
GAMETE: General Adaptable Metric Execution Tool and Environment

Kurt Rohloff

Raytheon BBN Technologies

Cambridge, MA USA

krohloff@bbn.com

Kyle Usbeck

Raytheon BBN Technologies

Cambridge, MA USA

kusbeck@bbn.com

Joe Loyall

Raytheon BBN Technologies

Cambridge, MA USA

jloyall@bbn.com

Keywords: Complexity metrics; performance metrics;

simulation-based verification and validation

Abstract
In this paper we introduce the General Adaptable Metric

Execution Tool and Environment (GAMETE) to aid the design,
measurement, and analysis of cyber-physical systems (CPSs).
GAMETE is a general and extensible environment for
evaluating and computing metrics associated with the
performance and complexity of CPS designs. GAMETE
supports a wide array of metrics that it generates over
simulation and experimental output data from CPSs. Key
features of GAMETE are its 1) execution environment to host
the simulations of CPS models, 2) unified data representation
to host simulation and experimental data from CPSs, 3)
dynamic metric library that supports the semi-automated
evaluation of a wide range of metrics, and 4) standards-based
integration with design toolchains. The contribution of this
paper is the presentation of a reference architecture for batch
metric computation and a case-study where GAMETE helped
to quantitatively evaluate the performance of a CPS.

1. INTRODUCTION

The cost of modern complex military, aerospace, and other
systems and systems of systems has skyrocketed in recent
years. These Cyber-Physical Systems (CPSs) comprise major
physical components that cannot function properly without
integrated cyber components (such as engine control systems
and communication buses) [1][7][10][14].

The devices in many, if not all, modern complex CPSs are
semi-independent and support platforms with common goals
and missions. The model refinement that occurs during
multiple design iterations of CPSs creates flexibility that makes
systems able to cope with changing environments and extends
their useful life. This flexibility can manifest itself in many
ways, including being deployed in multiple environments [1]
and accommodating reconfiguration through new components
[14] or connections between components [12]. The competent
design, development, and integration of these systems are
critical. However, the cost of modern CPSs is growing
exponentially because it is exceedingly difficult to evaluate the
integrated design of these complex systems without physical
testing [1][7][10][14].

There are extensive models and modeling tools for all of
the various CPS components [1][10], but there are no

evaluation frameworks (automated or otherwise) that can
integrate these models and evaluate these systems during the
design phase. Furthermore, as CPSs are designed, developed,
and maintained, there is little support to evaluate whether
changes to a system are increasing its complexity, and thereby
increasing its future maintenance and testing cost.

We developed the General Adaptable Metric Execution
Tool and Environment (GAMETE) to address these concerns
and aid in the design and analysis of CPSs. GAMETE is a
general and extensible environment for evaluating and
computing performance and complexity metrics for CPS
design. GAMETE both generates and hosts simulation and
experimental output data from CPSs that it uses to compute a
wide variety of performance and complexity metrics. Key
features of GAMETE are the following:

 An execution environment to host the simulations of
CPS models,

 A unified data representation to host myriad data from
simulation and experiments of CPSs,

 A metric library that supports the semi-automated
evaluation of a wide range of metrics, and

 A standards-based framework to ease the integration of
GAMETE with broader design, modeling, and
simulation toolchains.

A central part of GAMETE’s capabilities and extensibility
derives from the only assumption we make on simulation and
experimentation engines – that they are processes that can
commit data directly to a consumer such as GAMETE.

Although GAMETE is a prototype, we have demonstrated
the unified data representation and metrics library capabilities
on a variety of data from third parties. We discuss our use of
GAMETE to evaluate general classes of metrics as part of the
design and V&V of a complex cyber-physical military system.
GAMETE identifies system designs that are less complex,
more efficient, less likely to fail, less costly, and that have
higher performance, and evaluates the behavior of designs
during simulation or experimentation for V&V.

This paper is organized as follows. In the next section, we
describe the GAMETE execution environment architecture
and design. In Section3, we discuss the GAMETE unified data
representation. In Section 4, we discuss the GAMETE metrics
library. In Section 5, we discuss related work. In Section 6, we
conclude with a discussion of ongoing development of
GAMETE.

Sponsored by Defense Advanced Research Projects Agency, Program:

META, Issued by DARPA/CMO under Contract No. HR0011-10-C-0108.

2. UNIFIED DATA REPRESENTATION

A central part of GAMETE capabilities and extensibility
derives from the only assumption we make on
experimentation/simulation engines – that they are processes
that can commit data directly to a consumer such as GAMETE.
Examples of experimentation/simulation engines supported by
GAMETE include engineered systems that generate data
directly from (i) sensors such as those that might monitor
aspects of system behavior during testing or that gather
information during modeling/design, (ii) simulations that might
generate data over multiple runs, (iii) deterministic evaluations
of possibly coupled equations, and (iv) model representations,
such as graph models or equations. GAMETE is designed to
semi-automate the collection of data as needed from all of these
online or offline data sources.

The GAMETE Unified Data Representation (UDR) is a
meta-model which supports the reporting and storage of
experimental/simulation/design model data. The UDR enables
pluggable metrics and experiments to be developed in the
execution framework. Our approach in the design of the UDR
is informed by the Semantic Web domain where all
information is represented as data graphs with attributes [3].
Our approach is compatible with systems which analyze time-
varying resource consumption where resource dependencies
are represented as directed graphs.

Recognizing that experimental data is collected from a
number of different methods, using different tools with varying
frameworks and languages, the UDR provides an easily-
supported framework to interface the analysis engine with the
variety of experiments and simulations over which metrics are
evaluated.

The UDR allows for metrics to be reported and analyzed in
any of three formats: resource-consumer relationships, graphs,
and sets of key-value pairs (signals). Figure 1 shows the
hierarchical nature of the UDR allowing resource-consumer
relationships to be viewed as graphs, and simple key/value
signals to be attached to graph nodes and edges, thus
maximizing the applicability of implemented metrics. The key
insight in making the UDR is that the data types in many
application domains can be hierarchically ordered. This insight
allows metrics to be applied in interesting new ways such as
representing resource-consumer relationships as graphs and
applying graph-based behavioral metrics to analyze the
complexity of resource-consumer relationships.

A reference implementation of the UDR is implemented as
a Java library that provides utilities for formatting, persisting,
retrieving, and analyzing data. By using the Hibernate
framework for data persistence and retrieval, the reference
implementation provides an abstraction of the datastore so
users are free to use their preferred relational database
management system. The current reference implementation is
configured to use the open source database, mySQL. Further,
the UDR library is designed to be extremely flexible. The same
library is used as a component of the Analysis Engine and the
Experiment Engine, and is the only component of GAMETE
that is necessary for the design and implementation of
GAMETE-supported metrics.

The UDR library also includes several utility functions for
common operations, many of which are used in creating the
default metric library and include the default metrics.

3. GAMETE ARCHITECTURE AND DESIGN

Figure 2 shows the GAMETE architecture and toolchain
interface as well as the dataflow between GAMETE
components. GAMETE enables an integrated V&V toolchain
by supporting the evaluation of general classes of user-selected
metrics on user-selected design variations and user-selected
data. Experiments are specified in GAMETE as pluggable
components so they can be added and managed separately from
metric evaluation and analysis, making GAMETE highly-
extensible and adaptable to external toolchains. The output is
provided to the user or other consumers in external toolchains
as part of design or V&V activities.

Figure 2: The GAMETE Architecture is designed to

support data from “live” experiments, models of

systems, and experimental simulations.

Figure 1: Representing signals, graphs, and resource-

consumption in the UDR maximizes the applicability of

implemented metrics.

The analysis engine is the driver of the execution
environment. Its responsibilities include managing metric
specifications, controlling metric execution using the
appropriate managed data source by acquiring experimental
data from the data store, and presenting the output to the user
through a user interface or other consumers through application
programmatic interfaces (APIs). In this section we discuss
these responsibilities of the GAMETE components in detail.

Managing Metric Specifications

GAMETE has several natively-supported metrics for the
evaluation of model performance which are part of the initial
metric library. Custom metrics can also be created and stored
in the metric library. This allows users to design their own
metrics (for use within GAMETE) which may be domain-
specific, application-specific, or scenario-specific.

User-created metrics must conform to the Unified Data
Representation (UDR) API discussed in Section 2. The UDR
provides an API for inspecting the experimental data that
passes through the analysis engine. This implies that all metrics
must be written in Java and built against the UDR, meaning
that compilation must include the UDR library. However, it
offers the benefit of compile-time type-checking, which will
ultimately help metric designers assure that their metrics will
function properly when used in GAMETE. Also, this design
decision provides power to the metric designer in that he/she
can utilize the full functionality of a Turing-complete language
in implementing their metric.

A major design goal of GAMETE is the ability to load
custom and third-party metrics either at initialization or when
the analysis engine is already running with minimal input from
the user. This is enabled by a “@Metric” annotation which

serves as a tag on the methods that the metric designer wishes
to expose to GAMETE. Using Java annotations as indications
of metrics allows us to reflectively search the classpath
periodically to discover functions that are designed to be
metrics and promotes loose-coupling of GAMETE architecture
components.

Customized metrics can be compiled into Java archive
(JAR) files and shared with other GAMETE users. These JARs
can then be loaded into GAMETE (even if it is already
executing). This feature is vital for any metric execution engine
that runs on large datasets so that changes can be made while it
is currently processing a large dataset without interrupting the
current computation. We use JAR files as the conduit for
sharing GAMETE metrics for several reasons. First, JAR files
provide a single file that can be conveniently shared between
users and loaded into GAMETE. Secondly, using JAR files
provides metric designers with all the advantages that come
from using Java, including strong-typing, compile-time error
checking, efficiency-enhancing integrated development
environments, and platform independence. Finally, using JAR
files simplifies the implementation of dynamic metric
importing. The metric importing utility simply loads the JAR
file directly into the classpath and reflectively re-scans the
classpath for new metrics (tagged with @Metric

annotations).

Controlling Metric Collection

The analysis engine controls which metrics are computed
and collected during each simulation or experiment execution
based on user input. Metric collection occurs on-demand (i.e.,
when requested by an end-user) to prevent unnecessary data
processing. GAMETE provides a user interface for users to
select which available metrics they want to collect while a
simulation or experiment is executing. We do not automatically
collect all metrics at all times because calculation of some
metrics is computationally expensive and datasets can be very
large.

As new metrics are imported into GAMETE, their names
automatically appear in the appropriate categorization (i.e.,
signal, graph, and resource consumer metrics are grouped
separately). Users indicate which metrics should be computed
by checking the box adjacent to the metric name, prior to
selecting the simulation or experiment.

Managing Experimental and Simulation Data

Another function of the analysis engine is the management
of the experimental and simulation data. We designed
GAMETE so that it can receive data for calculating metrics
from multiple sources, including the Experimentation-
Simulation Engine or the Experiment-Simulation Data Store.

The Experimentation-Simulation Engine ingests data
directly from physical experiments through external data ports
and from modeling tools that can stream data to other
processes during runtime. It then archives the experimental
data in the Data Store. The interface from the Analysis Engine
to experimental data is read-only – the Analysis Engine cannot
modify experimental data as it flows from the source. This
provides security for the use of the tool so third-party metrics
can only affect their own reports. Other metrics, and more
importantly the stored experimental data remains unaffected.

Some modeling tools do not have native support for data
streaming to external processes. Similarly, some models and
data collection experiments may take too long or are too
expensive to run repeatedly. For this reason, we use the
Experiment-Simulation Data Store to archive (persist) the
experimental data from experimental engine(s).

Presenting Data to the User

The UI displays a listing of all stored experimental runs.
When an experiment is selected in the UI, the analysis engine
computes the currently-loaded metrics that apply to the highest
matching class of experiment type in the UDR (i.e., first
resource-consumer, then graph, then signal).

A prototype user interface (UI) for GAMETE performs
metric computation on-the-fly. A tabular interface is used as a
way to allow system designers to quickly adjust their view of
the system’s design or performance and allows multiple views
of the system to be displayed simultaneously (for comparison
purposes). The ability to present time-varying output provides
an intuitive approach for system designers to understand the
effects of dynamic interactions between components.

Experimentation / Simulation Engine

The Experimentation/Simulation engine is a set of libraries
for committing experimental results to the data store in the
appropriate format. Libraries are currently written for Java and
Python. Figure 3 shows the relevant class-level relationships
between the UDR components used by the GAMETE client
libraries. Using the client libraries to commit experimental data
ensures that the data is properly formatted and persisted in the
datastore with a user-friendly API, shared by both the python
and Java libraries.

As seen in Table 1, the Engine class allows the addition

of experiments, graphs and resource consumers to an
experiment, respectively.

Table 1 Engine.addExperiment(name)
Parameter Type Description
Name String An identifying name for the

experiment.

RETURN Experiment A new experiment with no data.

As seen in Table 2, the Experiment class is used for

holding and identifying signals, graphs, and resource-consumer
data that share the same experimental setup. This is important
because it enables the intuitive representation of experiments
with multiple components (i.e., one component per graph
node), as well as the relationships between those components
(i.e., the edges between nodes).

Table 2 Engine.addGraph(experiment)
Parameter Type Description
experiment Experiment The experiment to which the

graph belongs.

RETURN Graph A new graph belonging to
experiment with no nodes or
edges.

Similarly, one can use resource-consumer terminology
when referring to the graph simply by indicating that it is a
Resource-Consumer graph. In a Resource-Consumer

graph, resources and consumers are represented by nodes and
the consumption relationships are indicated by edges.

As seen in Table 3, Signal is not actually a class, but an

abstract class or mix-in that, in this case, applies the
addSignalData function to several different classes,

including Experiment, Node, and Edge. Thus, all three of

these classes can now contain time-series data.

Table 3 Signal.addSignalData(time, data)
Parameter Type Description
time Timestamp Time that data was collected.

data Float Quantitative data that was

collected at time.

RETURN Boolean True if the entry was added to the
time-series data.

As seen in Table 4 and Table 5, Graphs have nodes,

which can represent multiple components within a single
experiment, and edges, which represent the relationships
between those components.

Table 4 Graph.addNode(signal)
Parameter Type Description
signal Signal The time-series data collected by the

component that is represented by this
node.

RETURN Node The new node that was created or
NULL if the node could not be added
to the graph.

Table 5 Graph.addEdge(fromNode,toNode,signal)

Parameter Type Description

fromNode Node The node from which this directed
edge should start.

toNode Node The node at which this directed
should terminate.

signal Signal The time-series data associated with
the relationship between two
components, that represents this edge.

RETURN Edge The new directed edge that was

created from fromNode to toNode
or NULL if we could not add this
edge to our graph.

Resource-Consumer has utilities that apply resource-

consumer terminology to standard Graph functionality. The
API to Resource-Consumer is a full wrapper around the

Graph class. Table 6 shows the classes and methods from the

Graph class wrapped by the Resource-Consumer classes:

Table 6 Classes and Methods from the Graph class

wrapped by the Resource-Consumer classes

Resource-Consumer
Classes/Functions

Equivalent Graph
Classes/Functions

Resource Node

Consumer Node

ResConsRelationship Edge

addResource(resource) addNode(resource)

addConsumer(consumer) addNode(consumer)

addRelationship(resource,

 consumer)
addEdge(resource,

 consumer)

4. EXAMPLE USE OF GAMETE

As a demonstration example for using GAMETE to
evaluate modeling and simulation, we considered the control
signal output by two different control designs for a model of a
vehicle ramp, such as the loading ramp on cargo vehicles.
These systems use digital controllers to maintain a consistent

Figure 3: The UDR is represented in this class-level

design diagram by inheritance relationships (shown as

solid blue lines) and compositional relationships

(shown as dotted purple lines).

Resource-Consumer

Experiment

Graph Signal Measurement

EdgeNode

Figure 4: Two design options for the digital controller

electronics where design components are represented as

graph nodes and their inputs/outputs are edges.

opening and closing speed of the ramp despite changes in ramp
torque as the ramp angle changes. The ramp control signal
controls the amount of torque output by the ramp motor.

We performed two different digital controller analyses: one
analyzing the design, and one analyzing simulation data. First,
we analyzed the designs of the controllers by representing the
design components as graph nodes and their input/output
relationships as edges in a directed graph (as shown in Figure
4). GAMETE showed that their design complexities were
similar, so we continued to an analysis looking at simulation
data for one control design corresponding to a low-gain
controller and another control design corresponding to a high-
gain controller which would require different amounts of
power and control tuning to operate safely.

We analyzed the input and output control signals of these
two digital controllers in Figure 5 as input to GAMETE. One
controller, the controller on the right in Figure 5, is a high gain
controller with additional actuation circuitry to apply higher
magnitude control signals to an electric motor. The figure on
the left in Figure 5 represents a lower-gain controller with
simpler circuitry. We received this data from a third party and
imported it into our GAMETE repository. It took us a matter of
minutes to evaluate a standard Shannon-type signal complexity
metric [12] for these two signals.

To compute the complexity metric S(c) we use the signal
frequency spectrum p(f) which represents component sinusoid
signals which are components of more complex signals. We
compute p(f) by taking a Fourier transform of the time-varying
signal (c(t)) and treat that as a probability density function in
frequency space (i.e., a normalized power spectrum). The
entropy (S(c)) of p(f) represents the complexity measure.

We found that the control signal from the low-gain
controller has a signal complexity 40% lower than the control
signal from the high gain controller. This makes intuitive sense
because the high gain controller generates a periodic actuator
input signal rather than constant steady-state signal which

requires lower-cost control circuitry and maintenance. The
periodic actuator signal from the high gain controller has
higher amplitude sinusoidal components than the low-gain
controller, meaning that the frequency specturm of the high
gain controller is always greater than the frequency spectrum of
the low-gain controller. As a result, the signal complexity of
the high gain controller is greater than the complexity of the
low gain controller.

The hierarchical relationship we impose through the UDR
of resource-consumers, graphs, and signals allows for metrics
to be applied in GAMETE in useful and interesting new ways.
For example, since resource-consumer relationships are
represented in graphs, the graph-based behavioral metrics can
be computed to analyze the complexity of resource-consumer
relationships. Furthermore, since the graph nodes and edges
represent signals, signal metrics can be applied to each edge
and node of the corresponding graph. This capability ensures
that GAMETE has the effectiveness, general applicability and
promise for continued cost-effective improvement that system
designers need.

5. RELATED WORK

The contribution of this paper is the presentation of a

reference architecture for batch metric computation and a

case-study where GAMETE helped to quantitatively evaluate

the performance of a CPS. There has been previous research

looking at integrated modeling environments [5][6][9][15], but

this previous work has focused on the integration of more

limited systems. This prior work has focused on software

engineering [5][6], general control systems [9] and

dependability analysis in cyber systems. Also relevant from a

software perspective is the UML approach to integration [4]

which provides more of a formalism than a software

environment. This UML approach was also used in the OMG

Model Driven Architecture standards of XMI and MOF [13]

but is separate from the approach we take herein.

There has similarly been prior work on the integration of

cyber-physical systems [2][8][11][16]. This prior work has

Figure 5: Two control signals, one from a high-gain

controller with periodic steady-state behavior (green

dotted line) and one from a low-gain controller with DC

steady-state behavior (red solid line).

focused on important specific aspects of cyber-physical

system composition, including information flow security

analysis [2], dependability [8][11], and noninterference [16].

There has been little prior work on model integration

environments that can cover the end-to-end breadth of CPS

design. and what there is has not provided end-to-end analysis

with user interfaces like GAMETE. Our attempt with

GAMETE is to provide a comprehensive tool that can be used

to analyze all of these important system properties in an

integrated environment.

6. CONCLUSIONS AND ONGOING DEVELOPMENT

GAMETE is a research prototype and, while it has shown itself
to be an important and useful part of the CPS design process,
there is further research to be done, including 1) increasing the
scale and breadth of metrics and experimental data sets
supported, 2) improving the interactive capabilities of
GAMETE with online metric evaluation and 3) aiding the
identification of primary and secondary impacts of design
alternatives.

Up to now, we have used experiment specifications of
relatively-small scales (on the order of millions of datapoints)
as produced by other projects. For complex systems with many
moving parts and communication pathways, current metric
evaluation tools do not scale to larger data sets and system
hierarchies because of the interactions between sub-systems
that cannot currently be tracked in monolithic metric
evaluations. Part of our objectives for future GAMETE
development is to increase the size of data sets supported by
designing and implementing “divide and conquer” capabilities
for incremental metric evaluation in GAMETE.

Current tools only investigate the primary impacts of design
decisions on metric evaluation. There have been few practical
capabilities to support the identification of design impacts
across multiple levels of hierarchies. This limitation is
primarily a scaling issue – few tools, if any, can analyze the
impacts of design decisions across sufficiently many sub-
systems. By instrumenting GAMETE to investigate the
propagating impacts of design decisions, we believe we can
increase the scale of GAMETE with respect to the levels of
hierarchy considered and size of the data logs processed. We
have several potential approaches to investigating the
propagation of design decisions across hierarchies, including
Monte Carlo metric evaluations and cost-benefit metric
evaluation which focuses on the important evaluation cases.

Another important area of future investigation is integration
of the GAMETE concepts and GAMETE prototype with a CPS
design, modeling, and development toolchain. A metric
evaluation engine, populated with useful complexity metrics,
and utilizing a data representation that can support a variety of
inputs (models, signals, etc.), such as we have prototyped in
GAMETE, is a key component of a larger design toolchain.
Any toolchain that does not include a metrics evaluation engine
of the power and flexibility that we provide is missing
functionality needed to cost-effectively support the design,
development, and maintenance of CPSs. Clearly, a design tool
is lacking if it cannot provide the designer meaningful metrics
on whether changes to a design are increasing or decreasing
complexity, maintainability, and lifecycle cost. Likewise, the
toolchain is only providing partial V&V support unless it

provides a powerful capability for deriving metrics of the
system under test. GAMETE provides this necessary
functionality. Furthermore, it provides a powerful set of
complexity metrics and the extensibility to add more as they
become available. This is important because any metrics
framework that does not come with a set of useful metrics is
unproven, and any that is limited to a fixed set of metrics will
not accommodate the future uses of the cyber-physical design
toolchain nor future metrics that are developed.

REFERENCES

[1] Mark V. Arena, Obaid Younossi, et al., Why Has the Cost of Fixed-
Wing Aircraft Risen?, Report No. MG696, RAND Corporation (2008)

[2] Ravi Akella, Han Tang, Bruce M. McMillin, Analysis of information
flow security in cyber–physical systems, International Journal of Critical
Infrastructure Protection, Volume 3, Issues 3–4, December 2010, Pages
157-173

[3] Antoniou, Grigoris, and Frank Van Harmelen. A semantic web primer.
MIT press, 2004.

[4] Siobhán Clarke, Extending standard UML with model composition
semantics, Science of Computer Programming, Volume 44, Issue 1, July
2002, Pages 71-100

[5] Franck Fleurey, Benoit Baudry, Robert France and Sudipto Ghosh, A
Generic Approach for Automatic Model Composition. Models in
Software Engineering, Lecture Notes in Computer Science, 2008,
Volume 5002/2008, 7-15

[6] France, R.; Fleurey, F.; Reddy, R.; Baudry, B.; Ghosh, S.; , "Providing
Support for Model Composition in Metamodels," Enterprise Distributed
Object Computing Conference, 2007. EDOC 2007. 11th IEEE
International , vol., no., pp.253, 15-19 Oct. 2007

[7] Paul G. Kaminski et al., Pre-Milestone A and Early-Phase Systems
Engineering, National Research Council (2008)

[8] Lajolo, M.; Rebaudengo, M.; Reorda, M.S.; Violante, M.; Lavagno, L.; ,
"Evaluating system dependability in a co-design framework," Design,
Automation and Test in Europe Conference and Exhibition 2000.
Proceedings , vol., no., pp.586-590, 2000

[9] Ledeczi, A.; Nordstrom, G.; Karsai, G.; Volgyesi, P.; Maroti, M.; , "On
metamodel composition," Control Applications, 2001. (CCA '01).
Proceedings of the 2001 IEEE International Conference on , vol., no.,
pp.756-760, 2001

[10] Lee, E.A.; , "Cyber Physical Systems: Design Challenges," Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on , vol., no., pp.363-369, 5-7 May 2008

[11] Jing Lin; Sedigh, S.; Miller, A.; , "A General Framework for
Quantitative Modeling of Dependability in Cyber-Physical Systems: A
Proposal for Doctoral Research," Computer Software and Applications
Conference, 2009. COMPSAC '09. 33rd Annual IEEE International ,
vol.1, no., pp.668-671, 20-24 July 2009

[12] Seth Lloyd, “Measures of Complexity: A Nonexhaustive List,” IEEE
Control Systems Magazine, Vol. 24, No. 4 (August 2001)

[13] OMG. “MDA Specifications” Retrieved on 1/25/2013 from
http://www.omg.org/mda/specs.htm

[14] Kurt Rohloff, Partha Pal, Michael Atighetchi, Richard Schantz, Kishor
Trivedi and Christos Cassandras. “ Approaches to Modeling and
Simulation for Dynamic, Distributed Cyber-Physical Systems.”
Workshop on Grand Challenges in Modeling, Simulation, and Analysis
for Homeland Security (MSAHS-2010), March 2010.

[15] Stott, D.T.; Floering, B.; Burke, D.; Kalbarczpk, Z.; Iyer, R.K.; ,
"NFTAPE: a framework for assessing dependability in distributed
systems with lightweight fault injectors," Computer Performance and
Dependability Symposium, 2000. IPDS 2000. Proceedings. IEEE
International , vol., no., pp.91-100, 2000

[16] Yan Sun; McMillin, B.; Xiaoqing Liu; Cape, D.; , "Verifying
Noninterference in a Cyber-Physical System The Advanced Electric
Power Grid," Quality Software, 2007. QSIC '07. Seventh International
Conference on , vol., no., pp.363-369, 11-12 Oct. 2007

