
The Diagnosis of Failures via the Combination of Distributed
Observations

Kurt R. Rohloff

Abstract— This paper discusses a computational problem
related to the distributed diagnosis of system behavior in
the discrete-event systems framework. A new framework
for distributed diagnosis is introduced where local observers
periodically transmit their observations to a centralized co-
ordinator that diagnoses failures in the system. A condition
called combined observation diagnosability is shown for the
centralized coordinator to be able to diagnose system failures.
A construction is shown to test a system for combined
observation diagnosability.

I. INTRODUCTION

An important problem in many modern systems is to
diagnose and respond to the occurrence of system failures.
Unfortunately, failure occurrences in a system commonly
cannot be observed directly. Therefore, failure diagnosis
would have to be performed indirectly through the obser-
vation of other behaviors in the system. That is, based on
observed behavior, a diagnoser should be able to eventually
determine without ambiguity if a failure event has occurred.
Related to this scenario is the problem of distributed diag-
nosis. Commonly a system may be too large or complex to
be observed in a centralized manner. Therefore, distributed
observations would have to be made of the system behavior
and then the task of the diagnoser would be to use the
combined information of the distributed observations to
determine if a failure had occurred. This paper investigates
the problem of distributed diagnosis in the framework of
discrete-event systems modeled as automata.

Some of the early innovative work in discrete-event
systems diagnosis in [4, 10–12]. The diagnosis problem
continues to be an active research area, but of particular
relevance to the discussions in this paper is the problem
of distributed diagnosis which is also discussed in [3, 6].
The authors in [3, 6] present results related to decentralized
diagnosis problems with automata system models where the
local observers, in a sense, encode their local observations
as a local state.

However, there are fundamental limitations to the state-
based encoding of local observations for use in conjunc-
tion with diagnosis, even for finite state systems. The
problem is considered in [5] where two observers make
local observations of the behavior of a finite state system
and the observers communicate encodings of their local
observations to a centralized coordinator for the diagnosis
the system’s state. It is shown in [5] that even for a simple

This research was supported by the NSF grant CCR 00-85917 ITR.
K. Rohloff is with the Coordinated Science Laboratory at The Uni-

versity of Illinois, 1308 West Main St., Urbana, IL 61801, USA.
krohloff@control.csl.uiuc.edu

system there exists no finite encoding of locally observed
system behavior such that the centralized coordinator can
perform diagnosis as well as if the local observers had
communicated all of their local observations. This shows
that even for finite state systems as discussed in [3, 6] there
is a loss of information when the local observations are
encoded as the state of a finite state machine. Therefore,
a distributed diagnosis system could be more accurate if
the full local observations are saved and used for diagnosis
directly by a centralized coordinator.

To avoid the limitations due to information loss resulting
from observation encodings as discussed above, this paper
proposes a different distributed diagnosis framework where
instead of communicating finite state encodings of the
locally observed behavior, the observers store the locally
observed behavior, and these observations are periodically
transmitted in batch form to a centralized coordinator. An
example of such a system might be a constellation of
satellites that are at times unable to communicate with a
ground station due to the paths of their orbits, but when
the satellites can communicate with the ground station, the
communication cost is relatively inexpensive. Because this
paper assumes a logical untimed system model, the term
“periodically” is used loosely to denote behaviors which
are guaranteed to occur infinitely often over all possible
infinite behavior paths of a system rather than behaviors
which occur at regular time intervals.

The framework of periodic communication can be
thought of as a compromise between the seminal cen-
tralized diagnosis systems of [11] and the standard dis-
tributed frameworks as discussed in [3, 6]. That is, due to
the periodic communications of local observations in this
framework the centralized coordinator can perform diagno-
sis with eventual access to all available local information
when traditional centralized diagnosis is not feasible. It
should be noted that even though this distributed diagno-
sis system has full access to the local observations, the
distributed system is still not equivalent to a centralized
system [1]. Therefore, a new property called combined
observation diagnosability is presented below to describe
systems that can be diagnosed using this new framework.
Also, a construction is presented to decide if a system
is combined observation diagnosable that is similar to the
state reachability construction methods discussed in [9] for
decentralized control.

The next section presents the notation and other prelimi-
naries related to the distributed diagnosis problem. Section
III discusses the new distributed diagnosis framework and



diagnosability definition. Section IV presents a method for
testing if a system is combined observation diagnosable.
Section V closes the paper with a discussion of the results
contained herein. Due to reasons of brevity, the proofs of
results in this paper are demonstrated in the companion
journal version of this paper, [8], in a generalized setting.

II. NOTATION AND PRELIMINARIES

The failure diagnosis notation from [3, 11] and the ω-
language notation of [7] is now introduced. The systems
to be diagnosed are modeled as automata, where for the
system G = (X,Σ, x0, δ,Xm), X is a set of states, Σ is an
event set, x0 is the initial state and δ : X × Σ → X is the
possibly partial transition function. The set of marked states
Xm ⊆ X is sometimes empty in which case Xm is not
listed in the components of G. The definition of δ(·, ·) can
be extended in the usual manner to be defined over strings.
It is assumed that the systems discussed in this paper are
deterministic.

Following the commonly used definitions of discrete
event systems, G has a generated language L(G) such that

L(G) = {s ∈ Σ∗|δ(x0, s)!} (1)

where δ(x0, s)! is true if and only if δ(x0, s) is defined.
For a string of events s = σ1σ2σ3 · · ·, possibly infinite,

let s(i) denote s = σ1σ2σ3 · · ·σi. The set Σω is all infinitely
long traces of events in Σ. Formally,

Σω = {σ1σ2σ3 · · · |∀i ∈ N, σi ∈ Σ}. (2)

For the automaton G, the generated ω-language of G,
denoted Lω(G), is the set of all infinitely long traces of
behavior which are possible in G. Formally,

Lω(G) = {s ∈ Σω|∀i ∈ N, s(i) ∈ L(G)}. (3)

Similarly, for an automaton G, the marked ω-language of G,
denoted Lω

m(G), is the set of all traces of behavior in Lω(G)
where a marked state is visited infinitely often. Formally,

Lω
m(G) = (4)

{s ∈ Lω(G)|∀i ∈ N,∃j ∈ N : s(i + j) ∈ Lm(G)}.

For a language L ⊆ Σ∗ and a string s ∈ L, the set L/s is
the set of all finite strings s′ such that ss′ is in L. Formally,

L/s = {s′ ∈ Σ∗|ss′ ∈ L}.

A similar definition exists if L ⊆ Σω .
For a string s ∈ Σ∗, ‖s‖ is the length of s. The notation

is also used that for a set of events Σa ⊆ Σ,

Ψ(Σa) = {s ∈ Σ∗ΣaΣ∗}.

That is, Ψ(Σa) is the set of all finite strings that contain an
event in Σa.

Also, for a string s ∈ Σ∗, the set Φ(s) ⊆ Σ are the events
that comprise s. Formally,

Φ(s) = {σ ∈ Σ|s 6∈ (Σ \ {σ})∗}. (5)

For the modeling of the failure events, the set of system
events Σ has a subset of failure events Σf ⊆ Σ of which
all are assumed to be unobservable. It is assumed that for
the set of failure events Σf there is a partition of failure
classes Πf = {Σf1, · · · ,Σfn} such that

Σf = ∪i∈{1,...,n}Σ
fi.

The partitioning of failure events captures the behavior that
all of the failures within a certain class are equivalent with
respect to failure responses. Therefore, after a failure occurs,
knowledge of the exact failure does not matter as long as
it is known that a failure of a certain type has occurred.

Using the standard partial observation notation from [2],
a subset of the system events Σo ⊆ Σ could be directly
observable by a centralized diagnoser, and Σuo = Σ \ Σo

represents the set of unobservable events. There is a pro-
jection operation P : Σ∗ → Σ∗

o along with a corresponding
inverse projection operation P−1 : Σ∗

o → 2Σ
∗

.
With the basic notation presented, diagnosability for

standard centralized diagnosis systems is shown.
Definition 1: [11] A prefix-closed and live language L is

said to be diagnosable with respect to a projection P and
a partition Πf if the following holds
(

∀Σfi ∈ Πf
)

(∃ni ∈ N)
(

∀s ∈ Ψ(Σfi)
)

(∀s′ ∈ L/s) (6)

(‖s′‖ ≥ ni ⇒ D)

where the diagnosability condition D is
[

∀t ∈ P−1 (P (ss′)) ∩ L
] (

Σfi ∩ Φ(t) 6= ∅
)

(7)
Intuitively, L is diagnosable if for every failure class Σfi

and a string s containing a failure in Σfi, then there is
always a string s′ of length less than ni such that if P (ss′)
is observed by a centralized diagnoser, then the diagnoser
knows for sure that a failure in the class Σfi occurred.

As discussed in [11], the liveness assumption is made for
simplicity and is not necessary. This definition is general-
ized in [3] for situations where the system might have some
arbitrary diagnosis protocol.

III. COMBINED OBSERVATION DIAGNOSIS

As was discussed above, it is not always feasible to use
centralized diagnosis protocols on a system G which is too
large or complex for a diagnoser to make observations in a
centralized manner. In this scenario, a distributed diagnosis
system has decentralized observers O1 and O2 that make
distributed observations which are communicated periodi-
cally to a centralized coordinator. Based on the information
from the observers, the coordinator performs the diagnosis
operation.

To formalize the problem, let the distributed observers
O1 and O2 observe occurrences of the events in Σo1 and
Σo2 respectively. The set of observable events Σo is the
union of Σo1 and Σo2. As system behavior progresses in the
system, the observers record the local observations P1(s)
and P2(s) of the behavior s that occurred in the system.
Note that P1(·) and P2(·) are the observation projections



for O1 and O2 defined in the usual manner along with the
corresponding inverse operations P−1

1
(·) and P−1

2
(·).

Let Σt ⊆ Σo1 ∩ Σo2 be the set of events which trigger
the observers to transmit their stored observations to the co-
ordinator. That is, for σt ∈ Σt, if O1 observers αβσtγκσt,
then on the occurrence of the first σt, αβσt is transmitted
to the coordinator, and on the occurrence of the second σt,
γκσt is transmitted to the coordinator.

Suppose a string s ∈ L(G) ∩ Σ∗Σt has occurred in the
system. Due to s, O1 observes P1(s) ∈ Σ∗

o1Σt and O2

to observes P2(s) ∈ Σ∗
o2Σt. Note that the last event in

s is a trigger event, so due to the framework in which the
observers communicate to the coordinator on the occurrence
of Σt events, then the full observations P1(s) and P2(s) are
known by the coordinator after s occurs. Using the com-
municated observations P1(s) and P2(s) and the following
theorem, the coordinator can then perform failure diagnosis
operations.

Theorem 1: Suppose a system G, sets of observable
events Σo1 and Σo2, a set of trigger events Σt and a string
s ∈ L(G) ∩ Σ∗Σt is given. A string t generates the same
set of communications P1(s) and P2(s) from the observers
to the coordinator as s if and only if

t ∈

[ [

P−1

1
(P1(s))(Σo1 \ Σt)

∗
]

∩
[

P−1

2
(P2(s))(Σo1 \ Σt)

∗
]

∩ L(G)

]

. (8)

Because
(

P−1

1
(P1(s))(Σo1 \ Σt)

∗
)

∩
(

P−1

2
(P2(s))(Σo1 \ Σt)

∗
)

∩ L(G) represents all strings
in L(G) that could have generated the communications
P1(s) and P2(s) to the coordinator from O1 and
O2 respectively, then

(

P−1

1
(P1(s))(Σo1 \ Σt)

∗
)

∩
(

P−1

2
(P2(s))(Σo1 \ Σt)

∗
)

∩ L(G) ⊆ Σ∗{f}Σ∗ if
and only if the failure event f must have occurred in the
system given the observations P1(s) and P2(s). Similarly,
(

P−1

1
(P1(s))(Σo1 \ Σt)

∗
)

∩
(

P−1

2
(P2(s))(Σo1 \ Σt)

∗
)

∩
L(G) ⊆ (Σ \ {f})∗ if and only if f could not have occurred
in the system given the communicated observations P1(s)
and P2(s). Note that when given P1(s) and P2(s), then
(

P−1

1
(P1(s))(Σo1 \ Σt)

∗
)

∩
(

P−1

2
(P2(s))(Σo1 \ Σt)

∗
)

∩
L(G) can be computed in polynomial time with respect to
the sizes of P1(s) and P2(s) using standard methods.

It is generally assumed for simplicity in the rest of this
paper that for any string of behavior that has occurred in a
system, an event in Σt will always eventually occur. This
assumption is made to ensure that for all strings of behavior
in the system, the observers will eventually transmit their
observations to the centralized coordinator. This effectively
bounds the maximum size of any string that an observer
needs to store and then transmit to the coordinator. This
further ensures that the observers will not need infinite
memory.

It is also assumed for simplicity that the system automata
used in this paper are live as discussed in [11]. The
following simplifying notations are also used:

Σ1∩2 = Σo1 ∩ Σo2 (9)

Σ1\2 = Σo1 \ Σo2 (10)

Σ2\1 = Σo2 \ Σo1. (11)

The set Σ1∩2 represents the events that can be observed by
both observers, while events in Σ1\2 can be observed by
observer 1 but not observer 2 and events in Σ2\1 can be
observed by observer 2 but not observer 1.

For the distributed diagnosis protocol just presented, a
corresponding version of diagnosability called combined
observation diagnosability is now defined.

Definition 2: A prefix-closed and live language L is said
to be combined observation diagnosable with respect to a
projection P and a partition Πf if the following holds

(

∀Σfi ∈ Πf
)

(∃ni ∈ N)
(

∀s ∈ Ψ(Σfi)
)

(12)

(∀s′ ∈ (L/s) ∩ (Σ∗Σt)) (‖s′‖ ≥ ni ⇒ D)

where the diagnosability condition D is
[

∀t ∈ P−1

1
(P1(ss

′)) ∩ P−1

2
(P2(ss

′)) ∩ L
]

(13)
(

Σfi ∩ Φ(t) 6= ∅
)

Intuitively, L is combined observation diagnosable if for
every failure class Σfi and a string s containing a failure
in Σfi, then there is always a string s′ of length less than
ni that ends with an event in Σt such that it can be known
for sure with information of the local observations P1(ss

′)
and P2(ss

′) that a failure in the class Σfi occurred. The
condition that s′ ∈ (L/s) ∩ (Σ∗Σt) is used because after
the occurrence of Σt events, the observers transmit their
observed strings to the centralized coordinator. By defini-
tion, the property of combined observation diagnosability is
necessary and sufficient for there to exist a set of distributed
observers that periodically transmit their observations to a
centralized coordinator that can always eventually diagnose
faults.

Note that P−1

1
(P1(ss

′))∩P−1

2
(P2(ss

′))∩L is not always
equivalent to P−1 (P (ss′)) ∩ L. This implies that there
might be languages which are diagnosable but not combined
observation diagnosable. This in fact is true, but not shown
here due to reasons of brevity.

IV. THE TESTING OF COMBINED OBSERVATION

DIAGNOSABILITY

A method is know shown to test combined observation
diagnosability. For simplicity it is assumed that |Σf | = 1
so that there is exactly one failure event f . The results and
methods presented in this section are easily generalized for
the more general case of |Σf | 6= 1.

It is also assumed without loss of generality that the state
space X of G can be partitioned into two subsets Xn and
Xf such that Xn ∪ Xf = X and Xn ∩ Xf = ∅ where

Xn = (14)

{x ∈ X|∃s ∈ L(G) ∩
(

Σ \ Σf
)∗

: δ(x0, s) = x}

and

Xf = (15)

{x ∈ X|∃s ∈ L(G) ∩
(

Σ∗ΣfΣ∗
)

: δ(x0, s) = x}.



G :

1̃

2̃ 4̃

αf

1

2

3

4

α

G̃ :

β

α

α

f

1

2

3

4

αf
α

3̃

β

β

β

β

β

Fig. 1. Constructing G̃ from G.

The set of states Xn are all states the system could be in if
no failure events have occurred while Xf are all states the
system could be in if at least one failure event has occurred.
The set Xn is also called the normal states while Xf is
called the failure states.

If the partition of system states X into normal and
failure states as described above does not exist for the given
automaton G, then another automaton G̃ = (X̃,Σ, x0, δ̃)
can be easily constructed from G such that the normal and
failure state partitions exist and L(G) = L(G̃). Further-
more, the size of the state space of G̃ is at most double
the size of the state space of G. To construct G̃, let X̃ ′ be
a copy of X such that for every state x ∈ X there is a
corresponding state x̃ ∈ X̃ ′. The state space of G̃ is the
union X ∪ X̃ ′. For the state transition function, suppose
x ∈ X and σ ∈ Σ. If δ(x, σ) = y, then define δ̃(x̃, σ) = ỹ.
If σ ∈ Σf , then define δ̃(x, σ) = ỹ, and if σ 6∈ Σf , then
define δ̃(x, σ) = y. Therefore, in G̃, the set of normal states
is X and the set of failure states is X̃ ′. Also note that in
general G̃ may not be trim in general.

An example of the method for constructing G̃ from G is
now shown in Example 1.

Example 1: Consider the system G in Figure 1 where
f is a failure event. The system G̃ constructed from G
as outlined above can also be seen in Figure 1. Note that
L(G) = L(G̃) and in G̃, the set of states X is {1, 2, 3, 4}
and the set of states X̃ ′ is {1̃, 2̃, 3̃, 4̃}.

In order to test combined observation diagnosability, for
the set of events Σ \ {f}, let there be another set of events
Σ′ such that Σ∩Σ′ = ∅ and there is a one-to-one mapping
Λ : Σ → Σ′ such that for every event σ ∈ Σ\{f} there is a
corresponding event Λ(σ) ∈ Σ′ and Λ(f) is undefined. The
mapping Λ(·) can be extended in the usual manner to be
defined over strings of events, sets of events and languages.
There is also a corresponding inverse mapping Λ−1 : Σ′ →

Σ \ {f}. The event Λ(σ) is sometimes written as σ′ when
it can be done without ambiguity. Similar notation is also
used for sets of events and strings such that Λ(Σa) = Σ′

a

for Σa ⊆ Σ and Λ(t) = t′ for t ∈ Σ∗ ∪ Σω . Also define
the projections PΣ : Σ ∪ Σ′ → Σ and PΣ′ : Σ ∪ Σ′ → Σ′

in the usual manner.
To test the combined observation diagnosability of

the language generated by G, an automaton D =
(XD,ΣD, xD

0
, δD, XD

m) is constructed such that Lω
m(D)

is empty if and only if L(G) is combined observation
diagnosable with respect to the local projections P1(·) and
P2(·) and the failure event f . Intuitively, the automaton con-
struction D tracks to see if there is a pair of infinite strings
(s1, s2) ∈ (Σ∗{f}Σω) × (Σ \ {f})ω such that {s1, s2} ⊆
Lω(G), and for any prefix s′

1
∈ s1 ∩ (Σ∗{f}Σ∗Σt), there

is a corresponding prefix s′
2
∈ s2 ∩

(

(Σ \ {f})∗ Σt
)

such
that P1(s

′
1
) = P1(s

′
2
) and P2(s

′
1
) = P2(s

′
2
). If such a pair

(s1, s2) exists, then there is a finite string that is a prefix of
s1 that contains a failure f and ends with a Σt event that
cannot be distinguished from a prefix of s2 ending with a
Σt event and no failure event.

The components of D are defined as follows:

XD = (Xn ∪ Xf ) × Xn × R1 × R2 × R1∩2 (16)

ΣD = Σ ∪ Σ′ (17)

xD
0

= (x0, x0, ε, ε, ε) (18)

XD
m = Xf × Xn × {ε} × {ε} × {ε} (19)

where R1 = Σ∗
1\2, R2 = Σ∗

2\1, R1∩2 = Σ1∩2 ∪ {ε}.

The notation is sometimes used such that ~x
γ
7→D ~y

represents that according to the transition rules of D there
is a transition from state ~x to state ~y labelled by event
γ. Therefore, ~y ∈ δD(~x, γ) if an only if ~x

γ
7→D ~y. The

state transition representations are also extended in the usual
manner to be defined over strings of transitions labelled by
strings of events.

Note that in D there are two classes of events, Σ and
Σ′ that are used to form strings of behaviors ~s ∈ ΣD∗

.
The string of events ~s is used to track the possible pairs
of behaviors (s1, s2) in G as discussed above where s1 =
PΣ(~s), s2 = Λ−1(PΣ′(~s)), P1(s1) = P1(s2), P2(s1) =
P2(s2) and f 6∈ Φ(s2). The transition structure of D is

constructed such that ~x1

~s
7→D ~x2 where ~x1 = (x1

1
, x2

1
, ε, ε, ε)

and ~x2 = (x1
2
, x2

2
, ε, ε, ε) if and only if for s1 = PΣ(~s) and

s2 = Λ−1(PΣ′(~s)) in G, δ(x1
1
, s1) = x1

2
, δ(x2

1
, s2) = x2

2
,

P1(s1) = P1(s2) and P2(s1) = P2(s2). The state transition
function δD : XD × ΣD → 2XD

is defined as follows.

δD((x1, x2, ε, ε, ε), σ) =






















(δ(x1, σ), x2, ε, ε, ε) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), ε, ε, ε) if σ ∈ Σ′

uo

(δ(x1, σ), x2, ε, ε, σ) if σ ∈ Σ1∩2

(δ(x1, σ), x2, σ, ε, ε) if σ ∈ Σ1\2

(δ(x1, σ), x2, ε, σ, ε) if σ ∈ Σ2\1



δD((x1, x2, σ1s1, ε, ε), σ) =






























(δ(x1, σ), x2, σ1s1, ε, ε) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), σ1s1, ε, ε) if σ ∈ Σ′

uo

(δ(x1, σ), x2, σ1s1, ε, σ) if σ ∈ Σ1∩2

(δ(x1, σ), x2, σ1s1σ, ε, ε) if σ ∈ Σ1\2

(δ(x1, σ), x2, σ1s1, σ, ε) if σ ∈ Σ2\1

(x1, δ(x2,Λ
−1(σ)), s1, ε, ε) if σ = Λ(σ1)

δD((x1, x2, ε, σ2s2, ε), σ) =






























(δ(x1, σ), x2, ε, σ2s2, ε) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), ε, σ2s2, ε) if σ ∈ Σ′

uo

(δ(x1, σ), x2, ε, σ2s2, σ) if σ ∈ Σ1∩2

(δ(x1, σ), x2, σ, σ2s2, ε) if σ ∈ Σ1\2

(δ(x1, σ), x2, ε, σ2s2σ, ε) if σ ∈ Σ2\1

(x1, δ(x2,Λ
−1(σ)), ε, s2, ε) if σ = Λ(σ2)

δD((x1, x2, σ1s1, σ2s2, ε), σ) =






































(δ(x1, σ), x2, σ1s1, σ2s2, ε) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), σ1s1, σ2s2, ε) if σ ∈ Σ′

uo

(δ(x1, σ), x2, σ1s1, σ2s2, σ) if σ ∈ Σ1∩2

(δ(x1, σ), x2, σ1s1σ, σ2s2, ε) if σ ∈ Σ1\2

(δ(x1, σ), x2, σ1s1, σ2s2σ, ε) if σ ∈ Σ2\1

(x1, δ(x2,Λ
−1(σ)), s1, σ2s2, ε) if σ = Λ(σ1)

(x1, δ(x2,Λ
−1(σ)), σ1s1, s2, ε) if σ = Λ(σ2)

δD((x1, x2, ε, ε, σ1∩2), σ) =






(δ(x1, σ), x2, ε, ε, σ1∩2) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), ε, ε, σ1∩2) if σ ∈ Σ′

uo

(δ(x1, σ), δ(x2,Λ
−1(σ)), ε, ε, ε) if σ = Λ(σ1∩2)

δD((x1, x2, σ1s1, ε, σ1∩2), σ) =






(δ(x1, σ), x2, σ1s1, ε, σ1∩2) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), σ1s1, ε, σ1∩2) if σ ∈ Σ′

uo

(x1, δ(x2,Λ
−1(σ)), s1, ε, σ1∩2) if σ = Λ(σ1)

δD((x1, x2, ε, σ2s2, σ1∩2), σ) =






(δ(x1, σ), x2, ε, σ2s2, σ1∩2) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), ε, σ2s2, σ1∩2) if σ ∈ Σ′

uo

(x1, δ(x2,Λ
−1(σ)), ε, s2, σ1∩2) if σ = Λ(σ2)

δD((x1, x2, σ1s1, σ2s2, σ1∩2), σ) =














(δ(x1, σ), x2, σ1s1, σ2s2, σ1∩2) if σ ∈ Σuo

(x1, δ(x2,Λ
−1(σ)), σ1s1, σ2s2, σ1∩2) if σ ∈ Σ′

uo

(x1, δ(x2,Λ
−1(σ)), s1, σ2s2, σ1∩2) if σ = Λ(σ1)

(x1, δ(x2,Λ
−1(σ)), σ1s1, s2, σ1∩2) if σ = Λ(σ2)

Suppose that ~x = (x1, x2, r1, r2, r1∩2) is a state in D
where x1, x2 ∈ X , r1 ∈ R1, r2 ∈ R2, r1∩2 ∈ R1∩2 and
there is a string ~s such that xD

0

~s
7→D ~x. In order to the

track a pair of defined behaviors (s1, s2) in G where s1 =
PΣ(~s) and s2 = Λ−1(PΣ′(~s)), the component x1 tracks

the behavior due to s1 in G and the component x2 tracks
the behavior due to s2 in G. Hence, x1 is the state of G
resulting from the string of events s1 = PΣ(~s) and the x1

component in ~x only updates on the occurrence of events in
Σ. Similarly, x2 is the state of G resulting from the string
of events s2 = Λ−1(PΣ′(~s)) and the x2 component in ~x
only updates on the occurrence of events in Σ′. The r1

component of the state ~x in D is used to track the proper
ordering of Σ1\2 events in ~s, the r2 component of the state
~x in D is used to track the proper ordering of Σ2\1 events
in ~s and the r1∩2 component of the state ~x in D is used to
track the proper ordering of Σ1∩2 events in ~s so that if ~x is
reachable in D due to ~s, then P1(s1) = P1(s2r1r1∩2) and
P2(s1) = P2(s2r2r1∩2).

The r1, r2 and r1∩2 state components operate in a similar
manner as a queue such that if at ~x = (x1, x2, r1, r2, r1∩2)
and an event σ ∈ Σ1\2 occurs, then σ is appended to the
end of r1. If ~x = (x1, x2, r1, r2, r1∩2), then an event σ′ ∈
Σ′

1\2 can only occur if Λ−1(σ′) is at the front of the r1

queue. Once σ ∈ Σ′
1\2 does occur, then the Λ−1(σ′) is

removed from the front of the r1 queue. Taken as a whole,
these restrictions ensure that in an infinitely long string of
behaviors in D, the relative order of Σ′

1\2 events in D is the
same relative order of the corresponding Σ1\2 events in D.
The queue for r2 operates in a similar manner with respect
to events in Σ2\1.

Note that in the operation of D, if an event σ ∈ Σ1∩2

occurs, then no further Σ1\2 events can occur until Λ(σ)
occurs and Λ(σ) cannot occur until the r1 queue is cleared.
As an example, suppose a string r1σ1∩2 occurs in D where
r1σ1∩2 ∈ Σ∗

1\2Σ1∩2. In order to ensure that for some
future behavior, P1(PΣ(~s)) = P1(Λ

−1(PΣ′(~s))) where
r1σ1∩2 = P1(PΣ(~s)), then it needs to be guaranteed that the
occurrences of Σo1 and Σ′

o1 events are restricted such that
r1σ1∩2 = P1(Λ

−1(PΣ′(~s))). Therefore, the next string of
Σ′

o1 events to occur after r1σ1∩2 is necessarily Λ(r1σ1∩2)
and the above restrictions on Σ1∩2 and Σ1\2 ensure this.
Consequently, after a Σ′

1∩2
event occurs, r1 = ε and

r1∩2 = ε, and P1(PΣ(~s)) = P1(Λ
−1(PΣ′(~s))). Similarly, if

an event σ ∈ Σ1∩2 occurs, then no further Σ2\1 events can
occur until Λ(σ) occurs and Λ(σ) cannot occur until the r2

queue is cleared.
Consequently, after a Σ′

1∩2
event occurs and the system is

in some state ~x such that ~x = (x1, x2, ε, ε, ε) and xD
0

~s
7→D ~x,

then P2(PΣ(~s)) = P2(Λ
−1(PΣ′(~s))). Therefore, if ~x1

~s
7→D

~x2 where ~x1 = (x1
1
, x2

1
, ε, ε, ε) and ~x2 = (x1

2
, x2

2
, ε, ε, ε),

then P1(PΣ(~s)) = P1(Λ
−1(PΣ′(~s))) and P2(PΣ(~s)) =

P2(Λ
−1(PΣ′(~s))). This is formalized below in the proof

of Theorem 3
Theorem 2: Suppose an automaton D is constructed as

described above from G, Σo1, Σo2 and Σt. Let ~s ∈
ΣD∗

be a string of events such that s1 = PΣ(~s) and
s2 = Λ−1(PΣ′(~s)) and let ~x1 = (x1

1
, x2

1
, ε, ε, ε) and

~x2 = (x1
2
, x2

2
, ε, ε, ε) be two states in D. In the transition

structure of D, ~x1

~s
7→D ~x2 if and only if P1(s1) = P1(s2),



P2(s1) = P2(s2), x1
1

s17→G x1
2

and x2
1

s27→G x2
2

subject to
f 6∈ Φ(s2).

It is now shown in the theorem below that a marked state
~xm ∈ XD

m is reachable in D if and only if there exists a
pair of strings (s1, s2) such that x0

s17→G x1, x0

s27→G x2,
P1(s1) = P1(s2), P2(s1) = P2(s2) and f ∈ Φ(s1), but
f 6∈ Φ(s2).

Theorem 3: Suppose an automaton D is constructed as
described above from G, Σo1 and Σo2. A marked state ~x =
(x1, x2, ε, ε, ε) is reachable in D if and only if there exists
a pair of strings (s1, s2) both contained in L(G) such that
P1(s1) = P1(s2) and P2(s1) = P2(s2), x0

s17→G x1, x0

s27→G

x2 and f ∈ Φ(s1), but f 6∈ Φ(s1).
It is now shown in Theorem 4 below that there is set of

transitions that form a self loop through ~x = (x1, x2, ε, ε, ε)
in D if and only if there exists a pair of strings (s1, s2) such
that x1

s17→G x1, x2

s27→G x2, P1(s1) = P1(s2), P2(s1) =
P2(s2) and f ∈ Φ(s1), but f 6∈ Φ(s2). This is shown in the
following theorem.

Theorem 4: Suppose an automaton D is constructed as
described above from G, Σo1 and Σo2. There exists a string
~s and a state ~x = (x1, x2, ε, ε, ε) such that ~x

~s
7→D ~x if

and only if there exists a pair of strings (s1, s2) such that
P1(s1) = P1(s2) and P2(s1) = P2(s2), x1

s17→G x1, x2

s27→G

x2 and f 6∈ Φ(s2).
Theorems 3 and 4 can now be used to demonstrate the

following theorem.
Theorem 5: Consider the automaton D constructed from

G, Σo1 and Σo2 as introduced above. There exists a string
~s ∈ Lω

m(D) if and only if there exists two infinite strings
(s1, s2) such that s1 ∈ Lω(G), s2 ∈ Lω(G), f ∈ Φ(s1),
f 6∈ Φ(s2), P1(s1) = P1(s2) and P2(s1) = P2(s2).

It can now be demonstrated that the automaton con-
struction D can be used to test combined observation
diagnosability.

Theorem 6: For the automaton D constructed from G,
Σo1 and Σo2 as introduced above, Lω

m(D) = ∅ if and only
if L(G) is combined observation diagnosable with respect
to the local projections P1(·) and P2(·) and the failure f .

Note that there are no bounds placed on the capacities
of the r1 and r2 queues due to the transition structure
of D, but the r1∩2 queue has a maximum capacity of 1.
Also note that because it is assumed that events in Σt will
always eventually occur, then an event in Σ1∩2 will always
eventually occur. Consequently, this bounds the number of
Σ1\2 and Σ2\1 events that could occur between occurrences
of Σ1∩2 events. This bound consequently restricts the
maximum length of r1 and r2 during the operation of D

and hence restricts D to being finite-state. Therefore,
testing if Lω

m(D) = ∅ is decidable and can be tested by
checking D for a reachable marked state ~xm ∈ XD

m and

a string of events ~s such that ~xm
~s
7→D ~xm. Therefore, by

Theorem 6, the combined observation diagnosability of a
system is decidable despite the decentralized nature of the
observation actions.

V. CONCLUSIONS

A novel distributed diagnosis framework is introduced
in this paper where distributed observation systems peri-
odically transmit their observations in batch mode to a
centralized coordinator that performs diagnosis. A property
called distributed observation diagnosis is introduced to
describe systems with failures that can be diagnosed in the
above framework. A finite-state automaton construction D
is also introduced that can be used to test if a system G is
combined observation diagnosable.

REFERENCES

[1] E. Athanasopoulou, C.N. Hadjicostis, and K. Rohloff. The distributed
diagnosis of discrete-event systems. Preprint.

[2] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, Boston, MA, 1999.

[3] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentral-
ized protocols for failure diagnosis of discrete-event systems. Journal
of Discrete Event Dynamical Systems: Theory and Applications,
10:33–86, 2000.

[4] F. Lin. Diagnosability of discrete event systems and its applica-
tion. Discrete Event Dynamic Systems: Theory and Applications,
4(2):197–212, May 1994.

[5] A. Puri, S. Tripakis, and P. Varaiya. Problems and examples of
decentralized observation and control for discrete event systems. In
B. Caillaud, P. Darondeau, L. Lavagno, and X. Xie, editors, Synthesis
and Control of Discrete Event Systems. Kluwer Academic Publishers,
2002.

[6] W. Qiu and R. Kumar. Decentralized failure diagnosis of discrete
event systems. In Proc. 7th Workshop on Discrete Event Systems,
September 2004.

[7] P.J. Ramadge. Some tractable supervisory control problems for
discrete-event systems modeled by Büchi automata. IEEE Trans.
Auto. Contr., 34(1):10–19, 1989.

[8] K. Rohloff. Diagnosis via the unsynchronized periodic communica-
tion of distributed observations, 2005. Preprint.

[9] K. Rudie and J.C. Willems. The computational complexity of
decentralized discrete-event control problems. IEEE Trans. Auto.
Contr., 40(7):1313–1318, 1995.

[10] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of
discrete-event systems. IEEE Trans. Auto. Contr., 43(7):908–929,
July 1998.

[11] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete-event systems. IEEE Trans.
Auto. Contr., 40(9):1555–1575, September 1995.

[12] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Failure diagnosis using discrete-event models. IEEE
Trans. Contr. Syst. Tech., 4(2):105–124, March 1996.


