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This paper discusses modeling and detection properties associated with the stochastic behavior
of Random Constant Scanning (RCS) worms. Although these worms propagate by randomly
scanning network addresses to find hosts that are susceptible to infection, traditional RCS worm
models are fundamentally deterministic. A density-dependent Markov jump process model for
RCS worms is presented and analyzed herein. Conditions are shown for when some stochastic
properties of RCS worm propagation can be ignored and when deterministic RCS worm models can
be used. A computationally simple hybrid deterministic/stochastic point-process model for locally
observed scanning behavior due to the global propagation of an RCS scanning worm epidemics is
presented. An optimal hypothesis-testing approach is presented to detect epidemics of these under
idealized conditions based on the cumulative sums of log-likelihood ratios using the hybrid RCS
worm model. This paper presents in a mathematically rigorous fashion why detection techniques
that are only based on passively monitoring local IP addresses cannot quickly detect the global
propagation of an RCS worm epidemic with a low false alarm rate, even under idealized conditions.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Stochastic processes; Time series analysis;
D.4.6 [Operating Systems]: Security and protection—Invasive software (e.g., viruses, worms, Trojan horses);
1.6.8 [Simulation and M odeling]: Types of Simulation—Discrete event

General Terms: Security, Theory
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1. INTRODUCTION

A computer worm is a piece of malicious code that can spread automatically over a com-
puter network without the need for human intervention. Due to this automatic propagation,
worms can potentially spread on the Internet with staggering speed and cause damage on
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the order of billions of dollars [Moore et al. 2002; Moore et al. 2003]. A special type
of a worm, called a Random Constant Scanning worm (RCS worm for short) propagates
by continually scanning randomly selected Internet addresses in attempts to infect other
hosts. Well-known examples of RCS worms include CodeRed1v2 and Slammer. When an
Internet address has been selected for scanning by a host infected by an RCS worm, the
infected host attempts to transmit infectious packets to a host at the selected address. If
the targeted host is susceptible to the infection, then, upon receiving the infectious packets,
that host also becomes infected and the scanning and infection process continues at both
infected hosts.

Due to the branching nature of scanning worm epidemics, these infections have the po-
tential to propagate very fast over the Internet. For instance, during the CodeRed1v2 Inter-
net worm attack of 2001 over 359,000 computers were infected in under 14 hours [Moore
et al. 2002]. During the more aggressive Slammer Internet worm attack of 2003 more than
90 percent of 75,000 vulnerable computers were infected in less than 10 minutes [Moore
et al. 2003]. Although it might be feasible for a human to respond to a relatively slow RCS
worm epidemic to protect a local network, human driven responses are infeasible for local
network protections on a global scale, especially when vigilance is required twenty-four
hours a day, seven days a week, fifty-two weeks a year. This realization motivates the need
for a better understanding of RCS worms and the need for automated worm epidemic de-
tection methods with response times and reliability significantly better than what could be
provided by human network administrators.

From data collected during previous RCS worm attacks it has been found that the de-
terministic simple epidemic model [Kermack and McKendrick 1927] can capture aspects
of the behavior of an RCS worm epidemic’s propagation [Moore et al. 2002; Moore et al.
2003; Staniford et al. 2002]. This model was first introduced by Kermack and McKendrick
[1927] for the modeling of biological epidemics when computational power for stochastic
modeling was extremely limited. However, despite the use of a deterministic model, the
underlying propagation behavior of RCS worms is fundamentally stochastic in nature.

It has been noted in the literature that due to the random nature in which an RCS worm
spreads, there could be variability between the overall propagation rates of RCS worm epi-
demics for worms with similar propagation properties [Moore et al. 2003; Zou et al. 2003;
Nicol 2006]. Of particular interest is the work by Nicol [2006]. Nicol [2006] presents a de-
tailed model of CodeRed1v2 propagation which validates the density-dependent Markov
jump process model previously introduced in [Rohloff and Bagar 2005a] and discussed
below extensively.

There has been some discussion of such stochastic effects in models for epidemics in the
epidemiology literature (notably by Andersson and Britton [2000] and Mode and Sleeman
[2000]), but to the best knowledge of the authors there has been no work analyzing the
stochastic properties of RCS worm epidemics or justifying the use of the deterministic
epidemic models in a mathematically rigorous fashion despite the inherently stochastic
behavior of RCS worms.

This paper presents an idealized stochastic propagation model for RCS worms developed
from first principles. This epidemic model is taken from the literature of epidemiology and
public health [Andersson and Britton 2000]. The large-scale propagation behavior of an
RCS worm predicted by this model is compared to the large-scale behavior predicted by
the standard deterministic simple epidemic model. It is found that the major differences



between behavior predicted by the stochastic model and deterministic model is when the
worm is in its earliest and latest stages of propagation when the observed differences be-
tween the behaviors of worms using these models is negligible. Conditions are shown
for when some stochastic properties of RCS worm epidemic propagation can be safely
ignored.

The deterministic simple epidemic model has been widely used in the literature as a basis
for developing worm detection methods [Staniford 2003; Wong et al. 2004; Zou et al. 2003;
Zou et al. 2004]. Based on our analyses of when some stochastic aspects of RCS worm
epidemic propagation can be ignored, we present a hybrid deterministic/stochastic point
process model for the observed scanning behavior on a local network due to the global
propagation of an RCS scanning worm. Such a model has not been previously discussed
in the literature.

Based on the hybrid deterministic/stochastic model for the observed scanning behavior
on a local network due to an RCS worm epidemic, we present a cumulative-sum log-
likelihood RCS worm epidemic detection method. We discuss the abilities of anomaly-
based RCS worm epidemic detection methods based on passively monitoring scanning
behavior on local IP addresses. We further explain in a mathematically rigorous fashion
why detection techniques that are based only on this passive monitoring local IP addresses
cannot quickly detect worm epidemics with a low false alarm rate.

The worm epidemic detection methods discussed in this paper are developed from the
field of detection and estimation theory which has been classically applied to the signal
processing of radar systems and to fault detection in manufacturing systems. A brief in-
troduction to this field is given, but a more in-depth review of this material is provided by
Poor [1994]. Of particular concern to the material in this paper is the notion of sequential
change detection which is discussed more deeply by Basseville and Nikiforov [1993] and
Wald [1947].

Sequential hypothesis testing methods for detecting malicious port-scanning has been
proposed by Jung et al. [2004], Schechter et al. [2004] and Weaver et al. [2004]. The
Threshold Random Walk (TRW) sequential hypothesis testing methods for detecting ma-
licious port-scanning has been proposed by Jung et al. [2004], but the problem of RCS
epidemic detection or the limitations of sequential hypothesis testing as discussed in this
paper has not been considered by Jung et al. [2004]. Versions of the TRW method have
been used by Schechter et al. [2004] and Weaver et al. [2004] for the detection and con-
tainment of scanning worms, respectively. Both Schechter et al. [2004] and Weaver et al.
[2004] have focused on the problem of detecting infected hosts in a local network rather
than the existence of an RCS worm epidemic in the global Internet, which is one of the
major foci of this paper. Additionally, neither Jung et al. [2004] nor Weaver et al. [2004]
have discussed the limitations of their scanning worm detection methods.

There have been several approaches to the automated anomaly-based detection of RCS
Internet worms, most notably by Zou et al. [2003] where a Kalman filtering method is used
in conjunction with observations based on ingress filters on routers for local networks. An
important contribution of [Zou et al. 2003] is that the Kalman filtering method is used to
determine an RCS worm epidemic’s infection rate when a worm epidemic is propagating.
However, no discussion is given in [Zou et al. 2003] on how the false rates are related
to the detection speeds through the adjustment of Kalman filtering method’s parameters.
Similar to [Zou et al. 2003], the detection method discussed in this paper is designed to be



implemented on a local level, so that the automated epidemic detection policies operate by
making observations of scanning behavior on unused local network addresses.

There is an inherent level of “background radiation” of undesired scanning that occurs
even in unused addresses in local networks connected to the Internet [Pang et al. 2004]
which can hinder the ability of anomaly-based detection methods to diagnose the existence
of a worm epidemic in its early stages of growth. Fortunately the observed noise levels
on unused network addresses are generally at least as low as the noise levels on active
addresses, which aids the detection methods discussed below. In order to simplify the
worm propagation models used in this paper, we assume that when a host attempts to scan
and propagate a worm epidemic there is a uniform distribution of any one Internet address
of being scanned, but this restriction can be easily removed.

The paper is organized as follows. Section 2 establishes the notation used throughout
the paper and presents the well-known deterministic simple epidemic model. A density-
dependent Markov jump model for worm propagation is introduced in Section 3. Section
4 presents a hybrid deterministic/stochastic point process model for a worm’s scanning be-
havior as observed on a local network. Section 5 discusses models for the traffic observed
on a local network during an RCS worm epidemic that incorporates both hybrid scanning
model of the worm and background noise. Section 6 provides a brief introduction to the
field of hypothesis testing and presents an optimal sequential hypothesis-testing method for
the detection of scanning worm epidemics under idealized conditions. Section 7 introduces
an anomaly-based Sequential Probability Ratio Test (SPRT) optimal detection method for
RCS worm epidemics. Section 8 discusses fundamental limitations for this anomaly-based
RCS worm epidemic testing method under idealized conditions. This shows that there are
inherent limitations to the usefulness of anomaly-based epidemics detection methods for
RCS worms. The paper concludes with a discussion of the results and possible areas for
future research in Section 9. This paper is an extended and combined journal version of
two initial conference papers [Rohloff and Basar 2005b; 2005a].

2. RANDOM CONSTANT SCANNING WORM PROPAGATION

It is assumed that an RCS worm can propagate over a network (such as the Internet) with
n unique hosts. Of these addresses, ns < n hosts could potentially become infected by
the worm. At a given time t > 0, the set of ng potential hosts is split into infected and
susceptible subpopulations, represented by I(t) and S(t) respectively. 1(t) is the number
of hosts which are infected by the worm at time t, and S(t) is the number of hosts which
could become infected, but are not at time t. Attime 0, (§(0),1(0)) = (So,io) Whereig >1
is the initial infected population. Due to the random scanning propagation behavior of RCS
worms, att > 0, S(t) and | (t) are random variables.

Infected hosts propagate their infection by sending infectious packets to other randomly
selected hosts in the general population at a constant rate. If a host that is uninfected but
susceptible to infection receives an infectious packet, then that host becomes infected. The
process of an infected host sending out infectious packets is called scanning. For general
simplicity in the model it is assumed that infectious hosts are not removed from the general
population so that for all t > 0, I (t) + S(t) = ns. However, the results of this paper readily
generalize to the cases of host recovery and/or removal.

When an infected host attempts to spread the worm by scanning randomly selected hosts,
the addresses selected for scanning are assumed to be selected with a uniform distribution.
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Fig. 1. Plot of a Deterministic CodeRed1v2 Propagation Simulation.

(This assumption is made for mathematical simplicity, but can be removed.) Therefore, any

one infectious packet sent at time t has probability ? of being sent to a susceptible host.
It is assumed that an infected host scans for susceptible hosts at a constant rate 3 which

is called the infection parameter. Therefore %S(t) is the rate at which an infected host
transmits its infection to susceptible hosts and %S(t)l (t) is the rate at which the infected
population transmits the infection to susceptible hosts.

Now, for the deterministic simple epidemic model, the variable s(t) is used to represent
the size of the susceptible population at time t, and the variable i(t) is a similarly defined
deterministic variable which represents the number of infected individuals at time t. Con-
sequently, %s(t)i(t) is the rate at which the i(t) infected hosts propagate the epidemic, and

d B_.... B o
a = SO = (= i)i(o).
With i(0) =i,
io —+ (ns— io)eign_nst .

This deterministic Kermack-McKendrick model of an epidemic propagation, originally
proposed by Kermack and McKendrick [1927], is an approximation of the underlying
stochastic process (S(t),I(t)). The use of this deterministic approximation model in the
context of RCS worms has yet to be justified in a mathematically rigorous fashion. In Sec-
tion 3 below, we present a stochastic propagation model of an RCS worm epidemic derived
from first principles and discuss conditions under which the simple epidemic model is a
sufficient approximation for the RCS epidemic process.

A plot of i(t) versus t, called the deterministic infection curve, for a model of the
CodeRed1v2 epidemic can be seen in Figure 1 where it is assumed that n = 232 (the IP
address space), ns = 350,000 (an approximation of the size of the susceptible CodeRed
population), B = 10188 (an approximation of the number of IP addresses scanned by an
infected host scans per hour) and ip = 1 (the size of the initial infection).



3. STOCHASTIC EPIDEMIOLOGICAL MODEL FOR SCANNING WORMS

The deterministic Kermack-McKendrick epidemic model presented above is a determin-
istic abstraction of a process that is inherently stochastic. We now present a stochastic
density-dependent Markov jump process propagation model for an RCS worm drawn from
the field of epidemiology [Andersson and Britton 2000; Daley and Gani 1999], but not
previously discussed in the computer worm literature.

When (S(t),I(t)) = (s,i), the pair (s,i) is the “state” of the epidemic. Due to the prop-
agation of the RCS worm infection and the assumption that S(t) +1(t) = ns, if the prop-
agation process is at a state (s,i), then the next state must be (s—1,i+ 1) and the next
state after that must be (s—2,i -+ 2) and so on until state (0, ns) is reached. From (0, ns) no
other state can be reached, so (0,ns) is an absorbing state and almost surely a time t 7" is
eventually reached such that (S(tfi"),1(tf")) = (0,ns) [Hoel et al. 1971].

Because the destinations of the infectious packets are selected by the infectious hosts
with a uniform distribution, any one infectious packet sent at time t has a probability of @
of being sent to a susceptible host. At time t, the I(t) infectious hosts transmit infectious
packets each at the rate f3, so %S(t)l (t) is the rate at which (S(t),I(t)) = (s,i) goes to
(s—1,i+1). From Daley and Gani [1999], this process can then be modeled as a jump
process with a jump intensity:

[ lsipif(h=sa— D) A(b=iat1)
H(saia) (siv) 0 otherwise ’

This jump process is Markovian because at state (S(t),1(t)) = (s,i), the current jump
intensity depends only on the current state (s,i) and is independent of the previous states
of the process. Consequently, this stochastic epidemic propagation process is by definition
a density-dependent Markov jump process because the jump intensity at state (s,i) depends
on the “densities” of the number of susceptible hosts s and the number of infected hosts
i. Several important aspects of this subclass of Markov jump processes are discussed by
Andersson and Britton [2000] and Ethier and Kurtz [1986].

Five different simulations of a stochastic worm propagation model with growth param-
eters similar to that of the CodeRed1v2 worm and an initial infection of ig = 1 can be
seen in Figure 2. Note that by visual inspection, the propagation curves in Figure 2 are
approximately the same curve shifted in time.

It has been shown by Andersson and Britton [2000] that the expected values of the sus-
ceptible and infected population sizes in the stochastic model at timet, (E {S(t)},E{I(t)}),
converge almost surely to the susceptible and infected population sizes predicted by the
deterministic model (s(t),i(t)) as the size of the populations ns and n increase. Also, the
fluctuations of the susceptible and infected population sizes in the stochastic model around
the deterministic solution are asymptotically Gaussian. However, as discussed by Anders-
son and Britton [2000], it is difficult if not impossible to find a closed-form expression for
the covariance of a density-dependent Markov jump process. Despite this, the covariances
of worm propagation at various time intervals can be easily computed through simulation.
The mean of 100 such CodeRed1v2 epidemic propagation simulations and the variance of
these simulations at various instances of time can be seen in Figure 3 where initially one
host is infected.

As predicted by the plots in Figure 3, (E{S(t)} ,E{I(t)}) is approximately the same as
the deterministic simulation (s(t),i(t)) seen in Figure 1, but the variance of the stochastic
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Fig. 2. Plot of Five Stochastic CodeRed1v2 Propagation Simulations.
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Fig. 3. Plots of the Mean and Variance of 100 Stochastic CodeRed1v2 Propagation Simulations.

epidemic simulations is potentially very large. Consider also the first plot of Figure 4 which
shows five stochastic simulations of the propagation of a worm with growth parameters
similar to that of the CodeRed1v2 worm where initially half of the susceptible population
is infected. The variances computed from 100 such simulations can be seen in the second
plot.

From the first plot of Figure 4, the various simulations of the epidemic propagations are
effectively identical. This is also indicated in the variance plot of Figure 4 where the max-
imum variance of these simulations (where initially half of the susceptible population is
infected) is several orders of magnitude less than the maximum variance of the simulations
in Figure 3 (where initially one host is infected). This indicates that the epidemic propaga-
tion curves of the stochastic epidemic simulations in Figure 2 are effectively all identical
but shifted in time. However, although the propagation curves seen in Figure 2 are nearly
identical, there can be differences on the order of hours in the amount of time it takes for a
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worm epidemic to infect half of the susceptible population.

Define T, to be a random variable which represents the amount of time the infection
process is in state (s;,ij). Every scanning attempt by an infected host during the epidemic
is a Bernoulli trial with probability sj/n of successfully scanning a host in the set of s;
susceptible hosts. Because these Bernoulli trials occur at the rate of Bij, Tj; is exponen-
tially distributed with mean B(nTnI,)I, and variance (B(nsf”ij)ij)2 [Stark and Woods 1994].
Furthermore, Ty,..., Ty, are all independent because the stochastic epidemic propagation

2
process is Markovian. Note that max;; (Var (Ti;)) = (D) (ﬁ) and min;; (Var (Tj;)) =

B
() (%)

B ng )’

Let ia,ip € {1,...,ns} be such that i, > i and let Ti,;, be a random variable that rep-
resents the amount of time it takes a stochastic infection propagation process to go from
state (Sa,ia) to State (S,ip). By definition, T, = z:?;ila'l'ij. In general, T, is not expo-
nentially distributed, but a closed-form expression for its probability distribution function
exists. Relevant to the discussions in this paper,

ip—1
E{Tu} = E{Y Ty}
ibflf
= z E{Tij}

Ij:Ia

B EZ (Ns—1)ij @
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Var (Ti,i,) = Var (libzl'l'ij>
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It can also be shown that E{Tyns } = an [C+In(ns—1)+ f(ns)] where C # 0 is a con-

stant and f(ns) € O(1/n).
From Equation 1,

E{Tyn} = 2 ZZ !

ns p = — -
TR, (i)
Therefore,

ns_l
n Z 1
E{T ns} = =
-1 1 511

Then, by Equation 0.131 from Gradshteyn and Ryzhik [1994],
E{Ti} = [C+In( —1)+ f(ng)]. )

Note that this expression for E{Tlgf} is not equal to the expression ﬁ In(ns—1). That
is, the expected time for a worm epidemic to infect half of the susceptible hosts predicted by
the stochastic model with an initial infected population of 1 is not equal to the same value
predicted by the deterministic model in Section 2. More quantitatively, for the epidemic
parameters used to generate the simulations of the CodeRed1v2 worm in the plots shown
above, E{Tl% } differs from ﬁ In ”5—1‘1 by over half an hour. This is due to the fact that both
the deterministic and stochastic models are different abstractions of the same underlying
process where the deterministic model assumes a continuous state process, which is not a
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Fig. 5. Plot of the mean and variance of the inter-state jump intervals for a CodeRed1v2 worm.

completely accurate reflection of the underlying discrete behavior of a worm’s propagation.
However, as ns increases, Cﬁ < In(ns— 1)ﬁ and f(ns)ﬁ < In(ns— 1)&. Therefore,
as ng increases, E{Tyns } = 50-[C+In(ns—1) + f(ns)] approaches 5t-In(ns—1).

Figure 5 contains plots of E{T;; } versus ij and Var (Tj;) versus ij on semilog scales. Both
of the plots in Figure 5 are bowl-shaped with relatively flat bottoms with steep sides. Just
after initialization and I (t) is close to 0, there is potentially large variation in the evolution
of 1(t) as indicated in Figure 5 (hence the observed time-shifting in the multiple simulated
growth curves in Figure 5.) Conversely, once the epidemic has been established on a large
enough portion of the susceptible population and there is still a relatively large number
of susceptible hosts left to infect, the epidemic’s growth pattern is relatively stable and
the simulated epidemic growth curves in Figure 2 are nearly identical (except for time-
shifting).

For an RCS worm epidemic to be a threat to the Internet, ns, the size of the susceptible
population, should be relatively large (on the order of several thousand or more hosts). If
this holds then n2 will be very large compared to (ns— 1)? and hence min;; (Var (Ti;)) will
be much smaller than max;; (Var (Ti;)). This indicates that Vars,,; will be relatively small
when 0 <<ia and ip << ns compared to Varr,; when ia is close to 0 or iy is close to ns.
This explains why the propagation simulation curves in Figure 2 appear to be the same
curve shifted in time.

This analysis of Vary,, indicates that excluding the earliest and latest growth stages
of an epidemic and the “time-shifting” effects due to the probability distribution on Ti,,,
the simulations of a worm’s propagation using the deterministic and stochastic models
are effectively equivalent when ng is sufficiently large. Furthermore, if n is fairly small,
the probability of actually seeing any effects due to worm propagation during the earli-
est stages of an RCS worm epidemic is very small (when propagation variability is at its
greatest), even if VarTiaib is very large during these early stages. A relatively small value
for ny implies that a network administrator has implemented a network architecture where
the ratio of used network addresses to fallow addresses instrumented and available for
worm detection is very large, which is most often the case. The possible variability in the



stochastic propagation of RCS worm epidemics mentioned by Moore et al. [2003], Zou
et al. [2003] and Nicol [2006] is surprisingly minor under these conditions, and our as-
sumption of these conditions justifies our use of the simple epidemic model from Kermack
and McKendrick [1927] as a reasonable approximation of the density-dependent Markov
process model derived from first principles in the remainder of the paper.

4. OBSERVED EPIDEMIC AND RADIATION LOCAL SCANNING MODEL

Based on the analyses of the deterministic and stochastic models for a worm’s global prop-
agation above, we introduce a new hybrid model for the scanning behavior of a global
RCS worm epidemic observed on a local network. Let random variables T}, 1%, 1%, ... rep-
resent the times at which scans due to the worm are observed on the local network. For
computational simplicity this hybrid model uses the deterministic simple epidemic model
to describe the large-scale global propagation behavior, but a stochastic model to generate
17,19, 1%, ... based on the current state of the large-scale propagation.

Let n; be the number of unique addresses in the local network over which scanning
observations are made. Because it is assumed that the addresses selected for scanning
by infected hosts are assumed to be selected with a uniform distribution, every scanning
attempt by an infected host during the epidemic is a Bernoulli trial with probability n; /n of
successfully scanning a host in the set of n; local addresses. Let @1, ®5, @3, ... be random
variables which for i € {1,2,...}, ®@; represents the global number of scans which have
occurred due to the worm up until the time of the ith successful scan of the local network.
Because each scan is a Bernoulli trial with probability n; /n of success, ®1, ®y — 1, D3 —
®,, ... are independent and geometrically distributed random variables, all with mean n/n;.
Because n; is small compared to n, @1, ®, — @1, D3 — Py, ... can be approximated as being
exponentially distributed with mean n/n;.

We now show how @1, ®, — ®1, 3 — 5, ... can be used to find 1, %, 1%, .. .. the times
at which scans due to the worm are observed on the local network. Let d(t) be the random
variable which represents the total number of global infection attempts that have been made
due to the epidemic propagation behavior up to time t using the stochastic model, and let
@(t) be its deterministic approximation. Then,

do .
a Bi.
It is already known from the dynamics of the deterministic epidemic model that

di B
atnd )

where s= ng—i. Therefore, by basic mathematical manipulation,

n
——di=dao.
o=ty ¢

/i((P) n di /tpd
——Fal = )
o me—i) o Jo 9

With basic mathematical manipulation,

(@) =ne— 10, 4

Consequently,




By substituting Equation 4 into Equation 3,

at ﬁ( aoln )(” e‘P/n) ®)
Ng—Ii .
= ﬁ( Z(p/no) (“s—(ns—lo)ef(p/n)
and from equation 4,
;j_(lp = ns_gloép/r{ (6)
Therefore,
dt 1
do B [ns— (ns— iO)ef(p/n] .
Finally,
_nle Ns— (s —ig)e™ @™

If ¢ scans have occurred due to the worm globally, then t(@) represents the time at which
the @th scan occurred under the assumption of epidemic propagation dynamics modeled
by the simple epidemic model.

With Equation 7, one can also obtain @(t) which is the number of scans which have
occurred due solely to the propagation of the worm epidemic at time t:

io+ (ns—ip)e P!
Ns ’

@(t) = Bngt+nlin 8

With the above equations, one can approximate {1y, t5,1%,...} as {t(®1),t(P2),t(P3),...}
when one can accurately model the RCS worm epidemic propagation process using the de-
terministic model.

With a closed-form expression for t(¢), a model can now be defined to generate the times
17, 1%,1%, ... at which scans due to the worm are observed on the local network. Recall
that @, P, — P41, P3 — D5, ... are independently exponentially distributed and can there-
fore be generated using standard methods during simulation. Hence, values for ®1, ®, —
@y, P3— Dy, ... can be used to generate ®1, Do, P3, ... during simulation. Then, using the
t(¢g) function, Y =t(P1), 1Y =t(P2), 1§ =t(P3),.... An example of 17, 15, 1%, ... values
generated using a Matlab simulation of the CodeRed1v2 model with n; = 15 can be seen
in Figure 6.

We describe next how this hybrid model can be justified as an accurate representation
of the locally observed behavior due to a worm epidemic when the variability in the initial
propagation of a worm described in Section 3 can be ignored.

If it is assumed that ns >> ig, then

i((p)z%(l—ﬁ).

E{Py} =E{Px— D1+ Py1— Py o+ Pp—---— D1+ Py}

Also,
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Fig. 6. Plot of Infectious Packet Arrival Times for a CodeRed1v2 worm with ny = 15.

It is known that {(®Pyx — Py_1),(Px_1 — Px_2),- -+, (P2 — P1), P41} are all independent,
identically distributed with mean n;/n. Therefore,

E{®x} = E{Px—Px_1} +E{Py_1—Px 2} - E{P2— D1} + E{P1}}
= kn/n.

Consequently,

i(E{®}) = ns <1—em<E{ik}>/n>

1
ns 1——1 .
eknt

Recall that Tig(a,}) is the amount of time it would take a stochastic epidemic process to
transition to the next infection state from i(E{®y}), the size of the global infection when
the kth infectious packet is expected to be observed locally. Substituting i (E{®y}) into the
equation for Var (T;),

Var (Tyg (o) = (9)2 L
i(E{®y}) B t (eﬂ%(l_e*kint))z

Recall that Var (Tiga,)) represents the variance in the amount of time it takes the
stochastic epidemic propagation process to jump from state i(E{®y}) to i(E{®Py}) + 1.
Therefore, Var (Tig(a,})) gives an indication of the stability of the epidemic’s propagation
when the kth scan due to the worm is observed on the local network. If Var (Tig(a,})) i
relatively small, then the epidemic has been sufficiently established on the global network
such that the deterministic simple epidemic model will accurately represent its future large-
scale growth after the first scanning packet is observed on the local network. Recall that

max;, (Var (T;;)) = (%)Z(ﬁ) and min;; (Var (T;;)) = (%)2 (%) Therefore, if ng is



relatively large or ny is relatively small, as is generally assumed for realistic worms and net-
work conditions, then Var (Tiga,1)) is on the same order of magnitude as min;; (Var (Ti, )).
Hence, if ng is relatively large or ny is relatively small, then the first infectious packet is ex-
pected to be sent to an address on the local network when the underlying stochastic worm
epidemic process is in a relatively stable region of growth with little variance in the growth
dynamics. This also means that there is unlikely to be any observations of scanning behav-
ior on the local network when the deterministic model is not as good a representation of
the worm’s growth dynamics. Therefore, if the exact starting time of the worm propaga-
tion is not known, then the deterministic epidemic model is an effective representation of
the stochastic epidemic process under these conditions, and the hybrid observation model
would likewise be an effective representation of the local observation process ', 15,15, . ..
when n is small and ng is large. This therefore motivates both when and why the deter-
ministic model can be used as a simple, but accurate approximation of the underlying RCS
worm stochastic epidemic propagation process.

5. OBSERVED EPIDEMIC LOCAL SCANNING MODEL

As was discussed by Pang et al. [2004], not all of the scanning behavior observed on a set
of locally unassigned addresses in a local network is solely due to the active propagation of
a worm epidemic. Pang et al. [2004] show that the traffic on a local network is inherently
noisy with a substantial volume of “background radiation”: undesired scanning behavior
on a local network not due to the propagation of a worm. Therefore, if one is attempting to
detect the existence of an RCS worm epidemic by solely observing the scanning traffic on a
set of unused local addresses, the observation of scanning traffic on an unused IP address is
not an immediate indicator of the existence of an Internet worm. With the stochastic model
for the scanning behavior of an RCS worm epidemic process as observed on a relatively
small set of network addresses, we develop models for the scanning behavior observed
on an unused address space in a local network both under normal conditions (when the
observed scanning traffic is due solely to background radiation) and when an RCS worm
epidemic is propagating (when the observed scanning traffic is due to radiation and the
epidemic propagation).

Although we have discussed how to model observations during a worm epidemic due
solely to the epidemic’s propagation behavior, our previous model did not account for the
randomized, non-trivial background radiation. The interarrival times between background
radiation packets observations on a local network are modelled here as being independently
and exponentially distributed with parameter . The value of n has been found to be heav-
ily dependent on the day of the week and several other factors such as the type of packets
being observed (TCP versus UDP). However, for mathematical simplicity we assume that
the value of ) is constant with respect to the amount of time it takes an RCS worm to prop-
agate. By visual inspection of the data shown from Pang et al. [2004], approximately 5
TCP background radiation packets hit a given IP address per hour on the Internet on aver-
age, and about 0.2 radiation packets per IP address per hour are observed for UDP packets.
A simulation of the UDP packet background radiation scan arrival times {t%,15,13,...}
observed on a local address space with n; = 15 can be seen in Figure 7 when n = 0.2.

Now, with a mathematical model for {t},t,1%,...} foragiven wormand {t{,15,15,...}
for a given level of background radiation, a set

{11,72,13,...} = {17, 15,15, .. . ;U {1],15,15,...}
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can be defined where {@,T2,T3,...} are the ordered times of all scans of the local address
space such that T1; is the time of the arrival of the ith packet in unused address space of
the local network. A simulation of this set of composed scan arrival times {11,72,13,...}
observed on a local address space with n; = 15 can be seen in Figure 8.

6. HYPOTHESIS TESTING FOR WORM EPIDEMICS

In this section we present an optimal Sequential Probability Ratio Test (SPRT) for the
detection of a worm epidemic propagating over the Internet under idealized conditions. A
brief introduction to SPRT’s is given here, but a more extensive overview is provided in
Chapter 4 from Basseville and Nikiforov [1993].

In the framework of simple hypothesis testing it is assumed that there are two possible
hypotheses to describe a system, Hg and Hi. These hypotheses correspond to two (possi-
bly non-stationary) probability distributions (®g and ®, respectively) on observations Y" =



{01,02,03,...} that could be made of the system. Based on the set Y" = {01,07,03,...}
of observations of system behavior, it should be decided whether hypothesis Hg or Hy bet-
ter describes the system. In the context of the worm epidemic detection problem, given
a set of observations of local scanning times {11,T2,13,...}, the hypothesis testing prob-
lem is to decide whether those observed packet arrivals were caused in part by a worm
epidemic. Hypothesis Hyp is said to hold if solely background radiation scanning caused
the observations {11, T2, T3,...}, while hypothesis Hj is said to hold if the scanning behav-
ior due to a worm combined with background radiation scanning caused the observations
{11,T2,T3,...}.

Suppose a set of n observations Y" = {01,0,...,0,} Of a system with two possible
hypotheses Hg and Hj are given. Let g(Y") be a hypothesis decision function for the
observations Y" such that if g(Y") = 1, then hypothesis Hj is chosen to be the hypothesis
of the current state of the system. Conversely, if g(Y") = 0, then hypothesis Hg is chosen
to be the hypothesis of the current state of the system. (In general it is possible that g(Y")
may be undefined for some input in order to indicate that neither hypothesis is chosen and
more data may be necessary to select a hypothesis.) For an observation Y", define p(Y")
to be the probability density of Y™ when hypothesis Ho holds, and define p (Y") to be the
probability density of Y" when hypothesis H; holds. If

pl(Y”)>
=In ,
N ( Po(Y")

a decision function g(Y") can be defined such that

1 ifSs>h
gY"m =<0 ifS<-a. 9
undefined otherwise

Because S, is a logarithm of a probability ratio, this decision function g(-) is called a
probability ratio test where h and a are boundaries (thresholds) on the hypothesis decisions
such that —a < h. It may be possible based on an observation Y" to have a false alarm such
that g(Y™) = 0 when H holds or g(Y") = 1 when Hg holds. Note that if —a < S, < h, then
g(Y™) is undefined and neither hypothesis is chosen.

Sometimes it may not always be possible or desirable to have a fixed number of ob-
servations Yy in order to decide between Hg and Hi. For instance, for the RCS worm
detection problem, once a worm commences scanning addresses in a local network, the
worm epidemic should be detected as soon as possible without regard to the number of
observations made. To this end, sequential analysis has been developed as a theory for
solving hypothesis testing problems when the sample size of the observations is not fixed
a priori [Basseville and Nikiforov 1993]. That is, observations of the behavior of a system
might be made in an online manner and it should be decided which hypothesis of the sys-
tem state holds as soon as possible while maintaining a desirable performance level such
as a sufficiently small false alarm rate.

For the above probability ratio test g(-), let there be a set of observations Y = {04, 0y,...}.
Define the random variable T such that

T=min{n>1:g(Y") €{0,1}}.

The random variable T represents the minimum number of observations of system be-
havior necessary in order to choose a hypothesis using the decision function g. ForY =



{01, 02, ...}, define the Sequential Probability Ratio Test (SPRT) as follows:

o Lifg(YT) =1
g()_{Oifg(YT):O'

The sequential decision function g'(-) is sequential in that it selects a hypothesis using the
minimum number of observations YT to determine a hypothesis with respect to the decision
function g(-).

The random variable T is called the stopping time because it is the time such that when
T observations have been made, it is no longer necessary to collect more data to assign a
hypothesis after T. The Average Run Length (ARL) is the mean number of observations
Eg(T) necessary for testing the hypotheses to obtain a given error rate if hypothesis Hg
holds. The ARL is an important performance measure of sequential analysis methods.
Also related to the ARL is the notion of two different classes of false alarms. The variables
0p and a are defined to be the error rates for a sequential analysis methods where o is
the rate at which Hj is thought to be true when Hg holds, and a; is the rate at which Hy is
thought to be true when Hg holds. Generally, as the threshold levels —a and h are adjusted
for the probability ratio test, the ARL decreases as the false alarm rates increase.

The SPRT is known to be an optimal sequential decision method [Basseville and Niki-
forov 1993]. Suppose due to the thresholds —a, h used in g(-) to define d(-) the ARL is
Eg(T) and false alarm rates are ag and a1. Let there be another sequential decision func-
tion & (-) with ARL Ee('f') and false alarm rates Gg and &1 such that Gig < ag and &y < ay.

Then, Eo(T) > Ep(T) and Ex(T) > E1(T).

(10)

7. AN SPRT FOR RCS WORM EPIDEMICS

We show, in this section, how the SPRT in Equation 10 can be used for the detection of
RCS worm epidemics on the Internet. Our hypothesis testing method uses information
about the parameters of the background radiation along with the exact parameters of the
worm epidemic if Hy were to hold (namely (3, ip and ns.) The worm epidemic propagation
parameters will not be available in practice, but this information is used in the following
section to demonstrate some fundamental performance limitations of optimal sequential
analysis methods for the detection RCS worms.

Consider the observed scanning interarrival time data seen in Figure 9. The top set of
data is a graph of simulated TCP interarrival times due to both background radiation and
the propagation of an RCS worm with parameters the same as the simulated CodeRed1v2
worm in Section 2. The TCP background radiation simulation uses the parameters from
[Pang et al. 2004]. The CodeRed1v2 propagation begins propagation att = 0. For the first
several hours, there is little or no observed scanning due to the worm. However, during
the last several hours, the worm is fully propagated and scanning the local host at its peak
rate. As can be seen from the simulation, it may not be immediately obvious that a worm
is propagating by simply “looking” at scanning data.

Suppose a set of scanning packet arrival times {11,T2,...,Tn} are observed on the local
network. Let ¢(t) be the function that maps a packet scanning time to its scanning index. If
there is no worm on the Internet, let ¢°(t) = nt be the function which maps a packet arrival
time to its scanning index, but if there is a worm on the Internet, with Equation 8 above,

—PBnst
¢(t) =

ip+ (Ns—ip)€™n

Ns

Bnst +nlin +nt
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= (Bnst+n)t+nin

. . —Bnst
lo+ (ns— Io)e n
Ns

is the function which maps a packet arrival time to its scanning index. Hence, for a given set
of local scanning time observations {t1,T2,...,Tn}, two sets of packet indices can be com-
puted for the two worm existence hypotheses Ho and Hi. Define {{,@,..., ¢} to be the
packet indices under the assumption of hypothesis Ho using ¢(-) and let {@}, @, ..., @t}
be the packet indices under the assumption of hypothesis H; using @*(-). Both {(p?,qg -
@, - }and {oh, @ — k..., — @ ;} should both be independent and expo-
nentially distributed with parameter n;/n.

Given an exponential distribution with parameter y, define pd f (k,y) to be the probability
density function of this exponential distribution at k. Therefore, given {11, T2,...,Tn} and
due to properties of the natural logarithm, if Sy = 0:

pdf (¢ — @51, 1/N)
pdf (@R~ 1.m/n)
This method of computing S, is known as the Cumulative Sum (CUSUM) method and

gives an efficient online method to compute d(Y") in the worm detection scenario. The
CUSUM method for computing S, is very efficient in practice if the expression

pdf (@' (th) — @*(Tn_1),ne/n)
pdf (¢P(tn) — P (tn-1),nt/n)’

S=S-1+In =S-1+In

pdf (¢"(tn) — ¢"(tn-1),M/n)
pdf(¢P(th) — P (Tn-1),1/n)

is generally easily computed. This is because as observations are made in the environment,
only a running sum S, needs to be retained in memory to make continual optimal hypoth-
esis tests instead of full information about past observations. The bottom graph in Figure
9 shows how the CUSUM for S, changes with time as scanning data is observed for the
previously discussed CodeRed1v2 simulation with background radiation.

In
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8. LIMITATIONS TO DETECTION

Now that the SPRT method for sequential hypothesis testing has been introduced, we dis-
cuss next how this optimal detection method can be used to demonstrate fundamental lim-
itations to the detection of RCS worm epidemics even under idealized conditions.

Let us consider a class of SPRT tests for the detection of RCS worms where it is impor-
tant to decide if a worm epidemic exists very quickly, but it is not important to decide if
a worm does not exist with great urgency. For the SPRT test in this situation, h should be
chosen so that the ARL is relatively small but not so small that the false positive rate o,
is too high. Similarly, let us assume a lower —a threshold that is very small so that when
the SPRT test runs, o, the false negative rate, is very small and it is decided that no worm
exists very slowly when Hg holds.

As might be intuitive, there are strong connections between the ARL, the false alarm
rates of the SPRT and the threshold levels —a and h. For instance, the ARL monotonically
increases with respect to h. This can be seen in first plot of Figure 10 which shows the
number of susceptible hosts which are infected when a worm epidemic is detected versus
the threshold level h from Matlab simulations for a worm with the CodeRed1v2 simula-
tion parameters discussed above. Similarly, the bottom plot of Figure 10 shows how the
false positive rate a1 depends on the threshold level h for a worm with the CodeRed1v2
parameters discussed above.

Consider the problem of selecting a threshold level h so that a desired ARL is achieved
when a worm epidemic is propagating over the Internet. As indicated above, o, is mono-
tonically decreasing with respect to h. Therefore, by choosing a desired ARL, this implies
there is a fundamental limitation on the false alarm rate oy that can be achieved for the
given ARL. With the data in Figure 10, it is plotted in Figure 11 how the SPRT false alarm
rate o1 depends on the desired ARL when Hq holds. Figure 11 indicates that even with
full knowledge of the worm and noise parameters, if an RCS worm epidemic should be
detected during the early stages of propagation (before 10% of hosts infected), most likely
a reasonable false alarm rate (much less than 10%) cannot be achieved for a worm similar
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to CodeRed1v2, especially when there is no knowledge of the worm parameters. Although
hypothesis testing methods have been successful in testing for the existence of infected
hosts in a local network [Jung et al. 2004; Weaver et al. 2004], Figure 11 indicates that
even optimal hypothesis testing methods under ideal conditions cannot be used to detect
worm epidemics by solely observing changes in local port-scanning behavior.

However, as seen in Figure 12, the trade-off between expected detection time and false
alarm rate is much more promising for an RCS worm with parameters similar to the Slam-
mer worm. From Figure 12 it can be seen that under the ideal conditions of full knowledge
of the worm’s parameters, a very small false alarm rate a1 can be obtained as long as the
percentage of hosts infected at detection is at least 14%.

This result at first seems counter intuitive - that a fast worm like Slammer is easier to



detect during its early stages of propagation than a slower worm such as CodeRed1v2.
However, when one considers that it is generally easier to detect a faster change in mean
packet interarrival time due to a more aggressive worm, this should help to explain why
Slammer worms can be detected with better false alarm rates than CodeRed1v2 worms.

9. DISCUSSION

This paper has discussed a number of issues associated with the idealized stochastic prop-
erties of RCS worm epidemics. It has introduced density-dependent Markov jump process
model for the large-scale propagation behavior of these worms — an approach to worm
modeling that has not previously been discussed in the literature. The paper has identified
several commonly satisfied conditions under which the variability in the stochastic prop-
agation of RCS worm epidemics predicted by Moore et al. [2003] and Zou et al. [2003]
can be ignored. A hybrid deterministic/stochastic model for the observations of a worm’s
scanning behavior on a local network has also been presented and discussed.

Furthermore, the hybrid deterministic/stochastic worm model has been used to discuss
anomaly-based RCS worm detection in the context of detection and estimation theory. An
optimal SPRT worm detection method has been proposed under the idealized condition of
knowledge of a worm’s parameters. Also, fundamental limitations to the detection of RCS
worms have been discussed based on simulations of RCS worms with the SPRT detection
method. It has been shown that in some sense aggressive RCS worms like Slammer are
generally easier to detect than slower RCS worms such as CodeRed1v2.

This paper assumed situations of simple single-vector RCS worms that propagate over
hosts with homogeneous connectivity properties. To continue research in this field, meth-
ods should be developed to simulate more advanced worms that propagate over non-
homogeneous networks. The results in this paper also show that in order to develop effec-
tive worm defense strategies, worm detection methods can not rely solely on the detection
of port scanning on unused Internet addresses. As part of the ongoing research in worm
defense, as new worm detection strategies are developed, there should be a continuing ef-
fort to showing the potential weaknesses of these methods, if any exist, in a mathematically
rigorous fashion.
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