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Abstract 
In this paper we introduce the General Adaptable Metric 

Execution Tool and Environment (GAMETE) to aid the design, 
measurement, and analysis of cyber-physical systems (CPSs). 
GAMETE is a general and extensible environment for 
evaluating and computing metrics associated with the 
performance and complexity of CPS designs. GAMETE 
supports a wide array of metrics that it generates over 
simulation and experimental output data from CPSs. Key 
features of GAMETE are its 1) execution environment to host 
the simulations of CPS models, 2) unified data representation 
to host simulation and experimental data from CPSs, 3) 
dynamic metric library that supports the semi-automated 
evaluation of a wide range of metrics, and 4) standards-based 
integration with design toolchains.  The contribution of this 
paper is the presentation of a reference architecture for batch 
metric computation and a case-study where GAMETE helped 
to quantitatively evaluate the performance of a CPS. 

1. INTRODUCTION 

The cost of modern complex military, aerospace, and other 
systems and systems of systems has skyrocketed in recent 
years. These Cyber-Physical Systems (CPSs) comprise major 
physical components that cannot function properly without 
integrated cyber components (such as engine control systems 
and communication buses) [1][7][10][14]. 

The devices in many, if not all, modern complex CPSs are 
semi-independent and support platforms with common goals 
and missions. The model refinement that occurs during 
multiple design iterations of CPSs creates flexibility that makes 
systems able to cope with changing environments and extends 
their useful life. This flexibility can manifest itself in many 
ways, including being deployed in multiple environments [1] 
and accommodating reconfiguration through new components 
[14] or connections between components [12]. The competent 
design, development, and integration of these systems are 
critical. However, the cost of modern CPSs is growing 
exponentially because it is exceedingly difficult to evaluate the 
integrated design of these complex systems without physical 
testing [1][7][10][14].  

There are extensive models and modeling tools for all of 
the various CPS components [1][10], but there are no 

evaluation frameworks (automated or otherwise) that can 
integrate these models and evaluate these systems during the 
design phase. Furthermore, as CPSs are designed, developed, 
and maintained, there is little support to evaluate whether 
changes to a system are increasing its complexity, and thereby 
increasing its future maintenance and testing cost. 

We developed the General Adaptable Metric Execution 
Tool and Environment (GAMETE) to address these concerns 
and aid in the design and analysis of CPSs. GAMETE is a 
general and extensible environment for evaluating and 
computing performance and complexity metrics for CPS 
design. GAMETE both generates and hosts simulation and 
experimental output data from CPSs that it uses to compute a 
wide variety of performance and complexity metrics. Key 
features of GAMETE are the following: 

 An execution environment to host the simulations of 
CPS models,  

 A unified data representation to host myriad data from 
simulation and experiments of CPSs, 

 A metric library that supports the semi-automated 
evaluation of a wide range of metrics, and  

 A standards-based framework to ease the integration of 
GAMETE with broader design, modeling, and 
simulation toolchains.   

A central part of GAMETE’s capabilities and extensibility 
derives from the only assumption we make on simulation  and 
experimentation engines – that they are processes that can 
commit data directly to a consumer such as GAMETE. 

Although GAMETE is a prototype, we have demonstrated 
the unified data representation and metrics library capabilities 
on a variety of data from third parties. We discuss our use of 
GAMETE to evaluate general classes of metrics as part of the 
design and V&V of a complex cyber-physical military system. 
GAMETE identifies system designs that are less complex, 
more efficient, less likely to fail, less costly, and that have 
higher performance, and evaluates the behavior of designs 
during simulation or experimentation for V&V. 

This paper is organized as follows. In the next section, we 
describe the GAMETE execution environment architecture  
and design. In Section3, we discuss the GAMETE unified data 
representation. In Section 4, we discuss the GAMETE metrics 
library. In Section 5, we discuss related work.  In Section 6, we 
conclude with a discussion of ongoing development of 
GAMETE.  
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2.  UNIFIED DATA REPRESENTATION 

A central part of GAMETE capabilities and extensibility 
derives from the only assumption we make on 
experimentation/simulation engines – that they are processes 
that can commit data directly to a consumer such as GAMETE. 
Examples of experimentation/simulation engines supported by 
GAMETE include engineered systems that generate data 
directly from (i) sensors such as those that might monitor 
aspects of system behavior during testing or that gather 
information during modeling/design, (ii) simulations that might 
generate data over multiple runs, (iii) deterministic evaluations 
of possibly coupled equations, and (iv) model representations, 
such as graph models or equations. GAMETE is designed to 
semi-automate the collection of data as needed from all of these 
online or offline data sources. 

The GAMETE Unified Data Representation (UDR) is a 
meta-model which supports the reporting and storage of 
experimental/simulation/design model data.  The UDR enables 
pluggable metrics and experiments to be developed in the 
execution framework. Our approach in the design of the UDR 
is informed by the Semantic Web domain where all 
information is represented as data graphs with attributes [3].  
Our approach is compatible with systems which analyze time-
varying resource consumption where resource dependencies 
are represented as directed graphs. 

Recognizing that experimental data is collected from a 
number of different methods, using different tools with varying 
frameworks and languages, the UDR provides an easily-
supported framework to interface the analysis engine with the 
variety of experiments and simulations over which metrics are 
evaluated. 

The UDR allows for metrics to be reported and analyzed in 
any of three formats: resource-consumer relationships, graphs, 
and sets of key-value pairs (signals).  Figure 1 shows the 
hierarchical nature of the UDR allowing resource-consumer 
relationships to be viewed as graphs, and simple key/value 
signals to be attached to graph nodes and edges, thus 
maximizing the applicability of implemented metrics. The key 
insight in making the UDR is that the data types in many 
application domains can be hierarchically ordered. This insight 
allows metrics to be applied in interesting new ways such as 
representing resource-consumer relationships as graphs and 
applying graph-based behavioral metrics to analyze the 
complexity of resource-consumer relationships. 

A reference implementation of the UDR is implemented as 
a Java library that provides utilities for formatting, persisting, 
retrieving, and analyzing data. By using the Hibernate 
framework for data persistence and retrieval, the reference 
implementation provides an abstraction of the datastore so 
users are free to use their preferred relational database 
management system. The current reference implementation is 
configured to use the open source database, mySQL. Further, 
the UDR library is designed to be extremely flexible. The same 
library is used as a component of the Analysis Engine and the 
Experiment Engine, and is the only component of GAMETE 
that is necessary for the design and implementation of 
GAMETE-supported metrics. 

The UDR library also includes several utility functions for 
common operations, many of which are used in creating the 
default metric library and include the default metrics. 

3. GAMETE ARCHITECTURE AND DESIGN 

Figure 2 shows the GAMETE architecture and toolchain 
interface as well as the dataflow between GAMETE 
components. GAMETE enables an integrated V&V toolchain 
by supporting the evaluation of general classes of user-selected 
metrics on user-selected design variations and user-selected 
data. Experiments are specified in GAMETE as pluggable 
components so they can be added and managed separately from 
metric evaluation and analysis, making GAMETE highly-
extensible and adaptable to external toolchains. The output is 
provided to the user or other consumers in external toolchains 
as part of design or V&V activities. 

 

Figure 2: The GAMETE Architecture is designed to 

support data from “live” experiments, models of 

systems, and experimental simulations. 

 

Figure 1: Representing signals, graphs, and resource-

consumption in the UDR maximizes the applicability of 

implemented metrics. 



The analysis engine is the driver of the execution 
environment. Its responsibilities include managing metric 
specifications, controlling metric execution using the 
appropriate managed data source by acquiring experimental 
data from the data store, and presenting the output to the user 
through a user interface or other consumers through application 
programmatic interfaces (APIs). In this section we discuss 
these responsibilities of the GAMETE components in detail. 

Managing Metric Specifications 

GAMETE has several natively-supported metrics for the 
evaluation of model performance which are part of the initial 
metric library. Custom metrics can also be created and stored 
in the metric library. This allows users to design their own 
metrics (for use within GAMETE) which may be domain-
specific, application-specific, or scenario-specific. 

User-created metrics must conform to the Unified Data 
Representation (UDR) API discussed in Section 2. The UDR 
provides an API for inspecting the experimental data that 
passes through the analysis engine. This implies that all metrics 
must be written in Java and built against the UDR, meaning 
that compilation must include the UDR library. However, it 
offers the benefit of compile-time type-checking, which will 
ultimately help metric designers assure that their metrics will 
function properly when used in GAMETE.  Also, this design 
decision provides power to the metric designer in that he/she 
can utilize the full functionality of a Turing-complete language 
in implementing their metric. 

A major design goal of GAMETE is the ability to load 
custom and third-party metrics either at initialization or when 
the analysis engine is already running with minimal input from 
the user. This is enabled by a “@Metric” annotation which 

serves as a tag on the methods that the metric designer wishes 
to expose to GAMETE. Using Java annotations as indications 
of metrics allows us to reflectively search the classpath 
periodically to discover functions that are designed to be 
metrics and promotes loose-coupling of GAMETE architecture 
components.  

Customized metrics can be compiled into Java archive 
(JAR) files and shared with other GAMETE users. These JARs 
can then be loaded into GAMETE (even if it is already 
executing). This feature is vital for any metric execution engine 
that runs on large datasets so that changes can be made while it 
is currently processing a large dataset without interrupting the 
current computation. We use JAR files as the conduit for 
sharing GAMETE metrics for several reasons. First, JAR files 
provide a single file that can be conveniently shared between 
users and loaded into GAMETE. Secondly, using JAR files 
provides metric designers with all the advantages that come 
from using Java, including strong-typing, compile-time error 
checking, efficiency-enhancing integrated development 
environments, and platform independence. Finally, using JAR 
files simplifies the implementation of dynamic metric 
importing. The metric importing utility simply loads the JAR 
file directly into the classpath and reflectively re-scans the 
classpath for new metrics (tagged with @Metric 

annotations).  

Controlling Metric Collection 

The analysis engine controls which metrics are computed 
and collected during each simulation or experiment execution 
based on user input. Metric collection occurs on-demand (i.e., 
when requested by an end-user) to prevent unnecessary data 
processing. GAMETE provides a user interface for users to 
select which available metrics they want to collect while a 
simulation or experiment is executing. We do not automatically 
collect all metrics at all times because calculation of some 
metrics is computationally expensive and datasets can be very 
large.  

As new metrics are imported into GAMETE, their names 
automatically appear in the appropriate categorization (i.e., 
signal, graph, and resource consumer metrics are grouped 
separately). Users indicate which metrics should be computed 
by checking the box adjacent to the metric name, prior to 
selecting the simulation or experiment. 

Managing Experimental and Simulation Data 

Another function of the analysis engine is the management 
of the experimental and simulation data. We designed 
GAMETE so that it can receive data for calculating metrics 
from multiple sources, including the Experimentation-
Simulation Engine or the Experiment-Simulation Data Store.   

The Experimentation-Simulation Engine ingests data 
directly from physical experiments through external data ports 
and from modeling tools that can stream data to other 
processes during runtime. It then archives the experimental 
data in the Data Store. The interface from the Analysis Engine 
to experimental data is read-only – the Analysis Engine cannot 
modify experimental data as it flows from the source. This 
provides security for the use of the tool so third-party metrics 
can only affect their own reports. Other metrics, and more 
importantly the stored experimental data remains unaffected.  

Some modeling tools do not have native support for data 
streaming to external processes. Similarly, some models and 
data collection experiments may take too long or are too 
expensive to run repeatedly. For this reason, we use the 
Experiment-Simulation Data Store to archive (persist) the 
experimental data from experimental engine(s).  

Presenting Data to the User 

The UI displays a listing of all stored experimental runs. 
When an experiment is selected in the UI, the analysis engine 
computes the currently-loaded metrics that apply to the highest 
matching class of experiment type in the UDR (i.e., first 
resource-consumer, then graph, then signal).  

A prototype user interface (UI) for GAMETE performs 
metric computation on-the-fly. A tabular interface is used as a 
way to allow system designers to quickly adjust their view of 
the system’s design or performance and allows multiple views 
of the system to be displayed simultaneously (for comparison 
purposes). The ability to present time-varying output provides 
an intuitive approach for system designers to understand the 
effects of dynamic interactions between components. 



Experimentation / Simulation Engine 

The Experimentation/Simulation engine is a set of libraries 
for committing experimental results to the data store in the 
appropriate format. Libraries are currently written for Java and 
Python. Figure 3 shows the relevant class-level relationships 
between the UDR components used by the GAMETE client 
libraries. Using the client libraries to commit experimental data 
ensures that the data is properly formatted and persisted in the 
datastore with a user-friendly API, shared by both the python 
and Java libraries.   

As seen in Table 1, the Engine class allows the addition 

of experiments, graphs and resource consumers to an 
experiment, respectively.  

Table 1 Engine.addExperiment(name) 
Parameter Type Description 
Name String An identifying name for the 

experiment. 

RETURN Experiment A new experiment with no data. 

 

As seen in Table 2, the Experiment class is used for 

holding and identifying signals, graphs, and resource-consumer 
data that share the same experimental setup. This is important 
because it enables the intuitive representation of experiments 
with multiple components (i.e., one component per graph 
node), as well as the relationships between those components 
(i.e., the edges between nodes). 

Table 2 Engine.addGraph(experiment) 
Parameter Type Description 
experiment Experiment The experiment to which the 

graph belongs. 

RETURN Graph A new graph belonging to 
experiment with no nodes or 
edges. 

Similarly, one can use resource-consumer terminology 
when referring to the graph simply by indicating that it is a 
Resource-Consumer graph. In a Resource-Consumer 

graph, resources and consumers are represented by nodes and 
the consumption relationships are indicated by edges. 

As seen in Table 3, Signal is not actually a class, but an 

abstract class or mix-in that, in this case, applies the 
addSignalData function to several different classes, 

including Experiment, Node, and Edge. Thus, all three of 

these classes can now contain time-series data. 

Table 3 Signal.addSignalData(time, data) 
Parameter Type Description 
time Timestamp Time that data was collected. 

data Float Quantitative data that was 

collected at time. 

RETURN Boolean True if the entry was added to the 
time-series data. 

As seen in Table 4 and Table 5, Graphs have nodes, 

which can represent multiple components within a single 
experiment, and edges, which represent the relationships 
between those components. 

Table 4 Graph.addNode(signal) 
Parameter Type Description 
signal Signal The time-series data collected by the 

component that is represented by this 
node. 

RETURN Node The new node that was created or 
NULL if the node could not be added 
to the graph. 

 

Table 5 Graph.addEdge(fromNode,toNode,signal) 

Parameter Type Description 

fromNode Node The node from which this directed 
edge should start. 

toNode Node The node at which this directed 
should terminate. 

signal Signal The time-series data associated with 
the relationship between two 
components, that represents this edge. 

RETURN Edge The new directed edge that was 

created from fromNode to toNode 
or NULL if we could not add this 
edge to our graph. 

Resource-Consumer has utilities that apply resource-

consumer terminology to standard Graph functionality. The 
API to Resource-Consumer is a full wrapper around the 

Graph class. Table 6 shows the classes and methods from the 

Graph class wrapped by the Resource-Consumer classes: 

Table 6 Classes and Methods from the Graph class 

wrapped by the Resource-Consumer classes 

Resource-Consumer 
Classes/Functions 

Equivalent Graph 
Classes/Functions 

Resource Node 

Consumer Node 

ResConsRelationship Edge 

addResource(resource)  addNode(resource) 

addConsumer(consumer)  addNode(consumer)  

addRelationship(resource,  

    consumer)  
addEdge(resource,  

    consumer) 

4. EXAMPLE USE OF GAMETE 

As a demonstration example for using GAMETE to 
evaluate modeling and simulation, we considered the control 
signal output by two different control designs for a model of a 
vehicle ramp, such as the loading ramp on cargo vehicles. 
These systems use digital controllers to maintain a consistent 

 

 

Figure 3: The UDR is represented in this class-level 

design diagram by inheritance relationships (shown as 

solid blue lines) and compositional relationships 

(shown as dotted purple lines). 
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Figure 4: Two design options for the digital controller 

electronics where design components are represented as 

graph nodes and their inputs/outputs are edges. 

opening and closing speed of the ramp despite changes in ramp 
torque as the ramp angle changes. The ramp control signal 
controls the amount of torque output by the ramp motor. 

We performed two different digital controller analyses: one 
analyzing the design, and one analyzing simulation data. First, 
we analyzed the designs of the controllers by representing the 
design components as graph nodes and their input/output 
relationships as edges in a directed graph (as shown in Figure 
4). GAMETE showed that their design complexities were 
similar, so we continued to an analysis looking at simulation 
data for one control design corresponding to a low-gain 
controller and another control design corresponding to a high-
gain controller which would require different amounts of 
power and control tuning to operate safely.  

We analyzed the input and output control signals of these 
two digital controllers in Figure 5 as input to GAMETE. One 
controller, the controller on the right in Figure 5, is a high gain 
controller with additional actuation circuitry to apply higher 
magnitude control signals to an electric motor.  The figure on 
the left in Figure 5 represents a lower-gain controller with 
simpler circuitry.  We received this data from a third party and 
imported it into our GAMETE repository. It took us a matter of 
minutes to evaluate a standard Shannon-type signal complexity 
metric [12] for these two signals.   

To compute the complexity metric S(c) we use the signal 
frequency spectrum p(f) which represents component sinusoid 
signals which are components of more complex signals. We 
compute p(f) by taking a Fourier transform of the time-varying 
signal (c(t)) and treat that as a probability density function in 
frequency space (i.e., a normalized power spectrum). The 
entropy (S(c)) of p(f) represents the complexity measure. 

We found that the control signal from the low-gain 
controller has a signal complexity 40% lower than the control 
signal from the high gain controller. This makes intuitive sense 
because the high gain controller generates a periodic actuator 
input signal rather than constant steady-state signal which 

requires lower-cost control circuitry and maintenance. The 
periodic actuator signal from the high gain controller has 
higher amplitude sinusoidal components than the low-gain 
controller, meaning that the frequency specturm of the high 
gain controller is always greater than the frequency spectrum of 
the low-gain controller. As a result, the signal complexity of 
the high gain controller is greater than the complexity of the 
low gain controller.  

The hierarchical relationship we impose through the UDR 
of resource-consumers, graphs, and signals allows for metrics 
to be applied in GAMETE in useful and interesting new ways. 
For example, since resource-consumer relationships are 
represented in graphs, the graph-based behavioral metrics can 
be computed to analyze the complexity of resource-consumer 
relationships. Furthermore, since the graph nodes and edges 
represent signals, signal metrics can be applied to each edge 
and node of the corresponding graph. This capability ensures 
that GAMETE has the effectiveness, general applicability and 
promise for continued cost-effective improvement that system 
designers need. 

5. RELATED WORK 

The contribution of this paper is the presentation of a 

reference architecture for batch metric computation and a 

case-study where GAMETE helped to quantitatively evaluate 

the performance of a CPS. There has been previous research 

looking at integrated modeling environments [5][6][9][15], but 

this previous work has focused on the integration of more 

limited systems. This prior work has focused on software 

engineering [5][6], general control systems [9] and 

dependability analysis in cyber systems. Also relevant from a 

software perspective is the UML approach to integration [4] 

which provides more of a formalism than a software 

environment.  This UML approach was also used in the OMG 

Model Driven Architecture standards of XMI and MOF [13] 

but is separate from the approach we take herein. 

There has similarly been prior work on the integration of 

cyber-physical systems [2][8][11][16].  This prior work has 

 
Figure 5: Two control signals, one from a high-gain 

controller with periodic steady-state behavior (green 

dotted line) and one from a low-gain controller with DC 

steady-state behavior (red solid line). 



focused on important specific aspects of cyber-physical 

system composition, including information flow security 

analysis [2], dependability [8][11], and noninterference [16]. 

There has been little prior work on model integration 

environments that can cover the end-to-end breadth of CPS 

design. and what there is has not provided end-to-end analysis 

with user interfaces like GAMETE. Our attempt with 

GAMETE is to provide a comprehensive tool that can be used 

to analyze all of these important system properties in an 

integrated environment. 

6. CONCLUSIONS AND ONGOING DEVELOPMENT 

GAMETE is a research prototype and, while it has shown itself 
to be an important and useful part of the CPS design process, 
there is further research to be done, including 1) increasing the 
scale and breadth of metrics and experimental data sets 
supported, 2) improving the interactive capabilities of 
GAMETE with online metric evaluation and 3) aiding the 
identification of primary and secondary impacts of design 
alternatives. 

Up to now, we have used experiment specifications of 
relatively-small scales (on the order of millions of datapoints) 
as produced by other projects. For complex systems with many 
moving parts and communication pathways, current metric 
evaluation tools do not scale to larger data sets and system 
hierarchies because of the interactions between sub-systems 
that cannot currently be tracked in monolithic metric 
evaluations. Part of our objectives for future GAMETE 
development is to increase the size of data sets supported by 
designing and implementing “divide and conquer” capabilities 
for incremental metric evaluation in GAMETE. 

Current tools only investigate the primary impacts of design 
decisions on metric evaluation. There have been few practical 
capabilities to support the identification of design impacts 
across multiple levels of hierarchies. This limitation is 
primarily a scaling issue – few tools, if any, can analyze the 
impacts of design decisions across sufficiently many sub-
systems. By instrumenting GAMETE to investigate the 
propagating impacts of design decisions, we believe we can 
increase the scale of GAMETE with respect to the levels of 
hierarchy considered and size of the data logs processed. We 
have several potential approaches to investigating the 
propagation of design decisions across hierarchies, including 
Monte Carlo metric evaluations and cost-benefit metric 
evaluation which focuses on the important evaluation cases. 

Another important area of future investigation is integration 
of the GAMETE concepts and GAMETE prototype with a CPS 
design, modeling, and development toolchain. A metric 
evaluation engine, populated with useful complexity metrics, 
and utilizing a data representation that can support a variety of 
inputs (models, signals, etc.), such as we have prototyped in 
GAMETE, is a key component of a larger design toolchain. 
Any toolchain that does not include a metrics evaluation engine 
of the power and flexibility that we provide is missing 
functionality needed to cost-effectively support the design, 
development, and maintenance of CPSs. Clearly, a design tool 
is lacking if it cannot provide the designer meaningful metrics 
on whether changes to a design are increasing or decreasing 
complexity, maintainability, and lifecycle cost. Likewise, the 
toolchain is only providing partial V&V support unless it 

provides a powerful capability for deriving metrics of the 
system under test. GAMETE provides this necessary 
functionality. Furthermore, it provides a powerful set of 
complexity metrics and the extensibility to add more as they 
become available. This is important because any metrics 
framework that does not come with a set of useful metrics is 
unproven, and any that is limited to a fixed set of metrics will 
not accommodate the future uses of the cyber-physical design 
toolchain nor future metrics that are developed. 
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