
Scalable, Adaptive, Time-Bounded Node Failure Detection∗

Matthew Gillen, Kurt Rohloff†, Prakash Manghwani, Richard Schantz
BBN Technologies

10 Moulton St., Cambridge, MA 02138, USA
{mgillen, krohloff, pmanghwani, schantz}@bbn.com

Abstract

This paper presents a scalable, adaptive and time-
bounded general approach to assure reliable, real-time
Node-Failure Detection (NFD) for large-scale, high load
networks comprised of Commercial Off-The-Shelf (COTS)
hardware and software. Nodes in the network are indepen-
dent processors which may unpredictably fail either tem-
porarily or permanently. We present a generalizable, multi-
layer, dynamically adaptive monitoring approach to NFD
where a small, designated subset of the nodes are com-
municated information about node failures. This subset of
nodes are notified of node failures in the network within
an interval of time after the failures. Except under condi-
tions of massive system failure, the NFD system has a zero
false negative rate (failures are always detected with in a
finite amount of time after failure) by design. The NFD sys-
tem continually adjusts to decrease the false alarm rate as
false alarms are detected. The NFD design utilizes nodes
that transmit, within a given locality, ”heartbeat” messages
to indicate that the node is still alive. We intend for the
NFD system to be deployed on nodes using commodity (i.e.
not hard-real-time) operating systems that do not provide
strict guarantees on the scheduling of the NFD processes.
We show through experimental deployments of the design,
the variations in the scheduling of heartbeat messages can
cause large variations in the false-positive notification be-
havior of the NFD subsystem. We present a per-node adap-
tive enhancement of the NFD subsystem that dynamically
adapts to provide run-time assurance of low false-alarm
rates with respect to past observations of heartbeat schedul-
ing variations while providing finite node-failure detection
delays. We show through experimentation that this NFD
subsystem is highly scalable and uses low resource over-
head.

∗This work was supported by the Defense Research Projects Agency
(DARPA) under contract NBCHC030119.

†Corresponding Author.

1 Introduction

Due to the decrease in cost of COTS hardware, there
has been a surge in the use of highly-interconnected large-
scale distributed computing environments [9, 11, 12] to host
mission-critical systems. In order to maintain constant
availability, automated resource managers are used in these
systems to allocate computational resources on nodes in
these networks to specific mission-critical applications and
processes. If a resource manager can be notified of node
failures by a Node Failure Detection (NFD) subsystem in a
fast, timely manner with a low false-alarm rate, it is feasi-
ble to redeploy mission-critical applications from the failed
nodes onto auxiliary nodes within the bounds of the appli-
cation’s real-time deadlines to mask or ameliorate the fail-
ure. This fast, low-error notification of node failures is often
a key component of a resource management system’s abil-
ity to provide the constant availability of mission-critical
applications in real-world distributed computing environ-
ments. However, to be easily adoptable and usable in real-
world environments, any general designs for fast NFD sub-
systems must be scalable to large systems. Additionally,
NFD subsystems must be low-overhead so that they will not
adversely impact the operations of the underlying environ-
ment. This motivates the need to design a general purpose,
scalable, low-overhead, fast and low-false alarm rate NFD
subsystem.

A simple approach to NFD is Heartbeat Failure De-
tection (HBFD) where the nodes periodically send short
“NodeAlive” heartbeat messages to the resource managers
to signify that the node is still operating [8]. The node is
said to “timeout” if the resource manager goes too long
without observing a heartbeat message from it. In the case
of a timeout, the resource manager could declare the node
that timed-out had failed and then take whatever actions
are necessary to redeploy mission-critical applications that
were running the failed node and avoid deploying new ap-
plications on that unavailable node. Unfortunately, many
potential implementations of HBFD are not usable at the
scale of thousands of nodes either because of a single point



of failure when all heartbeats go to a single node; this would
also cause very high overhead for the node that received
all those heartbeats or a design that uses a fully connected
graph (i.e. each node sends heartbeats to every other node).
Additionally, previous approaches to HBFD have not been
able to dynamically adapt to the run-time behavior of the
system to maintain an optimal balance among various real-
time operational constraints such as the node-failure detec-
tion delay and false-alarm rate.

Low-cost environments comprised of COTS hardware
and software, as is frequently the case in many real-world
distributed computing environments, are commonly limited
to soft-real-time behavior. Soft real-time systems take a
best-effort approach to scheduling computations and com-
munications, and this is the typical situation when using
commodity operating systems [7]. As a result, there is al-
ways variation in the scheduling of heartbeat transmissions
generated by the nodes in soft-real-time systems. These
variations in the scheduling of heartbeat messages can cause
large variations in the false-positive notification behavior of
the NFD subsystem.

The amount of variation in heartbeat scheduling varies
greatly from node to node in NFD subsystems. In practice,
one could manually tune the behavior of an NFD subsys-
tem to account for the node-by-node variations in heartbeat
scheduling but this is a labor-intensive process and is not
feasible in very large computing environments with large
numbers of nodes when cost is a factor. Additionally, no
amount of manual tuning may actually solve the problem
as any changes in system behavior or use may require re-
tuning. This inability to manually tune an NFD subsystem
may cause the NFD system to repeatedly and falsely de-
clare large numbers of node failures due to the variations in
heartbeat generation times. Although not as disruptive as
false negatives, false positive node failures are highly un-
desirable because if a node is incorrectly declared failed,
the resource manager may unnecessarily deploy mission-
critical applications onto other nodes. This might cause the
unnecessary interruption of service for the mission-critical
applications, in addition to the depletion of available nodes.

In this paper we present a real-time dynamic, adaptive
heart-beat methods for node failure detection that can be
used to achieve a low false-alarm rate. Our design goal is
to have a dynamic, adaptive NFD system that assures a low
false-alarm rate at the cost of a potentially higher (but still
finite) node-failure detection delay. The system should be
able to assure a very small false alarm rate if future behavior
is similar to past observed behavior. These design concerns
for NFD have not been previously discussed in the litera-
ture. We show how to enhance this NFD subsystem so it
can quickly adapt to decrease false-positive rates on a per-
node basis for variations in scheduling due to a system’s
soft-real-time components. This adaptation trades off po-

tential increases in (a time-bounded) worst-case failure no-
tification time for assured limitations on false-positive no-
tification rate (based on past behavior). We have the addi-
tional design concern that the NFD system should be low-
overhead and scalable to large systems and could also be
easily dropped in as a common off-the-shelf service into an
ongoing and enduring system management design.

There is a large and active literature associated with NFD
[2–6]. However, this literature is largely focused on theo-
retical results and there has been insufficient real-world de-
velopment and experimentation with general approaches to
scalable, adaptable NFD subsystems for distributed com-
puting environments comprised of COTS hardware and
software. The adaptive, hierarchical NFD design and the
experimentation is motivated by the DARPA ARMS pro-
gram [9, 10] which required a generalizable, scalable and
fast NFD system with low overhead that could satisfy the
conflicting requirements of fast node failure detection and
low false alarm rates.

This paper is organized as follows. In Section 2 we dis-
cuss the specific requirements of the NFD system. In Sec-
tion 3 we present the NFD design. In Section 4 we discuss
experiments with a non-adaptive version of the design. In
Section 5 we describe an adaptive version of the NFD sys-
tem. A set of conclusions from the work is discussed in
Section 6.

2 System Architecture and NFD Design Re-
quirements

As discussed in the introduction, we assume that the re-
source manager (or, for the sake of generality, whatever
component in the distributed computing environment main-
tains information about node availability) maintains a Node
Status Receiver (NSR) process to track which of the nodes
has failed based on signals from the NFD system. The
nodes in the network run commodity, multi-threaded soft-
real-time operating systems which take a best-effort ap-
proach to event scheduling. This best-effort approach to
event scheduling often leads to frequent false alarms which
could potentially be catastrophic for the behavior of the
overall system.

To facilitate the heartbeat approach to NFD, each node
maintains a thread that schedules the transmission of heart-
beat messages and other operations. Generally, variations
in a node’s scheduling of heartbeats is dependent upon the
node’s processor load and several other variables, such as
the degree to which kernel actions are preemptable. Al-
though variations in scheduling from heartbeat-to-heartbeat
are not necessarily deterministic to an external observer,
scheduling errors from interval to interval are generally cor-
related.

The distributed computing environment’s underlying



communication network, which is used to move heartbeats
and other messages between nodes, is assumed to be a stan-
dard asynchronous data network, such as a standard IP net-
work. Thus, it can be assumed that when the network is
under a heavy operational load, there may be congestion
and delayed or dropped heartbeats which could cause false
positive node failure detections.

When a node is operating and connected to the commu-
nication network, it is considered alive. A node is consid-
ered dead if it has a hardware failure that prevents compu-
tation from proceeding or there is a network partition such
that the node is functional but it is separated from the net-
work (implying that it is effectively dead for the purpose of
hosting parts of distributed applications) or any other inter-
mediate condition preventing the heartbeats from reaching
its destination. Possible causes of node death include the
physical failure of the node, an OS crash, and the failure of
the node’s communication link(s).

Ideally, the NSR would be informed of node failures as
soon as possible after failure with a low false positive rate.
Also the NFD would ideally have low overhead, be scal-
able to very large computation networks and be tolerant of
NFD component failures. We describe these requirements
as follows:

• Low False Positive Rate- To prevent the resource
manager from unnecessarily redeploying mission crit-
ical applications, the NFD solution should not gen-
erate erroneous failure notifications (false-positives).
Repeated false positives are particularly undesirable
due to the possibility of causing the resource man-
ager to “thrash” when (re)deploying to “thrash” when
(re)deploying computational processes on nodes. A
goal for an NFD subsystem design beyond the current
state of the art in the context of the other requirements
was to assure at most one false positive node failure
detection per month of operation (based on past be-
havior).

• Fast Worst-Case Detection Time- There is a need for a
general, off-the-shelf deployable NFD subsystem with
worst-case detection times as fast as possible with re-
spect to need for a low false positive rate. Based on
previous experience in developing NFD subsystems,
we perceived that a worst-case detection time on the
order of 100 milliseconds is fast enough to support
soft-real-time deadlines of many applications, yet it
is still beyond the ability of current scalable, low-
overhead NFD subsystems with assured low false posi-
tive rates for distributed computing environments com-
prised of COTS components [10].

• Low Overhead- The NFD will need to run concur-
rently (i.e., on the same nodes) with mission-critical

applications. Therefore, the NFD processes that run
on each node of the network need to be low overhead
in terms of CPU utilization. In order to be usable in a
high-demand, high-load environment an NFD subsys-
tem should require no more than 2% of the bandwidth
and CPU time from any shared nodes.

• Scalability- The NFD solution needs to be scalable to
both small and very large configurations. Our design
goal was an NFD subsystem that could scale to a sys-
tem with 1000’s of nodes.

• Fault Tolerance- The failure of any one part of the
NFD subsystem should not cause the failure of the en-
tire NFD subsystem. That is, there should be no Single
Point Of Failure (SPOF).

Taken individually, each requirement we place on the
general NFD subsystem design may have well-known so-
lutions in the NFD literature [4–6]. However, the combina-
tion of all these requirements in a real-world context, partic-
ularly scalability, a 100ms desired detection time and SPOF
fault-tolerance make this a difficult and open problem.

3 Node Failure Detector Design

We developed a general design for an NFD subsystem
comprised of a three-level hierarchical architecture. There
are three component levels in this hierarchy: Node Sta-
tus Receiver (NSR), Monitor, and Sender (each component
may contain multiple threads of execution.) In order to sat-
isfy the fault tolerance requirement, it is assumed that there
are at least two NSR processes running on separate nodes
in the system that collect aggregate information about node
failures.

At the lowest level of the hierarchy, the Sender is a single
thread that executes on each node of the system to generate
heartbeats that are sent to a subset of the Monitors. The set
of all Senders that send heartbeats to a particular monitor
are called a cluster. There are multiple Monitors in the sys-
tem, deployed on a small subset of the nodes. Each Monitor
is comprised of two threads of execution. One thread, called
the detection thread, observes the arrival of heartbeats from
Senders assigned to it and saves statistical information re-
lated to its observations of heartbeats. The second Monitor
thread, called the Sweeper thread, periodically executes to
determine which nodes may be dead and sends lists of the
nodes that the Monitor believes to be dead to the NSRs. A
schematic of communication for the implementation of this
NFD system can be seen in Figure 1 where all Senders in a
cluster are assigned to the same two monitors (although this
is not a requirement.)

The heartbeat messages are UDP packets that contain in-
formation that identifies the node that generated the heart-
beat and a sequence number so that missed heartbeats can



Node Status
Receiver

Senders

Monitor Monitor

Senders

Monitor Monitor

Node
Status
Alerts

Node Status
Receiver

Node
Status
Alerts

Cluster

Heartbeats

Figure 1. NFD Communication Schematic.

be detected. The Sender thread generates heartbeats which
are sent to the Sender’s Monitors at a nominal configurable
rate; we say the heartbeats are generated at a nominal rate
because we assume that there may be variations in the
scheduling of this heartbeat generation thread due to the ef-
fects of using a commodity operating system.

Senders are clustered based on physical proximity in or-
der to minimize the communication overhead associated
with NFD operation. In order to satisfy the minimum re-
quirement for fault tolerance, every Sender should be asso-
ciated with at least two Monitors so that the failure of any
one Monitor will not hinder the NSRs’ notification of indi-
vidual node failures.

The Monitor’s detection thread is run at the second-
highest priority, behind the sweeper thread. The monitor
maintains an internal list of the arrival times of the latest
heartbeat observed from each of its senders. Upon the ar-
rival of heartbeat messages, the detection thread is sched-
uled to start as soon as possible, which then places a time-
stamp for the heartbeat on the internal list at the location
corresponding to the Sender that generated the heartbeat.

The Monitor’s sweeper thread is run at the highest prior-
ity the operating system has. This thread is run periodically
at a nominal frequency to determine which of the nodes
could be dead based on the list of the last observed heartbeat
arrival times. Again, we say nominal due to the use of soft
real-time operating systems which may cause variations in
the scheduling of the sweeper thread. However, because this
thread is run at the highest priority, there would generallybe
less variation in sweeper scheduling than in the scheduling
of heartbeat variation.

To determine if a node has failed, the Monitor maintains
a local, configurable list of Detection Threshold (Th) val-
ues for each node in its cluster. During each iteration of
operation, the sweeper thread loops through a list of all the

nodes that it is monitoring to detect node timeouts. If the
difference between the current time and the time of the last
heartbeat received by the node is greater than theTh value
assigned to the node by the Monitor, the node is declared
dead.

We concluded that the best practice for avoiding a large
number of false positives due to dropped heartbeat packets
is to setTh to be at least twice the heartbeat generation pe-
riod. This allows the system to avoid declaring an erroneous
failure in the case of (non-consecutive) single-packet losses
without incurring the overhead from sending more packets.

In the Appendix, we develop an expression for the maxi-
mum amount of time it takes a Monitor in the NFD subsys-
tem to send an NSR information about a node failure. We
find this maximum failure notification time to be:

SM + MN + Th + SI + 3SL

where:

• SM is the communication latency of the last heartbeat
sent to the Monitor from the failed node.

• MN is the worst-case communication latency of the
failure notification sent from the Monitor to each of
the NSR instances.

• Th is the timeout threshold used by the Monitor to de-
tect the node failure.

• SI is the period between executions of the sweeper
thread in the Monitor.

• SL is the amount of time the sweeper thread takes to
run.

Generally, there will be variations in the values ofSM ,
MN , SI andSL. However, in experimentation, we found
that the values of these parameters are tightly distributed
around expected median values. This provides us with a
high level assurance that failure notifications will be sentto
the NSRs within some time bound.

We implemented the NFD subsystem for several sets of
experiments using the ARMS configuration as the context
for evaluation. First we consider the case of fixed thresholds
in the next section and the case of variable threshold in the
section following that.

4 Fixed Threshold Experimentation

We ran two experiments of the NFD implementation us-
ing a fixed detection threshold. In the first experiment, we
configured the NFD subsystem using 40 physical nodes to
simulate 1020 monitored nodes. This experiment was de-
signed to test the scalability and measure the overhead and



node failure detection times of the subsystem design when
there are large numbers of node failures.

For the second experiment, we configured the NFD sub-
system using 10 physical nodes (and no virtual nodes) in
a high-load environment running 10 Sender instances, 2
Monitor instances and 2 NSR instances. The intent of the
second experiment was to observe the effects of scheduling
errors in the Senders and Monitors and to test the ability to
detect false alarms.

4.1 First Experiment

We based the experiments on the motivating ARMS dis-
tributed computing environment which uses a standard IP
over Ethernet network with very high bandwidth. For this
experiment, we used 20 (of the 40 total) physical nodes to
each run 50 instances of the Sender, providing 1000 simu-
lated nodes. We used the remaining 20 physical nodes to
run one instance each of a Sender, a Monitor. Two of these
physical nodes also ran an NSR instance. Thus, we used
20 monitors, and given that we used cluster sizes of ap-
proximately 100, we used 2 Monitors for each cluster. The
heartbeat generation rate was set to 45Hz, and the Monitor
sweeper rate was set to 40Hz. (This impliesSI, the wakeup
interval for the sweeper, was 25ms.) Based on an objective
of 100ms worst-case detection time, we setTh to be 50ms.

For this experiment, we used the University of Utah’s
Emulab [1] testbed to emulate the virtual nodes. This ex-
perimental testbed allows users to configure VLAN-based
private networks and specify the operating systems emu-
lated on the virtual nodes. We used the “pc3000” option [1]
to specify the hardware on all virtual nodes. (This options
specifies that the virtual nodes emulate a 3.0 GHz 64-bit
Xeon processors, based on Dell Poweredge 2850.) We also
specified Fedora Core 4 as the operating system on the vir-
tual nodes. The VLAN-based network topology was just a
single LAN with all 44 physical nodes on the same subnet.
The nodes were unloaded with other processes.

We performed experiments to determine the runtime of
the sweeper thread (SL). In the worst case when using a
cluster size of 100, this thread runs in 2ms. The runtime was
proportional to the number of failures detected; the more
failures, the higher the runtime. The high value of 2ms was
for 100 simultaneously-induced node failures.

We never observedSM or MN to be greater than 4ms.
With these maximum values,SM +MN +Th+SI +3SL

would be less than 91ms, which would satisfy the require-
ment that the NSRs would receive notifications about node
failure within 100ms. This assertion is supported by exper-
imentation. When we ran this experimental configuration,
we induced over 4800 virtual and physical node failures.
Over the 4800 induced node failures, all node failures were
reported within the required 100ms deadline, which means

there were no false negative node failure occurrences.
Based on the initial experimentation, the design scaled

sufficiently for the test system with 1000 virtual nodes.
In general, the NFD subsystem implementation performed
with low overhead in the large-scale test system, both in
terms of computation and communication resources. Addi-
tionally, the NFD subsystem implementation demonstrated
its designed fault tolerance property when we induced fail-
ures in individual components such as the Monitors and
NSRs, the overall behavior of the system was not altered.
The virtual nodes in the system had a light computational
load so the false positive rates were not tested in this exper-
iment.

4.2 Second Experiment

In a second experiment, we ran an ARMS configuration
of the NFD subsystem in a distributed computing environ-
ment comprised of 10 Senders on 10 physical nodes, along
with a Monitors and an NSR coresident on two of those res-
ident on two of those nodes. We used a different experiment
testbed for this experiment because experiments on Emulab
are normally limited to 16 hours and we wanted to observe
long-term false positive node failure detection rates way be-
yond that limit.

For these experiments we used 10 workstations and
servers which would normally be found in a general office
environment. The mix of hardware consisted of PC desk-
tops (Dell OptiPlex GX270 w/ Pentium-4 CPU 2.80GHz
, Dell OptiPlex GX150 w/ Pentium-III CPU 933MHz and
Dell PowerEdge 650 w/Pentium-4 CPU 2.66GHz) running
various flavors of the non-real-time Linux operating sys-
tems (Fedora Core 5, Ubuntu 6.10, Gentoo.) This hetero-
geneity was intended to represent the more normal case
where uniformity of hardware and software cannot be guar-
anteed.

The desktops used were active developer workstations,
so there was typically a heavy but irregular load on these
machines and on the network interconnecting them during
normal business hours. We observed false positive rates that
varied from one a week to several times an hour. This false
alarm rate is unacceptably high; several orders of magnitude
higher than desired. After analysis of the experimental runs,
we concluded that there were two primary causes of false
positives: dropped heartbeat packets and the inconsistent
scheduling of the sender and sweeper threads.

Although it was common for single UDP heartbeat pack-
ets to be dropped in the communication network in the test
system, it was sufficiently unusual for consecutive packets
to be dropped when a node was still alive that we never saw
a false positive caused by two consecutive node losses in
any of the experiments.

We observed a large number of false alarms due to



26 27 28 29 30 31 32 33 34 35

10
−3

10
−2

10
−1

10
0

10
1

10
2

Heartbeat Scheduling Interval Occurrence Rate
vs. Heartbeat Scheduling Interval

Heartbeat Scheduling Interval (msec.)

H
ea

rt
be

at
 S

ch
ed

ul
in

g 
In

te
rv

al
 O

cc
ur

re
nc

e 
R

at
e 

(p
er

 H
ou

r)

 

 

Worst Performing Node
Average Performing Node
Best Performing Node

Figure 2. Plots of How the Rate of Schedul-
ing Violation Occurrences Varies with the
Scheduling Interval for the “Best”, the
“Worst” and an “Average” Performing Nodes
on a Semi-Log Scale.

scheduling variations at the Senders and Monitors. False
positives due to Monitor scheduling variations were easy to
detect and compensate for during system operation. The
sweeper thread has the highest priority in the Monitor so
that it could preempt the operation of the detection thread.
If a scheduling problem occurred that prevented the sweeper
thread from executing, then it is guaranteed that the detec-
tion thread hasn’t been able to execute either, and therefore
heartbeats are very likely to be sitting in the Operating Sys-
tem’s network stack. This would lead to the Monitor de-
termining that all nodes in its cluster were failed, but most
likely these “failures” would be false-positives. We imple-
mented checks in the sweeper to detect when its scheduling
has been interrupted, and if it has then it skips the failure de-
tection until the next period. This results in the Sweeper be-
ing able to reject all false positives due to sweeper schedul-
ing errors during our experimentation. Although this design
may result in the delayed detection of real node failures dur-
ing sweeper scheduling errors, we observed during our ex-
perimentation that the probability of these events happen-
ing coincidently are sufficiently low that this should not be
a concern, especially with redundant monitors.

The other cause of false positives, scheduling variations
at the Senders, is not as easy to detect in real-time. We ob-
served in the experiments that these variations could prevent
the Sender from generating its heartbeat message for up to
a second after it nominally should have been sent.

Figure 2 contains graphs of rates of scheduling violation

occurrences varies with the scheduling interval for three dif-
ferent nodes (on a semi-log scale). Note that we only plotted
the rate of violation occurrences when the scheduling inter-
val is greater than the nominal value of 25 msec. because
by definition a scheduling violation has not occurred if the
scheduling interval is less than 25 msec.. We selected the
nodes out the ten available to demonstrate a) the number of
observed scheduling violations exhibited by the “best” per-
forming node (the dotted line), b) the number of observed
scheduling violations exhibited by an “average” node (the
dashed line) and c) the number of scheduling violations
exhibited by the “worst” performing node (the solid line.)
Note that from these plots we can surmise that all of the
nodes exhibited scheduling violations. As can be seen in
Figure 2, there is a variability in the number and magnitude
of heartbeat scheduling violations of several orders of mag-
nitude between the “best” node and the “worst” node. One
could diminish these consistently occurring scheduling vio-
lations by appropriately tuning the static Monitor thresholds
by hand, but this is not feasible for very large scale systems
as discussed in the introduction. In the next section, we de-
scribe an extension to the design to include an adaptive NFD
Monitor that can self-tune for these scheduling violationsin
order to trade off an improved false alarm rate for a slight
increase in detection time.

5 Adaptive NFD

We designed an adaptive version of the NFD subsystem
where the failure-detection thresholds used by individual
Monitors are adjusted (in a strictly increasing manner) on
a per-node basis. We took a simplistic approach to Monitor
adaptation by multiplying the Monitor’s detection threshold
Th for a node by a configurable valuek every time a false
positive is detected on that node by the Monitor. (The same
value ofk is used for all nodes.) A false positive is detected
when a Monitor receives a heartbeat from a node after that
node has timed out and the Monitor has communicated to
an NSR that the node is dead. Although this approach does
not predict the occurrence of false alarms before they occur
(this is most likely impossible), this approach prevents false
alarms from occurring if the scheduling errors exhibited by
the nodes in the future is comparable to the scheduling er-
rors exhibited by the nodes in the past.

This approach to NFD adaptation allows the NFD soft-
ware to “discover” appropriate thresholds for each individ-
ual node to avoid repeated false-positives in the future. This
method also keeps stricter bounds on the worst-case detec-
tion time of nodes that are able to accurately schedule the
generation of heartbeats. An additional benefit of this ap-
proach is that the threshold adjustments can be propagated
to the NSR (top-tier) nodes, so that resource-management
software that consumes node failure events will be able to



10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

Detection Threshold vs. Experiment Clock for Three Nodes

Experiment Clock (Days)

D
et

ec
tio

n 
T

hr
es

ho
ld

 (
m

s)

 

 

Node 1 Threshold Level
Node 2 Threshold Level
Node 3 Threshold Level

Figure 3. Sample Variations in Detection
Thresholds.

take worst-case node failure detection times and false posi-
tive rates into account when deploying mission-critical ap-
plications or applications that would be difficult to redeploy.

We configured and evaluated our adaptive NFD test sys-
tem in the same high-load, 10 node network from Subsec-
tion 4.2 with the threshold growth parameterk set to 2. We
ran the system for a month (30 days). A sample of how the
detection threshold was adjusted over the first few days of
the experimentation period for three sample nodes can be
seen in Figure 3. (Note that Figure 3 is plotted on a semi-
log scale.) We selected the three nodes to demonstrate the
highest threshold adjustment exhibited during the experi-
mental run (Node 3), the lowest threshold adjustment exhib-
ited during the experimental run (Node 1) and the threshold
adjustments of an “average” case node (Node 2.)

For most nodes there was only one false positive, and
hence one adjustment of the threshold for the entire 1-month
run of the system. Note that the best performing node had
no adjustments during the test run. The worst performing
node only had one threshold adjustment, but this adjustment
was driven by a large delay in a heartbeat arrival that was
most likely an uncommon event as we did not observe any
other heartbeat arrival delays of this magnitude during the
experiment. “Average node” adjustments, like the one seen
in Figure 3 occurred sometime after the first few minutes of
operation but before the first day. No node exhibited more
than 2 adjustments. This demonstrates that despite using
a simplistic threshold adjustment scheme, our system was
able to properly account for possible future false positives
based on past observations and avoid thrashing in the sys-

tem.
One might expect that this method for threshold adjust-

ment would increase the detection threshold at an exponen-
tial rate. However, the occurrence of scheduling errors was
found to be approximately exponentially distributed. This
behavior causes the detection threshold to increases quickly
during the tuning phase in the first few hours of operation.
Later, the rate of increase of the detection threshold decays
quickly, causing stable behavior in later stages.

Note that the threshold for Node 3 increased to nearly
5 seconds. A threshold this high may not be usable for
most applications and suggests that an area for continued
research and development would be in policies that would
remove nodes from operation if they cannot reliable provide
sufficient detection thresholds and false alarm rates.

6 Conclusion and Discussions

We developed a fast, general, reliable and scalable node
failure detection subsystem using a hierarchical, adaptive
approach. Building upon a proof-of-concept implementa-
tion, we were able to increase the timeliness of NFD in the
system by making the sending and receiving of heartbeats
more efficient and less susceptible to load on the host sys-
tem, both on a per-host basis as well as in the overall system.
Through experimentation we demonstrated how this design
was enhanced to adaptively trade failure detection time for
a decrease in the subsystem’s false positive rate.

A design augmentation approach for future work to de-
crease the NFD overhead would be to make the Senders’
heartbeat transmission rate dependent on changes in its de-
tection threshold valueTh at the Monitors. This is a pos-
sible area of application of variable controls rate, a current
research topic in control theory for adapting control sens-
ing and actuation rates. An underlying goal of the work in
this research area is the need for methods to design these
dynamic systems such that their behavior is predictable and
certifiable.

References

[1] http://www.emulab.net.
[2] M. K. Aguilera, W. Chen, and S. Toueg. Failure detec-

tion and consensus in the crash-recovery model.Distributed
Computing, 13(2):99–125, Apr. 2000.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, 1996.

[4] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of
service of failure detectors.IEEE Transactions on Comput-
ers, 51(5):561–580, 2002.

[5] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure de-
tection protocol.2001 Pacific Rim International Symposium
on Dependable Computing, 2001.



[6] N. Hayashibara, A. Cherif, and T. Katayama. Failure detec-
tors for large-scale distributed systems.21st IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’02), 2002.

[7] M. Jones and J. Regehr. Issues in using commodity oper-
ating systems for time-dependent tasks: Experiences from a
study of windows nt. InProceedings of the Eighth Interna-
tions Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV–1998), pages 107–
110, July 1998.

[8] M. Reynal. A short introduction to failure detectors for asyn-
chronous distributed systems.SIGACT News, 36(1):53–70,
2005.

[9] K. Rohloff, Y. Gabay, J. Ye, and R. Schantz. Scalable, dis-
tributed, dynamic resource management for the ARMS dis-
tributed real-time embedded system. InProceedings of the
International Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS-2007), 2007.

[10] P. Rubel, J. Loyall, R. Schantz, and M. Gillen. Fault toler-
ance in a multi-layered DRE system: A case study.Journal
of Computers, 1(6):43–52, 2006.

[11] V. Savant, S. Papavassiliou, J. Tupino, and A. Zawadzki. En-
hanced network management for online services. InPro-
ceedings of the Seventh International Conference on Com-
puter Communications and Networks (ICCCN-1998), 1998.

[12] P. Verissimo and A. Casimiro. The timely computing base
model and architecture.IEEE Transactions on Computers,
51(8):916–930, Aug. 2002.

A An Expression for Node Failure Notifica-
tion Time

In this appendix, we derive an expression for the maxi-
mum amount of time it takes for an NSR to be notified of
node failures based on network latency, heartbeat genera-
tion frequency, the frequency of the running of the sweeper
thread in the Monitor and how long it takes the sweeper
thread to run.

Supposet0 is the time at which a heartbeat is generated
by a sender, and supposetf is the time at which the node
fails.

tf ∈ (t0, inf)

Suppose thatta is the time at which the last heartbeat arrives
at the monitor andSM is the amount of time it takes for the
heartbeat to be transported over the network from the sender
to the monitor.

ta = t0 + SM

Let td be the time at which this last heartbeat arrival is
observed by the Monitor detection thread and used to gener-
ate a time-stamp that is used to test if the monitor times out.
If the sweeper thread is not running when the heartbeat ar-
rives, then the detection thread can be started immediately,
and:

td = ta

However, if the sweeper thread is running when the heart-
beat arrives, then the detection thread cannot be started until
the sweeper thread finished operation. LetSL represent the
amount of time it takes to sweeper thread to run. In this
case:

td ∈ (ta, ta + SL)

After the monitor heartbeat time-stamp has been gener-
ated, the sweeper thread could be started before this time-
stamp value is placed in memory. Lettp be the time at
which this heartbeat is processed by the Monitor detection
thread and placed in local memory. If sweeper thread pre-
empts the placement of the heartbeat time stamp in memory
by the detection thread, then

tp ∈ (td, td + SL) .

If the sweeper thread does not preempt the placement of the
heartbeat time stamp in memory by the detection thread,

tp = td.

Let Th be the timeout threshold, and lettt be the earliest
time when the node will timeout if the sweeper thread runs.

tt = tp + Th

Let SI be the period of sweeper thread scheduling. Let
tss be the first time at which the sweeper thread runs after
tt, the time when the node timed out. Because the sweeper
thread is run at the highest priority,

tss ∈ (tt, tt + SI) .

Let tsf be the time at which the sweeper stops running
after the node times out.

tsf = tss + SL

Let MN be the amount of time is takes for the node
failure signal to be transported over the network from the
Monitor tot he NSR. LettNSR be the time at which the
failure signal is received at the NSR.

tNSR = tsf + MN

From these equations we can derive an expression for
the maximum value oftNSR − tf , the maximum time for
information about node failures to be sent to an NSR.

max(tNSR − tf ) = SM + MN + Th + SI + 3SL

If there is a maximum delay associated with node failure
notification, the NSR will be alerted to node failures within
this maximum time (i.e.,max(tNSR − tf ) < MaxDelay)
using an implementation of the NFD subsystem if:

SM + MN + Th + SI + 3SL < MaxDelay.

For our NFD implementation, our maximum delay ob-
jective was 100 msec., with each of these factors individu-
ally contributing to that total


