

Metrics of Interest

- Want to reduce development time of large cyber-physical systems
 - Move experimental analysis into design phase.
 - Metrics-based approach
- Contention Complexity
 - Specific to scenarios where processes/tasks/entities share resources.
- Process Complexity
 - Works at two levels specific to (re)design processes and processes performed by designs.
- Others
 - Ask me offline!

Demonstration Examples

- It is necessary to use demonstration examples that:
 - Are available in the early phase of this research
 - Provide inputs and outputs needed to compute a given metric
 - Are as realistic and relevant to problem domain as possible given the first two constraints
- Because of the broad span of our metrics, we have adopted a tiered approach to demonstrating and testing metrics
 - Theoretical justification
 - Demonstration using simplistic mathematical models
 - Conceptual testing on small models created for this purpose (qualitative models of hybrid power trains)
 - Computational testing on suitable real models
- All of this work is ongoing

Contention Complexity

Underlying Theory

- Contention Complexity represents propensity for resource contention
- Applicable to design, manufacturing, and usage processes
 - Operational consumers use resources
 - Contention when resources insufficient for consumers' needs

Approach

- Contention Complexity (overall) is sum of Resource Contention
 Complexities for all resources
- Resource Contention Complexity is proportional to
 - Number of consumers that could request that resource
 - Expected amplitude and length of consumer resource use
 - Variance in amplitude and length of consumer resource use
 - Criticality of the consumer resource use

Contention Complexity

Contention Complexity is a function of

%level(c,r) magnitude of consumer (c) use of resource (r). criticality(c,r) criticality of consumer's use of resource. (1 is very critical, 10 is not critical at all.)

E[] is expected value and **var()** is variance. (Evaluated numerically if needed.)

Contention Complexity of a resource:

$$ContentionComplexity(r) = \sum_{c \in DependsOn(r)} \frac{E[\%level(c,r)]var(\%level(c,r))}{criticality(c,r)}$$

Contention complexity represents a "propensity" for contention of resources.

Resources

Operator Input
High likelihood of contention

Energy
Low likelihood of contention

Consumers

Vehicle Driving
Criticality = 2
Operator Input = avg. 80%, Var = 0.5
Energy usage = avg. 50%, Var = 0

Maintain Life Support Cooling
Criticality = 1
Operator Input = avg. 5%, Var = 0.1
Energy usage = avg. 20%, Var = 0.2

• ContentionComplexity(OperatorInput) = 0.8*0.5/2+0.05*0.1/1

$$= 0.2 + 0.005$$

 $= 0.025$

ContentionComplexity(Energy) = 0.5*0/2 + 0.2*0.2/1

• ContentionComplexity = 0.025 + 0.04 = 0.065 (approx)

Contention Complexity Application

- Contention complexity characterizes contention propensity based on expected values and variance measures
 - These lower-order moments are easily computable and easily modeled based on observed and estimated behavior
 - Contention complexity is generally expected to correlate with system cost and schedule drivers
- When relating the task and process complexity to schedule, interesting cases occur when distribution is not well behaved
 - "Fat tailed" distributions have outliers with high probabilities
 - May correspond to undesirable system development scheduling
 - Need numeric, experimental approaches without relying on probability distribution models.

Analysis – Contention Complexity

Analysis Question:

What battery configuration minimizes maintenance resource contention complexity on hybrid-electric HMMWV?

HYBRID ELECTRIC HMMWV

We want to select a battery and control parameters to minimize contention complexity of maintenance resources.

Resources:

- Labor
- Replacement Cost Later complications:
- Kinetic Failures
- Heating/Cooling

Battery Selection

- Battery Types: Lead Acid, NiCad, Li-Ion
 - Variations in:
 - Replacement cost (Lead Acid is cheap!)
 - Power density (Li-Ion is powerful.)
 - Robustness (Lead Acid can take more abuse and can sometimes be serviced in the field.)

- Depth-of-Discharge (DoD) parameter selection
 - DoD represents how "deep" battery is discharged.
 - Large DoD mean you get more power on every charge.
 - Deep DoD changes battery chemistry and reduces number of charging cycles a battery can support.

Experimental Setup

Raytheon BBN Technologies

Contention Complexity

Complexity Simulation Model:

Monte Carlo simulation of hybrid HMMWV moving at 20mph over US terrain model.

Representative control model of battery charging/discharging while moving.

Assuming regenerative braking.

Model Output:

Over multiple runs, model estimates number of hours until battery failure and maintenance cost for various battery types and depths-of-discharge. We compute maintenance resource contention compexity from assessments

of expectations and variances over simulation runs.

Analysis Output

Li-Ion battery with 30%-50% DoD minimizes maintenance resource contention complexity.

This aligns well with "real-world" results from carmakers.

Process Complexity

- An additional metric we are analyzing
- Underlying Theory
 - Process complexity represents the propensity of (partial) task failures to occur that negatively impact mission success
 - Applicable to design, manufacturing, and operation
- Approach
 - Processes have tasks that depend on one another
 - Process complexity is directly proportional to
 - Task complexity
 - Task dependency relationships
 - Task complexity is a function of
 - Difficulty of task
 - Maturity of task
 - Quality requirement of task
 - Schedule pressure of task

Process Complexity

- Process complexity is directly proportional to
 - Complexity of the processes' tasks
 - Structure of task dependency relationships
 Design Process Task Dependency Diagram

Process complexity is weighted sum of task complexity.

Task complexities weighted by number of their dependence paths.

$$PC = \sum_{j} w_{j} TC_{j}$$

Process Complexity

Design Process Task Dependency Diagram

- PC=TC(1)+2TC(2)+TC(3)+TC(4)+TC(5)+TC(6)
 - Two dependency paths from chassis design to assembly planning
 - One path for all other tasks
- Example Task Complexities
 - TC(1)=2.0, TC(2)=3.2, TC(3)=1.0, TC(4)=4.3, TC(1)=2.2, TC(2)=1.5
- Computed Process Complexity
 - PC = 17.4

Process Complexity

- Task Complexity is a function of
 - D(t): difficulty of task t Measured by number FTEs, for example.
 - M(t): maturity of task t Measured by number of years, for example.
 - Q(t): quality requirement of task t Measured on scale of 1-100%.
 - User-defined parameter. Could represent importance of high quality or how much functionality is provided if task fails.
 - S(t): schedule pressure of task t Measured by schedule slack in days, for example. (This could also be a stochastic measure.)
- Task complexity

$$TC = \frac{D(t)}{M(t) * Q(t) * S(t)}$$

Metrics Review

- Want to reduce development time of large cyberphysical systems
 - Move experimental analysis into design phase.
 - Metrics-based approach
- Contention Complexity
 - Specific to scenarios where processes/tasks/entities share resources.
- Process Complexity
 - Works at two levels specific to (re)design processes and processes performed by designs.
- Others
 - Ask me offline!

Thanks! Questions?

Kurt Rohloff krohloff@bbn.com @avometric