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Abstract: This paper discusses problems related to partial observation supervisory controllers
with possibly faulty sensors in the framework of discrete-event systems. At initialization all
controller sensors are operational such that all sensors correctly communicate their event
observations to the controller. Sensor failures are unobservable. After a sensor fails, it sends
no signals to the controller. Depending on the sensor failure dynamics, the controlled system
could exhibit a bounded range of behaviors. We define languages that respectively define the
minimal and maximal sets of behaviors that could be exhibited by a controlled system with
faulty sensors. We introduce bounded discrete-event supervisory control problems for faulty-
sensor control systems. We use a construction to test for the existence of controllers with faulty
sensors for two different control scenarios. We discuss how to synthesize these controllers using
standard supervisory control methods.
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1. INTRODUCTION

When designing a controller for a system to match a
given specification it is generally desirable in safety-critical
applications for the controller to be fault tolerant. That
is, it is desirable to design controllers in a redundant
manner such that even if the controller fails partially, it
will still be able to achieve its control objective, or at
least not fail catastrophically. This area of research, called
Fault Tolerant Control (FTC), has been active in several
branches of control theory (Blanke et al. (2003); Patton
(1997)).

There has been some research in fault-tolerant control for
discrete-event systems (Blanke et al. (2003); Dumitrescu
et al. (2004); Girault and Rutten (2004); Jensen (2003)).
However, partial-observation supervisory controllers, as
introduced in Lin and Wonham (1988), have traditionally
been designed with the assumption that the controllers
are fault-free. The standard assumption of controller (and
controller sensor) infallibility may not be reasonable over
the full life-cycle of a control system due to the natural
deterioration of control systems over time. For instance,
control circuitry may degenerate as a control system ages,
a control actuator may become stuck, or sensors may fail.
These partial control system failures may alter the abilities
of the control system.

Our work in this paper builds off our previous work in
Rohloff (2005) where we introduced the concept of faulty-
sensor control, a version of observability for systems with
faulty sensors called sensor failure observability. and in-
troduced the

−→
G construction to test sensor failure ob-

servability. There has been some related work including
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Sanchez and Montoya (2006); Ushio and Takai (2009);
Xu and Kumar (2009) which investigate other approaches
to control with faulty sensors. Also relevant is the prior
work in Paoli et al. (2011) which looks at issues related to
diagnosis with faulty sensors.

In Sanchez and Montoya (2006) a formal method is pro-
posed based on the parallel operation of multiple super-
visory controllers to avoid “disaster” states under observ-
ability failure where single event sensors may fail. Blocking
is only considered in Sanchez and Montoya (2006) before
sensor failures occur.

In this paper, we apply existing supervisory control tech-
niques to the problem of supervisory control with sensor
failure. This is stated as being an open problem in Sanchez
and Montoya (2006). Additionally, we go beyond the safe
supervisory control problem by formulating a notion of
observability for faulty sensor systems and we consider
control scenarios where both exact and non-blocking be-
havior is required. This approach to sensor failure supervi-
sory control was originally formulated in the preliminary
conference paper Rohloff (2005), which was developed
independently of Sanchez and Montoya (2006).

As an illustration of the challenge of supervisory control
with faulty sensors, one might think that for there to
exist a supervisory control system that is tolerant to
single sensor failures, one could ensure that for all σ ∈
Σo, Lm(H) is observable with respect to L(G), Σo \
{σ} and Σc. That is, one might expect that if for a
specification H and system G that if any one event σ ∈ Σo

is made unobservable during control operation, but the
specification Lm(H) is always observable with respect
to any Σo \ {σ}, then there would exist a nonblocking
controller S tolerant to single sensor failures such that



the controller behavior matches Lm(H). This would be
a valid statement if one could ensure that sensors fail only
at initialization and one has foreknowledge about which
sensor fails. Unfortunately, this is generally not the case.
Consider the following example.

Example 1. Consider the system automaton G and the
specification automaton H seen in Figure 1.
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Fig. 1. The system automaton G and the specification
automaton H for Example 1.

Let Σc = {α}. If Σo = {λ}, the proper control action at
initialization would be to disable α. Similarly, if Σo = {γ},
then the proper control action would be to enable α at
initialization. However, if Σo = {γ, λ}, and if either
the sensor for γ or λ may fail at initialization, and the
controller can have no direct observations of sensor failure,
then there is no correct initial control action. Therefore, it
is not possible to synthesize a controller with possibly faulty
sensors for this example when Σo = {γ, λ} to match the
specification L(H) even though for all σ ∈ Σo, L(H) is
observable with respect to L(G), Σo \ {σ} and Σc.

In Rohloff (2005) we exclusively focused on the use of

the
−→
G and

−→
H constructions to identify controller exis-

tence properties with respect to the maximal behavior
permitted by a controller under faulty sensor scenarios.
(We now define this maximal behavior the exclusive lan-
guage L∪(S◦/G).) The major contribution of this work are
controller existence tests and controller synthesis meth-
ods for scenarios when the controlled behavior should be
bound between minimal and maximal behaviors despite
the existence of faulty sensors. Additionally, we use our
previous

−→
G and

−→
H constructions from Rohloff (2005) and

the standard framework and mechanisms from discrete-
event supervisory control theory. Although we focus on
a particular sensor failure model that we identified in our
previous work in Rohloff (2005), our approaches generalize

to other approaches by appropriately modifying the
−→
G

and
−→
H constructions to match the assumed sensor failure

dynamics.

The paper is structured as follows. Section 2 formalizes
the behavioral properties and notations of control systems
with faulty sensors. Section 3 formalizes the faulty sensor
control scenarios that are analyzed in this paper. Section
4 presents an observability property for systems with
faulty sensors. Section 5 discusses approaches to testing
controller existence and performing controller synthesis
for the bounded and matched faulty controller problems.
Section 6 closes the paper with a review of the results
contained herein and a brief discussion of how to generalize
the identified results for other sensor failure dynamics.

2. FAULTY SENSOR SYSTEM DYNAMICS

As in Rohloff (2005), we assume that after a sensor fails,
the sensor halts sending signals to the controller. Sensor

failures are assumed to be sufficiently uncommon that it is
valid to assume only one sensor will be failed at any given
time.

We generalize the deterministic projection operation (orig-
inally P : Σ∗ → Σ∗

o) to the faulty sensor projection
operation P f : Σ∗ → Σo

∗ where if a string s ∈ Σ∗ occurs in
the system, the set P f (s) represents all strings that could
be observed due to the occurrence of s.

Before formally defining P f (·), let the projection Pσ :
Σ∗ → (Σo \ {σ})

∗
be defined the same as P (·) except that

events in Σo \ {σ} are retained in the projection instead
of events in Σo. That is, for the empty event ǫ, Pσ(ǫ) = ǫ,
and for a string of events s and an event γ,

Pσ(sγ) =

{

Pσ(s)γ if γ ∈ Σo \ {σ}
Pσ(s) otherwise

.

Then, for a string s ∈ Σ∗, we define the set P f (s) as
follows:

P f (s) = {P (s1)Pσ(s2)|s1s2 = s, σ ∈ Σo.} (1)

For a controller S(·) with faulty sensors, any string in
P f (s) ⊆ 2Σ

∗

o could be observed by the controller due
to the occurrence of s. Suppose t ∈ P f (s) is the string
nondeterministically observed by the controller due to the
occurrence of s. Then, S(t) ∈ 2Σc ∪ Σuc is the control
action enforced by the controller due to the observation
of t after s occurs in the system. As alluded to in prior
work (Rohloff (2005); Sanchez and Montoya (2006); Ushio
and Takai (2009); Xu and Kumar (2009)), even though a
faulty-sensor supervisory controller may deterministically
map observations to control actions, nondeterministic sen-
sor failures cause the controller to operate in a nondeter-
ministic manner due to the nondeterministic mapping of
event occurrences to observations and the deterministic
mapping of observations to control actions. As we show in
this paper, we can use deterministic controllers to satisfy
control objectives even if we have imperfect information
about unobserved sensor failures and event occurrences
due to these unobserved sensor failures.

The basis of our approach to controller existence testing
and synthesis for faulty-sensor systems is to more explicitly
account for faulty sensor dynamics which lead to nondeter-
ministic mapping of event occurrences to control actions
with a deterministic controller. To reinforce the fact that,
due to different observation projections, the coupling of S
with G under the assumption of faulty sensors is inherently
different from the control coupling under the assumption of
fault-free sensors denoted by S/G, we use S◦/G to denote
the composed system of a supervisory controller S with
faulty sensors operating on G.

Unfortunately, due to the nondeterministic observation be-
havior of a faulty-sensor controller, the generated language
of S◦/G cannot be defined in the usual manner. For a string
s ∈ L(G) there may be multiple possible control actions
by the controller due to a nondeterministic observation of
an occurrence of s. That is, if for two strings t, t′ ∈ P f (s)
such that (σ ∈ S(t))∧ (σ 6∈ S(t′)) and s is in the language
generated by S◦/G, should sσ be in the language generated
by S◦/G?



This uncertainty motivates the need to define two classes
of languages for faulty-sensor systems. We define inclusive
languages to be the set of strings where there exists some
faulty sensor observation that causes the controller to
allow the string. Conversely, we define exclusive languages
to be the set of strings accepted where all possible obser-
vations due to a string cause the controller to allow the
string.

Definition 1. The inclusive language generated by S◦/G
and denoted by L∪(S◦/G) is defined recursively as follows:

• ǫ ∈ L∪(S◦/G).
• sσ ∈ L∪(S◦/G) if and only if s ∈ L∪(S◦/G), sσ ∈ L(G)

and ∃t ∈ P f (s) such that σ ∈ S(t).

The inclusive language marked by S◦/G, denoted by
L∪

m(S◦/G), is L∪(S◦/G) ∩ Lm(G).

Definition 2. The exclusive language generated by S◦/G
and denoted by L∩(S◦/G) is defined recursively as follows:

• ǫ ∈ L∩(S◦/G).
• sσ ∈ L∩(S◦/G) if and only if s ∈ L∩(S◦/G), sσ ∈ L(G)

and ∀t ∈ P f (s), σ ∈ S(t).

The exclusive language marked by S◦/G, denoted by
L∩

m(S◦/G), is L∩(S◦/G) ∩ Lm(G).

As may be intuitive, the exclusive language L∩(S◦/G) is
always contained in the inclusive language L∪(S◦/G).

3. SENSOR FAILURE CONTROL SCENARIOS

Inclusive and exclusive languages are useful for specify-
ing the maximum and minimum sets of behavior that
could occur in a faulty sensor system despite the non-
deterministic control dynamics due to sensor failures. This
motivates us to define two faulty sensor supervisory control
scenarios. The more general scenario, called the Bounded
Faulty-Sensor Supervisory Control Problem, focuses on
ensuring that the behavior of the controlled system with
faulty sensors (S◦/G) is contained between lower and upper
boundary languages, J and L respectively, no matter the
failure dynamics.

Problem 1. The Bounded Faulty-Sensor Supervisory Con-
trol Problem: For a system G, a set of controllable events
Σc, a set of observable events Σo and two languages J = J ,
L = L such that J ⊆ L ⊆ L(G), find a supervisor S such
that

J ⊆ L∩(S◦/G)
L∪(S◦/G) ⊆ L.

(2)

A second control scenario is a special case of the bounded
control scenario, called the Matched Faulty-Sensor Su-
pervisory Control Problem, ensures that the behavior of
the controlled system with faulty sensors (S◦/G) always
matches the behavior of a languageK no matter the failure
dynamics, so that no deviance away from the specification
behavior K is permitted.

Problem 2. The Matched Faulty-Sensor Supervisory Con-
trol Problem: For a system G, a set of controllable events
Σc, a set of observable events Σo and a language K = K ⊆
L(G), find a supervisor S such that

L∩(S◦/G) = L∪(S◦/G) = K. (3)

Although Problems 1 and 2 are presented only in terms
of generated languages, marked language versions of these
problems exist where the faulty-sensor controllers should
be non-blocking. We present results on the generated
language bounded control problem and the marked non-
blocking matched control problem in Section 5.

4. SENSOR FAILURE OBSERVABILITY

Due to the insufficiency of observability as a necessary and
sufficient condition for fault-tolerant controller existence,
we previously introduced an alternative version of observ-
ability called observability with respect to sensor failure,
or sensor failure observability for short in Rohloff (2005).
This property is useful to solve faulty sensor controller
existence problems for the control scenarios in Section 3.

Definition 3. Rohloff (2005) Consider the set of control-
lable events Σc, the set of observable events Σo and the
languages K and M such that M = M . The language K
is sensor failure observable with respect to M , P f (·) and
Σc if for all t ∈ K and for all σ ∈ Σc,

[(

tσ /∈ K
)

∧ (tσ ∈ M)
]

⇒ (4)
[

P f−1 [

P f (t)
]

σ ∩K = ∅
]

.

Similar to observability for standard supervisory control,
the concept of sensor failure observability is part of the
set of necessary and sufficient conditions for faulty-sensor
controller existence for the matched faulty sensor control
problem. The following theorem is a generalization a result
previously shown in Rohloff (2005) to account for the
newly define inclusive and exclusive languages.

Theorem 1. For a finite state automaton system G, a fi-
nite state automaton specification H such that Lm(H) ⊆
L(G), a set of controllable events Σc and a set of observable
events Σo with sensors that may fail there exists a non-
blocking partial observation faulty sensor controller S such
that L∩

m(S◦/G) = L∪

m(S◦/G) = Lm(H) and L∩(S◦/G) =

L∪(S◦/G) = Lm(H) if and only if the following conditions
hold:

(1) Lm(H) is controllable with respect to L(G) and Σuc.
(2) Lm(H) is sensor failure observable with respect to

L(G), Σo and Σc.
(3) Lm(H) is Lm(G)-closed.

The proof of this theorem is a variation on the proof of
the controllability and observability theorem as originally
discussed in Lin and Wonham (1988). For the sake of
brevity, we do not show this proof here.

5. FAULTY SENSOR CONTROL EXISTENCE AND
SYNTHESIS

This section focuses on properties of controller existence
and synthesis to solve faulty sensor control problems. In
Rohloff (2005) we introduced the

−→
G and

−→
H constructions

from G and H to test sensor failure observability. We can
use these constructions to test controller existence and
synthesize controllers that solve variations of the faulty-
sensor supervisory control Problems 1 and 2.



The goal of the constructions of
−→
G and

−→
H is that if there

are two strings t1, t2 ∈ L(G)∩Lm(H) and an event σ ∈ Σc

such that t1σ ∈ Lm(H) then we know that the properties

t2σ ∈ L(G) \ Lm(H) and P f (t1) ∩ P f (t2) 6= ∅ hold. This
example is a violation of sensor failure observability with
respect to L(G), Σo and Σc. When P f (t1)∩P f (t2) 6= ∅, it
is possible for the sensors of the controllers to fail in such
a way that the observation generated by t1 in G and the
observation generated by t2 in G are identical. Further,
because there is an event σ ∈ Σc such that t1σ ∈ Lm(H)

and t2σ ∈ L(G)\Lm(H), then it is possible that the correct
control action after t2 cannot be known due to possible
observations of t1 and t2 with respect to sensor failure.

The basis of the
−→
G construction from G is to model

how sensor failure dynamics affect the observations of a
supervisory controller operating on G. For every string
s ∈ L(G), there is a corresponding set of strings P f (s)
that represent possible observations due to faulty sensors
that could be generated from s. For a system G and a set of
events Σo, the automaton

−→
G is constructed such that every

string −→s ∈ L(
−→
G) encodes both the underlying behavior

of the system G that generates s and the sensor failure
dynamics that would generate an observation sf ∈ P f (s).

If there are n observable events Σo = {σ1, . . . , σn}, the
−→
G

model of the system G has n+ 1 modes of operation with
respect to sensor failure. In the initial mode of operation,
mode 0, all sensors for observable events are operational.
However, when the sensor for event σi ∈ {σ1, . . . , σn} fails,
the system then enters one of the other modes of operation
where σi event occurrences are no longer observable. The
underlying state transition behavior in G does not change
despite any sensor failures, but the observability properties
of events occurrences are altered between various modes of
operation.

To model the sensor failure dynamics in
−→
G , two sets of

events FΣo = {fσ1

, . . . , fσn

} and Σf
o = {σ1f , . . . , σnf}

are defined where every observable event σi ∈ Σo has the

corresponding events fσi

∈ FΣo and σif ∈ Σf
o . In the

set FΣo , fσi

models the failure of the sensor for event σi

which drives a transition from mode 0 to mode i. When in
mode i, σif events are used in place of σi events in order
to model the altered observability of σi due to the mode
switch.

We restrict our analysis and discussion to the scenario
where sensor failures (i.e., events in FΣo) are unobservable.
However, it is feasible to generalize the our approaches
to scenarios where some or all of the sensor failures are
observable by making the corresponding events in FΣo

observable.

Taken together, the automata
−→
G and

−→
H are constructed

to be augmented copies of G and H such that there exists
a faulty-observation equivalent pair t1, t2 in G and H such
that P f (t1) ∩ P f (t2) 6= ∅ if and only if there are two

strings
−→
t 1,

−→
t 2 ∈ Lm(

−→
G) and

−→
t 1,

−→
t 2 ∈ Lm(

−→
H ) such

that P (
−→
t 1) = P (

−→
t 2). Furthermore, there are additional

states d and dm in
−→
G and

−→
H such that t1σ ∈ Lm(H)

if and only if
−→
t 1σ ∈ Lm(

−→
H ) and t2σ ∈ L(G) \ Lm(H)

if and only if
−→
t 2σ ∈ L(

−→
G) \ Lm(

−→
H ) if P (t) = P (

−→
t ).

This construction converts the sensor failure observability
test of Lm(H) with respect to L(G), Σo and Σc into an

observability test of Lm(
−→
H ) with respect to L(

−→
G),

−→
Σ o and

−→
Σ c.

If a slight abuse of notation is used to extend the definition

of P (·) over an expanded domain such that P :
−→
Σ

∗

→ Σ∗

o,
our controller existence results rely on the result that
P f (Lm(G)) = P (Lm(

−→
G)) which we do not show for the

sake of brevity.

5.1 Bounded Faulty Sensor Control

This section focuses on how the bounded faulty sensor
controller existence and synthesis problems can be solved
using the

−→
G construction. Suppose a system model G and

minimum and maximum behavior specification automata
A and E are given such that L(A) ⊆ L(E) ⊆ L(G) and

the automata
−→
A ,

−→
E ,

−→
G are constructed from them and

a set of observable events Σo and controllable events Σc.
For a controller

−→
S , L(

−→
A ) ⊆ L(

−→
S /

−→
G) ⊆ L(

−→
E ) implies

that L(A) ⊆ L∩(
−→
S ◦/G) and L∪(

−→
S ◦/G) ⊆ L(E).

Theorem 2. Suppose a system model G and minimum
and maximum behavior specification automata A and
E are given such that L(A) ⊆ L(E) ⊆ L(G) and the

automata
−→
A ,

−→
E ,

−→
G are constructed from them and a set of

observable events Σo and controllable events Σc. For any
controller

−→
S such that L(

−→
A ) ⊆ L(

−→
S /

−→
G) ⊆ L(

−→
E ), the

same controller can be used such that L(A) ⊆ L∩(
−→
S ◦/G)

and L∪(
−→
S ◦/G) ⊆ L(E).

Proof. We demonstrate this theorem in two parts. We
start by showing through a proof by induction on the
length of s that if L(

−→
A ) ⊆ L(

−→
S /

−→
G) then

(s ∈ L(A)) ⇒
(

s ∈ L∩(
−→
S ◦/G)

)

.

To start, suppose that |s| = 0. This implies that s = ǫ.
We assume without loss of generality that A and G are
non-empty automata, so by definition ǫ ∈ L(A) and

ǫ ∈ L∩(
−→
S ◦/G).

For the induction hypothesis, suppose that for |s| ≤ n,

(s ∈ L(A)) ⇒
(

s ∈ L∩(
−→
S ◦/G)

)

.

Suppose that |s| = n and for some event σ ∈ Σ, sσ ∈ L(A).
By the definition of L(·), s ∈ L(A), and from the induction

hypothesis, s ∈ L∩(
−→
S ◦/G). Because L(A) ⊆ L(G), sσ ∈

L(G).

If σ ∈ Σuc, then by the implicit assumption that
−→
S is

admissible, then sσ ∈ L∩(
−→
S ◦/G).

If
−→
P (·) is the projection that maps from events in

−→
G

to Sigmao, let −→s be any element of
−→
P

−1

(s). If σ ∈

Σc, then −→s σ ∈ L(
−→
A ) by the construction of A. This

implies that −→s σ ∈ L(
−→
S /

−→
G). Because −→s is any element

of
−→
P

−1

(s), then for any observation s′ ∈ P f (s) due to
the occurrence of s (which are represented by the failure



dynamics encoded in the strings in
−→
P

−1

(s)), σ will be
enabled after the occurrence of s. Hence, by the definition
of L∩(

−→
S ◦/G), sσ ∈ L∩(

−→
S ◦/G).

We now show through a proof by induction on the length
of s that if L(

−→
S /

−→
G) ⊆ L(

−→
E ) then

(

s ∈ L∪(
−→
S ◦/G)

)

⇒ (s ∈ L(E))

To start, suppose that |s| = 0. This implies that s = ǫ.
We assume without loss of generality that E and G are
non-empty automata, so by definition ǫ ∈ L(E) and

ǫ ∈ L∪(
−→
S ◦/G).

For the induction hypothesis, suppose that for |s| ≤ n,
(

s ∈ L∪(
−→
S ◦/G)

)

⇒ (s ∈ L(E)).

For the induction step, suppose that |s| = n and there

exists a σ such that sσ ∈ L∪(
−→
S ◦/G). This implies sσ ∈

L(G). By the control law, we know that
−→
S enables σ after

observing some sensor failure observation of t ∈ P f (s).

Because P f (Lm(G)) = P (Lm(
−→
G)) there exists a strings

−→s such that P (−→s ) = t ∈ P f (s) and −→s σ ∈ L(
−→
G).

We therefore know that
−→
S enables σ after observing

t = P (−→s ). Consequently, −→s σ ∈ L(
−→
S /

−→
G) and we therefore

know that −→s σ ∈ L(
−→
E ).

From the construction of
−→
E , −→s σ ∈ L(

−→
E ), implies that

sσ ∈ L(E).

5.2 Matched Faulty Sensor Control

Given the
−→
G and

−→
H constructions, there exists a faulty

sensor controller S such that L∩(S◦/G) = L∪(S◦/G) =

Lm(H) if and only if there exists a perfect sensor con-

troller
−→
S such that L(

−→
S /

−→
G) = L(

−→
H ). This result is ob-

tained with a faulty-sensor equivalent of the controllability
and observability theorem developed from the results in
Rohloff (2005) that:

• Lm(H) is controllable with respect to L(G) and Σuc

if and only if Lm(
−→
H ) is controllable with respect to

L(
−→
G) and

−→
Σuc where

−→
Σuc =

−→
Σ \

−→
Σ c.

• Lm(H) is Lm(G)-closed if and only if Lm(
−→
H ) is

Lm(
−→
G)-closed.

Matched faulty sensor existence can now be tested with
the

−→
G and

−→
H constructions as a corollary of Theorem 1:

Corollary 3. Consider G and H such that Lm(H) ⊆ L(G),
a set of controllable events Σc and a set of observable
events Σo. From G, H, Σc and Σo, construct

−→
G ,

−→
H ,

−→
Σ c and

−→
Σ o as discussed above. There exists a non-

blocking faulty sensor controller S such that L∩

m(S◦/G) =

L∪

m(S◦/G) = Lm(H) and L∩(S◦/G) = L∪(S◦/G) = Lm(H)
if and only if there exists a nonblocking perfect sensor
controller

−→
S such that Lm(

−→
S /

−→
G) = Lm(

−→
H ).

An additional convenience of the
−→
G and

−→
H constructions

and the constructive nature of the controllability and
observability theorem is that if a nonblocking controller

−→
S is synthesized under the assumption of perfect sensors
such that Lm(

−→
S /

−→
G) = Lm(

−→
H ), then the same controller

can be used in the faulty-sensor case to ensure that
L∩

m(
−→
S ◦/G) = L∪

m(
−→
S ◦/G) = Lm(H) and L∩(

−→
S ◦/G) =

L∪(
−→
S ◦/G) = Lm(H).

Theorem 4. Consider an automaton system model G, an
specification automaton H such that Lm(H) ⊆ Lm(G), a
set of controllable events Σc and a set of observable events
Σo corresponding to sensors that may fail. From G, H,
Σc and Σo, construct

−→
G ,

−→
H ,

−→
Σ c and

−→
Σ o as discussed

above. If a nonblocking controller
−→
S is synthesized such

that Lm(
−→
S /

−→
G) = Lm(

−→
H ) and L(

−→
S /

−→
G) = Lm(

−→
H ), then

−→
S can be used in the faulty-sensor situation such that
L∩

m(
−→
S ◦/G) = L∪

m(
−→
S ◦/G) = Lm(H) and L∩(

−→
S ◦/G) =

L∪(
−→
S ◦/G) = Lm(H).

Proof. Because there exists a nonblocking controller
−→
S

such that Lm(
−→
S /

−→
G) = Lm(

−→
H ) and L(

−→
S /

−→
G) = Lm(

−→
H ),

then Lm(
−→
H ) is controllable with respect to L(

−→
G), and

−→
Σuc, Lm(

−→
H ) is observable with respect to L(

−→
G),

−→
Σ o

and
−→
Σ c, and Lm(

−→
H ) is Lm(

−→
G)-closed. Because Lm(H)

is sensor failure observable with respect to L(G), Σo and
Σc, Lm(H) is controllable with respect to L(G) and Σuc,
and Lm(H) is Lm(G)-closed.

It is now shown that s ∈ L∩(
−→
S ◦/G) ⇒ s ∈ Lm(H) through

a proof by induction on the length of the string s.

For the induction hypothesis, suppose that |s| = 0 so s = ǫ.

Due to the definition of L∩(
−→
S ◦/G), ǫ ∈ L∩(

−→
S ◦/G) and by

the definition of the prefix-closure, ǫ ∈ Lm(H). Therefore,

ǫ ∈ L∩(
−→
S ◦/G) ⇒ ǫ ∈ Lm(H)

For the induction hypothesis it is assumed that s ∈
L∩(

−→
S ◦/G) ⇒ s ∈ Lm(H) if |s| ≤ n.

For the induction step assume |s| = n. It is now shown

that sσ ∈ L∩(
−→
S ◦/G) ⇒ sσ ∈ Lm(H).

First suppose that sσ ∈ L∩(
−→
S ◦/G) and σ ∈ Σuc. From the

induction hypothesis, s ∈ Lm(H). From the definition of

controllability it must hold that sσ ∈ Lm(H).

Now suppose that sσ ∈ L∩(
−→
S ◦/G) and σ ∈ Σc. This

implies that s ∈ L∩(
−→
S ◦/G), sσ ∈ L(G) and for all

t ∈ P f (s), σ ∈
−→
S (t). The projection P (s) is in P f (s)

by definition, so σ ∈
−→
S (P (s)). Hence, sσ ∈ L(

−→
S /

−→
G).

It is known that L(
−→
S /

−→
G) = Lm(

−→
H ), so sσ ∈ Lm(

−→
H ).

Because sσ ∈ L(G) it is known that sσ ∈ Σ∗. Therefore,

by the construction of
−→
H fromH andH0, sσ ∈ Lm(

−→
H ) im-

plies that sσ ∈ Lm(H). Consequently sσ ∈ L∩(
−→
S ◦/G) ⇒

sσ ∈ Lm(H).

It is now shown that s ∈ Lm(H) ⇒ s ∈ L∪(
−→
S ◦/G) through

a proof by induction on the length of the string s.

For the base of induction, suppose that |s| = 0, so s = ǫ.

By the definition of the prefix-closure, ǫ ∈ Lm(H) and due

to the definition of L∪(
−→
S ◦/G), ǫ ∈ L∪(

−→
S ◦/G).



For the induction hypothesis it is assumed that s ∈
Lm(H) ⇒ s ∈ L∪(

−→
S ◦/G) if |s| ≤ n.

For the induction step assume |s| = n. Let σ be any event.

It is now shown that sσ ∈ Lm(H) ⇒ sσ ∈ L∪(
−→
S ◦/G).

From the definition of prefix-closure, s ∈ Lm(H). From

the induction hypothesis, s ∈ L∪(
−→
S ◦/G).

First suppose that sσ ∈ Lm(H) and σ ∈ Σuc. From the

implicit assumption that
−→
S is an admissible controller, it

must hold that sσ ∈ L∪(
−→
S ◦/G).

Now suppose that sσ ∈ Lm(H) and σ ∈ Σc. Due to the

construction of
−→
H it is known that sσ ∈ Lm(

−→
H ). Because

L(
−→
S /

−→
G) = Lm(

−→
H ), it must hold that sσ ∈ L(

−→
S /

−→
G).

This implies that for some t =
−→
P (s), σ ∈

−→
S (t). Because

sσ ∈ L(
−→
G), then from the construction of

−→
G from G

and G0, sσ ∈ L(G). Hence, when s occurs in G, it is

possible that the controller
−→
S observes a string t such that

σ ∈
−→
S (t). It is therefore possible for σ to be enabled after

s occurs in
−→
S ◦/G. It is already known from the induction

hypothesis that s ∈ L∪(
−→
S ◦/G), so by the definition of L∪(·)

it must be true that sσ ∈ L∪(
−→
S ◦/G).

Due to the two induction proofs, s ∈ Lm(H) ⇒ s ∈

L∪(
−→
S ◦/G) and s ∈ L∩(

−→
S ◦/G) ⇒ s ∈ Lm(H). Conse-

quently, Lm(H) ⊆ L∩(
−→
S ◦/G) and L∪(

−→
S ◦/G) ⊆ Lm(H).

Therefore, L∩(
−→
S ◦/G) = L∪(

−→
S ◦/G) = Lm(H).

6. DISCUSSION AND GENERALIZATION

In this paper we generalized sensor-failure tolerant super-
visory control to the setting of bounded ranges of permissi-
ble control behaviors. We demonstrated techniques to test
for controller existence and synthesize controllers for both
bounded and matched control problems.

A benefit of Theorem 4 is that it can be used to synthesize
a controller

−→
S such that if Lm(H) is not sensor failure

observable with respect to L(G), Σo and Σc, then, using
standard supervisory control methods, one could design
−→
S using the

−→
G and

−→
H constructions such that Lm(

−→
S /

−→
G)

is a maximal controllable and observable sublanguage of
Lm(

−→
H ). Then, the controller

−→
S could be used in the

faulty-sensor situation such that L∩

m(
−→
S ◦/G) or L∪

m(
−→
S ◦/G)

are in a sense maximal.

With a slight abuse of notation, the size of
−→
G and

−→
H is in

O(|FΣo |∗(|G|+|H|)). The constructions grow linearly with
the product of the number of failure modes and the size
of the automata G and H. It is shown in Tsitsiklis (1989)
how observability can be decided in polynomial time with
respect to the size of number of states and (un)observable
event sets. Consequently, we can decide sensor-failure
observability and use the sensor-failure control analysis
procedures discussed in this paper in polynomial time with
respect to the product of the number of failure modes and
the size of the state spaces of G and H.

The approaches we discuss which rely on capturing sensor
failure modes in the

−→
G and

−→
H models will suffer due to

state explosion in the more general case of interleaved sen-
sor failures. In particular, using the naive generalizations
of the approaches presented, interleaved sensor failures
force us to create interleaved state representations. The
resulting state spaces grow exponentially with the number
of interleaved sensor failures.

The assumption of a one-to-one correspondence between
sensors and events can also be generalized using our

−→
G

construction. In particular, in the
−→
G construction, instead

of designing for failure modes that correspond to single
sensor failures, we could design for modes that correspond
to multiple failures. We could also establish transitions
between modes in the

−→
G construction that corresponds to

subsequent failures or even (partial) recoveries.
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