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Abstract— One of the goals of the DARPA PROCEED pro-

gram has been accelerating the development of a practical Fully 

Homomorphic Encryption (FHE) scheme. For the past three 

years, this program has succeeded in accelerating various aspects 

of the FHE concept toward practical implementation and use. 

FHE is a game-changing technology to enable secure, general 

computation on encrypted data on untrusted off-site hardware, 

without the data ever being decrypted for processing. FHE 

schemes developed under PROCEED have achieved multiple 

orders of magnitude improvement in computation, but further 

means of acceleration, such as implementations on specialized 

hardware, such as an FPGA can improve the speed of computa-

tion even further.  

The current interest in FHE computation resulted from 

breakthroughs demonstrating the existence of FHE schemes [1, 

2] that allowed arbitrary computation on encrypted data. Specif-

ically, our contribution to the Proceed program has been the 

development of FPGA based hardware primitives to accelerate 

the computation on encrypted data using an FHE cryptosystem 

based on NTRU-like lattice techniques [3] with additional with 

additional support for efficient key switching and modulus re-

duction operations to reduce the frequency of bootstrapping op-

erations [4].  Cipher texts in our scheme are represented as rec-

tangular matrices of 64-bit integers. This bounding of the oper-

and sizes has allowed us to take advantage of modern code gen-

eration tools developed by Mathworks to implement VHDL code 

for FPGA circuits directly from Simulink models.  Furthermore 

the implicit parallelism of the scheme allows for large amounts of 

pipelining in the implementation in order to achieve efficient 

throughput. The resulting VHDL is integrated into an AXI4 bus 

“Soft System on Chip” using Xilinx platform studio and a Mi-

croblaze soft core processor running on aVirtex7 VC707 evalua-

tion board. This report presents new Simulink primitives that 

had to be developed to deal with these new requirements. 

Keywords—Fully Homomorphic Encryption; Co-processor; 
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I. INTRODUCTION - A QUICK REVIEW OF FULLY- AND 

SOMEWHAT- HOMOMORPHIC ENCRYPTION 

Our team recently published our work to design, implement 
and evaluate a scalable FHE scheme which addresses the 
limitations for secure arbitrary computation [4]. Our 
implementation uses a variation of a not previously 
implemented bootstrapping scheme [5] simplified for power-
of-2 rings. We also use a “double-Chinese Remainder 

Transform (CRT)” representation of cipher texts which is 
discussed in [6]. With this double-CRT representation, we can 
select parameters so that cipher texts are secure when 
represented as matrices of 64 bit integers, but still support the 
secure execution of programs on commodity computing 
devices without expending unnecessary computational 
overhead manipulating large multi-hundred-bit or even multi-
thousand-bit integers. Additionally, the parallelism implicit in 
this data representation is easily exploited to achieve 
efficiencies during implementation. 

Our implementation encrypts a plaintext bit into a two di-
mension array of 64 bit unsigned integers1. We use a residue 
number system implementation to represent cipher texts as T 
sets of length-N integer vectors. A ring in the tower entry t has 
a unique modulus qt which bounds all entries in that ring. The n 
dimension is known as the ring size, and the t dimension as the 
tower size.  This representation allows us to operate in parallel 
on the smaller bit width modulo qt values instead of on a single 

modulus q of much larger bit width, where q = q1 ∗ q2∗∗ qT 
for pairwise co-prime moduli qi.. 

As outlined in [4], our implementation requires only a few 
elementary operations to be implemented on the FPGA hard-
ware in order to achieve large run time speedups over conven-
tional CPU implementations.  These operations are: 

• RingAdd: cn,t = (an,t + bn,t) % qt

• RingSub: cn,t = (an,t  bn,t) % qt

• RingMul: cn,t = (an,t * bn,t) % qt

All three of the above operations can be parallelized or 
pipelined over both n and t .  Also required are the  

• CRT and Inverse CRT, which are implemented as a
Number Theoretic Transform [7] coupled with a pre- or post- 
RingMul with an appropriate Twiddle Vector.  

• Round: A function to perform modulo rounding using
different tower moduli (detailed below). 

In our cryptosystem, two key operations are defined: 
EvalAdd and EvalMult. When our parameters are chosen such 
that a single plaintext bit is encrypted, the resulting operations 
on the encrypted data are XOR and AND respectively. These 

1
While the actual number of bits is determined by the parameter selection of 

the cryptosystem, we select 64 as our maximum dimension for FPGA imple-

mentation. 
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two operations allow us to implement any Boolean operation of 
input cipher text 2.   

Our crypto-system, like many FHE systems, is random 
(noisy) in nature. Because of this, only a limited number of 
operations can be performed on the encrypted data before the 
noise dominates and decryption is no longer guaranteed. 
EvalAdd does not add noise to the system, so an unlimited 
number of such operations are allowed to be chained together. 
EvalMult however does add noise, and this limits the number 
of such operations that can be chained together.  The double 
CRT representation allows a very straightforward 
implementation that controls this noise. This requires the use of 
both key switching and modulus reduction whenever an 
EvalMult is performed. The combination of these three steps is 
known as a Composed EvalMult (CEM). The property of CEM 
is that for a pair of inputs of a given tower size t, the output is a 
cipher text of tower size t-1. Thus for an initial tower size of T, 
at most (T-1) CEM operations can be performed before the 
noise in the cypher-text grows beyond the point where it can be 
reliably decrypted.  An implementation that has a limit to the 
allowable number of Homomorphic operations is called 
Somewhat Homomorphic.  

The dimensions of the cryptosystem are determined 
algorithmically, and are a function of security required and the 
number of CEM operations required to implement the desired 
application. If the number of operations required by the 
application exceeds O(16), then a Bootstrapping operation will 
be required to reset the noise generated by the cryptographic 
operations.  Bootstrapping is currently on the order of 10  CEM 
equivalent operations for reasonable security parameters. 
Bootstrapping has the property of taking a cipher text of tower 
size t, and generating a new ‘refreshed’ cipher text of the 
system’s original tower size T.  Thus an unlimited number of 
operations can be performed on the data. This kind of 
implementation is called Fully Homomorphic. The remainder 
of our paper will discuss the current FPGA implementation of 
the functions required for Somewhat Homomorphic operation. 
Our planned implementation of the functions needed for Fully 
Homomorphic operation will be implemented in our final 
phase of the program this year. 

II. VHDL IMPLEMENTATIONS OF FAST MODULUS ARITHMETIC 

AND CHINESE REMAINDER TRANSFORMS (CRT) USING 

SIMULINK-BASED MODELS 

A. Optimisations and Refinements To Previous 

Implementations 

We have previously reported on our Simulink-based 
implementations of the three modulus arithmetic functions, as 
well as the forward and inverse CRT functions[8, 9]. Our 
current work has updated these implementations to allow 
VHDL code generation with a doubling of circuit clock speeds 
to 200 MHz. This was done by performing the following 
optimizations. 

                                                           
2Any arbitrary Boolean function can be constructed from NAND operations. 

Since NOT(a) == XOR(a, 1), and NAND(a, b) == NOT(AND(a, b)), the two 

Homomorphic operations are a sufficient set.  

Mathworks determined that by selecting synchronous vs. 
asynchronous reset in the Simulink to HDL generation 
parameters, the resulting VHDL mapped more efficiently into 
the registers built into the DSP48E blocks on the Vertex 7 
FPGA, increasing the efficiency of the resulting mapped 
VHDL by eliminating extra routing traces. 

The previous circuits were designed to run at a minimum 
speed of 100 MHz. We determined that adding explicit 
pipelining stages in the form of delay lines to the model 
enabled the Xilinx tools to better optimize FPGA mapping 
during place and route pipelining stages. Specifically pipelines 
were added between arithmetic operations within the RingAdd 
(4 stages), RingSub (3 stages), RingMul (188 stages) models. 
Since our target ring size can be as large as 214, and all the 
towers of a variable are processed sequentially, the delay 
incurred from filling the pipeline is expected to be minimal.   

Once the models were maximally pipelined, we identified 
several large (64 by 64 bit) product blocks within our RingMul 
Barret multiplication implementation [9, 10] as being the 
slowest components, and re-implemented them as an expanded 
multiplication model consisting of four parallel 32 by 32 bit 
products, and a pipelined accumulation of partial sums. This 
further increased the achievable clock speeds.  We discovered 
that adding additional pipelines of length four, both before and 
after each resulting smaller product block further allowed the 
Xilinx optimizer to break these product blocks into multiple 
DSP48E multipliers in a distributed fashion. This allowed the 
RingMul circuit to perform at speeds in excess of 350 MHz, 
well in excess of our target 200 MHz. 

Several of our circuits utilize lookup tables, both for storing 
the moduli qi and for storing various twiddle table entries for 
the CRT and inverse CRT. Our previous direct implementation 
of the table lookup using the Simulink Lookup function block 
maps the resulting ROM directly into gate circuitry. This can 
increase the place and route drastically for very large tables, 
and also can result in less efficient circuits. Mathworks 
determined that by placing an additional delay line, with a 
“ResetType = none” HDL block property let the Xilinx 

tools map the table to block ram in the FPGA, which is a more 
efficient utilization of resources on the chip. 

B. FPGA Hardware Selection 

Our FPGA selection was driven by the need for a large 
number of hardware multipliers on the chip. Due to cost 
constraints we wanted to use a commercial off-the-shelf FPGA 
board for our experiments. Our selection of the Virtex 7 
VC707 evaluation board was driven by the following sizing 
requirements.  Our target ring size of 214 requires 1110 DSP48 
blocks for the CRT and the same number for the inverse CRT. 
The VC707 has a Virtex 7 485T chip which contains 2800 
such blocks, more than sufficient to implement our projected 
set of FHE primitives.  Additionally, we require on-board DDR 
memory for storage of encrypted variables, and high speed 
Ethernet and PCI interfaces to exchange data with the host 
computer. All these are present on the VC707. 



C. FPGA System Architecture 

The design goal of our FPGA system was to be able to 
operate as an attached processor to accelerate the FHE 
primitive operations in way that allows one to chain together 
several operations in order to minimize the overhead due to 
data transfer. An attached processor design was developed in 
which a software programmable microcontroller would 
manage I/O communications with the host via Ethernet or PCI 
memory map, manage on board data storage in the form of an 
encrypted register file, and manage data transfer to and from 
the FHE primitive modules in as efficient manner as possible.  

We decided to use the Xilinx Platform Studio Microblaze 
soft core processor and AXI4 interconnect architecture to 
implement the attached FHE processor. Fig. 1 shows a system 
block diagram of the resulting system. The Xilinx platform 
studio enables us to implement our FHE primitives as 
streaming co-processors on the AXI bus. An AXI4 lite bus is 
used to set control parameters of our Ring operation circuits, 
such as ring size, and tower size.  

The main AXI4 interconnect is a 256 bit bus connecting the 
DDR ram with the various FHE primitives. The I/O rate into 
and out of DDR memory limits the overall processing speed of 
the system. Our RingAdd, RingSub and RingMul primitives 
each require two input streams and one output streams. Fig. 2 
shows how we currently integrate our FHE primitives with the 
AXI4 stream interconnect. Each of these three operations is 
parallelized across ring elements as well as tower indices. 
These data streams are implemented using a pair of AXI4 
DMA controllers, each handling one input and one output. 
Data is clocked in and out of the bus at 400 MHz, and streamed 
via individual AXIS buses between the DMAs to the AXI 
stream blocks where they are buffered with FIFOs and split 
into eight parallel 64 bit input data streams, and four 64 bit 
output data streams. Current implementations of these three 
functions are clocked at 100 MHz, so four parallel 
instantiations of each operation are used to keep the I/O 
pipelines full. Future implementations of these primitives are 
planned to be clocked at 200 MHz, and as such will only sup-
port two instantiations in parallel.  

 

 

The forward and inverse CRT modules require slightly 
different interfaces. CRT operations are parallelizable across 
tower entry but not across ring index. Thus CRT’s cannot be 
parallelized in the same way as the Ring operations. Currently 
we have a single CRT or inverse CRT at a time operating at 
100 MHz. Future implementations will run these two 
operations at 200 MHz, but the multiplier resources required 
for the planned ring size of 214 will prohibit mapping more than 
one forward and one inverse CRT onto the 485T chip. 

D. Microblaze Software Architecture 

The Xilinx platform studio is used to implement a Micro-
blaze soft core processor. The system architecture is based on 
the demo hardware self-test example that is provided with the 
Xilinx board. The software architecture is based on the web-
service example provided with the Xilinx Virtex 6 ML605 
evaluation kit, updated with the Xilinx SGMII 144 Ethernet 
controller. The software controlling the system on the Micro-
blaze is written in C code. The PC “host” end of the software 
interface is also written in C. The host interface currently is 
implemented in two versions. The first is a stand-alone test 
bench that can test and exercise the operation of the attached 
FHE processor. The second version interfaces with Matlab via 
a file interchange mechanism to support demonstration Ho-
momorphic Encryption application programs. The interfaces 
use either Ethernet or PCI bus I/O based on compile flags. 

The system software is multithreaded to allow the use of 
Ethernet TCP/IP socket I/O. A network thread manages socket 
level I/O between the host and the attached processor. Another 
thread reads the incoming messages from the socket, parses the 
commands received and dispatches execution to various sub-
routines. The PCI interface is written to emulate the buffer I/O 
of the Ethernet interface, allowing the same software to be used 
for both Ethernet and PCI operation. 

The DDR3 ram is partitioned into a set of register data 
structures, as well as a set of internal registers to store con-
stants used in our encryption schemes. Each register can hold 
one encrypted bit in the form of a two dimensional vector of 
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Figure 2: Integration of FHE primitives with the AXI 

stream data streams. 
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Figure 1: System block diagram showing major com-

ponents and the AXI4 interconnect. 



unsigned long longs that are allocated out of DDR ram. One 
dimension (the fastest index) is the ring size N and is a 
compiled constant. The other dimension, the tower size, varies 
with the state of the register.  Typically registers are loaded 
into the FHE coprocessor with a fixed starting number of the 
tower elements (up to MAX_TOWER_SIZE = 32 elements). 
We eliminate the highest tower entries one by one as each 
CEM operation is performed.  

The registers are allocated out of heap in the DDR ram. 
There are three flavors of registers: Input, Output and Scratch. 
This design decision was made in order to allow us to later 
segregate I/O and scratch registers into different memory 
locations if that were to increase throughput (allowing simulta-
neous host access to the I/O registers while the FGPA was pro-
cessing with the Scratch registers. The quantity of each register 
type is software defined at compile time but there is usually a 
small numbers of Input and Output registers and as many 
Scratch registers as will utilize all the available heap space. 
Control structures mark the current tower size of each register, 
and if the register is used or not. Registers are allocated so they 
are aligned to 32 byte address boundaries in order to allow the 
AXI4 DMA engines to move the register data into and out of 
the FHE primitives. This format allows the contents of an 
entire register (all used towers) to be streamed with only one 
DMA transfer. 

The communication protocol between the PC host and the 
FPGA board is message based. The messages are in ASCII. 
Messages can span multiple socket buffers; with multiple 
socket calls made until enough text has been parsed to 
complete a message (double cr/lf indicates the end of a 
message). Each message can contain several instructions to the 
processor, separated by cr/lf).  Each processor instruction is 
then parsed. The parsing test starts with a keyword that defines 
the rest of the instruction format. The keywords are shown in 
Table 1.  The system’s assembly language has the syntax 
shown in Table 2.  

TABLE I.  CONTROL PROTOCOL KEYWORDS 

Key 
word 

Function 

LOAD Transfer the contents of the message (ASCII) into a 
particular Input register.  

GET Request the contents of a particular output register to be 
loaded into an ASCII message buffer and sent back to the host. 

STATUS Generates a short report on the FPGA board console for 
debugging showing the contents of all used registers, a listing 
of the current program loaded. 

PROG Loads a sequence of operations to be performed on the 
register data, in a simple assembly language. 

RUN Starts a software Finite State Machine to run the stored 
program to completion. 

CRT, 

ICRT, 

CEM 

A single command that will LOAD two registers, perform 
a forward CRT, inverse CRT or Composed EvalMult on them 
and GET the resulting output. Used for accelerating 
applications that only require these three operations. 

RESET Resets the system to its original state. 

TABLE II.   AVALIABLE OPCODES FOR HOMOMORPHIC ENCRYPTED 

PROGRAMS 

Opcode Example Description 

LOAD R1 = LOAD(In0) Moves data from an input register 
to scratch register, all active tower 
elements are moved. 

STORE Out4 = STORE(R3) Moves data from a scratch register 
to output register, all active tower 
elements are moved. 

RADD R2 = RADD(R3, R4) Sets up DMAs of the two input and 
one output registers to the RingAdd 
circuit. All active tower elements are 
processed I one large data flow. 

RSUB R2 = RSUB(R3, R4) Same as RingAdd, except the 
RingSub circuit is the target/source of 
the I/O DMAs. 

RMUL R2 = RMUL(R3, R4) Same as RingAdd, except the 
RingMul circuit is the target/source of 
the I/O DMAs. 

CRT R3= CRT(R1, R2) Same as RingAdd, except the input 
and output registers are used as 
endpoints for pairs of DMA transfers, 
each moving one half of the ring data.  
Note second input register is used as a 
scratch register so is contents are 
destroyed. 

ICRT R2 = ICRT(R4, R5) Same as CRT except an inverse 
CRT circuit is used. 

EMULC R2 = EMULC(R3, R4) Executes a ComposedEvalMult, in 
software which in turns executes several 
Ring primitives (see below). Note that 
output register is one tower smaller than 
the input registers. 

 

An example simple program in now given in Table 3. The 
program first moves encrypted data from input register 0, to 
scratch register 0, then repeats the process for a second input 
variable to register 1. It then computes a RingAdd, RingSub 
and RingMul using the two inputs, and storing the result in 
scratch registers 2, 3 and 4 respectively. It then stores those 
three results in output registers 0, 1 and 2 respectively.  

Typical system operation would be for the user to execute 
two LOAD commands to load the contents of input registers 0 
and 1 with encrypted data (the encryption being done on the 
secure host). The user then executes a RUN command to allow 
the Homomorphic operations to be run on the unsecure FPGA 
processor. Then subsequent calls to GET commands will 
 

TABLE III.  SAMPLE PROGRAM 

R0 = LOAD(In0) 

R1 = LOAD(In1) 

R2 = RADD(R0,R1) 

R3 = RSUB(R0,R1) 

R4 = RMUL(R0,R1) 

Out0 = STORE(R2) 

Out1 = STORE(R3) 

Out2 = STORE(R4) 



transfer the resulting encrypted result data back to the host. 
Finally decryption would be done on the secure host. 

E. Microcode Implementation of ComposedEvalMult 

As mentioned above, one of the new functions 
implemented in our system is the ComposedEvalMult (CEM) 
which is fully detailed in [4]. This function is implemented in 
our software controller as a series of C function calls, all but 
one of which are executed with previously existing primitives. 
First, a RingMul operation performs the multiply. Next a key-
switch operation is performed consisting of another RingMul 
of the product with a hint variable defined by the cryptosystem. 
Then, a modulus reduction operation is performed on the single 
highest tower entry of the result which consists of an inverse 
CRT and a new Rounding operation.  

This Rounding operation is implemented as a new 
hardware function because it contains operations not available 
in the other ring functions. Fig. 3 shows the Simulink Model 
consisting of a modified EvalMult operation (using a modified 
set of moduli qi), and a pair of operations selected by the range 
of the result which ensure the output is bounded within an 
appropriate range. The operations are performed in a pipelined 
manner as well, to allow execution at 200 MHz.   

The result of the rounding operation is a pair of new ring 
vectors that are then in turn applied to each remaining tower 
entry to reduce the noise accumulated by the initial product. 
These vectors are first processed with a series of RingAdds, 
RingSubs and a CRT using each of the corresponding ring 
moduli. The end result is that the highest tower ring is 
eliminated from the cipher text, and the overall noise of the 
system remains at a usable (i.e. de-cryptable) level. 

III. CURRENT RESULTS AND NEXT STEPS 

Our presentation will include I/O timing, run-time and chip 
utilization details of our attached processor performing the 
suite of ring primitives on various ring sizes, based on the 
implementation in our Virtex 7 VC707 evaluation board.  

Future plans for our FPGA system include adding all Ring 
primitives that will be required to accelerate the Bootstrapping 
operation described in [4]. The CRT and inverse CRT 
operations will be modified to allow the Number Theoretic 
Transform (NTT) portion [7] to be combined into one circuit, 
saving a large amount of FPGA multiplier resources. 
Additionally, multiple ring sizes will be supported by  
modifications to the NTT to support multiple power-of-two 
ring sizes. This will allow us to support the Ring Reduction 
operation in [4] for increased computational efficiency. Note 
that all of the other primitives can at arbitrary ring sizes. The 
final target ring size is 214, which will support relatively secure 
computation. 
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