
a

and x
‖
b in G‖ such that δ‖(x

‖
a, σ) = x

‖
b . It is sufficient to demonstrate that for any

i, j ∈ {1, . . . , n}, δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b). This is shown in four parts.

Case 1 : σ ∈ Σg.

In this case, ∀k ∈ {1, . . . , n}δk(x
‖k
a , σ) = x

‖k
b . Therefore, δ‖(φij(x

‖
a), σ) = φij(x

‖
b) and

consequently δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b).

Case 2 : σ ∈ (∪n
k=1Σpi) \ (Σpi ∪ Σpj).

Therefore, ∃k ∈ {1, . . . , n}, k 6= i, j such that ∀l 6= k x
‖l
a = x

‖l
b and δk(x

‖k
a , σ) = x

‖k
b .

This implies that only the kth module state of x
‖
a is updated on the occurrence of
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σ and there is no effect on the ith and jth module states. Hence, δ‖(φij(x
‖
a), σ) =

φij(x
‖
b) and consequently δ‖(φij(x

‖
a), πij(σ)) = φij(x

‖
b).

Case 3 : σ ∈ Σpi.

Therefore, only the ith module state of x
‖
a is updated on the occurrence of σ and

there is no effect on other module states. Hence, δ‖(φij(x
‖
a), Ψij(σ)) = φij(x

‖
b) and

consequently δ‖(φij(x
‖
a), πij(σ)) = φij(x

‖
b).

Case 4 : σ ∈ Σpj.

Same as Case 3 with the i and j indices swapped.

However, not every permutation symmetric system can be considered a similar

module system.

Example 22 Consider the system from Example 17 in Chapter VII. Note that none

of the system events in {G1, G2, G3} could possibly belong to a set of global events

Σg because no transitions in {G1, G2, G3} are labelled by exactly the same events in

all of these systems. Also, no events in {G1, G2, G3} could belong to a set of private

events Σpi because there are no events that occur in exactly one module.

It is now shown that Pi (Lm(G1‖ · · · ‖Gn)), the local behavior of the interacting

modules, is language equivalent to the local behavior when the modules operate in

isolation (i.e., Lm(Gi)).

Theorem 30 For a similar module system {G1, . . . , Gn} as introduced above with

respective local projection operations {P1, . . . , Pn} and for i ∈ {1, . . . , n},

Pi (Lm(G1‖ · · · ‖Gn)) = Lm(Gi).
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Proof: It is known that Lm(G1‖ · · · ‖Gn) =
[

P−1
1 (Lm(G1)) ∩ · · · ∩ P−1

n (Lm(Gn))
]

,

so it is sufficient to show that Pi

[

P−1
1 (Lm(G1)) ∩ · · · ∩ P−1

n (Lm(Gn))
]

= Lm(Gi).

This proof is composed of two parts.

It is known that P−1
1 (Lm(G1)) ∩ · · · ∩ P−1

n (Lm(Gn)) ⊆ P−1
i (Lm(Gi)).

⇒ Pi

[

P−1
1 (Lm(G1)) ∩ · · · ∩ P−1

n (Lm(Gn))
]

⊆ Pi

[

P−1
i (Lm(Gi))

]

.

Pi

[

P−1
i (Lm(Gi))

]

= Lm(Gi)), so

Pi

[

P−1
1 (Lm(G1)) ∩ · · · ∩ P−1

n (Lm(Gn))
]

⊆ Lm(Gi).

The other direction is proved by showing

(ti ∈ Lm(Gi))⇒
(

ti ∈ Pi

[

∩n
j=1P

−1
j (Lm(Gj))

])

.

Let ti ∈ Lm(Gi). This implies that ti ∈ Pi(P
−1
i (Lm(Gi))). Let us now construct

a string t{1,...,n} from the string ti. Let t{1,...,n} be a copy of ti except replace all

private events σpi ∈ Σpi with the string σp1σp2, . . . , σpn. Due to the construction of

{G1, . . . , Gn}, t{1,...,n} ∈ P−1
j (Lm(Gj)) for all j ∈ {1, . . . , n}. Thus,

∀j ∈ {1, . . . , n}t{1,...,n} ∈ P−1
j (Lm(Gj))

⇒ t{1,...,n} ∈ ∩
n
j=1P

−1
j (Lm(Gj)).

⇒ ti ∈ Pi

[

∩n
j=1P

−1
j (Lm(Gj))

]

.

Therefore, Lm(Gi) ⊆ Pi

[

∩n
j=1P

−1
j (Lm(Gj))

]

which implies

Lm(Gi) ⊆ Pi (Lm(G1‖ · · · ‖Gn)) .

It is a simple matter to extend the result in Theorem 30 to the case of languages

generated instead of languages marked, i.e.,

Pi

[

P−1
1 (L(G1)) ∩ · · · ∩ P−1

n (L(Gn))
]

= L(Gi).

The following is also a simple corollary to Theorem 30.
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Corollary 11 Suppose a similar module system {G1, . . . , Gn} as introduced above

with respective local projections {P1, . . . , Pn} and local languages {K1, . . . , Kn} are

given. Then, for all i ∈ {1, . . . , n},

(Ki = Pi (Lm(G1‖ · · · ‖Gn))) ⇐⇒ (Ki = Lm(Gi)) .

8.3 Decomposition and Similar Module Systems

This section shows some of the fundamental properties of similar module sys-

tems. Some preliminary definitions and lemmas are first shown and then used to

demonstrate the properties of a decomposition operation of similar module systems

that runs in polynomial time. This decomposition operation is one of the main

contributions of this chapter as the are few time-efficient methods for performing

decomposition operations in discrete-event systems theory.

Definition 18 [68] A language K is decomposable with respect to the projections

{P1, . . . , Pn} if K = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K)).

A language is decomposable if given the local knowledge of K at all sites, i.e.,

P1(K), . . . , Pn(K), the language K can be recovered exactly. Note that this def-

inition is slightly altered from the definition given in [68] in that external system

behavior is disregarded. It has been assumed that K ⊆ Σ∗ and the set {P1, . . . , Pn}

has been used for projection operations.

Definition 19 [81] A set of languages {L1, . . . , Ln} is said to be non-conflicting if

L1 ∩ · · · ∩ Ln = L1 ∩ · · · ∩ Ln.

It is known that the parallel composition of a set of non-blocking automata need

not be non-blocking unless the respective languages marked by the automata are

non-conflicting.
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Definition 20 A language K ⊆ Σ∗ is said to be symmetric with respect to the

private event sets Σp1, . . . , Σpn and the corresponding mappings Ψ11, . . . , Ψ1n if ∀i ∈

{1, . . . , n} Ψ1i(K) = K.

This symmetry definition is used to convey the intuition that K is identical with

respect to a relabelling of private events for the similar module system {G1, .., Gn}.

This prompts the following lemmas whose proofs are straightforward and there-

fore omitted.

Lemma 12 Given set Σi ⊆ Σ, a language K ⊆ Σ∗ and natural projection operation

Pi : Σ∗ → Σ∗i with corresponding inverse projection P−1
i : Σ∗i → Σ∗,

1. Pi(K) = Pi(K).

2. P−1
i (K) = P−1

i (K).

Lemma 13 Given a language K ⊆ Σ∗, the previously defined projection operations

P1(·), . . . , Pn(·) and the mappings Ψ11(·), . . . , Ψ1n(·),

∀i ∈ {1, . . . , n} (K = Ψ1i(K))⇒ (Ψ1i(P1(K)) = Pi(K)) .

It can also be shown that if a language K is decomposable, then K is also de-

composable

Lemma 14 Given a language K and a set of projection operators {P1, . . . , Pn}, if

K is decomposable with respect to {P1, . . . , Pn} and {P−1
1 (P1(K)), . . . , P−1

n (Pn(K))}

are non-conflicting, then K is decomposable with respect to {P1, . . . , Pn}.

Proof: Using Lemma 12, it is known that

∀i ∈ {1, . . . , n}, P−1
i (Pi(K)) = P−1

i (Pi(K)).
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Consequently,

∩n
i=1P

−1
i (Pi(K)) = ∩n

i=1P
−1
i (Pi(K)).

Due to the assumption that the languages {P−1
1 (P1(K)), . . . , P−1

n (Pn(K))} are non-

conflicting,

∩n
i=1P

−1
i (Pi(K)) = ∩n

i=1P
−1
i (Pi(K)).

Therefore, due to the decomposability of K,

K = ∩n
i=1P

−1
i (Pi(K))

and

K = ∩n
i=1P

−1
i (Pi(K)).

The next result relates the Ψij(·) operator with the prefix-closure of languages.

Lemma 15 Given a language K and the Ψij(·) operator introduced above,

Ψij(K) = Ψij(K).

Proof: Suppose s ∈ Ψij(K). Then there exists a string t such that st ∈ Ψij(K).

⇒ Ψij(st) ∈ K

⇒ Ψij(s)Ψij(t) ∈ K

⇒ Ψij(s) ∈ K

⇒ s ∈ Ψij(K)

The reverse direction of this proof follows from performing the steps above in the

opposite order.

Lemma 15 can be used to show the following theorem about the symmetry of

prefix-closed languages.
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Theorem 31 Let K be symmetric with respect to {Σ1, . . . , Σn}. Then, K is sym-

metric with respect to {Σ1, . . . , Σn}.

Proof: Because K is symmetric with respect to {Σ1, . . . , Σn}, then for all i, j,

Ψij(K) = K. Hence, by Lemma 15, ∀i, j ∈ {1, . . . , n}Ψij(K) = K and therefore K

is symmetric with respect to {Σ1, . . . , Σn}.

It is now demonstrated that symmetric and decomposable languages can be mod-

elled using the similar module system framework.

Theorem 32 Suppose a trim automaton H = (X, x0, Σ, δ,Xm) is given such that

Lm(H) is symmetric with respect to {Σ1, . . . , Σn} and decomposable with respect to

{P1, . . . , Pn}. Then there exists a set of similar module systems {H1, . . . , Hn} such

that Lm(H1‖ · · · ‖Hn) = Lm(H) and ∀i ∈ {1, . . . , n} Pi(Lm(H)) = Lm(Hi).

Proof: Using standard methods, given Σi and H, a automaton Hi can be constructed

such that Lm(Hi) = Pi(Lm(H)) for all i such that i ∈ {1, . . . , n}. Because Lm(H) is

symmetric with respect to {Σ1, . . . , Σn},

∀i, j ∈ {1, . . . , n} Ψij(Lm(H)) = Lm(H)

⇒ Ψij(Pi(Lm(H))) = Pj(Lm(H)).

⇒ Ψij(Lm(Hi)) = Lm(Hj).

Therefore, the set of automata {H1, . . . , Hn} can be constructed such that they

are isomorphic to one another with respect to a renaming of their private events.

Because Lm(H) is decomposable with respect to {P1, . . . , Pn},

P−1
1 (P1(Lm(H))) ∩ · · · ∩ P−1

n (Pn(Lm(H))) = Lm(H)

⇒ P−1
1 (Lm(H1)) ∩ · · · ∩ P−1

n (Lm(Hn)) = Lm(H)

⇒ Lm(H1‖ · · · ‖Hn) = Lm(H) due to properties of the parallel composition op-

eration.
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⇒ ∀i ∈ {1, . . . , n}Pi(Lm(H1‖ · · · ‖Hn)) = Pi(Lm(H))

⇒ ∀i ∈ {1, . . . , n}Lm(Hi) = Pi(Lm(H)).

This last step is by the result of Theorem 30 shown above.

In the proof of Theorem 32, any method can be used to construct the similar

module systems {H1, . . . , Hn} from H such that Lm(H1‖ · · · ‖Hn) = Lm(H). The

standard method consists of converting all transitions labelled by events in Σ \ Σ1

in H to non-deterministic ε-transitions. Then, this non-deterministic automaton is

converted into a deterministic one. Unfortunately, the determinization algorithm

takes exponential time and space exponential in the size of H in the worst case.

There has been little discussion in the discrete-event systems literature about

ways of performing modular decompositions besides ad-hoc methods developed on a

case-by-case basis. Developing formal methods for performing this operation is very

important for many real-world problems where a large complicated system model

would need to be converted into simpler, modular model blocks. An efficient method

has been developed for performing this decomposition on similar module systems as

discussed below.

Before this method is presented an intuitive introduction to the algorithm’s op-

eration is given. Let {H1, . . . , Hn} be the desired modules that compose the given

symmetric and decomposable H, i.e., H = H1‖ · · · ‖Hn. Suppose distributed simu-

lations of the behavior of {H1, . . . , Hn} are run such that the only way for private

events to occur would be in strings such as σp1σp2 · · · σpn with no interleavings of

other events and the events {σp1, σp2, . . . , σpn} are private events identical to one

another with respect to Ψij(·) mappings. On the occurrence of these σp1σp2 · · · σpn

strings the local states {H1, . . . , Hn} are forced to update with identical state tran-

sitions. Because H = H1‖ . . . ‖Hn, this lockstep simulation of private behaviors in
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the global system model can be used to calculate the local system behaviors. Given

H, this automaton can be trimmed by only allowing global events and strings of

private events {σp1, σp2, . . . , σpn} as outlined above to occur. The behavior of this

specially trimmed automaton matches the behavior of the lockstep simulation of the

{H1, . . . , Hn} automata. Then, if the event σp1 is substituted for every occurrence

of a string σp1σp2 · · · σpn, the behavior of the resulting automaton will match the

behavior of the H1 module.

In the following algorithm, a slightly modified set notation for the state transition

function is used, i.e., if δ(x, s) = y for state transition function δ(·, ·), states x, y and

string s, then the notation that (x, s, y) ∈ δ is used. For simplicity it is assumed that

the imputed automaton H is deterministic and trim.

Algorithm 11 Decomposition Construction Algorithm.

Input:

H =
(

XH , xH
0 , Σ, δH , XH

m

)

Σ1, . . . , Σn

(Note that δH ⊆ (XH × Σ×XH)).

Output:

H1 = (X1, x1
0, Σ1, δ

1, X1
m).

(Note that δ1 ⊆ (X1 × Σ1 ×X1)).

Assumptions:

H is trim.

Lm(H) is symmetric with respect to {Σ1, . . . , Σn} and decomposable with respect to

{P1, . . . , Pn}.

S is a stack with the normal push and pop operations.
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Initialize:

X1 := {xH
0 };

x1
0 := xH

0 ;

δ1 := ∅;

S := [x1
0];

Repeat:

{

xs = pop(S)

Do the following for all xb ∈ XH :

Do the following for all σg ∈ Σg with (xs, σg, xb) ∈ δH :

{

δ1 := δ1 ∪ {(xs, σg, xb)};

If xb 6∈ X1

Then

{

X1 := X1 ∪ {xb};

push(S, xb);

}

}

Do the following for all σp1 ∈ Σp1, . . . , σpn ∈ Σpn

such that σpi = Ψ1i(σp1), (xs, σp1σp2 · · · σpn, xb) ∈ δH :

{

δ1 := δ1 ∪ {(xs, σp1, xb)};

If xb 6∈ X1

Then
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{

X1 := X1 ∪ {xb};

push(S, xb);

}

}

}

Until S is empty;

X1
m = XH

m ∩X1;

Construct {H2, . . . , Hn} from H1 using Ψ1i(·) operations;

Return {H1, . . . , Hn}.

The correctness of the decomposition algorithm is now demonstrated.

Theorem 33 Suppose there is a trim automaton H such that Lm(H) is symmetric

with respect to {Σ1, . . . , Σn} and decomposable with respect to {P1, . . . , Pn}. Then,

if Algorithm 11 is run with H as input, a set of automata {H1, . . . , Hn} is returned

such that Lm(H) = Lm(H1‖ · · · ‖Hn) and ∀i ∈ {1, . . . , n} Pi(Lm(H)) = Lm(Hi).

Proof: It is known from Theorem 32 that there exists similar modules {H ′1, . . . , H
′
n}

such that Lm(H) = Lm(H ′1‖ · · · ‖H
′
n). From H, a specially trimmed version of H

called H lock can be constructed by trimming all private event transitions in H except

those that correspond to occurrence of chains of private events

σp1Ψ12(σp1) · · ·Ψ1n(σp1)

for σp1 ∈ Σp1 and no other events are allowed to be interleaved in these strings.

Therefore,

Lm(H lock) = Lm(H) ∩ ({σp1Ψ12(σp1) · · ·Ψ1n(σp1)|σp1 ∈ Σp1} ∪ Σg)
∗ .



224

Now consider the composition of the {H ′1, . . . , H
′
n} automata where global events

are allowed to occur freely and private events are restricted to occur in strings

σp1Ψ12(σp1) · · ·Ψ1n(σp1) for σp1 ∈ Σp1 with no other events interleaved as above.

This automaton marks the same language as H lock shown above because Lm(H) =

Lm(H ′1‖ · · · ‖H
′
n). Furthermore, due the construction of H lock, it should be apparent

that

Pi

(

Lm(H lock)
)

= Lm(H ′i)

because the marking behavior of Hi can be can be reclaimed from H lock by replacing

the σp1Ψ12(σp1) · · ·Ψ1n(σp1) transitions with a single σp1 transition. Therefore,

Pi [Lm(H) ∩ ({σp1Ψ12(σp1) · · ·Ψ1n(σp1)|σp1 ∈ Σp1} ∪ Σg)
∗] = Lm(H ′i).

Algorithm 11 constructs H1 by restricting the behavior of private events in H to

strings such as σp1Ψ12(σp1) · · ·Ψ1n(σp1) and then converts these transition strings to

σp1 events. Therefore,

Lm(H1) = Pi [Lm(H) ∩ ({σp1Ψ12(σp1) · · ·Ψ1n(σp1)|σp1 ∈ Σp1} ∪ Σg)
∗] .

Consequently, Lm(H ′1) = Lm(H1). For all i ∈ {1, . . . , n}, the automata H ′i and Hi

are copies of the H ′1 and H1 automata with respect to a renaming of transition labels

by the Ψ1i(·) functions. This implies that

⋂

i∈{1,...,n}

Lm(H ′i) =
⋂

i∈{1,...,n}

Lm(Hi)

Therefore,

Lm(H ′1‖ · · · ‖H
′
n) = Lm(H1‖ · · · ‖Hn)

Hence, Lm(H) = Lm(H1‖ · · · ‖Hn).
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By construction {H1, . . . , Hn} are similar module systems. By Theorem 30,

Pi (Lm(H1‖ · · · ‖Hn)) = Lm(Hi). Therefore, by substitution,

∀i ∈ {1, . . . , n} Pi(Lm(H)) = Lm(Hi).

The main Repeat− Until loop in Algorithm 11 iterates |X1| times, which is the

size of the state space of H1. The size of the state space of H1 is always at least

as small as |XH |, the size of the state space of H, and generally much more so.

Inside the main iterative loop, there are two types of tests for transition existence,

one for individual global events and one for chains of private events. The tests for

transition existence are generally efficient and negligible depending on the encoding of

H, especially if each state contains a list of its outgoing transitions. In this case, only

the existence of |Σg| global event transitions and |Σp1| private event string transitions

at each state need to be tested. If there is a σp1 ∈ Σp1 transition at the current state, it

needs to be tested if there is a chain of transitions σp1σp2 . . . σpn from the current state.

Therefore, for every private event transition detected, at most n−1 other transitions

need to be tested. Therefore, Algorithm 11 is in O (|X1| ∗ (|Σg|+ n ∗ |Σp1|)).

An example of a run of Algorithm 11 is now given using a trimmed version of the

automaton G1‖G2 from Example 20.

Example 23 Consider the automaton G that is the trimmed version of G1‖G2 from

Example 20 with the states renamed for convenience. This automaton can be seen in

Figure 8.3.

Note that Lm(G) = ((α1α2 + α2α1) γ + (β1β2 + β2β1) λ)∗. By inspection, this

language is symmetric with respect to {Σ1, . . . , Σn} and decomposable with respect to

{P1, . . . , Pn}.
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Figure 8.3: The automaton G = Trim(G1‖G2).

Algorithm 11 is now run with G as input for Σ1 = {α1, β1, γ, λ} and Σ2 =

{α2, β2, γ, λ}.

To initialize: X1 := {1}, x1
0 := 1, δ1 := ∅, S := [1].

The first state is popped off of S. xs := 1.

There are no Σg transitions from state 1, but there are two private event chains,

α1α2 and β1β2 starting from state 1 and respectively leading to states 4 and 7. There-

fore, states 4, 7 are added to X1, (1, α1, 4) and (1, β1, 7) are added to δ1 and 4 and 7

are pushed onto S.

Now, X1 = {1, 4, 7} δ1 = {(1, α1, 4), (1, β1, 7)}, S = [4, 7].

Next, 4 is popped off S and xs := 4. There is a Σg transition from 4 (4, γ, 1), but

no private event chains. Therefore, (4, γ, 1) is added to δ1 and no other changes are

made.

Next, 7 is popped off S and xs := 7. There is a Σg transition from 7 (7, λ, 1), but

no private event chains. Therefore, (7, λ, 1) is added to δ1 and no other changes are

made. The stack S is empty, so the Repeat− Until loop has been completed.
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The marked state list is now assigned X1
m = {1} and this completes the construc-

tion of G1. G1 is then copied as G2 by replacing α1 with α2 and β1 with β2.

This results in the automata seen in Figure 8.4.

α1

β1

α2

β2

G1 :

1

4

7

γ

λ

G2 :

1

4
γ

λ
7

Figure 8.4: The automata G1 and G2 decomposed from G in Figure 8.3.

It is now shown that the {H1, . . . , Hn} automata returned by Algorithm 11 are

guaranteed to be trim.

Theorem 34 Suppose a trim automaton H is given such that Lm(H) is symmetric

with respect to {Σ1, . . . , Σn} and decomposable with respect to {P1, . . . , Pn}. Let

{H1, . . . , Hn} be the automata constructed from H using Algorithm 11. Then, the

automata {H1, . . . , Hn} are all trim.

Proof: It suffices to show that H1 is trim.

It is known that all states X1 in H1 are reachable from the initial state, so to

show that H1 is trim, it must be demonstrated that for every unmarked state in H1,

there must be a string to a marked state.

Suppose x ∈ X1 \ X1
m. Because H is trim, there must be two strings s, t ∈ Σ

such that s is in

({σp1Ψ12(σp1) · · ·Ψ1n(σp1)|σp1 ∈ Σp1} ∪ Σg)
∗ ,
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δH(xH
0 , s) = x and δH(x, t) ∈ XH

m . Define s1, t1 such that s1 = P1(s) and t1 = P1(t).

Because of the construction in Algorithm 11, it must be true that δ1(x1
0, s1) = x.

Furthermore, because δH(x, t) ∈ XH
m and t1 is the string of events that is rel-

evant to H1 when t occurs, then it must be true that δ1(x1, t1) ∈ X1
m because

Lm(H1‖ · · · ‖Hn) = Lm(H).

Even though a language K may be symmetric with respect to {Σ1, . . . , Σn} and

decomposable with respect to {P1, . . . , Pn}, it is possible that {P1(K), . . . , Pn(K)}

are conflicting. Consider the G automaton shown in Figure 8.3 from Example 23.

It has already been shown how G is symmetric and decomposable. Now consider

the G1 and G2 automata that are output from running the decomposition algo-

rithm as in Example 23. The parallel composition of these automata is blocking, so

{P1(Lm(G1)), . . . , Pn(Lm(G2))} are conflicting, as seen in Figure 8.2 in Example 21.

Finally, note that even though a language K may be symmetric with respect

to {Σ1, . . . , Σn} and {P1(K), . . . , Pn(K)} are non-conflicting, it is possible that K

is not decomposable with respect to {P1, . . . , Pn}. Consider the language K =

{ε, α1, α2}. K is symmetric with respect to {{α1}, {α2}}, and {{ε, α1}, {ε, α2}}

are non-conflicting. However, K = {ε, α1, α2} is not decomposable with respect

to {{α1}, {α2}}.

8.4 Quotient Automata and Global Systems Properties

In Chapter VII a quotient automaton ~G is shown that can be used to verify

properties of a permutation symmetric composed system G‖. Because similar mod-

ule systems are permutation symmetric the ~G construction could also be used to

test properties of interacting similar module systems. However, due to the extra

symmetric structure of these systems, a quotient automaton with an even smaller
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state space can be used to test some system properties in G‖. This section shows

another quotient automaton, denoted by G̃, for testing important properties such as

state reachability, non-blockingness and deadlockfreeness in similar module systems.

The G̃ automaton uses the sets of states with the same sets of component states as

the state equivalence class used in the quotient automaton construction. Therefore

the number of various component states is disregarding when establishing composed

state equivalences. A simple tutorial example is shown that demonstrates how the

states of the modular automata used in the model can be partitioned into sets of

“equivalent” states.

Example 24 Reconsider the system first introduced in Example 20 with a third com-

ponent G3 similar to G1 and G2 in Figure 8.1. The automaton G1‖G2‖G3 can be

seen in Figure 8.5.

State (1, 1, 2) in G1‖G2‖G3 is equivalent to (2, 1, 1), (1, 2, 2), (2, 1, 2), etc... with

respect to the sets of module states these composed states contain. By inspection,

these states are also equivalent with respect to some important system properties such

as deadlock, blocking and reachability. However, not all of these states are reachable

from the initial state in the same number of transitions.

The intuition behind Example 24 is that state orderings and duplicated com-

ponent states do not matter when testing several important global properties. A

quotient automaton G̃ for testing these properties in similar module systems is now

formally introduced.

A state x‖ from the composed automata G‖ = G1‖ · · · ‖Gn is an n-tuple of

states in X. Let x̃ represent the set of module states that compose the n-tuple

x‖. For example, the set {1, 2, 6} is the set of module states that compose the states
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Figure 8.5: The automaton G1‖G2‖G3.

(1, 2, 6, 2) and (1, 6, 6, 2) in X‖. The function Comp : X‖ → 2X is defined such that

Comp(x‖) = x̃ and the function Comp−1(x̃) returns the set of states that has exactly
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the states x̃ in its n-tuple. As an example of the operation of the Comp(·) function,

Comp((2, 1, 2)) = {1, 2}, Comp((2, 1, 3)) = {1, 2, 3}, Comp((3, 1, 2, 1, 2)) = {1, 2, 3}.

The set of state equivalence classes defined by the Comp(·) function is used as

the state space of G̃. Let G̃ = (X̃, {x0}, Σ1, δ̃, X̃m) where X̃ = 2X , the power set

of the component automaton Gi states, and let X̃m, the set of marked states, be

the states of G̃ such that at least one component state in the set is marked, i.e.,

X̃m = 2X \ 2X\Xm . The nondeterministic transition operator δ̃(·, ·) is defined such

that if there exists two states x‖ ∈ Comp−1(x̃) and y‖ ∈ Comp−1(ỹ) and an event

σi ∈ Σi such that δ‖(x‖, σi) = y‖, then there is a corresponding transition in G̃ from

x̃ to ỹ on the occurrence of Ψi1(σi).

Note that even if G‖ is a deterministic automaton, the corresponding G̃ au-

tomaton maybe nondeterministic; at a state x̃ ∈ X̃ there may be several outgoing

transitions labelled by an event σ. Therefore, similar to as was done with the ~G

construction, the state transition function is defined such that δ̃ : X̃ ×Σ1 → 2X̃ and

a state is in δ̃(x̃, σ) ⊆ X̃ if there exists a σ labelled transitions from x̃ to that state

in G̃.

δ̃(x̃, σ) = (8.2)


























{δ1(x, σ)|x ∈ x̃} if (σ ∈ Σg) ∧ (∀x ∈ x̃, δ1(x, σ)!)

x̃ ∪ {δ1(x, σ)} if (σ ∈ Σp1) ∧ (|x̃| < n) ∧ (δ1(x, σ)!) ∧ (x ∈ x̃)

[x̃ \ {x}] ∪ {δ1(x, σ)} if (σ ∈ Σp1) ∧ (|x̃| > 1) ∧ (δ1(x, σ)!) ∧ (x ∈ x̃)



























The intuition behind the definition of δ̃(·, ·) is shown in three parts for the three

cases in which this transition operator is defined.

The first case of the δ̃(·, ·) definition corresponds to the occurrence of a global

event such that all elements of x̃ are updated simultaneously on the occurrence of
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global event σ ∈ Σg. All elements of x̃ need to be updated on the occurrence of

σ because all states in Comp−1(x̃) from G‖ can be updated on the occurrence of σ

according to the transition rules of δ‖(·, ·). Therefore δ1(x, σ) is defined for all x ∈ x̃.

This implies that Comp
(

δ‖(x‖, σ)
)

∈ δ̃(x̃, σ) and in this case {δ1(x, σ)|x ∈ x̃} ∈

δ̃(x̃, σ) if σ ∈ Σg and δ1(x, σ) is defined for all x ∈ x̃.

The second case of the definition corresponds to the situation where there exists

some state x‖ ∈ Comp−1 (x̃) such that there exists i, j ∈ {1, . . . , n} such that i 6= j

and x‖
i
= x‖

j
. In other words, |x̃| < n as required for this case in the definition of

δ̃(·, ·). Therefore, at x‖, if an event σpi ∈ Σpi were to occur such that δi(x
‖i , σpi)!,

then the resulting state δ(x‖, σpi) exists and

Comp(δ(x‖, σpi)) = Comp(x‖) ∪
{

δi(x
‖i , σpi)

}

.

Therefore,

Comp(x‖) ∪
{

δi(x
‖i , σpi)

}

∈ δ̃(x‖, Ψi1(σpi)),

and for this case, there is some x ∈ x̃, σ ∈ Σp1 such that x̃ ∪ {δ1(x, σ)} ∈ δ̃(x̃, σ) as

specified in the definition of ˜δ(·, ·).

The third case of the definition corresponds to the situation where there exists

some state x‖ ∈ Comp−1 (x̃) such that there exists i ∈ {1, . . . , n} and for any j ∈

{1, . . . , n} \ {i}, x‖
i
6= x‖

j
. Thus, |x̃| > 1, as required for this case of the definition

of δ̃(·, ·). Therefore, at x‖, if an event σpi ∈ Σpi were to occur such that δi(x
‖i , σpi)!,

then the resulting state δ(x‖, σpi) would be in

[

Comp(x‖) \
{

x‖
i
}]

∪
{

δi(x
‖i , σpi)

}

∈ δ̃(Comp(x̃), Ψi1(σpi)),

and for this case there is some x ∈ x̃ and σpi ∈ Σpi such that [x̃ \ x] ∪ {δ1(x, σ)} ∈

δ̃(x̃, σ) as specified in the definition of ˜δ(·, ·).
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The definition of δ̃(·, ·) can be extended to allows strings of arbitrary length using

the usual methods. The similar module system introduced in Example 24 is used to

demonstrate the construction of a simple reduced state space composed automaton

G̃.

Example 25 Consider the similar module system G1, G2, G3 discussed in Exam-

ple 24 above. The set of state equivalence classes in G1‖G2‖G3 with respect to the

Comp(·) operation is {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The quotient au-

tomaton G̃ constructed from G1, G2, G3 can be seen in Figure 8.6.

β1

β1 α1

α1

λ

α1

β1

β1

{1,2}

{1,3}

{2}

{3}

{1}

α1
γ

α1

β1

β1

α1

{2,3} {1,2,3}

Figure 8.6: The automaton G̃ constructed from G1, G2, G3.

The three different transition class from the definition of δ̃(·, ·) are all exhibited

in this example of G̃.

Consider the {2}
γ
7→G̃{1} transition in G̃. This transition is in the first case of

the δ̃(·, ·) definition and in the original G1‖G2‖G3 automaton, it corresponds to the

(2, 2, 2)
γ
7→G1‖G2‖G3(1, 1, 1) transition. That is, a global event γ occurs and all states

of (2, 2, 2) are updated simultaneously.

Now consider the {1, 2}
α17→G̃{1, 2} transition in G̃. This transition corresponds to

several transitions in the G1‖G2‖G3 automaton, including (1, 1, 2)
α27→G1‖G2‖G3(1, 2, 2).
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For this transition, module state 1 is replicated and the second module state of

(1, 2, 2) is updated on the occurrence of α2, but the first module state remains 1.

The {1, 2}
α17→G̃{1, 2} transition is in the second class of transitions in the definition

of δ̃(·, ·).

The {1, 2}
α17→G̃{2} transition corresponds to the third class of transitions in the

δ̃(·, ·) definition. In the original G1‖G2‖G3 automaton, this transition corresponds

to the (2, 2, 1)
α37→G1‖G2‖G3(2, 2, 2) transition among others. In this case, there is only

one module in state 1 and on the occurrence of α3 this module updates to state 2 and

the other modules remain the same.

Also notice that in G̃ there is a transition {1}
α17→G̃{1, 2}. It is true that {2, 2, 1} ∈

Comp−1({1, 2}) but in G1‖G2‖G3 there is no event σ such that there is a transi-

tion (1, 1, 1)
σ
7→G1‖G2‖G3(2, 2, 1). Therefore, state reachability in G̃ does not exactly

imply state reachability in G1‖G2‖G3. However, there is a string α1α2 such that

(1, 1, 1)
α1α27→ G1‖G2‖G3(2, 2, 1). It is shown below that state reachability in G̃ is shown

to imply a form of reachability in G1‖ · · · ‖Gn and vice-versa.

8.4.1 Verifying System Properties Using G̃

Two fundamental reachability results related to the G̃ and G‖ constructions for

similar module systems are now shown.

Lemma 16 Suppose a similar module system {G1, . . . , Gn} is given that is used to

construct G‖ and G̃. For two states of G‖, x
‖
1, x
‖
2 ∈ X‖, two states of x̃1, x̃2 ∈ 2X

and a string of transitions labelled by t‖ ∈ Σ∗ such that x
‖
1

t‖
7→G‖ = x

‖
2, Comp(x

‖
1) = x̃1

and Comp(x
‖
2) = x̃2, there exists a string of transitions labelled by t̃ ∈ Σ∗1 such that

according to the transition rules of G̃, x̃1
t̃
7→G̃x̃2.
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Proof: This lemma is shown using a proof by generalized induction on the length

of t‖.

For the base of induction, suppose |t‖| = 1. This induction base is shown for two

cases. In the first case, suppose that t‖ = σg ∈ Σg. Because all component states

in x
‖
1 can update on the occurrence of σg, the resultant states are components in x

‖
2.

Therefore, by the definition of the transition structure of G̃, x̃1
σg
7→G̃x̃2.

For the second case of the base of induction, suppose that t‖ = σpi ∈ Σpi. There-

fore, when module Gi is in state x
‖
1

i
, the module can update on the occurrence of σpi

to state x
‖
2

i
and all other modules in G‖ do not update, i.e., ∀j 6= i, x

‖
1

j
= x

‖
2

j
. So,

when module Gi is in state x
‖
1

i
, the module can update on the occurrence of σpi to

state x
‖
2

i
. Therefore, x̃1

σpi
7→G‖ x̃2. This completes the base of induction.

For the induction hypothesis, suppose that there is a string of transitions labelled

by t‖ ∈ Σn such that x
‖
1

t‖
7→G‖x

‖
2, Comp(x

‖
1) = x̃1 and Comp(x

‖
2) = x̃2. Then, there

exists a string of transitions labelled by t̃ ∈ Σ∗1 such that x̃1
t̃
7→G̃x̃2.

For the induction step, suppose there is a string of transitions labelled by t‖ ∈ Σn

and a transition labelled by σ‖ ∈ Σ such that x
‖
1
t‖σ‖

7→ G‖ = x
‖
3, Comp(x

‖
1) = x̃1 and

Comp(x
‖
3) = x̃3. Because x

‖
1
t‖σ‖

7→ G‖ = x
‖
3, there must be a state x

‖
2 such that x

‖
1

t‖
7→G‖x

‖
2

and x
‖
2

σ‖

7→G‖x
‖
3 where Comp(x

‖
2) = x̃2. Because of the induction hypothesis there is

a string of transitions labelled by t̃ ∈ Σ∗1 such that x̃1
t̃
7→G̃x̃2. Because of the base

of induction, there is a transition labelled by σ̃ ∈ Σ1 such that x̃2
σ̃
7→G̃x̃3. Therefore,

there is a string of transitions labelled by t̃σ̃ ∈ Σ∗1 such that x̃1
t̃σ̃
7→G̃x̃3.

Lemma 17 Suppose a similar module system {G1, . . . , Gn} is given that is used

to construct G‖ and G̃ with two states of the quotient automaton x̃1, x̃2 ∈ 2X , a

state x
‖
1 ∈ X‖ and a string of transitions labelled by t̃ ∈ Σ∗1 such that x̃1

t̃
7→G̃x̃2 and
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Comp(x
‖
1) = x̃1. Then there exists a state of G‖, x

‖
2 ∈ X‖ and a string of transitions

labelled by t‖ ∈ Σ∗1 such that Comp(x
‖
2) = x̃2 and x

‖
1

t‖
7→G‖x

‖
2.

Proof: The G̃ automaton can be thought of as a simulation of the corresponding G‖

automaton. For x̃1
t̃
7→G̃x̃2, suppose that t̃′ < t̃ and x̃1

t̃′
7→G̃x̃. If σg ∈ Σg and t̃′σg < t̃,

then for a x‖ ∈ Comp−1(x̃), the transition at x̃ labelled by σg corresponds in G‖ to

all component states in x‖ updating simultaneously. If σp ∈ Σp1 and t̃′σp < t̃, then

for a x‖ ∈ Comp−1(x̃), the transition at x̃ labelled by σp corresponds in G‖ to exactly

one component state x‖
i
in x‖ for some i ∈ {1, . . . , n} updating on the occurrence of

an event σpi = Ψ1i(σp).

Therefore, for every component state x1 ∈ x̃1, there must be a string of transitions

labelled by events in Σ∗1 that leads to a component state x2 ∈ x̃2 according to the

transition rules of G1 and for every component state x2 ∈ x̃2, there must be a string

of transitions labelled by events in Σ∗1 from a component state in x1 ∈ x̃1 to the

component state x2 according to the transition rules of G1. All of these strings are

able to occur synchronously with respect to the occurrence of global events and are

copies of the string t̃ with some events from Σp1 removed.

Furthermore, for the string of events t̃ ∈ Σ∗1 such that x̃1
t̃
7→G̃x̃2, the string t̃ can

be split into a set of strings T = {tx1
1x1

2
, . . . , txm

1 xm
2
} ⊆ Σ∗1 such that:

• For all i ∈ {1, . . . m}, txi
1xi

2
is a copy of t with some Σp1 events removed.

• Pg(tx1
1x1

2
) = · · · = Pg(txm

1 xm
2
)

• For every component state xi
1 ∈ x̃1, there is at least one component state

xi
2 ∈ x̃2 and a string of events txi

1xi
2
∈ T such that δ1(xi

1, txi
1xi

2
) = xi

2.

• For every component state xj
2 ∈ x̃2, there is at least one component state

xj
1 ∈ x̃1 and a string of events txj

1xj
2
∈ T such that δ1(xi

1, txi
1xi

2
) = xi

2.
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• m = max{|x̃1|, |x̃2|} ≤ n

Consider the ordered list of n strings

Lt = [tx1
1x1

2
, . . . , txm

1 xm
2
, txm

1 xm
2
, . . . , txm

1 xm
2
].

Corresponding to Lt, there are two ordered lists of pairs of states in X

L1
x = [x1

1, . . . , x
m
1 , xm

1 , . . . , xm
1 ]

L2
x = [x1

2, . . . , x
m
2 , xm

2 , . . . , xm
2 ]

such that if

x
‖
1Ψ = (x1

1, . . . , x
m
1 , xm

1 , . . . , xm
1 )

x
‖
2Ψ = (x1

2, . . . , x
m
2 , xm

2 , . . . , xm
2 ),

then

Comp(x
‖
1Ψ) = x̃1

Comp(x
‖
2Ψ) = x̃2.

Moreover, according to the transition rules of G1, δ1(xk,1, tk) = xk,2 where Lt(k) = tk

is the kth string in Lt and L1
x(k) = xk,1 and L2

x(k) = xk,2 are the kth states in L1
x

and L2
x respectively. It is discussed below how the assumption that the last (n−m)

pairings of states from the L1 and L2 lists are replicated can be done without loss of

generality.

The list of strings Lt are now converted using the Ψ1i(·) operator to the list

LΨ
t = [Ψ11(t

1
x1x2

), . . . , Ψ1m(tmx1x2
), Ψ1(m+1)(t

m
x1x2

), . . . , Ψ1n(tmx1x2
)].
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Because all of the strings in this converted list can still be synchronized on the

occurrence of events in Σg, the intersection







P−1
1 (Ψ11(t

1
x1x2

)) ∩ . . . ∩ P−1
m (Ψ1m(tmx1x2

))

∩ P−1
m+1(Ψ1(m+1)(t

m
x1x2

) ∩ . . . ∩ P−1
n (Ψ1n(tmx1x2

)







is nonempty. Let t
‖
Ψ be some string in this intersection. From the construction above

for L1
x and L2

x, if x
‖
1Ψ is the n-tuple corresponding to the list of states in L1

x and

x
‖
2Ψ is the n-tuple corresponding to the list of states in L2

x, then δ‖(x
‖
1Ψ, t

‖
Ψ) = x

‖
2Ψ.

Therefore, x
‖
1

t‖
7→G‖x

‖
2.

Notice that the lists Lt, L1
x and L2

x could be constructed to correspond to any

state x
‖
1 such that x

‖
1 ∈ Comp−1(x̃1) and x

‖
1 is the n-tuple corresponding to the list

of states in L1
x.

An example is now given to aid in the visualization of the constructions used in

the proof of Lemma 17.

Example 26 It is now shown how to construct lists Lt, L1
x, L2

x and the states x
‖
1Ψ,

x
‖
1Ψ in Lemma 17 from a given x̃1, x̃2, x

‖
1 and t̃ using the G̃ automaton in Example

24. Suppose x̃1 = {1, 2}, x̃2 = {2, 3}, t̃ = α1γβ1β1α1 and x
‖
1 = (1, 1, 2).

From x
‖
1 = (1, 1, 2), L1

x is set to be [1, 1, 2]. Let Lt = [α1γα1, α1γβ1, γβ1] and let

L2
x = [2, 3, 3]. Therefore, x

‖
1Ψ = (1, 1, 2) and x

‖
1Ψ = (2, 3, 3). Note that

δ1(1, α1γα1) = 2,

δ1(1, α1γβ1) = 3,

δ1(2, γβ1) = 3.

Also note that LΨ
t = [α1γα1, α2γβ2, γβ3] and it is possible for the string t‖ corre-

sponding to t̃ to be α1α2γα1β2β3. Therefore, δ‖((1, 1, 2), α1α2γα1β2β3) = (2, 3, 3).
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The dual of Lemma 17 is now shown where x
‖
2 is specified instead of x

‖
1.

Lemma 18 Suppose a similar module system {G1, . . . , Gn} is given that is used

to construct G‖ and G̃ with two states of the quotient automaton x̃1, x̃2 ∈ 2X , a

state x
‖
2 ∈ X‖ and a string of transitions labelled by t̃ ∈ Σ∗ such that x̃1

t̃
7→G̃x̃2 and

Comp(x
‖
2) = x̃2. Then there exists a state of G‖, x

‖
1 ∈ X‖ and string of transitions

labelled by t‖ ∈ Σ∗1 such that Comp(x
‖
1) = x̃1 and x

‖
1

t‖
7→G‖x

‖
2.

Proof: This proof follows from the same construction of Lemma 17 except that the

lists Lt, L1
x and L2

x could be constructed to correspond to any state x
‖
2 such that

x
‖
2 ∈ Comp−1(x̃2) and x

‖
2 is the n-tuple corresponding to the list of states in L2

x.

Theorem 35 Suppose a similar module system {G1, . . . , Gn} is given that is used to

construct G‖ and G̃. A state x‖ ∈ X‖ deadlocks according to the transition rules of

G‖ if and only if the state Comp(x‖) = x̃ deadlocks according to the transition rules

of G̃.

Proof: This theorem is demonstrated in several parts. Suppose that x‖ ∈ X‖

deadlocks according to the transition rules of G‖. Therefore, there are no global

events σg ∈ Σg that could synchronize a state transition in all component states of

x‖. Due to the construction of G̃, there are therefore no global event σg ∈ Σg that

could synchronize a state transition in all component states of x̃. Also, because there

no private events σpi ∈ Σpi that could occur at any of the component states of x‖.

There can therefore be no events σp1 ∈ Σp1 that could occur at any of the states of x̃

according to the transition rules of G1. Consequently there are no events σp1 ∈ Σp1

that could occur at the state x̃ according to the transition rules of G̃.

Now suppose there is an event σg ∈ Σg that can occur at state x‖ and synchronize

a state update at all component states according to the transition rules of G‖. Due
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to the construction of G̃, σg must also be able to occur at state x̃ according to the

transition rules of G̃ and synchronize an update at all states in x̃.

Now suppose there is an event σpi ∈ Σpi that can occur at state x‖ and cause a

private state update at exactly one component state of x‖ according to the transition

rules of Gi. Due to the construction of G̃, the corresponding σpi must also be able

to occur at state x̃ according to the transition rules of G‖ and cause a state update

at one of the component states.

Theorem 36 Suppose a similar module system {G1, . . . , Gn} is given that is used to

construct G‖ and G̃. A state x‖ ∈ X‖ is reachable according to the transition rules

of G‖ if and only if the state Comp(x‖) = x̃ is reachable according to the transition

rules of G̃.

Proof: This theorem is demonstrated in two parts. For the first part of this proof,

suppose that a state x‖ ∈ X‖ is reachable according to the transition rules of G‖.

Therefore, there is a string of transitions labelled by t‖ such that x
‖
0

t‖
7→G‖x‖. Because

of Lemma 16, there is a string of transitions labelled by t̃ such that x̃0
t̃
7→G̃x̃ where

Comp(x‖) = x̃.

For the second part of this proof, suppose that a state x̃ ∈ X̃ is reachable accord-

ing to the transition rules of G̃. Therefore, there is a string of transitions labelled by

t̃ such that x̃0
t̃
7→G̃x̃. Using Lemma 18 there is a string of transitions labelled by t‖

such that for some x
‖′

0 ∈ Comp−1(x̃0), x
‖′

0
t‖
7→G‖x‖ Because Comp−1(x̃0) = {x

‖
0}, there

is a string of transitions labelled by t‖ such that x
‖
0

t‖
7→G‖x‖ where Comp(x‖) = x̃.

Theorem 37 Suppose a similar module system {G1, . . . , Gn} is given that is used

to construct G‖ and G̃. A state x‖ ∈ X‖ is blocking according to the transition rules
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of G‖ if and only if the state Comp(x‖) = x̃ is blocking according to the transition

rules of G̃.

Proof: Note that according to the constructions of G‖ and G̃, a state x‖ ∈ X‖ is

marked if and only if all states in Comp−1(Comp(x‖)) and Comp(x‖) are marked.

Suppose that the state x‖ ∈ X‖ is nonblocking according to the transition rules

of G‖. Therefore, there is a state x
‖
m ∈ X

‖
m and a string of transitions labelled by t‖

such that x‖
t‖
7→G‖x

‖
m. Because of Lemma 16, there is a string of transitions labelled

by t̃ such that x̃
t̃
7→G̃x̃m where Comp(x

‖
m) = x̃m. Because Comp(x

‖
m) = x̃m, x̃m must

be marked.

Suppose that the state x̃ ∈ X̃ is nonblocking according to the transition rules of

G̃. Therefore, there is a state x̃m ∈ X̃m and a string of transitions labelled by t̃ such

that x̃
t̃
7→G̃x̃m. By Lemma 17 there is a string of transitions labelled by t‖ and a state

x
‖
2 such that x‖

t‖
7→G‖x

‖
2 and Comp(x

‖
2) = x̃m. Because Comp(x

‖
2) = x̃m, and x̃m is

marked, then x
‖
2 must also be marked. Therefore x‖ is nonblocking.

8.4.2 The Size of the State Space of G̃

It should be apparent that the G̃ constructed from the similar module system

{G1, . . . , Gn} has a smaller state space than the ~G or the G‖ automata constructed

from the same modules. The worst-case size of the G̃ automaton state space is

now quantified. Suppose that k = |X|, the size of the state space of the individual

modules. Consider the following example that shows how the G̃ construction uses a

bounded number of states even if the number of modules is unbounded.

Example 27 Consider the similar module system G1, G2 as in Example 20 and

the corresponding G̃2 constructed from these automata which can be seen in Fig-
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ure 8.7. The automata G1, G2 use X = {1, 2, 3} as their state space and G̃2 uses

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} as its state space.

β1

β1 α1

α1

λ
β1

{1,2}

{1,3}

{2}

{3}

{1}

α1
γ

α1

β1

{2,3}

Figure 8.7: The automaton G̃2 constructed from G1, G2.

Now consider the same set of similar modules except with three components

G1, G2, G3 and corresponding G̃3 automaton discussed in Example 25. The automata

G1, G2, G3 use X = {1, 2, 3} as their state space and G̃ for this set of modules is

2X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} as its state space. Note that the

largest cardinality subset of X is {1, 2, 3}.

Now consider the same set of similar modules except with three components

G1, G2, G3, G4 and corresponding G̃4 which can be seen in Figure 8.8. The automata

G1, G2, G3 use X = {1, 2, 3} as their state space and G̃ for this set of modules is

2X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} as its state space. The only dif-

ference between the G̃4 automaton and the G̃ automaton for the three module system

seen in Figure 8.6 is that there is an added self-loop at state {1, 2, 3} for α1 and β1

events. Therefore, after a certain number of modules is used to form the system, the

construction of the G̃ automaton is unaffected if the number of modules is increased.

Now consider the same set of n similar modules G1, · · · , Gn with n ≥ 4. The
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β1 α1

α1

λ

α1

β1

β1

{1,2}

{1,3}

{2}

{3}

{1}

α1
γ

α1

β1

β1

α1

{2,3} {1,2,3}
α1

β1

β1

Figure 8.8: The automaton G̃4 constructed from G1, G2, G3, G4.

automaton G̃n constructed from this set of modules still uses

2X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} as its state space and is struc-

turally equivalent to the G̃4 automaton. That is, all defined transitions in G̃n are

also defined in G̃n. Therefore, the G̃n construction is equivalent to the G̃4 construc-

tion for no matter how many modules are used as long as n ≥ 4. Furthermore, the

size of the state space of G̃n does not change for n ≥ 3. This is due to the fact that

|X| = 3.

Given an n-module system, each state of G̃ can have at most n component states

and component states are not repeated in each state of G̃, so the maximum number

of component states in G̃ is max(n, k). Therefore the worst-case size of G̃ needs to

be analyzed in two cases, n ≥ k and n < k.

Case 1 : n < k

Each of the states of G̃ has at most n component states. There are possibly







k

i







states with i component states. Therefore if the sum of the possible number of state
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sets for each number of components is taken from i to n, then the number of possible

state sets for G̃ is:

n
∑

i=1







k

i






. (8.3)

Note that for n < k, the number of possible state sets for G̃ is bounded by 2k−1.

Case 2 : n ≥ k

For this case, any state set in the power set 2X is a possible state of G̃ except for the

empty set ∅. Therefore, the size of the state space of G̃ is at most

|2X \ {∅}| = 2k − 1. (8.4)

This means that if n ≥ k then the size of G̃ is independent of the number of modules

and therefore the computational complexity of testing state reachability, blocking

and deadlock-freeness can be done without regard to the number of components.

Therefore if X̃G̃ is the set of reachable states in G̃, then

|X̃G̃| ≤



























∑n
i=1







k

i






if n < k

2k − 1 if n ≥ k



























(8.5)

Therefore, no matter how many modules comprise a similar module system,

|X̃G̃| ≤ 2k − 1. This is much less than the worst-case number of reachable states

in G‖, kn. It seems very surprising at first that the verification of such important

properties of systems such as state reachability and blocking can be performed with

such a large reduction in the number of composed states that need to be searched

over. It is also surprising that using the G̃ construction, the difficulty of performing
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these verifications is nearly independent of the number of modules. This construc-

tion shows more of the computational advantages gained when investigating modular

systems with symmetry between components.

8.5 Verification for Local Specifications

Now topics related to the verification of similar module systems with respect to

local specifications are discussed. Only the local behavior without accounting for the

interaction of the other system modules needs to be accounted for when verifying if

local specifications are achieved when the modules are actually interacting.

Definition 21 A set of languages {K1, . . . , Kn} such that for all i ∈ {1, . . . , n},

Ki ⊆ Σ∗i are called a set of similar language specifications if language Ki is a specifica-

tion on module Gi in a similar module system {G1, . . . , Gn} and for all i ∈ {1, . . . , n},

Ψ1i(K1) = Ki.

Suppose it needs to be checked if for all i that Pi (Lm(G1‖ · · · ‖Gn)) = Ki. This

property can be checked solely by verifying that Lm(Gi) = Ki for similar module

systems. The following corollary is a direct extension of Theorem 30.

Corollary 12 Given a local language specification Ki and similar module system

{G1, . . . , Gn}, Pi (Lm(G1‖ · · · ‖Gn)) = Ki if and only if Lm(Gi) = Ki. Likewise,

Pi (L(G1‖ · · · ‖Gn)) = Ki if and only if L(Gi) = Ki.

Verifying Lm(Gi) = Ki and L(Gi) = Ki are both known to be computationally

simple if Ki is specified by a deterministic automaton and Gi is likewise deterministic.

This greatly simplifies previously known verification methods based on more general

modular systems because local behavior in a composed similar module system can

be tested by investigating a single module.
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8.6 Control Operations

Now properties related to the control of similar systems are explored. First the

control framework is introduced which is a version of the standard decentralized

supervisory control framework specialized for similar module systems.

Definition 22 A set of controllers {S1, . . . , Sn} are called Similar Controllers if

they are all exact copies of one another with respect to Ψij(·) operations. Therefore,

Σci = Ψ1i(Σc1), Σoi = Ψ1i(Σo1) and if controller S1 disables events γ1 ⊆ Σc1 after

observing a string s1, then controller i disables Ψ1i(γ1) ⊆ Ψ1i(Σc1) after observing

string Ψ1i(s1).

The controllers {S1, . . . , Sn} are non-blocking for {G1, . . . , Gn} if

Lm((S1/G1)‖ · · · ‖(Sn/Gn)) = L((S1/G1)‖ · · · ‖(Sn/Gn)).

8.7 Control for Local Specifications

There are potentially great reductions in computational effort for many similar

module system control problems with local specifications. For a similar module sys-

tem {G1, . . . , Gn} and a set of similar language specifications {K1, . . . , Kn}, suppose

it is desirable to know if there exists a set of similar controllers {S1, . . . , Sn} such

that

∀i ∈ {1, . . . , n}







Pi [Lm((S1/G1)‖ · · · ‖(Sn/Gn))] = Ki

∧ Pi [L((S1/G1)‖ · · · ‖(Sn/Gn))] = Ki.







This problem can be solved by looking only at the local behavior of G1 and the

locally observable and controllable event sets, Σo1 and Σc1, respectively.
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Theorem 38 For a similar module system {G1, . . . , Gn} with respective local event

sets {Σ1, . . . , Σn}, observable event sets {Σo1, . . . , Σon}, controllable event sets

{Σc1, . . . , Σcn} and local behavior specifications {K1, . . . , Kn} such that for all i, j ∈

{1, . . . , n}, Ki 6= ∅ and Ki ⊆ Lm(Gi), Kj = Ψij(Ki), there exists a set of similar

controllers {S1, . . . , Sn} such that for all i ∈ {1, . . . , n},

Pi [Lm((S1/G1)‖ · · · ‖(Sn/Gn))] = Ki

and

Pi [L((S1/G1)‖ · · · ‖(Sn/Gn))] = Ki

if and only if

1. K1 is controllable with respect to L(G1) and Σuc1.

2. K1 is observable with respect to L(G1), Po1 and Σc1.

3. K1 is Lm(G1)-closed.

Proof: It was shown in Corollary 12 that

Pi [Lm((S1/G1)‖ · · · ‖(Sn/Gn))] = Ki and Pi [L((S1/G1)‖ · · · ‖(Sn/Gn))] = Ki if and

only if Lm(Si/Gi) = Ki and L(Si/Gi) = Ki. Due to the symmetry of the model,

controllers and specifications, Lm(Si/Gi) = Ki and L(Si/Gi) = Ki if and only if

Lm(S1/G1) = K1 and L(S1/G1) = K1. The result then follows using the controlla-

bility and observability theorem of supervisory control theory [44].

Theorem 38 shows that controller existence for local behavior specifications can

be decided by testing controller existence locally and apart from the interaction of

other modules. The controllability and observability theorem is known to be con-

structive so therefore there are known methods for synthesizing the local controllers
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{S1, . . . , Sn} such that local non-blocking specifications are satisfied at all nodes

when the modules interact and the conditions of Theorem 38 are satisfied. These

results also generalize to the cases where marking properties are not of a concern.

Despite these very positive results a caveat is in order with respect to the nature

of language semantics. All local modules in a similar module system may be non-

blocking and deadlock free, but blocking and deadlock may both still occur globally.

Consider the following example.

Example 28 Consider the automaton G1‖G2 introduced in Example 20. G1‖G2 is

blocking and contains two deadlock states, (2, 3) and (3, 2). These states are reached

when an α event is followed immediately by a β event or when a β event is followed

immediately by an α event. Neither G1 or G2 can observe the interleaving of α and

β events due to the restriction that the local systems cannot observe events that are

private to other modules. However, when the language generated by the system G1‖G2

is projected down to either the Σ1 or Σ2 event sets, the behavior is equivalent to G1 or

G2, respectively, and these automata are individually non-blocking and deadlock-free.

Example 28 shows one of the major limitations of language semantics and moti-

vates why attention should not be restricted solely to local behavior. For concurrent

systems, blocking and deadlock properties are inherently global in nature which

prompts the investigations of global specifications.

Suppose a set of trim similar specification automata {H1, . . . , Hn} is given such

that ∀i ∈ {1, . . . , n} Lm(Hi) = Ki. One way to ensure that the global composed

system is non-blocking after the local controllers are designed would be to verify

that {K1, . . . , Kn} are non-conflicting by testing if H‖ is non-blocking. This can be

verified fairly efficiently by testing if the H̃ construction is non-blocking as seen in
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Theorem 37. Another approach to ensure that the global controlled system is non-

blocking would be to use global control specifications instead of local specifications.

This situation is explored in the following section.

8.8 Control for Global Specifications

Instead of considering a set of local similar specifications {K1, . . . , Kn}, suppose a

global language specification K is given and it needs to be decided if there exist non-

blocking similar controllers {S1, . . . , Sn} for a similar module system {G1, . . . , Gn}

such that Lm((S1/G1)‖ · · · ‖(Sn/Gn)) = K. Due to the similarity of the controllers

and system modules one would think that K would need to exhibit a degree of

symmetry with respect to the occurrence of private events. This is exactly the case

which is found in Theorem 39 below.

Theorem 39 For a similar module system {G1, . . . , Gn} with respective local pro-

jection operations {P1, . . . , Pn}, observation projections {Po1, . . . , Pon}, controllable

event sets {Σc1, . . . , Σcn} and global behavior specification K such that K 6= ∅ and

K ⊆ Lm(G1‖ · · · ‖Gn), a set of non-blocking similar controllers {S1, . . . , Sn} exists

such that Lm((S1/G1)‖ · · · ‖(Sn/Gn)) = K if and only if

1. P1(K) is controllable with respect to L(G1) and Σuc1.

2. P1(K) is observable with respect to L(G1), Po1 and Σc1.

3. P1(K) is Lm(G1)-closed.

4. K is symmetric with respect to {Σ1, . . . , Σn}.

5. K is decomposable with respect to {P1, . . . , Pn}.

6. {P−1
1 (P1(K)), . . . , P−1

n (Pn(K))} are non-conflicting.
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Proof: This theorem is shown in two parts. Assume there exists a set of controllers

{S1, . . . , Sn} such that

K = Lm((S1/G1)‖ · · · ‖(Si/Gi)‖ · · · ‖(Sn/Gn)) (8.6)

K = L((S1/G1)‖ · · · ‖(Si/Gi)‖ · · · ‖(Sn/Gn)). (8.7)

By the definition of Ψ1i(·):

Ψ1i(Lm((S1/G1)‖ · · · ‖(Si/Gi)‖ · · · ‖(Sn/Gn))) =

Lm((Si/Gi)‖ · · · ‖(S1/G1)‖ · · · ‖(Sn/Gn)).

The parallel composition operation is commutative, so:

Lm((S1/G1)‖ · · · ‖(Si/Gi)‖ · · · ‖(Sn/Gn)) =

Lm((Si/Gi)‖ · · · ‖(S1/G1)‖ · · · ‖(Sn/Gn)).

⇒ K = Ψ1i(K). This proves the fourth part of the implication.

By Equations 8.6 and 8.7 there exists a set of controllers {S1, . . . , Sn} such that

K = Lm((S1/G1)‖ · · · ‖(Si/Gi)‖ · · · ‖(Sn/Gn))

K = L((S1/G1)‖ · · · ‖(Si/Gi)‖ · · · ‖(Sn/Gn))

⇒

there exists a set of controllers {S1, . . . , Sn} such that ∀i ∈ {1, . . . , n}

Pi(K) = Pi(Lm((S1/G1)‖ · · · ‖(Sn/Gn)))

Pi(K) = Pi(L((S1/G1)‖ · · · ‖(Sn/Gn)))

⇒ using Corollary 12:

there exists a set of controllers {S1, . . . , Sn} such that ∀i ∈ {1, . . . , n}

Pi(K) = Lm(Si/Gi)

Pi(K) = L(Si/Gi)

⇒ from the controllability and observability theorem of supervisory control the-

ory,
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1. Pi(K) is controllable with respect to L(Gi) and Σuci.

2. Pi(K) is observable with respect to L(Gi), Poi and Σci.

3. Pi(K) is Lm(Gi)-closed.

This proves the first three parts of the implication.

It is known that:

K = P−1
1 (Lm(S1/G1)) ∩ · · · ∩ P−1

n (Lm(Sn/Gn))

K = P−1
1 (L(S1/G1)) ∩ · · · ∩ P−1

n (L(Sn/Gn))

⇒ using Corollary 12:

K = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K)),

K = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K))

⇒ using Lemma 12:

K = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K)),

K = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K))

This proves the fifth and sixth parts of the implication. This completes one

direction of the proof.

It is now shown that the controllers exist if the six conditions hold.

Because of the first three conditions it is known that there exists a controller S1

such that P1(K) = Lm(S1/G1) and P1(K) = L(S1/G1).

Because of the decomposability condition, K = P−1
1 (P1(K))∩ · · · ∩P−1

n (Pn(K)).

Because of the symmetry condition and Lemma 13 it is known there exists con-

trollers S1, . . . , Sn such that ∀i ∈ {1, . . . , n}: (Pi(K) = Lm(Si/Gi)).

Therefore by substitution,

K = P−1
1 (Lm(S1/G1)) ∩ · · · ∩ P−1

n (Lm(Sn/Gn)).
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This implies that

K = Lm((S1/G1)‖ · · · ‖(Sn/Gn)).

Because of Condition 6 and Lemma 12:

P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K)) = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K)).

⇒ Because of Conditions 5 and 6, K is decomposable and:

K = P−1
1 (P1(K)) ∩ · · · ∩ P−1

n (Pn(K)).

Because of P1(K) = L(S1/G1), the symmetry condition and Lemma 13 it is

known that there exists controllers S1, . . . , Sn such that ∀i ∈ {1, . . . , n}: (Pi(K) =

L(Si/Gi)).

Therefore, for the set of similar controllers {S1, . . . , Sn},

K = P−1
1 (L(S1/G1)) ∩ · · · ∩ P−1

n (L(Sn/Gn))

⇒

Therefore there exists a set of similar controllers {S1, . . . , Sn} such that

K = Lm((S1/G1)‖ · · · ‖(Sn/Gn))

K = L((S1/G1)‖ · · · ‖(Sn/Gn)).

The six necessary and sufficient conditions for controller existence in Theorem

39 can be divided into two types. The first three conditions (local controllability,

observability and Lm-closure) are essentially existence conditions for local controllers

to achieve local projections of global behavior. These conditions are inherent to

many supervisory control problems and have been well known from the early papers

in supervisory control theory [44, 54]. However, the combination of the last three

conditions (symmetry, decomposability and non-conflictingness) is unique to this

problem setting.

The symmetry condition ensures that if K is decomposable, then its decompo-

sition is a similar module system. This condition in hindsight should be expected
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when one considers Theorem 32. If the behavior of all controllers operating on the

modules is similar with respect to a renaming of local events, then the specification

would necessarily be symmetric if it can be achieved.

The decomposability condition ensures that the specification K can be con-

structed from its local behavior projections P1, . . . , Pn. Therefore, because it is

known that the local specifications are achieved by the local behavior, i.e., Pi(K) =

Lm(Si/Gi), the decomposability condition forces the global controlled behavior to

be equivalent to the global behavior specification. The non-conflicting condition en-

sures that the local non-blocking behavior of each controller ensures that the global

controlled behavior is non-blocking.

Taken together, Conditions 4 through 6 imply that the global specification needs

to be expressible as similar non-conflicting local specifications if there exists a set of

similar controllers that can be coupled with the similar module system to achieve

the specification.

Suppose a trim automaton H is given such that Lm(H) = K where K satisfies

the conditions of Theorem 39. Using the decomposition algorithm, Algorithm 11,

a set of trim automata {H1, . . . , Hn} can be constructed from H such that ∀i ∈

{1, . . . , n} Lm(Hi) = Ki and P−1
1 (K1) ∩ · · · ∩ P−1

n (Kn) = K from Theorems 33 and

34. The local similar controllers {S1, . . . , Sn} can then be synthesized very quickly

using known methods for centralized system using the result of Theorem 38.

Note that Conditions 1 through 6 together imply that the language K is control-

lable with respect to L(G1‖ · · · ‖Gn), co-observable with respect to L(G1‖ · · · ‖Gn)

and Lm(G1‖ · · · ‖Gn)-closed, but the reverse implication does not hold because of

the assumptions on the controllers being used. If the controllers were allowed to be

asymmetric, a larger class of specifications could be achieved, but this would require
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an extra amount of coordination in the control synthesis. The model is designed so

that once one control module is designed, the implementation of more controllers is

merely a matter of copying that first controller.

8.9 Discussion

A special class of permutation symmetric systems has been introduced that can

be used to model a wide variety of real-world processes. A method has been shown

that can be used to test reachability, global blocking and deadlock-freeness without

enumerating all possible combinations of system states. It was also shown that the

verification of local behavior for these systems can be performed in an off-line manner

without system interaction. Necessary and sufficient conditions for the existence of

local controllers for the similar module model have also been introduced.

A method for decomposing an automaton representing global system behavior

into automata representing the local, modular subsystems has been shown that is

computationally reasonable and runs in polynomial time with respect to the size

of the local specification. This result is important because the standard methods

for performing decompositions currently known in the standard supervisory control

literature take exponential time with respect to the size of the global model in the

worst case.

It would be interesting to develop more efficient tests for when the necessary and

sufficient conditions for controller existence in Theorem 39 are satisfied. There are

several known methods for testing these properties, but these methods do not take

advantage of the possible symmetry in the systems discussed here and hence can

be computationally expensive. Once these conditions can be tested efficiently, local

control modules can be synthesized easily using Algorithm 11 and known centralized
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controller synthesis methods. It would also be interesting to develop online methods

for controlling these systems when the necessary and sufficient conditions for con-

troller existence do not hold, but safety conditions need to be satisfied. It would

also be desirable to synthesize controllers that achieve behavior that is “maximal”

in some sense as was done for centralized systems in Chapter V.



CHAPTER IX

CONCLUSIONS

9.1 Chapter Overview

This chapter reviews the main results of this thesis and then proposes several

areas for continued future research.

9.2 Thesis Overview

This thesis discusses computational problems related to the control and verifica-

tion of distributed systems. The framework of supervisory control of discrete-event

systems is used where system modules are modelled as finite-state automata that

coordinate on the occurrence of common events.

It is shown in Chapter IV that in general many important control and verification

problems for these systems are PSPACE-complete. The results of this chapter are

also disappointing because (as was mentioned previously), it is generally believed

that deterministic finite-state automata problems are fairly simple and these results

indicate that many modular problems using more general system and specification

models are also intractable. This motivates the work in the later chapters of this

thesis for finding methods to avoid this computational difficulty for problems of

particular interest.

256
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Despite the negative results regarding the time-complexity of the problems dis-

cussed in Chapter IV, it is shown in this chapter that the problems are in PSPACE.

Therefore, there are always space-efficient solutions to the problems discussed here

for deterministic finite-state automata modules. These results are in a sense positive

in that the state explosion problem inherent to distributed systems can be avoided,

as far as computation space is concerned,. In the worst case the size of the state

space of a composed system is exponential in the number of modules, but at worst

only a small fraction of those modules need to be stored in memory to solve many

problems if necessary.

Chapter V introduces several new online decentralized control protocols to avoid

the computational difficulty of calculating precomputed control actions. These new

online protocols rely on a new state estimator function. These protocols have a com-

mon easily testable sufficient safety condition that is effectively an actuator selection

problem.

A sensor selection problem is discussed in Chapter VI where it was shown that

even for centralized control systems a minimal sensor selection is difficult to approx-

imate. The sensor selection problem is converted to a type of edge colored directed

graph st-cut problem and heuristic methods are developed to approximate minimal

solutions to this problem. It is shown how these methods for the edge colored directed

graph st-cut problem can also be used to approximate solutions to a communicating

controller problem.

The graph cutting method for solving the sensor selection problems are very

powerful in that they can be used to force an event be observable or not without

greatly modifying methods for solving the problem. This method is also useful

when for an important actuator selection problem where it is desired to find the
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minimal number of actuators needed to synthesize a controller that satisfies a safety

specification. Many of the methods also discussed could be used to solve a related

sensor selection problem where the cost of selecting a sensor is non-uniform.

Chapter VII discusses a special class of distributed system that contain a property

called state permutation symmetry. A special version of the µ-calculus is introduced

such that all permutation equivalent states in a composed distributed system satisfy

the same µ-calculus formulas. A quotient structure is introduced for these systems

that can be used to more efficiently test if the systems satisfy propositions in the

restricted µ-calculus.

Chapter VII discusses the case where the control modules are perfectly symmetric,

but it might be the case in many real-world problems that the systems may be slightly

asymmetric. For instance, for some control systems, one controller might have more

leeway in enforcing global control actions to avoid situations where blocking and

deadlock may occur. This is an interesting problem for future investigations that

could build on the symmetric system investigations in Chapter VII.

Chapter VIII investigates a special class of symmetric distributed systems where

the behavior of the system modules is restricted to be either global or private. A very

efficient decomposition method is given to convert a composed version of these special

systems into distributed modules. These systems also allow for the construction

of quotient automata with even smaller state spaces than the ones presented in

Chapter VII for testing important system properties. Concise necessary and sufficient

conditions exist for testing for controller existence on these systems that are based

on previously known properties. These properties can also be used to reduce the

computational difficulty of solving controller verification problems.



259

9.3 Ongoing Research

This thesis has shown that many important problems related to the control and

verification of distributed discrete-event systems are computationally difficult to solve

in general. However, despite this computational difficulty, these problems are becom-

ing increasingly important in the modern world and methods need to be developed

to handle them. Therefore, methods need to be developed to solve special cases of

these problems that have particular real-world relevance. To this end, this thesis

shows practical methods to solve several special problem cases.

This avenue of research is of course ongoing and as new applications areas of

supervisory control are investigated new special cases of the control and verification

problems will gain practical relevance. This highlights an important aspect of solu-

tion methods for the problems discussed in this thesis; although the methods shown

here are theoretical nature, they are necessarily driven by practical application and

this practical relevance should necessarily continue to be an important motivating

factor for future research.

With the need for practical relevance in mind, future efforts to solve the com-

putationally difficult problems discussed in this thesis could perhaps be driven by

average case analysis. Throughout this thesis in particular and control theory in

general, when computational methods are developed to solve problems, the strongest

emphasis is usually placed on worst case analysis. However, for many applications,

worst case analysis may not be particularly relevant. Therefore, it may be commonly

sufficient to develop solution methods that are optimal in some sense for the “aver-

age” case. Unfortunately, average case analysis is generally more difficult than worst

case analysis as it is difficult at times to quantify what an average case of a problem
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is.

The interacting automata modelling formalism used in this thesis is generally

considered to be the simplest one for distributed systems that is sufficiently express-

ible to model real systems. Therefore, an additional avenue for future research would

be to use more general system models which include Petri nets and hybrid automata

which would be able to model a much larger class of systems. There has already been

some investigations into computational methods for the control and verification of

these system models, but all of the control and verification problems discussed in

this thesis are at least as difficult when these models are used and generally much

more so. Indeed, even some of the simplest problems such as state reachability are

undecidable with these models. Therefore it would be particularly useful to develop

methods to avoid the computational difficulty of control and verification problems

for these systems. Indeed, the methods shown in this thesis such as the sufficient safe

control protocols, approximation methods and symmetry reductions would hopefully

also be useful for these more general systems.
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APPENDIX A

The 2-Controller M Automaton

Suppose a specification automaton H = (XH , xH
0 , Σ, δH), a system automaton

G = (XG, xG
0 , Σ, δG), observable event sets Σo1 and Σo2 and controllable event sets

Σc1 and Σc2 are given to test if L(H) is co-observable with respect to L(G), Σo1, Σo2,

Σc1 and Σc2. This can be done using the M automaton construction shown in [67].

Let us define:

M = (XM, xM0 , Σ, δM, XMm )

where

XM := XH ×XH ×XH ×XG ∪ {d},

xM0 := (xH
0 , xH

0 , xH
0 , xG

0 ),

XMm := {d}.

Let us define the set of conditions that together imply a violation of co-observability.

Note that these conditions are only defined for the controllable events. For σ ∈ Σc
1,

1This condition is not mentioned in [67].
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the following set of conditions are called the (∗) conditions.

δH(x1, σ) is defined if σ ∈ Σc1

δH(x2, σ) is defined if σ ∈ Σc2

δH(x3, σ) is not defined

δG(x4, σ) is defined







































(∗)

The transition relation δM is defined as follows.

For σ 6∈ Σo1 and σ 6∈ Σo2,

δM((x1, x2, x3, x4), σ) =






















































(δH(x1, σ), x2, x3, x4)

(x1, δ
H(x2, σ), x3, x4)

(x1, x2, δ
H(x3, σ), δG(x4, σ))

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ))

d if (∗)























































For σ 6∈ Σo1 and σ ∈ Σo2,

δM((x1, x2, x3, x4), σ) =






































(δH(x1, σ), x2, x3, x4)

(x1, δ
H(x2, σ), δH(x3, σ), δG(x4, σ))

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ))

d if (∗)







































For σ ∈ Σo1 and σ 6∈ Σo2,

δM((x1, x2, x3, x4), σ) =






































(x1, δ
H(x2, σ), x3, x4)

(δH(x1, σ), x2, δ
H(x3, σ), δG(x4, σ))

(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ))

d if (∗)






































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For σ ∈ Σo1 and σ ∈ Σo2,

δM((x1, x2, x3, x4), σ) =










(δH(x1, σ), δH(x2, σ), δH(x3, σ), δG(x4, σ))

d if (∗)











For σ ∈ Σ, δM(d, σ) is undefined.

The state d is reachable from the initial state in M if and only if L(H) is co-

observable with respect to L(G), Σo1, Σo2, Σc1 and Σc2.
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APPENDIX B

The 2-Controller Md Automaton

Suppose a specification automaton H = (XH , xH
0 , Σ, δH), a system automaton

G = (XG, xG
0 , Σ, δG), observable event sets Σo1 and Σo2 and controllable event sets

Σc1 and Σc2 are given such that it should be tested if L(H) is D&A co-observable with

respect to L(G), Σo1, Σo2, Σc1 and Σc2. This can be done using the Md automaton

construction shown in [83]. Let us define:

Md = (XMd , xMd
0 , Σ, δMd , XMd

m )

where

XMd := XG ×XH ×XG ×XH ×XH ∪ {d},

xMd
0 := (xG

0 , xH
0 , xG

0 , xH
0 , xH

0 ),

XMd
m := {d}.

Let us define the set of conditions that together imply a violation of D&A co-

observability. Note that these conditions are only defined for the controllable events.
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For σ ∈ Σc, the following set of conditions are called the (∗) conditions.

δG(x1, σ) is defined if σ ∈ Σc1

δH(x2, σ) is not defined if σ ∈ Σc1

δG(x3, σ) is defined if σ ∈ Σc2

δH(x4, σ) is not defined if σ ∈ Σc2

δH(x4, σ) is defined























































(∗)

The transition relation δMd is defined as follows.

For σ 6∈ Σo1 and σ 6∈ Σo2,

δMd((x1, x2, x3, x4, x5), σ) =






















































(δG(x1, σ), δH(x2, σ), x3, x4, x5)

(x1, x2, δ
G(x3, σ), δH(x4, σ), x5)

(x1, x2, x3, x4, δ
H(x5, σ))

(δG(x1, σ), δH(x2, σ), δG(x3, σ), δG(x4, σ), δH(x5, σ))

d if (∗)























































For σ 6∈ Σo1 and σ ∈ Σo2,

δMd((x1, x2, x3, x4), σ) =






































(δG(x1, σ), δH(x2, σ), x3, x4, x5)

(x1, x2, δ
G(x3, σ), δH(x4, σ), δH(x5, σ))

(δG(x1, σ), δH(x2, σ), δG(x3, σ), δG(x4, σ), δH(x5, σ))

d if (∗)






































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For σ ∈ Σo1 and σ 6∈ Σo2,

δMd((x1, x2, x3, x4), σ) =






































(δG(x1, σ), δH(x2, σ), x3, x4, δ
H(x5, σ))

(x1, x2, δ
G(x3, σ), δH(x4, σ), x5)

(δG(x1, σ), δH(x2, σ), δG(x3, σ), δG(x4, σ), δH(x5, σ))

d if (∗)







































For σ ∈ Σo1 and σ ∈ Σo2,

δMd((x1, x2, x3, x4), σ) =










(δG(x1, σ), δH(x2, σ), δG(x3, σ), δG(x4, σ), δH(x5, σ))

d if (∗)











For σ ∈ Σ, δMd(d, σ) is undefined.

The state d is reachable from the initial state inMd if and only if L(H) is D&A

co-observable with respect to L(G), Σo1, Σo2, Σc1 and Σc2.
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ABSTRACT

COMPUTATIONS ON DISTRIBUTED DISCRETE-EVENT SYSTEMS

by

Kurt Rohloff

Chairperson: Professor Stéphane Lafortune

This thesis explores computational issues related to the control and verification of

systems with distributed structure. The framework of supervisory control theory and

discrete-event systems is used where system modules are modelled as sets of finite

state automata whose behavior coordinates on the occurrence of common events. It

is shown that in general many problems related to the supervision of these systems

are PSPACE-complete. There are methods for solving these problems that are more

efficient in memory than the current state-of-the-art methods, but there are most

likely no time-efficient general solution methods that would aid in the study of such

“large-scale” systems. This thesis explores methods for avoiding the computational

difficulty of solving these problems.

For decentralized control situations a new state estimator is presented that ac-

counts for past local control actions when calculating the set of estimated system



1

states. The new state estimator is used to develop new decentralized control proto-

cols with a common sufficient safety condition.

It is also shown that it is difficult to approximate minimal solutions to a sensor

selection problem for partial observation control situations. Heuristic methods for

solving this approximation problem based on a type of edge-colored graph cutting

problem are then discussed. It is also shown how to convert a type of communicating

controller problem into this edge-colored graph cutting problem.

A notion of state permutation symmetry that defines an equivalence class for the

distributed system states is introduced. A method is shown to reduce the complexity

of verifying µ-calculus propositions for systems with state permutation symmetry. A

special class of symmetric distributed systems is also shown that allows for an even

greater reduction in the difficulty of testing several fundamental system properties.

Control and verification problems related to both local and global specifications for

these special systems are then explored.


