
Clause-Iteration with MapReduce to Scalably Query Data
Graphs in the SHARD Graph-Store

Kurt Rohloff
BBN Technologies

Cambridge, MA, USA
krohloff@bbn.com

Richard E. Schantz
BBN Technologies

Cambridge, MA, USA
schantz@bbn.com

ABSTRACT
Graph data processing is an emerging application area for cloud
computing because there are few other information infrastructures
that cost-effectively permit scalable graph data processing. We
present a scalable cloud-based approach to process queries on
graph data utilizing the MapReduce model. We call this approach
the Clause-Iteration approach. We present algorithms that, when
used in conjunction with a MapReduce framework, respond to
SPARQL queries over RDF data. Our innovation in the Clause-
Iteration approach comes from 1) the iterative construction of
query responses by incrementally growing the number of query
clauses considered in a response, and 2) our use of flagged keys to
join the results of these incremental responses. The Clause-
Iteration algorithms form the basis of our scalable, SHARD
graph-store built on the Hadoop implementation of MapReduce.
SHARD performs favorably when compared to existing
“industrial” graph-stores on a standard benchmark graph with 800
million edges. We discuss design considerations and alternatives
associated with constructing scalable graph processing
technologies.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design – methodologies.

General Terms
Design, Algorithms, Software Engineering, Performance, Design,
Experimentation.

Keywords
Distributed Computing, Graph Data, MapReduce, Algorithms,
Systems, Semantic Web, SPARQL, Performance Evaluation.

1. INTRODUCTION
Intensive computing over graph data has become increasingly
important in diverse application domains from social networking
and genomics to crime fighting and Semantic Web technologies.
Unfortunately, advances in scalable information management
technologies for intensive computing (cloud-based or otherwise)
have not kept pace to support the processing of these increasingly
large graph data applications. Highly scalable cloud-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DIDC’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0704-8/11/06...$10.00.

approaches to traditional information storage, management and
processing technologies, such as databases can only be partially
leveraged for scalable graph data processing in the clouds. For
example, current state-of-the-art industrial Semantic Web data
processing technologies, which rely on graph data information
systems, are designed for deployment on a single (or a small
number of) machine(s) [34]. This is fine when data is small, but
current methodologies to design high-performance information
systems with embedded graph processing capabilities are limited
by data processing and analysis bottlenecks that consistently
emerge with graphs on the order of a billion edges [17][34]. Even
if an information system could manage data graphs with a billion
edges, it would still be insufficient to address the ongoing
explosion of graph data available in semantic formats [10] that
can be used in a myriad of application areas. These scalability
constraints are the greatest barriers to achieve the fundamental
web-scale Semantic Web vision [2] and have hindered the broader
adoption of Semantic Web technologies.

There have of course been several notable monolithic design
approaches for query processing with similar if not the same
functional design goals [34]. Several of these graph-stores have
achieved very good performance on single compute-node systems
by using designs based around memory mapping index
information [19]. However, disk and memory limitations have
limited scalability and driven the need for distributed computing
approaches.

We introduce a scalable cloud-based approach to process queries
on graph data based on iterating over clauses in graph queries to
construct query responses using the MapReduce paradigm [5].
We call this approach the Clause-Iteration approach. We provide
algorithms to use the Clause-Iteration approach to process
SPARQL [38] queries over RDF data [33]. (SPARQL is a
standard Semantic Web [10] graph data query language and RDF
is a standard Semantic Web data format for representing data
graphs.) Our innovation in the Clause-Iteration approach comes
from parallelization techniques for the iterative construction of
query responses by incrementally growing the number of query
clauses considered in an incremental response, overlaid with our
use of flagged keys to join the results of these incremental
responses.

We implement the Clause-Iteration algorithms for SPARQL
queries over RDF data in the SHARD (Scalable, High-
Performance, Robust and Distributed) graph-store [37]. SHARD
is built on top of Hadoop [9], a popular MapReduce
implementation. We present initial experimental results
evaluating the Clause-Iteration approach from an early version of
SHARD that we deployed into an Amazon EC2 cloud [1]. We
perform our evaluation with the standard LUBM benchmark for
graph stores [7] with an 800-million edge graph data set. We find
that SHARD, using the Clause-Iteration approach, performs better
than non-parallel graph-stores currently used in industry [34].

The remainder of this paper is organized as follows. In Section 2
we provide a brief overview of relevant graph data query system
design goals with respect to SPARQL-like query languages and
data represented in formats similar to RDF. In Section 3 we
present our Clause-Iteration approach that responds to SPARQL
queries over RDF data. In Section 4 we describe our experimental
results from the use of the Clause-Iteration approach in our
SHARD graph-store to process SPARQL queries in an Amazon
EC2 cloud. In Section 5 we review current approaches and
related work for large-scale cloud-based graph data processing
that can be run on parallelized commodity computing
environments that address similar challenges as the Clause-
Iteration approach and SHARD. In Section 6 we discuss design
insight we gained from experimentation and ongoing and
alternative designs for high-performance, massively scalable
information systems. We discuss additional future work in
Section 7.

2. GRAPH QUERY DESIGN GOALS
Our primary design goal is to enable rapid SPARQL-like querying
over RDF-like graph data on very large data graphs using
inexpensive hardware and parallel computation. We focus on
algorithms which perform better when responding to queries that
are more complicated than simple edge-lookups where a
substantial subset of the stored graph data may be returned by the
query.

Figure 1: A Small Graph of Graph Data.

To align with general Semantic Web data standards, we consider
graphs represented as subject-predicate-object edges [2][8],
although the algorithms discussed here can be generalized to other
situations. A small version of the kind of graph we consider can
be seen in Figure 1 which we will use as part of a running
example. This graph dataset contains 7 edges to represent that
Kurt lives in Cambridge, Kurt owns an object car0, car0 is a car,
car0 was made by Ford, car0 was made in Detroit, Detroit is a city
and Cambridge is a city.

We take an approach to processing graph data based upon the
popular MapReduce cloud computing paradigm [5] which enables
robust parallel processing over large datasets on low-cost
commodity hardware. In particular, we used the Hadoop [9]
implementation of MapReduce. Graph data could be represented
in several formats to be passed as input to the algorithms which
run the SPARQL query processing, including general RDF. In
order to best leverage popular MapReduce implementations like
Hadoop to construct practical graph query systems, we assume
data is stored directly on compute nodes in native file systems like
the HDFS distributed file system. We assume that each line in the
data file represents all edges from a single node. For example the
input line,

Kurt owns car0 livesIn Cambridge

represents all edges with Kurt as the subject: the entity Kurt
owns an entity car0, Kurt lives in Cambridge. Lists of such
lines represent all of the graph data the algorithm runs over.

Although our approach to representing edge data as flat text files
is rudimentary as compared to other information management
approaches, we found that it offers a number of important benefits
for several general application domains in practice. For one, this
approach, particularly when used with the HDFS implementation,
brings a level of automated robustness by replicating data and
MapReduce operations across multiple nodes. The data is also
stored in a simple, easy to read format that lends itself to easier,
user-focused drill-down diagnostics of query results returned by
the graph-store. Most importantly, however, is that although this
approach to storing edges is inefficient for query processing that
requires the inspection of only a small number of edges, this
approach is efficient in the context of the use of our query
algorithm when used with Hadoop to scan over large sets of edges
to respond to queries that will generate a large number of results.
Hadoop natively scans over input data during the Map stage of its
MapReduce operations.

The SPARQL-like queries we consider have semantics
remarkably similar to also well-known SQL semantics. In
particular, we focus on queries with multiple clauses, multiple
variables and literals which are represented in the query clauses,
and an identification of a subset of those variables which should
be returned in response to the query. A SPARQL-like query for
the above graph data that we use as a running example is the
following:

SELECT ?person
WHERE {
 ?person :owns ?car .
 ?car :a :car .
 ?car :madeIn :Detroit .
 }

The above query has three clauses and asks for all matches to the
variable ?person such that 1) ?person owns an entity
represented by the variable ?car, 2) ?car is a car and 3)
?car was made in Detroit. Note that the above query can be
represented as a directed graph as seen in Figure 2.

Figure 2: A Directed Graph Representation of a Query.

Processing of queries in the context of a data graph consists of
identifying which variables in the query clauses can be mapped to
subsets of nodes in the data graph such that the query clauses
align with data edges. This alignment process for query
processing is fairly general across many data representations and
query languages. An example of this alignment for our example
query and data can be seen in Figure 3 where when ?person is
aligned with Kurt and ?car is aligned with car0, the query
clauses match corresponding edges in the data graph. In this
instance, the query clauses align with the edges that indicate Kurt
owns an object car0, car0 is a car and car0 was made in Detroit.

Figure 3: An Alignment of SPARQL Query Variables with Graph
Data.

3. CLASUE-ITERATION DESIGN
3.1 Approach Overview
The basis of the Clause-Iteration approach is to iterate over
clauses in queries to incrementally attempt to bind query variables
to data nodes in the graph data while satisfying all of the query
constraints. The goal of this approach is to utilize MapReduce-
style operations for high parallelization on low-cost commodity
hardware.

An Iteration algorithm coordinates the high-level operation of
iterated MapReduce jobs with one iteration for each clause in the
query. A schematic overview of the Iteration Algorithm for
iterative data selection and query binding can be seen in Figure 4.
We describe this algorithm in more detail below in the subsection
immediately following, but we first give an overview of the
algorithms used for the MapReduce operations called by the
Iteration Algorithm.

MapReduce operations iteratively select data matching a single
query clause and joins that selected data to data subgraphs that
align with previously query clauses based on common variable
bindings.

The initial map step identifies all feasible bindings of graph data
to variables in the first query clause. The output key of the initial
map step is the list of variable bindings and the output values are

set to null. The initial reduce step removes duplicate bindings
without further modifying the output of the initial map step.

The intermediate MapReduce jobs continue to construct query
responses by iteratively binding graph data to variables in later
clauses as new variables are introduced and then joining these
new bindings to the previous bound variables such that the joined
bound variables align with iteratively increasing subsets of the
query clauses. The intermediate steps perform MapReduce
operations simultaneously over both the graph data and the
previously bound variables which were saved to disk to perform
this operation.

A final MapReduce step consists of filtering bound variable
assignments to obtain just the variable bindings requested in the
SELECT clause of the original SPARQL query. In particular, the
Map step filters each of the bindings, and the Reduce step
removes duplicates where the key value for both Map and Reduce
are the bound variables in the SELECT clause.

3.2 Iteration Algorithm
A pseudo-code version of the MapReduce Iteration algorithm
used for the Clause-Iteration approach to process queries on graph
data is seen in Figure 5. This algorithm takes graph data and a
query as input and uses three different types of MapReduce jobs
(firstClauseMapReduce, intermediateClauseMapReduce
and selectMapReduce) to identify subgraphs that match the

query which are returned by the algorithm.

The Iteration algorithm uses the firstClauseMapReduce
MapReduce job is to identify which edges in the data graph match
the first query clause. Hence the firstClauseMapReduce
MapReduce job is passed the edge data (mrInput) and the first
query clause (query.clause(0)) as input. The output of the job
(mrOutput) is the set of all possible assignments to the variables
in the first clause that are supported in the data graph.
boundVars tracks which query variables have been bound by
identifying edges which match the first clause.

For our running example query we introduced above, the
SPARQL engine will iterate over the three clauses in the query.
The variables ?person and ?car are bound and set to
boundVars during the processing of the first clause (?person
:owns ?car).

Edge data can be stored in a framework appropriate for the
implementation context. For example, when the Clause-Iteration
approach is used in context with Hadoop, the data can be stored in
HDFS and filepaths can be passed as parameters to the algorithm
implementations.

SPARQLEngine(TripleData triples, Query query):
mrInput = triples
run firstClauseMapReduce(mrInput, mrOutput,

query.clause(0))
boundVars = query.clause(0).getVars()
for i= 1 to query.numClauses-1
 mrInput = union(triples, mrOutput)
 curVars = query.clause(i).getVars()
 comVars = intersection(boundVars,curVars)

run intermediateClauseMapReduce(mrInput,
mrOutput, query.clause(i), comVars)

mrInput = mrOutput
run selectMapReduce(mrInput, mrOutout,

query.select())
return mrOutput

Figure 5. Iteration Algorithm to Iteratively Call MapReduce
Jobs to Respond to Queries

Figure 4: A Schematic Overview of the Iteration Algorithm in

the Clause-Iteration Approach.

Note that we also assume that some small parameters (like
individual query clauses) can be passed directly to the
MapReduce jobs used in the Clause-Iteration approach. This
assumption is valid for common MapReduce implementations like
Hadoop where XML data can be used to pass parameters to the
MapReduce jobs [41].

The Iteration algorithm uses the
intermediateClauseMapReduce MapReduce job to identify
which edges in the data graph match the successive query clauses
and to join these edges with subgraphs that match previous
clauses. Hence the intermediateClauseMapReduce
MapReduce job is passed a union of the edge data and previous
variable assignments identified by previous MapReduce jobs
(mrOutput) that correspond to subgraph query matchings with
the data. intermediateClauseMapReduce is also passed as
input to the iterated query clauses (query.clause(1)) and
comVars, a list of variable bindings that are common to the
current clauses and the current one. The output of the job
(mrOutput) is the set of all possible assignments to the variables
in the first through ith clause that are supported in the data graph.
boundVars tracks which query variables have been bound by
identifying edges which match the first clause in order to
determine comVars.

During the first iteration for the running example which processes
the clause (?car :a :car) the ?car query variable is used to set
curVars. Consequently comVars is also set to ?car as this
variable is in the current clause which is already bound.

After the final iteration, mrOutput is set to mrOutput and
identifies lists of variable assignments which satisfy all the query
clauses and are supported by the data graph. This data is used as
input to selectMapReduce along with an identification of the
variables selected for return by the query. This final MapReduce
job filters these complete variable bindings to list only sets of
variable bindings which are returned by the Iteration Algorithm.
In our running example the query processing filters for the query
variable ?person.

We assume without loss of generality that the list of common
variables on every iteration is non-empty. If we cannot rearrange
the order of the query clauses such that the common variable list
is always non-empty, then query can be split into independent
sub-queries that can be processed independently for performance
reasons.

We also note that implementations of the algorithm could be
greatly impacted by the ordering of the clauses. If larger
intermediate results are returned by the intermediate MapReduce
jobs, then the response of the algorithm will be slower. This topic
of performance tuning via query reordering is an area of ongoing
research that we discuss below in Section 7.

3.3 Binding Graph Data to Clauses
Before providing algorithms for the various MapReduce jobs used
in the Clause-Iteration approach, we first describe how graph data
is bound to variables. This algorithm, called the Variable Binding
Algorithm, is shown in pseudo-code in Figure 6.

In practice we used a special prefix character (like the SPARQL
variable prefix ‘?’) to distinguish variable assignments from graph
data when deciding which map operation to run. We attach this
prefix to all variable bindings when listing variable bindings. For
example, the bindings in Figure 3 for the clause ?person :owns
?car would be represented as the following line:

?person Kurt ?car car0

This example line describes variable bindings simply as a list of
pairs of variable names (such as ?person) and literals bound to
that variable (such as Kurt.) If the Map step sees a ? as the first
character in the input text, then the second map operation is run
and the first map operation otherwise.

The algorithm is given a list of edges in the format of a subject
followed by a list of pairs of predicates and objects, as described
above, and a query clause. The algorithm accumulates variable
bindings in bindingSetList.

The clause can have one or two variables to bind in the subject,
object, or both. If the subject of the query clause is a variable,
then all subjects of the data edges can be bound to that variable
and this possible binding is saved in subjBinding. If the query
clause subject is not a variable and the query subject literal is not
equal to the data subject, then the algorithm returns an empty list
because no bindings are feasible.

If the clause subject is a variable or the clause subject matches the
data subject, the algorithm iterates through the predicate-object
pairs in the data to find any possible bindings that match. If the
query and data predicates do not match, then the next pair is
tested. If the predicates match and the query object is a literal that
does not match, then the next pair is tested. If the predicates match
and the query object is a literal that matches, then the subject
binding is set to the return list and the algorithm terminates. If the
predicates match and the query object is a variable, then the object
binding is created and added to the return list with the subject
binding. After iteration, the binding list is returned by the
algorithm.

variableBinding(linesOfTriples triples, Clause
c):

bindingSetList = new List of Sets of Bindings
subjBinding = null
subject = triples.next
if c.subject is variable
subjBinding = new Binding(c.subject,subject)
else

if subject != c.subject
return null

while triples.hasNext
objBinding = null
bindingSet = new bindingSet(subjBinding)
predicate = triples.next
object = triples.next
if predicate = C0.predicate

if c.object is variable
objBinding = new

Binding(c.object,object)
bindingSet.add(objBinding)
bindingSetList.add(bindingSet)

else
if object = c.object

bindingSetList.add(bindingSet)
return

return bindingSetList

Figure 6. Algorithm to Identify Feasible Bindings from Variables

in Query Clauses to Nodes in Individual Triple Data

3.4 Initial MapReduce Operations
Pseudo-code versions of the InitialMap and InitialReduce
algorithms used respectively for the map and reduce steps in the
InitialMapReduce jobs in the Clause-Iteration approach can be
seen in Figure 7.

Note we treat the primary inputs and outputs for the Map and
Reduce steps as being key-value pairs, as used in the Hadoop
MapReduce implementation, as for all Map and Reduce steps of
MapReduce jobs discussed herein. If, for example, several lines
of text are passed to a Map algorithm as input, each line is treated
as a key with a null value. In this manner, the initialMap
algorithm takes several lines of text listing edge data, identifies
what variable bindings align with the input clause, and then
outputs those bindings as keys with null values assigned.

The reduce step takes those possible bindings and removes any
duplicates.

For our running example, the query clause and graph data are
mapped to the triple Kurt owns car0. This triple is passed
through and output by the reduce step.

3.5 Intermediate MapReduce Operations
Pseudo-code versions of the IntermediateMap and
IntermediateReduce algorithms used respectively for the map and
reduce steps in the IntermediateMapReduce jobs in the Clause-
Iteration approach can be seen in Figure 8.

The ith intermediate Map is actually one of two possible map
operations selected by the “if inputLine is tripleData”
line. This test is performed by seeing if an input line has a special
leading character that we describe next.

The first of these operations, which runs when the if statement is
satisfied, operates over input edge data to identify all alignments
of variables in the ith query clause to nodes in the graph data. The
output key of this map for edge data is a list of variable bindings
which were encountered in previous clauses and the output values
are the set variable bindings which have not been encountered in
previous clauses. We loop over bindings because each line of
triples may have multiple edges that map to the clause being
processed.

The second map operation that results from the “else” condition
takes lists of previous bindings as input, and rearranges the
bindings such that the output key of the second map is a list of
variable bindings which were encountered in the current clause.
The output values are set to variable bindings which are not
encountered in the current clause. Note that for both cases the
output keys are always the list of variable bindings which are
common to the current clause and previous clauses and the values

are variable bindings which are not common to enable a join in
the reduce step.

For our running example the first call of the initial Map processes
the clause (?car :a :car) the ?car query variable is used to set
curVars. Consequently comVars is also set to ?car as this
variable is in the current clause which is already bound. The map
step processes all of the graph triples to output (car0 :a :car)
as the sole binding match. The “if” conditional map operation
outputs (<(?car car0), null>) because only the ?car query
variable is bound and no new variables are bound. The “else”
conditional map operation outputs (<(?car car0),
(?person, Kurt)>) because only the ?car query variable is
bound and person was previously bound to Kurt.

The ith Reduce step effectively runs a join operation over the
intermediate results from the ith Map step by iterating over all
pairs of output results with the same common variable binding
key. If there is a list of common variable bindings that correspond
to both the previous clauses and the new clause as determined by
the output key of the ith Map step, then the Reduce step combines
all variable bindings and outputs a key with the combined list of
variable bindings and a value set to null.

For our running example the join operation of the <(?car
car0), null> and <(?car car0), (?person, Kurt)>
input to the reduce step results in the combined <(?car car0
?person, Kurt), null>) variable binding output.

This iteration of MapReduce-join continues until all clauses are
processed and variables are assigned which satisfy the query
clauses. Intermediate results of the query processing can be saved
for later reference to speed up the processing of similar
subsequent queries.

intermediateMap(<keyIn,valIn> mapIn, Clause
clause, List commVars, <valIn,valOut>
mapOut):

for inputLine in mapIn.keySet()
 if inputLine is tripleData

bindings =
variableBindnings(lineOfTriples,
clause)

for binding in bindings
mapOut.add(<binding.in(commVars),
binding.out(commVars)>)

 else
mapOut.add(<inputLine.in(commVars),

inputLine.out(commVars)>)

intermediateReduce(<keyIn,valIn> reduceIn,

Clause clause, List commVars,
<valIn,valOut> reduceOut):

for key in reduceIn.keySet()
 newBindings is new List
 oldBindings is new List
 for binding in reduceIn.values(key)
 if binding is currentBinding
 newBindings.add(binding)
 else
 oldBindings.add(binding)
 for newB in newBindings
 for oldB in newBindings

combinedB = union(key, newB, oldB)
 reduceOut.add(<combinedB,null>)

Figure 8. Map and Reduce Algorithms for Initial MapReduce
Job in Clause-Iteration Approach

initialMap(<keyIn,valIn> mapIn, Clause clause,
<valIn,valOut> mapOut):

for lineOfTriples in mapIn.keySet()
bindings = variableBindnings(lineOfTriples,

clause)
 for binding in bindings

 mapOut.add(<binding,null>)

initialReduce(<keyIn,valIn> reduceIn, Clause

clause, <valIn,valOut> reduceOut):
for key in reduceIn.keySet()
 reduceOut.add(<key,null>)

Figure 7. Map and Reduce Algorithms for InitialMapReduce Job

in Clause-Iteration Approach

3.6 Select MapReduce Operations
Pseudo-code versions of the selectMap and selectReduce
algorithms used respectively for the map and reduce steps in the
SelectMapReduce jobs in the Clause-Iteration approach can be
seen in Figure 9.

In the selectMap function, the bound variables are filtered so that
only the select variables are returned. The reduce step removes
duplicates.

3.7 Generalizations of the Clause-Iteration
Algorithm
Although our discussion of the Clause-Iteration approach to
respond to queries on graph data was focused on SPARQL and
RDF edge data, the Clause-Iteration approach can be easily
generalized to other query languages and data formats.

Many SQL-like query languages (including SPARQL) are
composed of multiple query clauses and an identification of
variables to return. It would be trivial to extend the Clause-
Iteration approach to these alternative SQL-like query languages.

Even though we focused on conjunctive clause bindings where
subgraphs also need to satisfy all query clauses, the Clause-
Iteration approach extends to disjunctive clause bindings where
only some of the clauses need to be satisfied by data subgraphs to
be deemed a sufficient match to be returned. This generalization
to disjunctive clauses would be performed by modifying the join
operation in the intermediate MapReduce jobs such that the join
operation is performed disjunctively rather than conjunctively.

The Clause-Iteration approach could also be generalized to handle
other data representations such as quad data with SQL-like query
languages instead of graph data. The initial and intermediate
MapReduce jobs in the Clause-Iteration approach performs
iterative variable bindings that are effectively agnostic to the data
representation, as long as the lower-level mechanics of the
variable binding is generalized.

4. EXPERIMENTATION
We implemented Clause-Iteration approach to SPARQL query
processing over RDF data in the SHARD graph-store to evaluate
the performance of our general algorithm design. In particular,
we developed an early version of SHARD using the Cloudera
version of the Hadoop implementation that we deployed onto an
Amazon EC2 cloud environment of 20 XL compute nodes [1]
running RedHat Linux and Cloudera Hadoop [9]. Hadoop stores
data on compute nodes through the Hadoop Distributed File
System (HDFS) and schedules the program's execution across a
set of machines, handling machine failures, and managing the
required inter-machine communication. The Cloudera Hadoop
implementation also provides an approach to pass query clauses to

compute nodes based on XML files to parameterize the
MapReduce operations based on the clauses.

Taken together, these parameterizations allowed us to focus our
experimentation on the design and implementation of high-level
functionality of algorithmic implementation using the MapReduce
framework to construct high-performance and highly scalable
applications.

The version of SHARD we deployed for evaluation supports basic
SPARQL query functionality (without support for prefixes,
optional clauses or results ordering) over the N3 form of full RDF
data. The unimplemented SPARQL functionality can generally
be handled by pre- or post-processing of queries. We do not
expect implementations of this extra functionality to substantially
detract from the performance exhibited by the Clause-Iteration
approach currently implemented in SHARD. Although possible
to implement, the deployed version of SHARD does not perform
any query manipulation/reordering/etc… normally done for
increased performance by SPARQL endpoints in mature graph-
stores. Also, the deployed version of SHARD does not yet take
advantage of any potential query caching enabled by our design
choices.

4.1 LUBM Benchmark
We used the LUBM benchmark to evaluate the performance of
SHARD. The LUBM benchmark creates artificial data about the
publishing, coursework and advising activities of students and
faculty in departments in universities.

The LUBM code natively generates OWL ontology files [28].
OWL ontology files represent relationships between properties,
but because our early version of SHARD takes N3 (an RDF
serialization format) data as input, we provided functionality to
convert the generated LUBM data into N3 format over many
universities and automatically store this generated data in the
SHARD HDFS backend using Hadoop. We used code from the
LUBM benchmark to generate edge data for 6000 universities
which is approximately 800 million edges (and several GB of
data) to align with scalable performance evaluations of graph
stores used in industry [34].

After loading the graph data into the SHARD graph store, we
evaluated the performance of SHARD with the query processing
algorithm in responding to queries 1, 9 and 14 of LUBM as was
done in [34]. Query 1 is very simple and asks for the students that
take a particular course and returns a very small set of responses.
Query 9 is relatively more complicated query with a triangular
pattern of relationships - it asks for all teachers, students and
courses such that the teacher is the adviser of the student who
takes a course taught by the teacher. Query 14 is relatively simple
as it asks for all undergraduate students (but the response is very
large).

4.2 Performance
SHARD achieved the following query response times for 6000
universities (approx. 800 million edges and several GB of data)
using the LUBM benchmark when deployed on an Amazon AWS
cloud with 20 compute nodes:

Query 1: 404 sec. (approx. 0.1 hr.)
Query 9: 740 sec. (approx. 0.2 hr.)
Query 14: 118 sec. (approx. 0.03 hr.)

We generally found that SHARD performance increased with the
number of compute nodes, but we found this performance
increase to be sub-linear. This sub-linear increase was most likely

selectMap(<keyIn,valIn> mapIn, List
selectVars, <valIn,valOut> mapOut):

for varBinding in mapIn.keySet()
outVars = varBindings.subset(selectVars)
mapOut.add(<outVars,null>)

selectReduce(<keyIn,valIn> reduceIn, Clause

clause, <valIn,valOut> reduceOut):
for key in reduceIn.keySet()
 reduceOut.add(<key,null>)

Figure 9. Map and Reduce Algorithms for SelectMapReduce
Job in Clause-Iteration Approach

due to the overhead of coordination with the NameNode in the
MapReduce steps.

We compared the performance of SHARD on the LUBM
benchmark to the DAMLDB graph-store. DAMLDB is a current
monolithic industry-standard triple-store released as the open-
source project Parliament [29]. DAMLDB is designed to run on a
single server and represents a current widely-used industry
standard triple-store. Using DAMLDB coupled with the Sesame
[36] Semantic Web framework to aid query processing [34] we
observed the following performance for the same queries from the
LUBM benchmark:

Query 1: approx. 0.1hr.
Query 9: approx. 1 hr.
Query 14: approx. 1 hr.

We attempted to compare the query processing performance of
SHARD to other triple-stores, but we were unable to load a
sufficient amount of data in what we believe to be a reasonable
time frame (i.e., within a few hours.) Therefore we did not
compare the performance of SHARD to these other triple-stores.
A complete list of these other triple stores with insufficient data
loading performance can be found in [34]. Note that in [34], the
version of DAMLDB we are comparing SHARD to is
Sesame+DAMLDB.

Note that query 1 returns a very small subset of literals bound to
variables. Although MapReduce is traditionally used to build
indices, its implementations (e.g. Hadoop) provide little native
support for accessing data stored in HDFS files. Conversely,
DAMLDB has some special indexing optimizations for simple
queries like that for Query 1, that are not yet implemented in
SHARD. We discuss how this aspect of MapReduce may be
improved upon below. Except for this one exception, SHARD
performed better than other known technologies due to the highly
parallel implementations of the MapReduce framework that we
leverage in our design of SHARD. Also, due to the inherent
scalability of the Hadoop and HDFS approach to the SHARD
design, the SHARD graph-store could potentially be used for
extremely large datasets (multiple billions of edges) without
requiring any specialized hardware, as is required for similar
scalability in monolithic graph-stores.

5. SCALABLE CLOUD APPROACHES TO
PROCESSING GRAPH DATA
In this section we discuss current design approaches to scalable
cloud-based graph-data processing. We decompose our
discussion based on whether or not these technologies are
primarily influenced by the MapReduce computing paradigm [5].
We make this distinction between MapReduce-based and non-
MapReduce approaches primarily because a MapReduce approach
greatly affects the design of cloud-based graph data systems,
highlighting a dependence on relatively lower-level indexing and
data partitioning functionality. Effective indexing and partitioning
techniques are traditionally some of the most demanding technical
challenges in building scalable distributed information systems
and involve tracking the varying location of data over distributed
compute nodes.

5.1 Cloud-Based Graph Data Technologies
without MapReduce Implementations

Cloud-based graph technologies that do not utilize MapReduce
include neo4j [25], VertexDB [40], Clustered TDB [27], BigData
[3], FlockDB [32], Hypergraph [13] and InfiniteGraph [14].

Neo4j is probably the most widely known cloud-based graph
database. It is designed with a relatively straightforward and
reliable indexer to support graph traversals in cloud-based graph
data. FlockDB is probably the most used cloud-based technology
– it is part an open-source project used at Twitter. FlockDB uses
a more traditional approach to data management via a clustered
MySQL backend to store adjacency graphs.

VertexDB made some interesting design choices to provide high-
performance garbage collection. VertexDB is composed of nodes
which are folders of key/value pairs. Keys are stored in lexical
ordering. One of the key features of VertexDB is its garbage
collection. Keys beginning with an underscore tell the database
that the value is a string, otherwise, the value is a pointer to
another node. In this way, the database's garbage collector knows
how to traverse the nodes. There is a root node that corresponds to
the / path that serves as the root reference of garbage collection
scan. Each node also tracks it's size (number of keys it contains)
so this can be returned quickly.

Most relevant to the Semantic Web community is Clustered TDB.
Clustered TDB is an outgrowth of the Jena project that employs
distributed indexes to improve analytic performance. Bigdata is
another clustered RDF store. It uses dynamically partitioned key-
range shards with B+Trees to enable to easier dynamic addition of
capacity. HypergraphDB also uses BTree indexing as
implemented in BerkeleyDB. InfiniteGraph is a proprietary graph
database that uses a peer-to-peer architecture. Its main
architectural feature is its local caching of subgraphs.

Outside of the high-level indexing features we overviewed in the
survey, another approach that shows promise has recently been
demonstrated in OrientDB. OrientDB [26] uses a new indexing
algorithm called MVRB-Tree, derived from the Red-Black Tree
and from the B+Tree to combines their respective fast insertion
and ultra-fast lookup properties.

5.2 MapReduce Based Implementations for
Cloud-Based Graph Data Processing

Although MapReduce has been very successful in supporting
many kinds of graph data processing [22] there have been fewer
approaches to more complex and general graph data processing
challenges including support for general graph query languages.
Some of these approaches include [12][17][21][24][42][43].

Although most graph stores provide native support for link
following, most do not provide more advanced cloud-based
approaches for large-scale parallelized data processing unless they
utilize some version of the MapReduce compute paradigm. This
is most likely due to the concurrency abstraction issues discussed
which is addressed in MapReduce frameworks for processing and
generating large data sets [5]. Users specify a map function that
splits data into key/value pairs and a reduce function that merges
all key/value pairs based on the key. There have been a number of
recent studies on MapReduce design patterns [22] that are useful
for cloud-based graph data management systems.

The MapReduce software framework is useful for highly-scalable
cloud-based processing because it is easily parallelizable for
execution on large clusters of commodity machines. One of the
more popular MapReduce implementations is Hadoop [9].
Hadoop manages data allocation on compute nodes with the
Hadoop Distributed File System (HDFS), scheduling the
program's execution across a set of machines, handling machine
failures, and managing the required inter-machine
communication. These services allow for the design and

implementation of high-level functionality using the MapReduce
framework to construct highly scalable applications.

There are several benefits as well as drawbacks from using
MapReduce to design high-performance information systems,
irrespective of the specific designs for those information systems.
These benefits include that MapReduce implementations such as
Hadoop are generally easy to set up and debug, and applications
are easy to write efficiently in several programming languages. A
key aspect of the MapReduce software framework, as expressed
in the Hadoop implementation, is the use of a special, centralized
compute node, called the NameNode. The name node directs the
placement of data onto compute nodes through HDFS, assigns
compute jobs to the various nodes, tracks failures and manages
the shuffling of data after the Map and Reduce steps. The
drawbacks of the Hadoop implementation of the MapReduce
framework include that only Java implementations can be used
natively for more complex applications, it is difficult to run Java
code on compute nodes that need runtime customization,
NameNode creates a bottleneck for HDFS access, and NameNode
failures can be catastrophic.

There have been a number of recent approaches to cloud-based
graph data management beside SHARD that use MapReduce
implementations. Among the most notable are LarKC [20] and
WebPIE [42] which both focus on very large-scale reasoning over
graph data. An alternative approach to query processing is also
provided in [12] that relies on heuristic approaches.

Also related are graph-stores built on top of databases and high-
level languages built using Hadoop. For example [16] provides
an extension to a popular Semantic Web toolset to us HBase [10],
a Hadoop-based database, as a backing graph store. Similarly,
[39] discusses an approach to using the Pig [30] query language
with Hadoop to process Semantic Web queries. The drawback of
these approaches is that they put additional layers of processing
between the original query and the source data, generally resulting
in degraded performance. Admittedly, [16] does not provide
performance measurements. [39] shows performance on the order
of minutes for datasets of several megabytes, several order of
magnitude slower than the performance of SHARD on datasets
several orders of magnitude larger, although with admittedly
different queries.

6. DESIGN INSIGHTS
The performance of the SHARD implementation of the Clause-
Iteration approach as compared to previous graph-store
implementations demonstrates the viability of our approach based
on MapReduce. Admittedly, the previous implementations were
run on monolithic hardware, but these previous approaches had
strict scalability limitations no longer imposed by a cloud-based
Clause-Iteration implementation using MapReduce. Because it is
based on MapReduce, the Clause-Iteration design is easily
distributed across many compute nodes for highly parallel and
highly scalable operation. It is also lower-cost as it can run on
commodity hardware rather than the high-memory and high-cost
servers usually used to run graph-stores with monolithic
architectures.

There are a number of areas for improvement in an alternative to
the Hadoop implementation of the MapReduce software
framework for the easier design of information systems in general
and graph-stores in particular. Most notably, MapReduce and
consequently our design are biased towards operations over large
datasets without the search for individual key-value pairs. This
could be improved upon with native indexing capabilities,

possibly supported during pre-processing operations by
generalizing beyond the Hadoop implementation of MapReduce.
These pre-processing operations could also be used to reason over
the data, so that a generalized Clause-Iteration approach could
correctly respond to queries that require reasoning.

A more advanced modification to support information system
design would be an enhanced MapReduce implementation that
provides advanced data linking and indexing to more natively
support operations on graph data. Instead of having to store lists
of data in flat files in an HDFS-like construct, this enhanced
software framework could provide a native linked-data construct
that pairs data elements with pointers to related data.

As hinted in our survey above, indexing is a distinguishing feature
of graph databases. This aspect is driven by the traditional graph
database application of entity relationship searching and
identification where a graph database should identify linked
descendants of entity nodes. In this manner, link look-up
performance becomes a key metric for identifying the optimal
graph database for large-scale applications. This linked data
framework would provide faster localized query processing
without requiring exhaustive search of the data set on every query
request.

A potential path toward greatly enhancing the current approaches
to cloud-based graph processing is to improve graph partitioning.
Splitting data across multiple compute nodes opens up the
potential for large latencies when querying for connectivity or
pattern-matching across this distributed data. Traditionally graph
partitioning has been performed using high-level round-robin,
hash partitioning or range partitioning techniques. Round robin is
a simple distribution of graph edges in a round robin fashion to
each compute node. Hash partitioning involves the distribution of
edges by applying a hash function to an attribute value. Range
partitioning: involves the distribution of edges based on data
ranges, similar to collecting edges based on source nodes in
SHARD.

Round robin is inefficient if there is a desire to access edges based
on attribute values as is commonly done in graph databases since
the location of a given edge is unknown. Hash partitioning is less
effective for range queries commonly used for pattern matching.
Range partitioning may put a disproportionate amount of access
and computation load on some servers, thus losing some of the
parallelism advantage of cloud computing.

Another technique that shows promise for improved scalability in
cloud-based graph processing technologies is to represent sub-
graphs with a limited number of arcs as trees compacted into
contiguous storage. A compact tree representation can remove the
need for individual child pointers by storing all sibling nodes in
contiguous memory. Each tree node then needs to only store a
pointer to its first child of each child type in order to access all of
its children. Although this is a general technique, we have not yet
seen it attempted for cloud computing graph processing
technologies.

In order to represent a graph as sub-trees, each node will have
three possible child types. A tree-node child is within the tree
storage itself, and can be represented as an integer displacement in
the array of tree nodes. A leaf-node child may be indicated by an
index into an array of all leaf nodes of the tree. Finally, a link
from one tree, back up to a point within the same tree or off into
another tree would be a link node. This representation is sketched
in Figure 10.

Tree Layer 1 Tree Layer 2 Tree Layer 3

Leaf Node Decorations

Tree Node Decorations

External Links

Figure 10: A schematic of subgraph representation.

Each tree node also requires an arc type for each child. Since
some of the children of a tree node may reside outside of the tree,
the simplest approach is to add the arc type information to the
child-decorator information stored inside arrays. In this way, the
decorator arrays can be searched linearly for arc types in one
MapReduce step. The offsets of particular arc types can be used
in a second MapReduce pass to locate connected nodes in the
tree-structure array.

In a large graph that supports extremely high query load, disk
reads and dram access can be planned according to the same types
of arbitration schedules as are used for scheduling packet
networks or operating system jobs. Assuming a system that is
simultaneously processing hundreds or thousands of simultaneous
tree walks for query processing, the number of pending traversals
of a particular subgraph represents that subgraph’s priority for
disk-read, dram caching or even L2 caching in high speed storage
close to the processor.

This technique allows a highly scalable system to be built and
optimized dynamically on an arbitrary number of workstations.
When traversals reach external links connecting one sub-graph to
another, that pending traversal work is enqueued and increases the
visitation priority of the linked sub-graph. Batching read and
traversal access in this way can produce a graph processing
system that exhibits maximal performance from data-cache and
disk-access patterns.

Various techniques to improve the efficiency of graph data
processing for Page-Rank style algorithms are discussed in [22].
These are also relevant to Clause-Iteration methods. Among these
are simple approaches to using Combiners between the Map and
Reduce steps, and in-Mapper combining to minimize data
communications. The Cloud9 software toolbox discussed in [22]
may also support enhanced Clause-Iteration performance. Cloud9
enables more ordered clause joining in the Clause-Iteration
approach to reduce the needed iteration over joined edges. Cloud
9 may also provides more control over data partitioning so that
edges which are likely to be joined in the queries can be placed on
the same compute node.

7. ADDITIONAL FUTURE WORK
A trivial extension to the Clause-Iteration approach we are
developing is the Subject-Iteration approach. In practice we
identified that many queries often have clause subjects with
multiple outgoing edges. When coupled with our subject-based
graph representation format, rather than requiring a MapReduce
job for each edge it would be more efficient to iterate and join
over the subjects in a query. Unfortunately, this approach may
not always be beneficial due to the extra overhead to perform the
join operations. However, depending on the connectedness of the
query graph, query graphs with many more edges than nodes
would potentially benefit greatly from a Subject-Iteration
approach.

We have also been investigating the impact of query ordering on
the practical performance of the Clause-Iteration implementations.
As alluded to above, query clauses may need to be reordered to
ensure that there are common variables to join partial query

response on every iteration. Query reordering for improved
performance is an ongoing research topic in the general
information management community [18], but we have found in
practice that minimizing the scale of the join operation has a
potentially large impact on the performance of the Clause-
Iteration implementation in SHARD. The challenge is in
estimating the scale of the join operations due to possible query
reordering without actually performing the join operation. A
feasible approach may be based on data sampling.

We are also investigating more effective methods to index data.
This will most likely need to be supported by a modification to the
Hadoop implementation of the MapReduce framework that
supports native indexing instead of basic Map operations over all
data elements. Additional performance improvement of our
design in a targeted production environment could be provided by
using cached partial results both locally for high-performance
parallel operations and globally by a NameNode-like entity that
tracks local caching of partial results. This will require additional
capability in a software framework to track partial results that
were previously cached and possibly to track which cached results
could be thrown out to save disk space in the cloud (if this
becomes a deployment concern.)

8. REFERENCES
[1] Amazon. (2010) Amazon EC2 Instance Types. Retrieved

from http://aws.amazon.com/ec2/instance-types/

[2] Berners-Lee, Tim; James Hendler and Ora Lassila (May 17,
2001). "The Semantic Web". Scientific American Magazine.

[3] Bigdata Scale-out Architecture. (2010) Retrieved from
http://www.bigdata.com/whitepapers/bigdata_whitepaper_10
-13-2009_public.pdf

[4] Cassandra. (2010) Retrieved from
http://cassandra.apache.org/

[5] Dean J. and Ghemawat S., MapReduce: Simplified data
processing on large clusters. In Proceedings of the USENIX
Symposium on Operating Systems Design & Implementation
(OSDI), pp. 137-147. 2004.

[6] DeWitt D., Stonebraker M. MapReduce: A major step
backwards. databasecolumn.com. Retrieved from
http://databasecolumn.vertica.com/database-
innovation/MapReduce-a-major-step-backwards/. Retrieved
2010-08-29.

[7] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL
knowledge base systems. Journal of Web Semantics 3(2)
(2005) 158–182

[8] Grigoris A., van Harmelen F. A Semantic Web Primer, 2nd
Edition. The MIT Press, 2008.

[9] Hadoop. (2010). Apache Hadoop. Retrieved from
http://hadoop.apache.org/

[10] HBase (2011). Apache HBase. Retrieved from
http://hbase.apache.org/

[11] Hendler J., Web 3.0: The Dawn of Semantic Search. In
IEEE Computer, Jan. 2010.

[12] Husain M., McGlothlin J., Masud M., Khan L., and
Thuraisingham B. Heuristics Based Query Processing for
Large RDF Graphs Using Cloud Computing. To appear in
IEEE Transaction on Data and Knowledge Engineering
Journal (TKDE).

[13] Hypergraph (2010) Retrieved from
http://www.kobrix.com/hgdb.jsp

[14] InfiniteGraph (2010) Retrieved from
http://www.infinitegraph.com/

[15] Jena (2010) Retrieved from http://jena.sourceforge.net/

[16] Kantarcioglu M. and Thuraisingham B. (2010) HBase Graph
for Jena. Retrieved from
http://cs.utdallas.edu/semanticweb/HBase-
Extension/hbase-extension.html

[17] Kiryakov A., Tashev Z., Ognyanoff D., Velkov R.,
Momtchev V., Balev B., Peikov I. "Validation goals and
metrics for the LarKC platform." LarKC Report FP7 –
215535.

[18] Kolas, D., Query Rewriting for Semantic Web Information
Integration, Proceedings of the Information Integration on
the Web workshop. 2007.

[19] Kolas D., Emmons I. and Dean M., Efficient Linked-List
RDF Indexing in Parliament. In the Proceedings of the
Scalable Semantic Web (SSWS), 2009.

[20] LarKC (2010) Retrieved from http://www.larkc.eu

[21] Li P., Zeng Y., Kotoulas S., Urbani J., and Zhong N., "The
Quest for Parallel Reasoning on the Semantic Web," in
Proceedings of the 2009 International Conference on Active
Media Technology, LNCS, 2009.

[22] Lin J. and Schatz M., Design patterns for efficient graph
algorithms in MapReduce. In Proceedings of the Eighth
Workshop on Mining and Learning with Graphs. 2010.

[23] LinkingOpenData. (2010) Retrieved from
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProj
ects/LinkingOpenData

[24] Mika, P. and Tummarello, G. 2008. Web Semantics in the
Clouds. IEEE Intelligent Systems 23, 5 (Sep. 2008), 82-87.

[25] Neo4j (2010) Retrieved from http://neo4j.org/

[26] OrientDB From http://www.orientechnologies.com/

[27] Owens, A., Seaborne, A., Gibbins, N., mc schraefel:
Clustered TDB: A clustered triple store for Jena. In:
WWW2009. (November 2008)

[28] OWL. (2010) Web Ontology Language (OWL.) Retrieved
from http://www.w3.org/TR/owl2-overview/

[29] Parliament (2010) Retrieved from
http://parliament.semwebcentral.org/

[30] Pig (2011) Apache Pig. Retrieved from
http://pig.apache.org/

[31] Project Voldemort. (2010) Retrieved from http://project-
voldemort.com/

[32] Robey Pointer, Nick Kallen, Ed Ceaser, John Kalucki.
Introducing FlockDB.
http://engineering.twitter.com/2010/05/introducing-
flockdb.html

[33] RDF. (2010) Resource Description Framework (RDF)
Retrieved from http://www.w3.org/RDF/

[34] Rohloff K., Dean M., Emmons I., Ryder D., Sumner J.. “An
Evaluation of Triple-Store Technologies for Large Data
Stores.” SSWS '07, Vilamoura, Portugal, Nov 27, 2007.

[35] Rohloff K, Schantz R., High-Performance, Massively
Scalable Distributed Systems using the MapReduce Software
Framework: The SHARD Triple-Store. International
Workshop on Programming Support Innovations for
Emerging Distributed Applications (PSI EtA), 2010.

[36] Sesame (2010). Retrieved from http://www.openrdf.org/

[37] SHARD (2011) Retrieved from http://www.dist-
systems.bbn.com/people/krohloff/shard.shtml

[38] SPARQL. (2010) SPARQL Query Language for RDF
http://www.w3.org/TR/rdf-sparql-query/

[39] Sridhar R., Ravindra P. and Anyanwu K. RAPID:
Enabling Scalable Ad-Hoc Analytics on the Semantic
Web. ISWC 2009.

[40] VertexDB (2010) Retrieved from
http://www.dekorte.com/projects/opensource/vertexd

[41] White T., Hadoop: The Definitive Guide. O'Reilly Media,
Inc. June 2009.

[42] Urbani J., Kotoulas S., Maassen J., van Harmelen F., and Bal
H. OWL reasoning with WebPIE: calculating the closure of
100 billion triples, In Proceedings of the ESWC '10, 2010.

[43] Urbani J., Kotoulas S., Oren E., and van Harmelen F.,
"Scalable Distributed Reasoning using MapReduce," In
Proceedings of the ISWC ‘09, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

