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Abstract 
Accellerating the development of a practical Fully 
Homomorphic Encryption (FHE) scheme is the goal of the 
DARPA PROCEED program. For the past year, this 
program has had as its focus the acceleration of various 
aspects of the FHE concept toward practical 
implementation and use. FHE would be a game-changing 
technology to enable secure, general computation on 
encrypted data, e.g., on untrusted off-site hardware. 
However, FHE will still require several orders of magnitude 
improvement in computation before it will be practical for 
widespread use.  

Recent theoretical breakthroughs demonstrated the 
existence of FHE schemes [1, 2], and to date much progress 
has been made in both algorithmic and implementation 
improvements. Specifically our contribution to the Proceed 
program has been the development of FPGA based 
hardware primitives to accelerate the computation on 
encrypted data using FHE based on lattice techniques [3].   
Our project, SIPHER, has been using a state of the art tool-
chain developed by Mathworks to implement VHDL code 
for FPGA circuits directly from Simulink models. Our 
baseline Homomorphic Encryption prototypes are 
developed directly in Matlab using the fixed point toolbox 
to perform the required integer arithmetic. Constant 
improvements in algorithms require us to be able to quickly 
implement them in a high level language such as Matlab.  
We reported on our initial results at HPEC 2011 [4]. In the 
past year, increases in algorithm complexity have 
introduced several new design requirements for our FPGA 
implementation. This report presents new Simulink 
primitives that had to be developed to deal with these new 
requirements. 

A review of Fully and Somewhat 
Homomorphic Encryption 
Fully Homomorphic Encryption (FHE) holds the promise to 
securely run arbitrary computations over encrypted data on 
untrusted computation hosts [2].  The general FHE concept 
of operations is that sensitive data is encrypted with a 
public key, then sent to an untrusted computation host, 
which can perform arbitrary computations on the encrypted 
data without first needing to decrypt it.  It has been shown 
to be theoretically possible to evaluate arbitrary programs 
using just two special purpose FHE operations, EvalAdd 
and EvalMult, which at the simplest level, roughly 
correspond to bitwise XOR and AND gates operating on 
encrypted bits.  A sequence of these operations is run 
against the encrypted data, resulting in an encryption of the 

output of the original program run on the unencrypted data.  
This encrypted result can then be sent back to the original 
client, who decrypts the result using its secret key.  The 
encrypted data is protected at all times with reasonable 
security guarantees based on computational hardness 
results.   

A ‘Fully’ Homomorphic Encryption scheme allows and 
unlimited number of these Eval operations to be performed. 
All known FHE schemes are based on computationally hard 
stochastic lattice theory problems, which add some noise 
with each operation and require a very computationally 
expensive “recryption” operation that is periodically run on 
intermediate ciphertexts to keep the noise at a level that still 
permits decryption. A ‘Somewhat’ Homomorphic scheme, 
on the other hand, supports several (but not unlimited) 
EvalMult and EvalAdd operations while preserving the 
correctness of decryption. In other words, SHE can schemes 
support secure computation for only a small subset of 
programs.  By focusing on an SHE scheme, we can direct 
our research towards the implementation of efficient 
hardware primitives, while the FHE community develops 
more efficient recryption algorithms.  

Recent Developments in the SIPHER SHE 
Scheme 
Our current SHE scheme relies on operations that are 
generally inefficient to implement on standard CPU 
architectures (i.e. modular arithmetic with a large modulus). 
The EvalAdd and EvalMult operations for example are 
element wise vector adds and multiplies taken modulo some 
particular prime integer q.  These are trivial to express 
using Matlab:  c = mod(a+b, q) and c = mod(a.*b, q).   

For convenience most of the previously published SHE and 
FHE implementations have used standard tools such as the 
GNU  Multiple Precision Arithmetic Library (GMP) [5], 
which enable researchers to code operations using very 
large integers. This limits their focus to operations on CPUs 
and does not allow them to take advantage of specialized 
parallel computation hardware like FPGAs which provide 
highly cost-effective parallelism. Our approach to 
developing the FPGA code for implementing EvalAdd and 
EvalMult is to develop arithmetic circuits that will achieve 
high throughput by using parallelism and pipelining on the 
FPGA. 

We initially develop prototype descriptions in Matlab that 
we re-implement in a stream-oriented hardware 
implementable manner in Simulink. The results of the 
implementations are compared to verify correctness. A 
conversion from Simulink to VHDL is done in a completely 
automated fashion using Mathwork’s HDL coder.  This tool 
chain provides us the means to develop our primitives, 
including cyclic VHDL based FPGA prototyping, much 
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faster than traditional methods. Some examples of 
efficiency are: 

1. The Matlab and Simulink Models are driven with 
the same fixed point data variables, and generate 
the same format output, simplifying test and 
comparison 

2. The bit width of the circuits is specified at compile 
time by specifying the bit width of the input data. 
The sizing of intermediate mathematical 
operations is done automatically by the fixed point 
toolbox. Thus many of the same models can be 
used for 8 bit or 64 bit inputs.  

3. The resulting VHDL is vendor independent. This 
allows for rapid benchmarking on multiple 
architectures. However, hand optimization of 
VHDL may be required for optimum performance 
in order to take advantage of vendor specific IP. 

Implementing fast modulo add, subtract and 
multiply in Simulink for HDL generation 
Software implementations of modulus usually use some 
form of trial division to determine the remainder operation. 
Implementing modulus integers with large numbers of bits 
in an efficient manner requires the use of special numerical 
algorithms that have been developed, such as the 
Montgomery Reduction [6]. These algorithms avoid 
division by q, but rather scale the integers so that many of 
the divisions can be performed by a power of 2, requiring 
only simple bit shifts. Our SHE requires circuits for fast 
modulo addition and multiplication (to directly implement 
the EvalAdd and EvalMult mentioned above). In addition, 
our scheme relies heavily on the Chinese Remainder 
Transform (CRT), which can be implemented as an 
EvalMult, followed by an FFT [7] that uses modulo integer 
instead of complex arithmetic. The implementation of the 
FFT requires us to perform a standard radix 2 ‘Butterfly’ 
operation, which uses one addition, one subtraction and one 
multiply, all modulo q. Thus we need to implement a 
modulo subtraction as well as addition. 

Initially, our selection of lattice based HE led to looking at 
relatively modest sized modulus, on the order of twenty 
bits. An implementation of Montgomery Reduction based 
arithmetic would be relatively efficient, requiring hardware 

multipliers on the order of 40 bits. However, later research 
showed that for any reasonable security requirements our 
SHE scheme would need O(64) bits for our modulus.  Our 
implementation of Montgomery arithmetic in Simulink 
required us to double our bit width to represent intermediate 
values represented in Montgomery form. We found that 
there is an intrinsic limitation of 128 bit width in Simulink 
even when using the fixed point toolbox. This meant that 
we could not compile our multipliers for bit widths on the 
order of 64 bits.  

Additionally, our early arithmetic models were all designed 
for a single value of modulus q to be used for all operations.  
During the development of our SHE scheme we found that 
using multiple values of related moduli resulted in more 
efficient implementations. Thus our circuits would need to 
operate with multiple (but not unlimited) values of q. As a 
response to this we eliminated Montgomery arithmetic and 
take a simpler approach to modulo addition and subtraction. 

 Figure 1 shows the Matlab code and resulting Simulink 
block for performing a streaming EvalAdd when the inputs 
are constrained to be less than a given modulus q.  The 
model can operate on one pair of inputs every clock cycle. 
The model shown does not have any additional pipeline 
registers for simplicity, but they can be added to the model 
in order to increase the maximum clock speed of the 
resulting VHDL, at a cost of additional pipeline stages. In 
our applications we expect to process streams of input on 
the order of several thousand entries, so this additional 
pipeline latency is trivial.   

Figure 2 shows the Matlab and resulting Simlink block for 
modulo subtraction. The same comments about pipelining 
the circuit apply. 

Modulo multiplication is a much more complicated 
operation, even if the input multiplier and multiplicand are 
bounded by q.  Furthermore, we determined in our earlier 
work that the VHDL code generated by Simulink for large 
multiplications is not automatically pipelined, so the 
resulting multiplies severely restrict the resulting clock 
rates of the circuits. To address these two constraints, we 
adopted a recently developed interleaved modular 
multiplication based on a generalized Barrett reduction [8].  
This multiplier has the following properties: 

1) Long words of bit length L can be represented by n 

 
Figure 1: Internal Structure of Simulink HDL ready Modulo Add primitive. 



smaller words of bit length S (i.e. four 16 bit 
words to represent a 64 bit modulus). 

2) The multiplication is performed in n stages, where 
each stage performs one modulo multiplication 
that is L+S bits long. The stage can be pipelined to 
perform one modulo multiply per clock cycle. 

3) Each stage has a Barrett modulus performed on the 
partial product, which reduces overall bit growth 
of the partial products to L+S. Each stage requires 
3 multiplies, and all divisions required by the 
Barrett algorithm are implemented as simple bit 
shifts. 

4) One circuit can support multiple moduli. All 
parameters that are specific to a given modulus can 
be stored in a table and indexed. 

Figure 3 shows the structure of our resulting multiplier for a 
two stage operation (i.e. L = 2S). Figure 4 shows the model 
for a single stage in the pipeline. All stages use the same 
model.  Again, internal pipelining in the stage is not shown. 

Implementing fast CRT in Simulink for HDL 

generation 
As mentioned earlier, our scheme uses the CRT, which 
relies heavily on modulo arithmetic. We have developed a 
Simulink model for performing a fast CRT, based on the 
primitives discussed above.  We implemented one of the 
standard pipeline decimation in frequency FFT 
architectures, known as the Radix 2, Multiplath Delay 
Commutator [7].  The fundamental structure of the model is 
identical for a complex version that computes the standard 
FFT, and the modulo arithmetic version that computes the 
FFT portion of our CRT. The only difference is in the 
Simulink Model that implements the radix 2 butterfly. 

Figure 3 shows the structure of this pipelined CRT. The 
design trades off area for processing speed. For an N point 
transform, log2(N) radix 2 Butterflies are required (though 
the last butterfly does not require multiplies). Additionally, 
3/2N-2 delay elements are required. The data needs to be 
presented to the circuit in two parallel streams, and the 
resulting output is in bit reverse order. 

We are currently in the process of analyzing the 
performance of this circuit, and determining the size CRT 
operation that can be fit into our candidate FPGA 
architecture.  Our analysis has shown that for high security 
applications we may need to perform CRT operations on 
vectors of up to 214 in length. For such large vector sizes, an 
alternative design approach may be necessary in order to fit 
the circuit within the FGPA. 

Interim Results 
Our presentation will include examples of our primitives 
coded in Matlab and Simulink and examples of VHDL code 
generated by the HDL coder. We will also be able to show 
timing results from Modelsim based simulations of the 
resulting code., as well as actual timings using a Virtex 6 on 
the Xilinx ML605  evaluation board 
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Figure 3: Top level structure of Simulink HDL ready two stage 
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Figure 4: Internal structure of Barrett Modulo Multiply stage 
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Figure 5: Simulink Pipeline FFT Structure 



 

 


