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ABSTRACT 
Graph data processing is an emerging application area for cloud 
computing because there are few other information infrastructures 
that cost-effectively permit scalable graph data processing.  We 
present a scalable cloud-based approach to process queries on 
graph data utilizing the MapReduce model.  We call this approach 
the Clause-Iteration approach.  We present algorithms that, when 
used in conjunction with a MapReduce framework, respond to 
SPARQL queries over RDF data.  Our innovation in the Clause-
Iteration approach comes from 1) the iterative construction of 
query responses by incrementally growing the number of query 
clauses considered in a response, and 2) our use of flagged keys to 
join the results of these incremental responses.  The Clause-
Iteration algorithms form the basis of our scalable, SHARD 
graph-store built on the Hadoop implementation of MapReduce. 
SHARD performs favorably when compared to existing 
“industrial” graph-stores on a standard benchmark graph with 800 
million edges.  We discuss design considerations and alternatives 
associated with constructing scalable graph processing 
technologies. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – methodologies. 

General Terms 
Design, Algorithms, Software Engineering, Performance, Design, 
Experimentation. 

Keywords 
Distributed Computing, Graph Data, MapReduce, Algorithms, 
Systems, Semantic Web, SPARQL, Performance Evaluation. 

1. INTRODUCTION 
Intensive computing over graph data has become increasingly 
important in diverse application domains from social networking 
and genomics to crime fighting and Semantic Web technologies. 
Unfortunately, advances in scalable information management 
technologies for intensive computing (cloud-based or otherwise) 
have not kept pace to support the processing of these increasingly 
large graph data applications.  Highly scalable cloud-based 
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approaches to traditional information storage, management and 
processing technologies, such as databases can only be partially 
leveraged for scalable graph data processing in the clouds.  For 
example, current state-of-the-art industrial Semantic Web data 
processing technologies, which rely on graph data information 
systems, are designed for deployment on a single (or a small 
number of) machine(s) [34].  This is fine when data is small, but 
current methodologies to design high-performance information 
systems with embedded graph processing capabilities are limited 
by data processing and analysis bottlenecks that consistently 
emerge with graphs on the order of a billion edges [17][34].  Even 
if an information system could manage data graphs with a billion 
edges, it would still be insufficient to address the ongoing 
explosion of graph data available in semantic formats [10] that 
can be used in a myriad of application areas.  These scalability 
constraints are the greatest barriers to achieve the fundamental 
web-scale Semantic Web vision [2] and have hindered the broader 
adoption of Semantic Web technologies.   

There have of course been several notable monolithic design 
approaches for query processing with similar if not the same 
functional design goals [34].  Several of these graph-stores have 
achieved very good performance on single compute-node systems 
by using designs based around memory mapping index 
information [19].  However, disk and memory limitations have 
limited scalability and driven the need for distributed computing 
approaches. 

We introduce a scalable cloud-based approach to process queries 
on graph data based on iterating over clauses in graph queries to 
construct query responses using the MapReduce paradigm [5].  
We call this approach the Clause-Iteration approach.  We provide 
algorithms to use the Clause-Iteration approach to process 
SPARQL [38] queries over RDF data [33].  (SPARQL is a 
standard Semantic Web [10] graph data query language and RDF 
is a standard Semantic Web data format for representing data 
graphs.) Our innovation in the Clause-Iteration approach comes 
from parallelization techniques for the iterative construction of 
query responses by incrementally growing the number of query 
clauses considered in an incremental response, overlaid with our 
use of flagged keys to join the results of these incremental 
responses.   

We implement the Clause-Iteration algorithms for SPARQL 
queries over RDF data in the SHARD (Scalable, High-
Performance, Robust and Distributed) graph-store [37].  SHARD 
is built on top of Hadoop [9], a popular MapReduce 
implementation.  We present initial experimental results 
evaluating the Clause-Iteration approach from an early version of 
SHARD that we deployed into an Amazon EC2 cloud [1].  We 
perform our evaluation with the standard LUBM benchmark for 
graph stores [7] with an 800-million edge graph data set.  We find 
that SHARD, using the Clause-Iteration approach, performs better 
than non-parallel graph-stores currently used in industry [34]. 



The remainder of this paper is organized as follows.  In Section 2 
we provide a brief overview of relevant graph data query system 
design goals with respect to SPARQL-like query languages and 
data represented in formats similar to RDF.  In Section 3 we 
present our Clause-Iteration approach that responds to SPARQL 
queries over RDF data. In Section 4 we describe our experimental 
results from the use of the Clause-Iteration approach in our 
SHARD graph-store to process SPARQL queries in an Amazon 
EC2 cloud.  In Section 5 we review current approaches and 
related work for large-scale cloud-based graph data processing 
that can be run on parallelized commodity computing 
environments that address similar challenges as the Clause-
Iteration approach and SHARD.  In Section 6 we discuss design 
insight we gained from experimentation and ongoing and 
alternative designs for high-performance, massively scalable 
information systems.  We discuss additional future work in 
Section 7. 

2. GRAPH QUERY DESIGN GOALS 
Our primary design goal is to enable rapid SPARQL-like querying 
over RDF-like graph data on very large data graphs using 
inexpensive hardware and parallel computation.  We focus on 
algorithms which perform better when responding to queries that 
are more complicated than simple edge-lookups where a 
substantial subset of the stored graph data may be returned by the 
query. 

 
Figure 1: A Small Graph of Graph Data. 

To align with general Semantic Web data standards, we consider 
graphs represented as subject-predicate-object edges [2][8], 
although the algorithms discussed here can be generalized to other 
situations.  A small version of the kind of graph we consider can 
be seen in Figure 1 which we will use as part of a running 
example.  This graph dataset contains 7 edges to represent that 
Kurt lives in Cambridge, Kurt owns an object car0, car0 is a car, 
car0 was made by Ford, car0 was made in Detroit, Detroit is a city 
and Cambridge is a city. 

We take an approach to processing graph data based upon the 
popular MapReduce cloud computing paradigm [5] which enables 
robust parallel processing over large datasets on low-cost 
commodity hardware.  In particular, we used the Hadoop [9] 
implementation of MapReduce.  Graph data could be represented 
in several formats to be passed as input to the algorithms which 
run the SPARQL query processing, including general RDF.  In 
order to best leverage popular MapReduce implementations like 
Hadoop to construct practical graph query systems, we assume 
data is stored directly on compute nodes in native file systems like 
the HDFS distributed file system.  We assume that each line in the 
data file represents all edges from a single node.  For example the 
input line, 

Kurt owns car0 livesIn Cambridge 

represents all edges with Kurt as the subject: the entity Kurt 
owns an entity car0, Kurt lives in Cambridge.  Lists of such 
lines represent all of the graph data the algorithm runs over. 

Although our approach to representing edge data as flat text files 
is rudimentary as compared to other information management 
approaches, we found that it offers a number of important benefits 
for several general application domains in practice.  For one, this 
approach, particularly when used with the HDFS implementation, 
brings a level of automated robustness by replicating data and 
MapReduce operations across multiple nodes.  The data is also 
stored in a simple, easy to read format that lends itself to easier, 
user-focused drill-down diagnostics of query results returned by 
the graph-store.  Most importantly, however, is that although this 
approach to storing edges is inefficient for query processing that 
requires the inspection of only a small number of edges, this 
approach is efficient in the context of the use of our query 
algorithm when used with Hadoop to scan over large sets of edges 
to respond to queries that will generate a large number of results.  
Hadoop natively scans over input data during the Map stage of its 
MapReduce operations. 

The SPARQL-like queries we consider have semantics 
remarkably similar to also well-known SQL semantics.  In 
particular, we focus on queries with multiple clauses, multiple 
variables and literals which are represented in the query clauses, 
and an identification of a subset of those variables which should 
be returned in response to the query. A SPARQL-like query for 
the above graph data that we use as a running example is the 
following: 

SELECT ?person 
WHERE  {  
   ?person :owns ?car . 
   ?car :a :car . 
   ?car :madeIn :Detroit . 
  } 

The above query has three clauses and asks for all matches to the 
variable ?person such that 1) ?person owns an entity 
represented by the variable ?car, 2)  ?car is a car and 3) 
?car was made in Detroit.  Note that the above query can be 
represented as a directed graph as seen in Figure 2. 

 

Figure 2: A Directed Graph Representation of a Query. 

Processing of queries in the context of a data graph consists of 
identifying which variables in the query clauses can be mapped to 
subsets of nodes in the data graph such that the query clauses 
align with data edges.  This alignment process for query 
processing is fairly general across many data representations and 
query languages.  An example of this alignment for our example 
query and data can be seen in Figure 3 where when ?person is 
aligned with Kurt and ?car is aligned with car0, the query 
clauses match corresponding edges in the data graph.  In this 
instance, the query clauses align with the edges that indicate Kurt 
owns an object car0, car0 is a car and car0 was made in Detroit. 



 

Figure 3: An Alignment of SPARQL Query Variables with Graph 
Data. 

3. CLASUE-ITERATION DESIGN 
3.1 Approach Overview 
The basis of the Clause-Iteration approach is to iterate over 
clauses in queries to incrementally attempt to bind query variables 
to data nodes in the graph data while satisfying all of the query 
constraints.   The goal of this approach is to utilize MapReduce-
style operations for high parallelization on low-cost commodity 
hardware. 

An Iteration algorithm coordinates the high-level operation of 
iterated MapReduce jobs with one iteration for each clause in the 
query. A schematic overview of the Iteration Algorithm for 
iterative data selection and query binding can be seen in Figure 4.  
We describe this algorithm in more detail below in the subsection 
immediately following, but we first give an overview of the 
algorithms used for the MapReduce operations called by the 
Iteration Algorithm.  

MapReduce operations iteratively select data matching a single 
query clause and joins that selected data to data subgraphs that 
align with previously query clauses based on common variable 
bindings. 

The initial map step identifies all feasible bindings of graph data 
to variables in the first query clause.  The output key of the initial 
map step is the list of variable bindings and the output values are 

set to null.  The initial reduce step removes duplicate bindings 
without further modifying the output of the initial map step. 

The intermediate MapReduce jobs continue to construct query 
responses by iteratively binding graph data to variables in later 
clauses as new variables are introduced and then joining these 
new bindings to the previous bound variables such that the joined 
bound variables align with iteratively increasing subsets of the 
query clauses.  The intermediate steps perform MapReduce 
operations simultaneously over both the graph data and the 
previously bound variables which were saved to disk to perform 
this operation. 

A final MapReduce step consists of filtering bound variable 
assignments to obtain just the variable bindings requested in the 
SELECT clause of the original SPARQL query.  In particular, the 
Map step filters each of the bindings, and the Reduce step 
removes duplicates where the key value for both Map and Reduce 
are the bound variables in the SELECT clause. 

3.2 Iteration Algorithm 
A pseudo-code version of the MapReduce Iteration algorithm 
used for the Clause-Iteration approach to process queries on graph 
data is seen in Figure 5.  This algorithm takes graph data and a 
query as input and uses three different types of MapReduce jobs 
(firstClauseMapReduce, intermediateClauseMapReduce 
and selectMapReduce) to identify subgraphs that match the 

query which are returned by the algorithm.   

The Iteration algorithm uses the firstClauseMapReduce 
MapReduce job is to identify which edges in the data graph match 
the first query clause.  Hence the firstClauseMapReduce 
MapReduce job is passed the edge data (mrInput) and the first 
query clause (query.clause(0)) as input.  The output of the job 
(mrOutput) is the set of all possible assignments to the variables 
in the first clause that are supported in the data graph.  
boundVars tracks which query variables have been bound by 
identifying edges which match the first clause. 

For our running example query we introduced above, the 
SPARQL engine will iterate over the three clauses in the query.  
The variables ?person and ?car are bound and set to 
boundVars during the processing of the first clause (?person 
:owns ?car).   

Edge data can be stored in a framework appropriate for the 
implementation context.  For example, when the Clause-Iteration 
approach is used in context with Hadoop, the data can be stored in 
HDFS and filepaths can be passed as parameters to the algorithm 
implementations. 

SPARQLEngine(TripleData triples, Query query): 
mrInput = triples 
run firstClauseMapReduce(mrInput, mrOutput, 

query.clause(0)) 
boundVars = query.clause(0).getVars() 
for i= 1 to query.numClauses-1 
 mrInput = union(triples, mrOutput) 
 curVars = query.clause(i).getVars() 
 comVars = intersection(boundVars,curVars) 

run intermediateClauseMapReduce(mrInput, 
mrOutput, query.clause(i), comVars) 

mrInput = mrOutput 
run selectMapReduce(mrInput, mrOutout, 

query.select()) 
return mrOutput 
 

Figure 5. Iteration Algorithm to Iteratively Call MapReduce 
Jobs to Respond to Queries 

 
Figure 4: A Schematic Overview of the Iteration Algorithm in 

the Clause-Iteration Approach. 



Note that we also assume that some small parameters (like 
individual query clauses) can be passed directly to the 
MapReduce jobs used in the Clause-Iteration approach.  This 
assumption is valid for common MapReduce implementations like 
Hadoop where XML data can be used to pass parameters to the 
MapReduce jobs [41]. 

The Iteration algorithm uses the 
intermediateClauseMapReduce MapReduce job to identify 
which edges in the data graph match the successive query clauses 
and to join these edges with subgraphs that match previous 
clauses.  Hence the intermediateClauseMapReduce 
MapReduce job is passed a union of the edge data and previous 
variable assignments identified by previous MapReduce jobs 
(mrOutput) that correspond to subgraph query matchings with 
the data.  intermediateClauseMapReduce is also passed as 
input to the iterated query clauses (query.clause(1)) and 
comVars, a list of variable bindings that are common to the 
current clauses and the current one.  The output of the job 
(mrOutput) is the set of all possible assignments to the variables 
in the first through ith clause that are supported in the data graph.  
boundVars tracks which query variables have been bound by 
identifying edges which match the first clause in order to 
determine comVars. 

During the first iteration for the running example which processes 
the clause (?car :a :car) the ?car query variable is used to set 
curVars.  Consequently comVars is also set to ?car as this 
variable is in the current clause which is already bound.  

After the final iteration, mrOutput is set to mrOutput and 
identifies lists of variable assignments which satisfy all the query 
clauses and are supported by the data graph.  This data is used as 
input to selectMapReduce along with an identification of the 
variables selected for return by the query.  This final MapReduce 
job filters these complete variable bindings to list only sets of 
variable bindings which are returned by the Iteration Algorithm.  
In our running example the query processing filters for the query 
variable ?person. 

We assume without loss of generality that the list of common 
variables on every iteration is non-empty.  If we cannot rearrange 
the order of the query clauses such that the common variable list 
is always non-empty, then query can be split into independent 
sub-queries that can be processed independently for performance 
reasons. 

We also note that implementations of the algorithm could be 
greatly impacted by the ordering of the clauses.  If larger 
intermediate results are returned by the intermediate MapReduce 
jobs, then the response of the algorithm will be slower.  This topic 
of performance tuning via query reordering is an area of ongoing 
research that we discuss below in Section 7. 

3.3 Binding Graph Data to Clauses 
Before providing algorithms for the various MapReduce jobs used 
in the Clause-Iteration approach, we first describe how graph data 
is bound to variables.  This algorithm, called the Variable Binding 
Algorithm, is shown in pseudo-code in Figure 6. 

In practice we used a special prefix character (like the SPARQL 
variable prefix ‘?’) to distinguish variable assignments from graph 
data when deciding which map operation to run.  We attach this 
prefix to all variable bindings when listing variable bindings.  For 
example, the bindings in Figure 3 for the clause ?person :owns 
?car would be represented as the following line: 

?person Kurt ?car car0 

This example line describes variable bindings simply as a list of 
pairs of variable names (such as ?person) and literals bound to 
that variable (such as Kurt.)  If the Map step sees a ? as the first 
character in the input text, then the second map operation is run 
and the first map operation otherwise. 

The algorithm is given a list of edges in the format of a subject 
followed by a list of pairs of predicates and objects, as described 
above, and a query clause.  The algorithm accumulates variable 
bindings in bindingSetList.  

The clause can have one or two variables to bind in the subject, 
object, or both.  If the subject of the query clause is a variable, 
then all subjects of the data edges can be bound to that variable 
and this possible binding is saved in subjBinding.  If the query 
clause subject is not a variable and the query subject literal is not 
equal to the data subject, then the algorithm returns an empty list 
because no bindings are feasible. 

If the clause subject is a variable or the clause subject matches the 
data subject, the algorithm iterates through the predicate-object 
pairs in the data to find any possible bindings that match.  If the 
query and data predicates do not match, then the next pair is 
tested.  If the predicates match and the query object is a literal that 
does not match, then the next pair is tested. If the predicates match 
and the query object is a literal that matches, then the subject 
binding is set to the return list and the algorithm terminates.  If the 
predicates match and the query object is a variable, then the object 
binding is created and added to the return list with the subject 
binding.  After iteration, the binding list is returned by the 
algorithm. 

 

 

 

 

variableBinding(linesOfTriples triples, Clause 
c): 

bindingSetList = new List of Sets of Bindings 
subjBinding = null 
subject = triples.next 
if c.subject is variable 
subjBinding = new Binding(c.subject,subject) 
else 

if subject != c.subject 
return null 

while triples.hasNext 
objBinding = null 
bindingSet = new bindingSet(subjBinding) 
predicate = triples.next 
object = triples.next 
if predicate = C0.predicate 

if c.object is variable 
objBinding = new 

Binding(c.object,object) 
bindingSet.add(objBinding) 
bindingSetList.add(bindingSet) 

else 
if object = c.object 

bindingSetList.add(bindingSet) 
return 

return bindingSetList 
 
Figure 6. Algorithm to Identify Feasible Bindings from Variables 

in Query Clauses to Nodes in Individual Triple Data 



3.4 Initial MapReduce Operations 
Pseudo-code versions of the InitialMap and InitialReduce 
algorithms used respectively for the map and reduce steps in the 
InitialMapReduce jobs in the Clause-Iteration approach can be 
seen in Figure 7. 

Note we treat the primary inputs and outputs for the Map and 
Reduce steps as being key-value pairs, as used in the Hadoop 
MapReduce implementation, as for all Map and Reduce steps of 
MapReduce jobs discussed herein.  If, for example, several lines 
of text are passed to a Map algorithm as input, each line is treated 
as a key with a null value.  In this manner, the initialMap 
algorithm takes several lines of text listing edge data, identifies 
what variable bindings align with the input clause, and then 
outputs  those bindings as keys with null values assigned. 

The reduce step takes those possible bindings and removes any 
duplicates. 

For our running example, the query clause and graph data are 
mapped to the triple Kurt owns car0.  This triple is passed 
through and output by the reduce step. 

3.5 Intermediate MapReduce Operations 
Pseudo-code versions of the IntermediateMap and 
IntermediateReduce algorithms used respectively for the map and 
reduce steps in the IntermediateMapReduce jobs in the Clause-
Iteration approach can be seen in Figure 8. 

The ith intermediate Map is actually one of two possible map 
operations selected by the “if inputLine is tripleData” 
line.  This test is performed by seeing if an input line has a special 
leading character that we describe next.   

The first of these operations, which runs when the if statement is 
satisfied, operates over input edge data to identify all alignments 
of variables in the ith query clause to nodes in the graph data.  The 
output key of this map for edge data is a list of variable bindings 
which were encountered in previous clauses and the output values 
are the set variable bindings which have not been encountered in 
previous clauses.  We loop over bindings because each line of 
triples may have multiple edges that map to the clause being 
processed.   

The second map operation that results from the “else” condition 
takes lists of previous bindings as input, and rearranges the 
bindings such that the output key of the second map is a list of 
variable bindings which were encountered in the current clause. 
The output values are set to variable bindings which are not 
encountered in the current clause.  Note that for both cases the 
output keys are always the list of variable bindings which are 
common to the current clause and previous clauses and the values 

are variable bindings which are not common to enable a join in 
the reduce step.  

For our running example the first call of the initial Map processes 
the clause (?car :a :car) the ?car query variable is used to set 
curVars.  Consequently comVars is also set to ?car as this 
variable is in the current clause which is already bound.  The map 
step processes all of the graph triples to output (car0 :a :car) 
as the sole binding match. The “if” conditional map operation 
outputs (<(?car car0), null>) because only the ?car query 
variable is bound and no new variables are bound.  The “else” 
conditional map operation outputs (<(?car car0), 
(?person, Kurt)>) because only the ?car query variable is 
bound and person was previously bound to Kurt. 

The ith Reduce step effectively runs a join operation over the 
intermediate results from the ith Map step by iterating over all 
pairs of output results with the same common variable binding 
key.  If there is a list of common variable bindings that correspond 
to both the previous clauses and the new clause as determined by 
the output key of the ith Map step, then the Reduce step combines 
all variable bindings and outputs a key with the combined list of 
variable bindings and a value set to null. 

For our running example the join operation of the <(?car 
car0), null> and <(?car car0), (?person, Kurt)> 
input to the reduce step results in the combined <(?car car0 
?person, Kurt), null>) variable binding output. 

This iteration of MapReduce-join continues until all clauses are 
processed and variables are assigned which satisfy the query 
clauses.  Intermediate results of the query processing can be saved 
for later reference to speed up the processing of similar 
subsequent queries. 

intermediateMap(<keyIn,valIn> mapIn, Clause 
clause, List commVars, <valIn,valOut> 
mapOut): 

for inputLine in mapIn.keySet() 
 if inputLine is tripleData 

bindings = 
variableBindnings(lineOfTriples, 
clause) 

for binding in bindings 
mapOut.add(<binding.in(commVars), 
binding.out(commVars)>) 

 else 
mapOut.add(<inputLine.in(commVars), 

inputLine.out(commVars)>) 
 
intermediateReduce(<keyIn,valIn> reduceIn, 

Clause clause, List commVars, 
<valIn,valOut> reduceOut): 

for key in reduceIn.keySet() 
 newBindings is new List 
 oldBindings is new List 
 for binding in reduceIn.values(key) 
  if binding is currentBinding 
   newBindings.add(binding) 
  else 
   oldBindings.add(binding) 
 for newB in newBindings 
  for oldB in newBindings 

combinedB = union(key, newB, oldB) 
 reduceOut.add(<combinedB,null>) 
 

Figure 8. Map and Reduce Algorithms for Initial MapReduce 
Job in Clause-Iteration Approach 

initialMap(<keyIn,valIn> mapIn, Clause clause, 
<valIn,valOut> mapOut): 

for lineOfTriples in mapIn.keySet() 
bindings = variableBindnings(lineOfTriples, 

clause) 
 for binding in bindings 

 mapOut.add(<binding,null>) 
 
initialReduce(<keyIn,valIn> reduceIn, Clause 

clause, <valIn,valOut> reduceOut): 
for key in reduceIn.keySet() 
 reduceOut.add(<key,null>) 
 
Figure 7. Map and Reduce Algorithms for InitialMapReduce Job 

in Clause-Iteration Approach 



3.6 Select MapReduce Operations 
Pseudo-code versions of the selectMap and selectReduce 
algorithms used respectively for the map and reduce steps in the 
SelectMapReduce jobs in the Clause-Iteration approach can be 
seen in Figure 9. 

In the selectMap function, the bound variables are filtered so that 
only the select variables are returned.  The reduce step removes 
duplicates. 

3.7 Generalizations of the Clause-Iteration 
Algorithm 
Although our discussion of the Clause-Iteration approach to 
respond to queries on graph data was focused on SPARQL and 
RDF edge data, the Clause-Iteration approach can be easily 
generalized to other query languages and data formats. 

Many SQL-like query languages (including SPARQL) are 
composed of multiple query clauses and an identification of 
variables to return.  It would be trivial to extend the Clause-
Iteration approach to these alternative SQL-like query languages.   

Even though we focused on conjunctive clause bindings where 
subgraphs also need to satisfy all query clauses, the Clause-
Iteration approach extends to disjunctive clause bindings where 
only some of the clauses need to be satisfied by data subgraphs to 
be deemed a sufficient match to be returned.  This generalization 
to disjunctive clauses would be performed by modifying the join 
operation in the intermediate MapReduce jobs such that the join 
operation is performed disjunctively rather than conjunctively. 

The Clause-Iteration approach could also be generalized to handle 
other data representations such as quad data with SQL-like query 
languages instead of graph data.  The initial and intermediate 
MapReduce jobs in the Clause-Iteration approach performs 
iterative variable bindings that are effectively agnostic to the data 
representation, as long as the lower-level mechanics of the 
variable binding is generalized. 

4. EXPERIMENTATION 
We implemented Clause-Iteration approach to SPARQL query 
processing over RDF data in the SHARD graph-store to evaluate 
the performance of our general algorithm design.  In particular, 
we developed an early version of SHARD using the Cloudera 
version of the Hadoop implementation that we deployed onto an 
Amazon EC2 cloud environment of 20 XL compute nodes [1] 
running RedHat Linux and Cloudera Hadoop [9].  Hadoop stores 
data on compute nodes through the Hadoop Distributed File 
System (HDFS) and schedules the program's execution across a 
set of machines, handling machine failures, and managing the 
required inter-machine communication. The Cloudera Hadoop 
implementation also provides an approach to pass query clauses to 

compute nodes based on XML files to parameterize the 
MapReduce operations based on the clauses. 

Taken together, these parameterizations allowed us to focus our 
experimentation on the design and implementation of high-level 
functionality of algorithmic implementation using the MapReduce 
framework to construct high-performance and highly scalable 
applications. 

The version of SHARD we deployed for evaluation supports basic 
SPARQL query functionality (without support for prefixes, 
optional clauses or results ordering) over the N3 form of full RDF 
data.  The unimplemented SPARQL functionality can generally 
be handled by pre- or post-processing of queries.  We do not 
expect implementations of this extra functionality to substantially 
detract from the performance exhibited by the Clause-Iteration 
approach currently implemented in SHARD.  Although possible 
to implement, the deployed version of SHARD does not perform 
any query manipulation/reordering/etc… normally done for 
increased performance by SPARQL endpoints in mature graph-
stores.  Also, the deployed version of SHARD does not yet take 
advantage of any potential query caching enabled by our design 
choices. 

4.1 LUBM Benchmark 
We used the LUBM benchmark to evaluate the performance of 
SHARD.  The LUBM benchmark creates artificial data about the 
publishing, coursework and advising activities of students and 
faculty in departments in universities.   

The LUBM code natively generates OWL ontology files [28].  
OWL ontology files represent relationships between properties, 
but because our early version of SHARD takes N3 (an RDF 
serialization format) data as input, we provided functionality to 
convert the generated LUBM data into N3 format over many 
universities and automatically store this generated data in the 
SHARD HDFS backend using Hadoop.  We used code from the 
LUBM benchmark to generate edge data for 6000 universities 
which is approximately 800 million edges (and several GB of 
data) to align with scalable performance evaluations of graph 
stores used in industry [34]. 

After loading the graph data into the SHARD graph store, we 
evaluated the performance of SHARD with the query processing 
algorithm in responding to queries 1, 9 and 14 of LUBM as was 
done in [34].  Query 1 is very simple and asks for the students that 
take a particular course and returns a very small set of responses.  
Query 9 is relatively more complicated query with a triangular 
pattern of relationships - it asks for all teachers, students and 
courses such that the teacher is the adviser of the student who 
takes a course taught by the teacher.  Query 14 is relatively simple 
as it asks for all undergraduate students (but the response is very 
large). 

4.2 Performance 
SHARD achieved the following query response times for 6000 
universities (approx. 800 million edges and several GB of data) 
using the LUBM benchmark when deployed on an Amazon AWS 
cloud with 20 compute nodes: 

Query 1: 404 sec. (approx. 0.1 hr.) 
Query 9: 740 sec. (approx. 0.2 hr.) 
Query 14: 118 sec. (approx. 0.03 hr.) 

We generally found that SHARD performance increased with the 
number of compute nodes, but we found this performance 
increase to be sub-linear.  This sub-linear increase was most likely 

selectMap(<keyIn,valIn> mapIn, List 
selectVars, <valIn,valOut> mapOut): 

for varBinding in mapIn.keySet() 
outVars = varBindings.subset(selectVars) 
mapOut.add(<outVars,null>) 

 
selectReduce(<keyIn,valIn> reduceIn, Clause 

clause, <valIn,valOut> reduceOut): 
for key in reduceIn.keySet() 
 reduceOut.add(<key,null>) 
 

Figure 9. Map and Reduce Algorithms for SelectMapReduce 
Job in Clause-Iteration Approach 



due to the overhead of coordination with the NameNode in the 
MapReduce steps. 

We compared the performance of SHARD on the LUBM 
benchmark to the DAMLDB graph-store.  DAMLDB is a current 
monolithic industry-standard triple-store released as the open-
source project Parliament [29].  DAMLDB is designed to run on a 
single server and represents a current widely-used industry 
standard triple-store.  Using DAMLDB coupled with the Sesame 
[36] Semantic Web framework to aid query processing [34] we 
observed the following performance for the same queries from the 
LUBM benchmark: 

Query 1: approx. 0.1hr. 
Query 9: approx. 1 hr. 
Query 14: approx. 1 hr. 

We attempted to compare the query processing performance of 
SHARD to other triple-stores, but we were unable to load a 
sufficient amount of data in what we believe to be a reasonable 
time frame (i.e., within a few hours.)  Therefore we did not 
compare the performance of SHARD to these other triple-stores.  
A complete list of these other triple stores with insufficient data 
loading performance can be found in [34].  Note that in [34], the 
version of DAMLDB we are comparing SHARD to is 
Sesame+DAMLDB. 

Note that query 1 returns a very small subset of literals bound to 
variables.  Although MapReduce is traditionally used to build 
indices, its implementations (e.g.  Hadoop) provide little native 
support for accessing data stored in HDFS files.  Conversely, 
DAMLDB has some special indexing optimizations for simple 
queries like that for Query 1, that are not yet implemented in 
SHARD.  We discuss how this aspect of MapReduce may be 
improved upon below.  Except for this one exception, SHARD 
performed better than other known technologies due to the highly 
parallel implementations of the MapReduce framework that we 
leverage in our design of SHARD.  Also, due to the inherent 
scalability of the Hadoop and HDFS approach to the SHARD 
design, the SHARD graph-store could potentially be used for 
extremely large datasets (multiple billions of edges) without 
requiring any specialized hardware, as is required for similar 
scalability in monolithic graph-stores. 

5. SCALABLE CLOUD APPROACHES TO 
PROCESSING GRAPH DATA 
In this section we discuss current design approaches to scalable 
cloud-based graph-data processing.  We decompose our 
discussion based on whether or not these technologies are 
primarily influenced by the MapReduce computing paradigm [5].  
We make this distinction between MapReduce-based and non-
MapReduce approaches primarily because a MapReduce approach 
greatly affects the design of cloud-based graph data systems, 
highlighting a dependence on relatively lower-level indexing and 
data partitioning functionality. Effective indexing and partitioning 
techniques are traditionally some of the most demanding technical 
challenges in building scalable distributed information systems 
and involve tracking the varying location of data over distributed 
compute nodes.   

5.1 Cloud-Based Graph Data Technologies 
without MapReduce Implementations 

Cloud-based graph technologies that do not utilize MapReduce 
include neo4j [25], VertexDB [40], Clustered TDB [27], BigData 
[3], FlockDB [32], Hypergraph [13] and InfiniteGraph [14]. 

Neo4j is probably the most widely known cloud-based graph 
database.  It is designed with a relatively straightforward and 
reliable indexer to support graph traversals in cloud-based graph 
data.  FlockDB is probably the most used cloud-based technology 
– it is part an open-source project used at Twitter.  FlockDB uses 
a more traditional approach to data management via a clustered 
MySQL backend to store adjacency graphs. 

VertexDB made some interesting design choices to provide high-
performance garbage collection.  VertexDB is composed of nodes 
which are folders of key/value pairs. Keys are stored in lexical 
ordering.  One of the key features of VertexDB is its garbage 
collection.  Keys beginning with an underscore tell the database 
that the value is a string, otherwise, the value is a pointer to 
another node. In this way, the database's garbage collector knows 
how to traverse the nodes. There is a root node that corresponds to 
the / path that serves as the root reference of garbage collection 
scan. Each node also tracks it's size (number of keys it contains) 
so this can be returned quickly. 

Most relevant to the Semantic Web community is Clustered TDB.  
Clustered TDB is an outgrowth of the Jena project that employs 
distributed indexes to improve analytic performance.  Bigdata is 
another clustered RDF store. It uses dynamically partitioned key-
range shards with B+Trees to enable to easier dynamic addition of 
capacity.  HypergraphDB also uses BTree indexing as 
implemented in BerkeleyDB.  InfiniteGraph is a proprietary graph 
database that uses a peer-to-peer architecture.  Its main 
architectural feature is its local caching of subgraphs.  

Outside of the high-level indexing features we overviewed in the 
survey, another approach that shows promise has recently been 
demonstrated in OrientDB.  OrientDB [26] uses a new indexing 
algorithm called MVRB-Tree, derived from the Red-Black Tree 
and from the B+Tree to combines their respective fast insertion 
and ultra-fast lookup properties. 

5.2 MapReduce Based Implementations for 
Cloud-Based Graph Data Processing 

Although MapReduce has been very successful in supporting 
many kinds of graph data processing [22] there have been fewer 
approaches to more complex and general graph data processing 
challenges including support for general graph query languages. 
Some of these approaches include [12][17][21][24][42][43]. 

Although most graph stores provide native support for link 
following, most do not provide more advanced cloud-based 
approaches for large-scale parallelized data processing unless they 
utilize some version of the MapReduce compute paradigm.  This 
is most likely due to the concurrency abstraction issues discussed 
which is addressed in MapReduce frameworks for processing and 
generating large data sets [5]. Users specify a map function that 
splits data into key/value pairs and a reduce function that merges 
all key/value pairs based on the key. There have been a number of 
recent studies on MapReduce design patterns [22] that are useful 
for cloud-based graph data management systems. 

The MapReduce software framework is useful for highly-scalable 
cloud-based processing because it is easily parallelizable for 
execution on large clusters of commodity machines.  One of the 
more popular MapReduce implementations is Hadoop [9].  
Hadoop manages data allocation on compute nodes with the 
Hadoop Distributed File System (HDFS), scheduling the 
program's execution across a set of machines, handling machine 
failures, and managing the required inter-machine 
communication. These services allow for the design and 



implementation of high-level functionality using the MapReduce 
framework to construct highly scalable applications. 

There are several benefits as well as drawbacks from using 
MapReduce to design high-performance information systems, 
irrespective of the specific designs for those information systems.  
These benefits include that MapReduce implementations such as 
Hadoop are generally easy to set up and debug, and applications 
are easy to write efficiently in several programming languages.  A 
key aspect of the MapReduce software framework, as expressed 
in the Hadoop implementation, is the use of a special, centralized 
compute node, called the NameNode.  The name node directs the 
placement of data onto compute nodes through HDFS, assigns 
compute jobs to the various nodes, tracks failures and manages 
the shuffling of data after the Map and Reduce steps.  The 
drawbacks of the Hadoop implementation of the MapReduce 
framework include that only Java implementations can be used 
natively for more complex applications, it is difficult to run Java 
code on compute nodes that need runtime customization, 
NameNode creates a bottleneck for HDFS access, and NameNode 
failures can be catastrophic. 

There have been a number of recent approaches to cloud-based 
graph data management beside SHARD that use MapReduce 
implementations.  Among the most notable are LarKC [20] and 
WebPIE [42] which both focus on very large-scale reasoning over 
graph data.  An alternative approach to query processing is also 
provided in [12] that relies on heuristic approaches. 

Also related are graph-stores built on top of databases and high-
level languages built using Hadoop.  For example [16] provides 
an extension to a popular Semantic Web toolset to us HBase [10], 
a Hadoop-based database, as a backing graph store.  Similarly, 
[39] discusses an approach to using the Pig [30] query language 
with Hadoop to process Semantic Web queries.  The drawback of 
these approaches is that they put additional layers of processing 
between the original query and the source data, generally resulting 
in degraded performance.  Admittedly, [16] does not provide 
performance measurements. [39] shows performance on the order 
of minutes for datasets of several megabytes, several order of 
magnitude slower than the performance of SHARD on datasets 
several orders of magnitude larger, although with admittedly 
different queries. 

6. DESIGN INSIGHTS 
The performance of the SHARD implementation of the Clause-
Iteration approach as compared to previous graph-store 
implementations demonstrates the viability of our approach based 
on MapReduce.  Admittedly, the previous implementations were 
run on monolithic hardware, but these previous approaches had 
strict scalability limitations no longer imposed by a cloud-based 
Clause-Iteration implementation using MapReduce.  Because it is 
based on MapReduce, the Clause-Iteration design is easily 
distributed across many compute nodes for highly parallel and 
highly scalable operation.  It is also lower-cost as it can run on 
commodity hardware rather than the high-memory and high-cost 
servers usually used to run graph-stores with monolithic 
architectures.  

There are a number of areas for improvement in an alternative to 
the Hadoop implementation of the MapReduce software 
framework for the easier design of information systems in general 
and graph-stores in particular.  Most notably, MapReduce and 
consequently our design are biased towards operations over large 
datasets without the search for individual key-value pairs.  This 
could be improved upon with native indexing capabilities, 

possibly supported during pre-processing operations by 
generalizing beyond the Hadoop implementation of MapReduce.  
These pre-processing operations could also be used to reason over 
the data, so that a generalized Clause-Iteration approach could 
correctly respond to queries that require reasoning. 

A more advanced modification to support information system 
design would be an enhanced MapReduce implementation that 
provides advanced data linking and indexing to more natively 
support operations on graph data.  Instead of having to store lists 
of data in flat files in an HDFS-like construct, this enhanced 
software framework could provide a native linked-data construct 
that pairs data elements with pointers to related data.   

As hinted in our survey above, indexing is a distinguishing feature 
of graph databases.  This aspect is driven by the traditional graph 
database application of entity relationship searching and 
identification where a graph database should identify linked 
descendants of entity nodes.  In this manner, link look-up 
performance becomes a key metric for identifying the optimal 
graph database for large-scale applications.  This linked data 
framework would provide faster localized query processing 
without requiring exhaustive search of the data set on every query 
request. 

A potential path toward greatly enhancing the current approaches 
to cloud-based graph processing is to improve graph partitioning.  
Splitting data across multiple compute nodes opens up the 
potential for large latencies when querying for connectivity or 
pattern-matching across this distributed data.  Traditionally graph 
partitioning has been performed using high-level round-robin, 
hash partitioning or range partitioning techniques.  Round robin is 
a simple distribution of graph edges in a round robin fashion to 
each compute node. Hash partitioning involves the distribution of 
edges by applying a hash function to an attribute value. Range 
partitioning: involves the distribution of edges based on data 
ranges, similar to collecting edges based on source nodes in 
SHARD.  

Round robin is inefficient if there is a desire to access edges based 
on attribute values as is commonly done in graph databases since 
the location of a given edge is unknown.  Hash partitioning is less 
effective for range queries commonly used for pattern matching.  
Range partitioning may put a disproportionate amount of access 
and computation load on some servers, thus losing some of the 
parallelism advantage of cloud computing. 

Another technique that shows promise for improved scalability in 
cloud-based graph processing technologies is to represent sub-
graphs with a limited number of arcs as trees compacted into 
contiguous storage.  A compact tree representation can remove the 
need for individual child pointers by storing all sibling nodes in 
contiguous memory.  Each tree node then needs to only store a 
pointer to its first child of each child type in order to access all of 
its children.  Although this is a general technique, we have not yet 
seen it attempted for cloud computing graph processing 
technologies. 

In order to represent a graph as sub-trees, each node will have 
three possible child types.  A tree-node child is within the tree 
storage itself, and can be represented as an integer displacement in 
the array of tree nodes.  A leaf-node child may be indicated by an 
index into an array of all leaf nodes of the tree.  Finally, a link 
from one tree, back up to a point within the same tree or off into 
another tree would be a link node.  This representation is sketched 
in Figure 10. 
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Figure 10: A schematic of subgraph representation. 

Each tree node also requires an arc type for each child.  Since 
some of the children of a tree node may reside outside of the tree, 
the simplest approach is to add the arc type information to the 
child-decorator information stored inside arrays.  In this way, the 
decorator arrays can be searched linearly for arc types in one 
MapReduce step.  The offsets of particular arc types can be used 
in a second MapReduce pass to locate connected nodes in the 
tree-structure array. 

In a large graph that supports extremely high query load, disk 
reads and dram access can be planned according to the same types 
of arbitration schedules as are used for scheduling packet 
networks or operating system jobs.  Assuming a system that is 
simultaneously processing hundreds or thousands of simultaneous 
tree walks for query processing, the number of pending traversals 
of a particular subgraph represents that subgraph’s priority for 
disk-read, dram caching or even L2 caching in high speed storage 
close to the processor. 

This technique allows a highly scalable system to be built and 
optimized dynamically on an arbitrary number of workstations.  
When traversals reach external links connecting one sub-graph to 
another, that pending traversal work is enqueued and increases the 
visitation priority of the linked sub-graph.  Batching read and 
traversal access in this way can produce a graph processing 
system that exhibits maximal performance from data-cache and 
disk-access patterns. 

Various techniques to improve the efficiency of graph data 
processing for Page-Rank style algorithms are discussed in [22]. 
These are also relevant to Clause-Iteration methods.  Among these 
are simple approaches to using Combiners between the Map and 
Reduce steps, and in-Mapper combining to minimize data 
communications.  The Cloud9 software toolbox discussed in [22] 
may also support enhanced Clause-Iteration performance.  Cloud9 
enables more ordered clause joining in the Clause-Iteration 
approach to reduce the needed iteration over joined edges.  Cloud 
9 may also provides more control over data partitioning so that 
edges which are likely to be joined in the queries can be placed on 
the same compute node. 

7. ADDITIONAL FUTURE WORK 
A trivial extension to the Clause-Iteration approach we are 
developing is the Subject-Iteration approach.  In practice we 
identified that many queries often have clause subjects with 
multiple outgoing edges.  When coupled with our subject-based 
graph representation format, rather than requiring a MapReduce 
job for each edge it would be more efficient to iterate and join 
over the subjects in a query.  Unfortunately, this approach may 
not always be beneficial due to the extra overhead to perform the 
join operations.  However, depending on the connectedness of the 
query graph, query graphs with many more edges than nodes 
would potentially benefit greatly from a Subject-Iteration 
approach. 

We have also been investigating the impact of query ordering on 
the practical performance of the Clause-Iteration implementations.  
As alluded to above, query clauses may need to be reordered to 
ensure that there are common variables to join partial query 

response on every iteration.  Query reordering for improved 
performance is an ongoing research topic in the general 
information management community [18], but we have found in 
practice that minimizing the scale of the join operation has a 
potentially large impact on the performance of the Clause-
Iteration implementation in SHARD.  The challenge is in 
estimating the scale of the join operations due to possible query 
reordering without actually performing the join operation.  A 
feasible approach may be based on data sampling. 

We are also investigating more effective methods to index data.  
This will most likely need to be supported by a modification to the 
Hadoop implementation of the MapReduce framework that 
supports native indexing instead of basic Map operations over all 
data elements.  Additional performance improvement of our 
design in a targeted production environment could be provided by 
using cached partial results both locally for high-performance 
parallel operations and globally by a NameNode-like entity that 
tracks local caching of partial results.  This will require additional 
capability in a software framework to track partial results that 
were previously cached and possibly to track which cached results 
could be thrown out to save disk space in the cloud (if this 
becomes a deployment concern.) 
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