
An update on Scalable Implementation of Primitives for Homomorphic
EncRyption – FPGA implementation using Simulink

David Bruce Cousins, Kurt Rohloff, Chris Peikert, Rick Schantz
Raytheon BBN Technologies, Georgia Institute of Technology

{dcousins, krohloff, schantz}@bbn.com cpeikert@cc.gatech.edu

Abstract
Accellerating the development of a practical Fully
Homomorphic Encryption (FHE) scheme is the goal of the
DARPA PROCEED program. For the past year, this
program has had as its focus the acceleration of various
aspects of the FHE concept toward practical
implementation and use. FHE would be a game-changing
technology to enable secure, general computation on
encrypted data, e.g., on untrusted off-site hardware.
However, FHE will still require several orders of magnitude
improvement in computation before it will be practical for
widespread use.

Recent theoretical breakthroughs demonstrated the
existence of FHE schemes [1, 2], and to date much progress
has been made in both algorithmic and implementation
improvements. Specifically our contribution to the Proceed
program has been the development of FPGA based
hardware primitives to accelerate the computation on
encrypted data using FHE based on lattice techniques [3].
Our project, SIPHER, has been using a state of the art tool-
chain developed by Mathworks to implement VHDL code
for FPGA circuits directly from Simulink models. Our
baseline Homomorphic Encryption prototypes are
developed directly in Matlab using the fixed point toolbox
to perform the required integer arithmetic. Constant
improvements in algorithms require us to be able to quickly
implement them in a high level language such as Matlab.
We reported on our initial results at HPEC 2011 [4]. In the
past year, increases in algorithm complexity have
introduced several new design requirements for our FPGA
implementation. This report presents new Simulink
primitives that had to be developed to deal with these new
requirements.

A review of Fully and Somewhat
Homomorphic Encryption
Fully Homomorphic Encryption (FHE) holds the promise to
securely run arbitrary computations over encrypted data on
untrusted computation hosts [2]. The general FHE concept
of operations is that sensitive data is encrypted with a
public key, then sent to an untrusted computation host,
which can perform arbitrary computations on the encrypted
data without first needing to decrypt it. It has been shown
to be theoretically possible to evaluate arbitrary programs
using just two special purpose FHE operations, EvalAdd
and EvalMult, which at the simplest level, roughly
correspond to bitwise XOR and AND gates operating on
encrypted bits. A sequence of these operations is run
against the encrypted data, resulting in an encryption of the

output of the original program run on the unencrypted data.
This encrypted result can then be sent back to the original
client, who decrypts the result using its secret key. The
encrypted data is protected at all times with reasonable
security guarantees based on computational hardness
results.

A ‘Fully’ Homomorphic Encryption scheme allows and
unlimited number of these Eval operations to be performed.
All known FHE schemes are based on computationally hard
stochastic lattice theory problems, which add some noise
with each operation and require a very computationally
expensive “recryption” operation that is periodically run on
intermediate ciphertexts to keep the noise at a level that still
permits decryption. A ‘Somewhat’ Homomorphic scheme,
on the other hand, supports several (but not unlimited)
EvalMult and EvalAdd operations while preserving the
correctness of decryption. In other words, SHE can schemes
support secure computation for only a small subset of
programs. By focusing on an SHE scheme, we can direct
our research towards the implementation of efficient
hardware primitives, while the FHE community develops
more efficient recryption algorithms.

Recent Developments in the SIPHER SHE
Scheme
Our current SHE scheme relies on operations that are
generally inefficient to implement on standard CPU
architectures (i.e. modular arithmetic with a large modulus).
The EvalAdd and EvalMult operations for example are
element wise vector adds and multiplies taken modulo some
particular prime integer q. These are trivial to express
using Matlab: c = mod(a+b, q) and c = mod(a.*b, q).

For convenience most of the previously published SHE and
FHE implementations have used standard tools such as the
GNU Multiple Precision Arithmetic Library (GMP) [5],
which enable researchers to code operations using very
large integers. This limits their focus to operations on CPUs
and does not allow them to take advantage of specialized
parallel computation hardware like FPGAs which provide
highly cost-effective parallelism. Our approach to
developing the FPGA code for implementing EvalAdd and
EvalMult is to develop arithmetic circuits that will achieve
high throughput by using parallelism and pipelining on the
FPGA.

We initially develop prototype descriptions in Matlab that
we re-implement in a stream-oriented hardware
implementable manner in Simulink. The results of the
implementations are compared to verify correctness. A
conversion from Simulink to VHDL is done in a completely
automated fashion using Mathwork’s HDL coder. This tool
chain provides us the means to develop our primitives,
including cyclic VHDL based FPGA prototyping, much

Sponsored by Air Force Research Laboratory (AFRL) Contract No.
FA8750-11-C-0098. The views expressed are those of the authors and
do not reflect the official policy or position of the Department of
Defense or the U.S. Government. Distribution Statement “A”

faster than traditional methods. Some examples of
efficiency are:

1. The Matlab and Simulink Models are driven with
the same fixed point data variables, and generate
the same format output, simplifying test and
comparison

2. The bit width of the circuits is specified at compile
time by specifying the bit width of the input data.
The sizing of intermediate mathematical
operations is done automatically by the fixed point
toolbox. Thus many of the same models can be
used for 8 bit or 64 bit inputs.

3. The resulting VHDL is vendor independent. This
allows for rapid benchmarking on multiple
architectures. However, hand optimization of
VHDL may be required for optimum performance
in order to take advantage of vendor specific IP.

Implementing fast modulo add, subtract and
multiply in Simulink for HDL generation
Software implementations of modulus usually use some
form of trial division to determine the remainder operation.
Implementing modulus integers with large numbers of bits
in an efficient manner requires the use of special numerical
algorithms that have been developed, such as the
Montgomery Reduction [6]. These algorithms avoid
division by q, but rather scale the integers so that many of
the divisions can be performed by a power of 2, requiring
only simple bit shifts. Our SHE requires circuits for fast
modulo addition and multiplication (to directly implement
the EvalAdd and EvalMult mentioned above). In addition,
our scheme relies heavily on the Chinese Remainder
Transform (CRT), which can be implemented as an
EvalMult, followed by an FFT [7] that uses modulo integer
instead of complex arithmetic. The implementation of the
FFT requires us to perform a standard radix 2 ‘Butterfly’
operation, which uses one addition, one subtraction and one
multiply, all modulo q. Thus we need to implement a
modulo subtraction as well as addition.

Initially, our selection of lattice based HE led to looking at
relatively modest sized modulus, on the order of twenty
bits. An implementation of Montgomery Reduction based
arithmetic would be relatively efficient, requiring hardware

multipliers on the order of 40 bits. However, later research
showed that for any reasonable security requirements our
SHE scheme would need O(64) bits for our modulus. Our
implementation of Montgomery arithmetic in Simulink
required us to double our bit width to represent intermediate
values represented in Montgomery form. We found that
there is an intrinsic limitation of 128 bit width in Simulink
even when using the fixed point toolbox. This meant that
we could not compile our multipliers for bit widths on the
order of 64 bits.

Additionally, our early arithmetic models were all designed
for a single value of modulus q to be used for all operations.
During the development of our SHE scheme we found that
using multiple values of related moduli resulted in more
efficient implementations. Thus our circuits would need to
operate with multiple (but not unlimited) values of q. As a
response to this we eliminated Montgomery arithmetic and
take a simpler approach to modulo addition and subtraction.

 Figure 1 shows the Matlab code and resulting Simulink
block for performing a streaming EvalAdd when the inputs
are constrained to be less than a given modulus q. The
model can operate on one pair of inputs every clock cycle.
The model shown does not have any additional pipeline
registers for simplicity, but they can be added to the model
in order to increase the maximum clock speed of the
resulting VHDL, at a cost of additional pipeline stages. In
our applications we expect to process streams of input on
the order of several thousand entries, so this additional
pipeline latency is trivial.

Figure 2 shows the Matlab and resulting Simlink block for
modulo subtraction. The same comments about pipelining
the circuit apply.

Modulo multiplication is a much more complicated
operation, even if the input multiplier and multiplicand are
bounded by q. Furthermore, we determined in our earlier
work that the VHDL code generated by Simulink for large
multiplications is not automatically pipelined, so the
resulting multiplies severely restrict the resulting clock
rates of the circuits. To address these two constraints, we
adopted a recently developed interleaved modular
multiplication based on a generalized Barrett reduction [8].
This multiplier has the following properties:

1) Long words of bit length L can be represented by n

Figure 1: Internal Structure of Simulink HDL ready Modulo Add primitive.

smaller words of bit length S (i.e. four 16 bit
words to represent a 64 bit modulus).

2) The multiplication is performed in n stages, where
each stage performs one modulo multiplication
that is L+S bits long. The stage can be pipelined to
perform one modulo multiply per clock cycle.

3) Each stage has a Barrett modulus performed on the
partial product, which reduces overall bit growth
of the partial products to L+S. Each stage requires
3 multiplies, and all divisions required by the
Barrett algorithm are implemented as simple bit
shifts.

4) One circuit can support multiple moduli. All
parameters that are specific to a given modulus can
be stored in a table and indexed.

Figure 3 shows the structure of our resulting multiplier for a
two stage operation (i.e. L = 2S). Figure 4 shows the model
for a single stage in the pipeline. All stages use the same
model. Again, internal pipelining in the stage is not shown.

Implementing fast CRT in Simulink for HDL

generation
As mentioned earlier, our scheme uses the CRT, which
relies heavily on modulo arithmetic. We have developed a
Simulink model for performing a fast CRT, based on the
primitives discussed above. We implemented one of the
standard pipeline decimation in frequency FFT
architectures, known as the Radix 2, Multiplath Delay
Commutator [7]. The fundamental structure of the model is
identical for a complex version that computes the standard
FFT, and the modulo arithmetic version that computes the
FFT portion of our CRT. The only difference is in the
Simulink Model that implements the radix 2 butterfly.

Figure 3 shows the structure of this pipelined CRT. The
design trades off area for processing speed. For an N point
transform, log2(N) radix 2 Butterflies are required (though
the last butterfly does not require multiplies). Additionally,
3/2N-2 delay elements are required. The data needs to be
presented to the circuit in two parallel streams, and the
resulting output is in bit reverse order.

We are currently in the process of analyzing the
performance of this circuit, and determining the size CRT
operation that can be fit into our candidate FPGA
architecture. Our analysis has shown that for high security
applications we may need to perform CRT operations on
vectors of up to 214 in length. For such large vector sizes, an
alternative design approach may be necessary in order to fit
the circuit within the FGPA.

Interim Results
Our presentation will include examples of our primitives
coded in Matlab and Simulink and examples of VHDL code
generated by the HDL coder. We will also be able to show
timing results from Modelsim based simulations of the
resulting code., as well as actual timings using a Virtex 6 on
the Xilinx ML605 evaluation board

References
[1] C. Gentry and S. Halevi. Implementing Gentry’s Fully-

Homomorphic encryption scheme. In Kenneth Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, chapter
9, pages 129–148. Springer, 2011.

[2] D. Micciancio. A first glimpse of cryptography's Holy Grail.
Comm. ACM 53, 3 (March 2010), 96-96.

[3] V. Lyubashevsky, C. Peikert, and O. Regev. “On ideal
lattices and learning with errors over rings”. In Henri Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, chapter 1, pages

Figure 2: Internal Structure of Simulink HDL ready
Modulo Subtract primitive.

Figure 3: Top level structure of Simulink HDL ready two stage

Barrett Modulo Multiply primitive.

Figure 4: Internal structure of Barrett Modulo Multiply stage

1–23. Springer Berlin / Heidelberg, Berlin.

[4] D. Cousins, K. Rohloff, C. Peikert, R. Schantz “Scalable
Implementation of Primitives for Homomorphic EncRyption
– FPGA implementation using Simulink” 2011 High
Performance Extreme Computing Workshop Sep 21-22
2011, Lexington MA

[5] http://gmplib.org/ last accessed May 14, 2012.

[6] P. L. Montgomery “Modular Multiplication Without Trial
Division”, Mathematics of Computation Vol. 44, No. 170
(Apr., 1985), pp. 519-521, American Mathematical Society.

[7] L. R. Rabiner and B. Gold. Theory and Application of Digital
Signal Processing. Prentice-Hall, Inc., 1975.

[8] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster
Interleaved Modular Multiplication Based on Barrett and
Montgomery Reduction Methods”, IEEE Transactions on
Computers, Vol. 59, No. 12, Dec 2010.

Figure 5: Simulink Pipeline FFT Structure

