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Abstract: This paper presents a discrete-event systems approach to the modeling of
a packet-switched communication link shared by multiple users for the purpose of
end-to-end congestion control. It introduces a discrete-event system model for the
interaction between a shared communication link and the users, which captures the
behavior that the link users receive acknowledgments for successfully transmitted
packets with a delay that is proportional to the level of congestion in the link. An
end-to-end congestion control scheme for this system model is presented that uses
the concept of an observer from supervisory control theory. The link model and
controllers are implemented in both a Java programming language simulation and
the NS2 network simulation software for analysis. Copyright c©2005 IFAC
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1. INTRODUCTION

In packet-switched communication networks, such
as the Internet, a user injects packets of data
into the network, which are sent over transmission
links to a receiver. Some packets may be lost
during the transmission, and thus, to keep track
of these losses, acknowledgments are returned to
the originating sender as incoming data is pro-
cessed by the receiver,. In order to guarantee that
all transmitted data is eventually communicated
successfully, a sender will retransmit data until
he receives positive acknowledgments for all the
packets that need to be sent.

It is common for a communication link to receive
packets from users at a faster rate, at least occas-
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sionally, than it can retransmit them. When this
happens, the packets sent to the link are placed
on a processing queue for eventual transmission.
Packets sent to a full queue are dropped, indirectly
causing a decrease in the link’s throughput due
to the necessity of retransmitting the dropped
packets. A key attribute of the congestion control
problem that the model presented herein attempts
to capture is that the acknowledgment delay of a
transmitted packet is proportional to the level of
congestion in the network. By observing delays in
acknowledgments for transmitted packets, users
could locally diagnose link congestion and there-
fore take action to decrease their sending rates
and lower the overall congestion. This process is
called end-to-end congestion control and has been
receiving much attention from both the network-
ing and control communities (Kurose and Ross
(2005); Srikant (2003)).



The most widely used models for the analysis of
how users interact with a packet-switched network
has been fluid flow and queuing models Although
the level of abstraction in these models can be
useful for modeling certain aspects of network
behavior, these models do not capture the effects
of the dependence of a packet’s acknowledgment
delay on the level of congestion.

With this in mind, the main goal of this paper
is to propose a model of the interactions between
a shared communication link and its users at a
lower level of abstraction that captures the be-
havior that the acknowledgment delays observed
by users are proportional to link congestion. The
measure of link congestion used in this paper is the
level of the link’s processing queue. The discrete-
event systems modeling framework (Cassandras
and Lafortune (1999)) is natural for this low-level
analysis due to the underlying discrete nature
of packets. This paper specifically explores the
modeling of multiple users sharing single commu-
nication links an important special case of general
networks.

To the best knowledge of the authors, there is
no discrete-event systems model to capture pos-
sible variable acknowledgment delay behavior in
communication networks. There has been some
work in other modeling frameworks to use ac-
knowledgment delay observations in congestion
control policies. Among these, Brakmo and Pe-
terson (1995) present the widely used TCP Vegas
policy, and Alpcan and Başar (2003) present a
game theoretic approach to congestion control.

This paper is structured as follows. The next sec-
tion gives an overview of the properties possessed
by the new link model. Section 3 presents an im-
plementation of the model. An online supervisory
control method for the link model is given in Sec-
tion 4. The paper closes with a discussion of the
results in Section 5. Due to the necessary brevity
of this paper a comprehensive introduction to
discrete-event systems or network congestion con-
trol cannot be given, but the reader may consult
Cassandras and Lafortune (1999) or Kurose and
Ross (2005) for the necessary background.

2. SYSTEM PROPERTIES

The model in this paper assumes a quantized
time interval with respect to a global clock tick
T such that the link can process and transmit
one packet per interval. For reasons of simplicity
it is assumed that packets sent over the link are
of uniform size, the users’ transmission capacities
are equal, and one packet can be transmitted
per user per time interval. The model should
also capture the behavior that there might be

processing and transportation delays associated
with using the link. It is also assumed that the sum
of these delays is an integer multiple d of the time
quantization interval T . These assumptions are
made in order to develop a relatively simple model
that exhibits variable feedback delay behavior.

Suppose the link’s processing queue holds m < q

packets where q is the maximum number of pack-
ets that can be held. If a user were to then send
a packet to be transmitted over the link, in m+ d

time steps the user should observe an acknowl-
edgment that the packet was received. This cap-
tures the behavior that the link has an associated
acknowledgment reception delay which is pro-
portional to the congestion level. Once a packet
is transmitted over the link, it is assumed that
packet acknowledgments are transmitted without
loss as the difficulties associated with the queuing
of acknowledgments is outside the desired scope
of this model. This is a common assumption made
in the congestion control literature due to the fact
that acknowledgment packets are relatively small
and do not generally cause congestion on feedback
channels.

For the discrete-event system model of the link
and user interaction presented here, all of the
system modules have three distinct operating
modes which the modules cycle through during
the course of operation. Transitions between oper-
ating modes progress synchronously in all modules
on the occurrence of global signaling events.

After initialization, the first mode of operation
is the On/Off mode, where each user is allowed
to initiate or terminate communication sessions
with the link depending on whether the user has
packets to send. A user is “On” if it has a sequence
of packets that should be sent over the link, while
the user is “Off” otherwise. The system enters the
local data transmission mode on the occurrence of
the global event Insert. For this mode of operation
the users are allowed to send packets to the link
that are to be transmitted. These packets are
accepted or dropped by the link depending on the
level of the link’s processing queue. The global
signal Done signifies the completion of sending
packets, and the model then enters the acknowl-
edgment return mode of operation. During this
mode of operation an acknowledgment is sent to
a user for a previously transmitted packet if there
are any pending. On the occurrence of a global
clock tick T, the system returns to the On/Off
mode of operation and the process iterates indef-
initely.

2.1 Model Operation

The interaction of the users with the link can be
thought of as a modified queue of size q+d, where



when a packet is sent to a link with an empty
processing queue, a token is placed on the model
queue at level d. Every time interval, if the head
of the queue is not empty, a token is pulled from
the model queue, returned to the user that had
originally sent it, and the contents of the model
queue are shifted forward one queue cell. However,
if the head of the model queue is empty, all of
the cells of the queue containing tokens shift their
tokens forward one cell. Therefore, in d time steps,
the user will receive an acknowledgment for the
packet it had sent. In this manner, if packets sent
to the link are modeled as putting tokens on the
model queue at the lowest open cell above level d,
then when the link processing queue is at level
m, the model queue is at level m + d. Due to
the nature in which tokens are pulled from the
queue, users that are modeled as sending packets
to the link when the processing queue is at level
m are also modeled as receiving acknowledgments
in m + d time steps.

A flow diagram of the model operation can be
seen in Figure 1 for a system with two users,
a processing and transportation delay of 1 and
a queue capacity of 2 packets. In the diagram,
the queues flow down, and the shaded queue cells
correspond to the processing and transportation
delay.
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Fig. 1. An overview of the model operations.

In the top sub-diagram of Figure 1, the model is
in the local data transmission mode of operation
and User 0 sends a packet to the link. A token
corresponding to this packet is placed in Cell 1
of the model queue (if the bottom cell of the
queue is Cell 0) because this is the first open cell
into which tokens can be inserted. Each token
retains information about which user originally
sent it so acknowledgments can eventually be
sent to the appropriate user. Furthermore, the
level of the queue when the token was placed
in it is also stored with the token so the user
will observe the proper acknowledgment delay. By
storing acknowledgment delay information on the

queue tokens rather than with the users the model
avoids the difficulty of having the users retain
internal memory of when packets were sent to the
link, consequently simplifying the model. In the
top sub-diagram of Figure 1, the token placed in
the model queue contains the information that it
came from User 0 and was originally inserted into
the queue at Cell 1.

An acknowledgment return mode of operation
can be seen in the transition between the first
and second sub-diagrams of Figure 1 where the
model enters the acknowledgment return mode of
operation, but the head of the queue is empty
(that is, the shaded queue cell). Therefore, no
acknowledgments are sent to any user during the
transition, but the tokens in the queue are passed
down one cell.

From the second sub-diagram, the time-step T

occurs which signals the beginning of the next
cycle of operation in the model. In the third sub-
diagram, User 1 first sends a packet to the link,
followed by User 0, at levels 1 and 2 respectively.
With the transition to the final sub-diagram, the
model re-enters the acknowledgment return mode
of operation, and User 0 observes that the packet
it sent had an acknowledgment delay of 1.

3. MODEL OVERVIEW

This section presents an implementation of the
discrete-event systems shared link model outlined
above for a system with two users, a processing
and transportation delay of 1 time step and a
link queue capacity of 2 packets. To avoid some
of the state explosion difficulties associated with
this system, the model is presented in a modular
manner where each module is a discrete-event
system that captures a specific aspect of the inter-
action between the link and the users. The system
modules can be combined to form a global system
model through the use of the parallel composi-
tion operation. The parallel composition opera-
tion is currently the standard method to model
the actions of interacting modules in distributed
discrete-event systems.

For the model of the link and user system, there
is a module to represent how each user sends
packets to the link, seen in Figure 2 for the case
of User 0. For User i, the occurrence of the events
Oni and Offi represent that the user is entering
the “On” mode or “Off” mode, respectively. The
global event Insert signals that the users can
send a packet to the link. The event Off Nothingi

represents that User i has nothing to send to the
link because it is off, while the event Nothingi

represents that User i has nothing to send to the
link because it chooses not to. The event Inserti



represents that User i would like to send a packet
to the link. The event Inserti j signals that a token
is placed from User i onto the model queue at level
j and Lossi signals that there is a packet from User
i that was lost.
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Fig. 2. A model of the interaction of User 0 with
the communication link.

Figure 3 shows the system modules that repre-
sent each cell of the model queue as discussed
for Figure 1 above. Besides the events relevant
to the insertion of tokens on the queue described
above, there are two classes of events relevant to
the operation of the model queue. The Return

events are the events that occur when a token
is pulled from the queue and an acknowledgment
needs to be signaled to a user. The event Returni j

represents that an acknowledgment is being re-
turned to User i with an observed delay of j, while
ReturnE represents that no acknowledgments are
returned to any user. The Pass events are internal
signaling events for the queue operation that are
used to coordinate how tokens in the queue are
passed from one queue level to the next. For the
passing of tokens from queue level 2 to queue level
1, the event Pass21 i j represents that a token
corresponding to User i is being passed from Cell
2 to Cell 1 with an associated delay of j, while
Pass21 E represents that no token is being passed
from Cell 2 to Cell 1.
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Fig. 3. A model of the queue modules to process
variable delays for acknowledgment transmis-
sions.

The module to coordinate the passing of the to-
kens in the queue cells can be seen in Figure
4. This module ensures that tokens are returned
from the queue during the correct mode of oper-
ation and the passing of tokens from one queue
level to the next occurs in the proper order. That

is, when an event is taken from the model queue,
a Return event occurs first, then a Pass10 event,
then a Pass21 event and so on.
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Fig. 4. The module to order queue behavior.

The module to coordinate the level at which
tokens are placed on the queue can be seen in
Figure 5. This module tracks which of the queue
cells should accept a new token. This is also
the module that determines which of the events
Inserti j or Lossi should occur depending on the
queue level.
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Fig. 5. The module to track occurrences of packet
transmissions.

Finally, the module to track if none of the users
sends any packets to the link can be seen in Figure
6. The event Off occurs if all users are off during
the current time interval, while the event Nothing

occurs if all users that are on decide not to send
packets. If Nothing occurs, then the event Fallow

in Figure 5 could occur if the processing queue
of the link is empty. This means that the link is
being underutilized even though at least one user
desires to send packets to the link.
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Fig. 6. The module to track if the users do
nothing.

4. CONTROL OPERATIONS

Now that the discrete-event systems model for
the interaction between a shared communication
link and a set of users has been introduced,
next properties of performing congestion control
operations with the model are discussed in the
decentralized supervisory control framework. A
set of decentralized controllers make independent
observations of event occurrences in a system and



use these local observations to calculate a local
control action. When combined, the local control
actions should achieve a given control objective.
For the system outlined above, every User i has
a control module Si to decide if the user should
send a packet in a given time interval controlling
the events Inserti and Nothingi. It is assumed
that User i can observe the occurrence of Oni,
Offi, Inserti, Nothingi, Off Nothingi and all packet
acknowledgment events Returni j.

The control objective for link model outlined
above is, in a sense, to maximize packet through-
put on the link such that as few packets as possible
are lost, while at the same time the processing
queue of the link should never under-run when
there are users in the On mode of operation. For
the system model introduced above, this means
that no event Lossi or Fallow should occur.

There are several salient properties that put this
problem outside the normal scope of the supervi-
sory control framework. For one, it has no physical
meaning for a controller to disable the controllable
events Inserti and Nothingi at the same time. On
a given time interval, a user may send a packet
or not, but not neither. Furthermore, in some
situations it may be impossible to totally avoid
the occurrence of Lossi or Fallow events, so the
objective of the control system should be to allow
as few occurrences of these events as possible.
Unfortunately there is no universally accepted
notion of controller optimization defined in the
supervisory controls framework that would allow
for the minimization for event occurrences.

An overriding difficulty associated with control-
ling the link model is the extremely large state
space when the system modules described above
are composed. This problem is unavoidable when
modeling memory systems such as queues in a
discrete-state framework. It was found that even
a system with a link processing queue of 5 packets
and a processing and transmission delay of 1 time
unit has a corresponding composed model with
over 20957 states. This realization shows that off-
line exhaustive precomputation of control strate-
gies for all possible scenarios is prohibitively ex-
pensive. A method to avoid the precomputation of
control strategies would be to use online methods
as in Hadj-Alouane et al. (1996) where control
actions are computed on the fly, but may not be
optimal.

One such online decentralized control policy is
now discussed which is based on a decentralized
state estimation policy. Let G = (X,xo,Σ, δ) be
the underlying automaton representation of the
model as introduced above. Suppose that Σi

uo
is

the set of events unobservable to User i, and Γi(s)
is the set of events that the controller for User i

disables after s is observed in the system. The

local control action Γi(s) is commonly a function
of the state estimate for User i, Xi

e
(s) ⊆ X. The

state estimate Xi

e
(s) is the set of states the User

i believes the system could be in after s has been
observed.

Define Σi(s) = Σuoi \ Γi(s), the set of locally un-
observed and enabled events. The state estimation
Xi

e
(s) is defined recursively as follows:

Xi

e
(s) =

{

{δ(x0, t)|t ∈ Σi(s)
∗} if s = ǫ.

{δ(x, t)|x ∈ Xi

e
(s′), t ∈ Σ∗

i
} otherwise.

Note that the state estimator, Xi

e
(s), is an exact

state estimator in the sense that a state is in
Xi

e
(s) if and only if the system could be in

that state due to the observation of s. The set
Xi

e
(s) is computationally intensive to find, but

is used here to explore the best-case possibilities
of a supervisory control approach to congestion
control. Also, Xi

e
(s) is implicitly a function of the

control operation Γi(·).

Consider a string of observed events s′σ. The
set Xi

uc
(s′σ) represents all states the controller

estimates the system could be in if a local packet
transmission occurs after σ that is lost.

Xi

uc
(s′σ) =

{δ(x, t)|x ∈ Xi

e
(s′), t ∈ σΣ∗

uoi
InsertiΣ∗

uoi
Lossi}

If Xi

uc
(s′σ) is non-empty, then by enabling Inserti

after observing σ, the controller might allow Lossi

to occur for the given state estimate.

Now consider the module in Figure 7, which tracks
the packet transmissions and receptions of User
i. User i is expecting no acknowledgments if this
module is in state H. This module is used in the
following online control algorithm.
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Fig. 7. Module to track outstanding local packets.

Algorithm 1. Online Control Algorithm:
Set s := ǫ. Repeat the following indefinitely:
If observable event σ occurs:

Update s := sσ. Update Xi

e
(s), Xi

uc
(s) and

tracker module.
If tracker module is in state H:

Enable Inserti, disable Nothingi.
Else:

If Xi

uc
(s′σ) = ∅:

Enable Inserti, disable Nothingi.



Else:
Enable Nothingi, disable Inserti.

The underlying idea behind Algorithm 1 is that if
the local user is not expecting any packets to be
acknowledged, then it should transmit a packet.
This probing action ensures the user will always
eventually receive some information about the
congestion level in the network and maintain a
local state estimate. If the local user is expecting
a packet to be acknowledged, it should transmit a
packet if it does not estimate a loss to be possible
by testing for emptiness in Xi

uc
(s′σ).

The system model and controllers just described
were implemented using both the Java DES
toolkit (Rohloff (2004)) and the standard NS2
simulation tool (UCB et al.). The Java DES
toolkit model allows for a simulation of the
discrete-event system exactly as outlined in the
models above. Due to the computational difficulty
of fully exploring the state space of the controlled
system, a random walk model was used to sim-
ulate the behavior of the link model described
above using the online heuristic control policy
for a system with two users, a processing and
transportation delay of 1 time step and a link
queue capacity of 2 packets. One outcome of this
simulation was that no packets were lost at the
link even though the system has a high potential
for congestion due to the fact that the number
of users is high compared to the size of the link
processing queue. This somewhat surprising result
is due to the exact and computationally inten-
sive nature of the state estimation function Xi

e
(·)

which gives the controller the best possible infor-
mation about the link’s state. Also, the control
protocol is conservative in that it avoids packet
loss whenever possible.
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Fig. 8. Results of the NS2 simulation.

The online supervisory controllers outlined above
were then translated into the NS2 simulation
tool framework (UCB et al.) which assumes a
continuous-time system model. NS2 is one of the
most widely used packet level network simulation
tools. The output of the simulation for the system
discussed above can be seen in Figure 8. It was
found that the control method is very effective

in keeping the queue at a constant level, and no
packet losses were observed.

Unfortunately, the nature of the state estimation
policy utilized by the online controllers is such
that the controllers need full information about all
possible behaviors in the system. This means that
the controllers should have exact knowledge about
the size of the link’s processing queue and the
round-trip processing and transportation delay.
This information is not always available to a
congestion controller, but research is ongoing to
circumvent these preconditions.

5. DISCUSSION

This paper has introduced a new low-level discrete-
event systems model for the interaction of a com-
munication link with multiple users. This model
captures the behavior that the acknowledgment
delay for the communication link is variable with
the level of congestion in the link. An online con-
trol scheme is presented for this system that can
be used to avoid link congestion and consequently
packet loss. One of the messages of this study that
supervisory control methods can be useful for the
analysis of congestion control.
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