
An FPGA Co-Processor Implementation of

Homomorphic Encryption

David Bruce Cousins, John Golusky, Kurt Rohloff, Daniel Sumorok

Raytheon BBN Technologies

Cambridge, Massachusetts USA

{dcousins, jgolusky, dsumorok, krohloff}@bbn.com

Abstract— One of the goals of the DARPA PROCEED pro-

gram has been accelerating the development of a practical Fully

Homomorphic Encryption (FHE) scheme. For the past three

years, this program has succeeded in accelerating various aspects

of the FHE concept toward practical implementation and use.

FHE is a game-changing technology to enable secure, general

computation on encrypted data on untrusted off-site hardware,

without the data ever being decrypted for processing. FHE

schemes developed under PROCEED have achieved multiple

orders of magnitude improvement in computation, but further

means of acceleration, such as implementations on specialized

hardware, such as an FPGA can improve the speed of computa-

tion even further.

The current interest in FHE computation resulted from

breakthroughs demonstrating the existence of FHE schemes [1,

2] that allowed arbitrary computation on encrypted data. Specif-

ically, our contribution to the Proceed program has been the

development of FPGA based hardware primitives to accelerate

the computation on encrypted data using an FHE cryptosystem

based on NTRU-like lattice techniques [3] with additional with

additional support for efficient key switching and modulus re-

duction operations to reduce the frequency of bootstrapping op-

erations [4]. Cipher texts in our scheme are represented as rec-

tangular matrices of 64-bit integers. This bounding of the oper-

and sizes has allowed us to take advantage of modern code gen-

eration tools developed by Mathworks to implement VHDL code

for FPGA circuits directly from Simulink models. Furthermore

the implicit parallelism of the scheme allows for large amounts of

pipelining in the implementation in order to achieve efficient

throughput. The resulting VHDL is integrated into an AXI4 bus

“Soft System on Chip” using Xilinx platform studio and a Mi-

croblaze soft core processor running on aVirtex7 VC707 evalua-

tion board. This report presents new Simulink primitives that

had to be developed to deal with these new requirements.

Keywords—Fully Homomorphic Encryption; Co-processor;

SIMULINK; FPGA

I. INTRODUCTION - A QUICK REVIEW OF FULLY- AND

SOMEWHAT- HOMOMORPHIC ENCRYPTION

Our team recently published our work to design, implement
and evaluate a scalable FHE scheme which addresses the
limitations for secure arbitrary computation [4]. Our
implementation uses a variation of a not previously
implemented bootstrapping scheme [5] simplified for power-
of-2 rings. We also use a “double-Chinese Remainder

Transform (CRT)” representation of cipher texts which is
discussed in [6]. With this double-CRT representation, we can
select parameters so that cipher texts are secure when
represented as matrices of 64 bit integers, but still support the
secure execution of programs on commodity computing
devices without expending unnecessary computational
overhead manipulating large multi-hundred-bit or even multi-
thousand-bit integers. Additionally, the parallelism implicit in
this data representation is easily exploited to achieve
efficiencies during implementation.

Our implementation encrypts a plaintext bit into a two di-
mension array of 64 bit unsigned integers1. We use a residue
number system implementation to represent cipher texts as T
sets of length-N integer vectors. A ring in the tower entry t has
a unique modulus qt which bounds all entries in that ring. The n
dimension is known as the ring size, and the t dimension as the
tower size. This representation allows us to operate in parallel
on the smaller bit width modulo qt values instead of on a single

modulus q of much larger bit width, where q = q1 ∗ q2∗∗ qT
for pairwise co-prime moduli qi..

As outlined in [4], our implementation requires only a few
elementary operations to be implemented on the FPGA hard-
ware in order to achieve large run time speedups over conven-
tional CPU implementations. These operations are:

• RingAdd: cn,t = (an,t + bn,t) % qt

• RingSub: cn,t = (an,t  bn,t) % qt

• RingMul: cn,t = (an,t * bn,t) % qt

All three of the above operations can be parallelized or
pipelined over both n and t . Also required are the

• CRT and Inverse CRT, which are implemented as a
Number Theoretic Transform [7] coupled with a pre- or post-
RingMul with an appropriate Twiddle Vector.

• Round: A function to perform modulo rounding using
different tower moduli (detailed below).

In our cryptosystem, two key operations are defined:
EvalAdd and EvalMult. When our parameters are chosen such
that a single plaintext bit is encrypted, the resulting operations
on the encrypted data are XOR and AND respectively. These

1
While the actual number of bits is determined by the parameter selection of

the cryptosystem, we select 64 as our maximum dimension for FPGA imple-

mentation.
Sponsored by Air Force Research Laboratory (AFRL) Contract No.

FA8750-11-C-0098. The views expressed are those of the authors and do not

reflect the official policy or position of the Department of Defense or the U.S.

Government. Distribution Statement “A” (Approved for Public Release, Dis-

tribution Unlimited).

978-1-4799-6233-4/14/$31.00 ©2014 IEEE

two operations allow us to implement any Boolean operation of
input cipher text 2.

Our crypto-system, like many FHE systems, is random
(noisy) in nature. Because of this, only a limited number of
operations can be performed on the encrypted data before the
noise dominates and decryption is no longer guaranteed.
EvalAdd does not add noise to the system, so an unlimited
number of such operations are allowed to be chained together.
EvalMult however does add noise, and this limits the number
of such operations that can be chained together. The double
CRT representation allows a very straightforward
implementation that controls this noise. This requires the use of
both key switching and modulus reduction whenever an
EvalMult is performed. The combination of these three steps is
known as a Composed EvalMult (CEM). The property of CEM
is that for a pair of inputs of a given tower size t, the output is a
cipher text of tower size t-1. Thus for an initial tower size of T,
at most (T-1) CEM operations can be performed before the
noise in the cypher-text grows beyond the point where it can be
reliably decrypted. An implementation that has a limit to the
allowable number of Homomorphic operations is called
Somewhat Homomorphic.

The dimensions of the cryptosystem are determined
algorithmically, and are a function of security required and the
number of CEM operations required to implement the desired
application. If the number of operations required by the
application exceeds O(16), then a Bootstrapping operation will
be required to reset the noise generated by the cryptographic
operations. Bootstrapping is currently on the order of 10 CEM
equivalent operations for reasonable security parameters.
Bootstrapping has the property of taking a cipher text of tower
size t, and generating a new ‘refreshed’ cipher text of the
system’s original tower size T. Thus an unlimited number of
operations can be performed on the data. This kind of
implementation is called Fully Homomorphic. The remainder
of our paper will discuss the current FPGA implementation of
the functions required for Somewhat Homomorphic operation.
Our planned implementation of the functions needed for Fully
Homomorphic operation will be implemented in our final
phase of the program this year.

II. VHDL IMPLEMENTATIONS OF FAST MODULUS ARITHMETIC

AND CHINESE REMAINDER TRANSFORMS (CRT) USING

SIMULINK-BASED MODELS

A. Optimisations and Refinements To Previous

Implementations

We have previously reported on our Simulink-based
implementations of the three modulus arithmetic functions, as
well as the forward and inverse CRT functions[8, 9]. Our
current work has updated these implementations to allow
VHDL code generation with a doubling of circuit clock speeds
to 200 MHz. This was done by performing the following
optimizations.

2Any arbitrary Boolean function can be constructed from NAND operations.

Since NOT(a) == XOR(a, 1), and NAND(a, b) == NOT(AND(a, b)), the two

Homomorphic operations are a sufficient set.

Mathworks determined that by selecting synchronous vs.
asynchronous reset in the Simulink to HDL generation
parameters, the resulting VHDL mapped more efficiently into
the registers built into the DSP48E blocks on the Vertex 7
FPGA, increasing the efficiency of the resulting mapped
VHDL by eliminating extra routing traces.

The previous circuits were designed to run at a minimum
speed of 100 MHz. We determined that adding explicit
pipelining stages in the form of delay lines to the model
enabled the Xilinx tools to better optimize FPGA mapping
during place and route pipelining stages. Specifically pipelines
were added between arithmetic operations within the RingAdd
(4 stages), RingSub (3 stages), RingMul (188 stages) models.
Since our target ring size can be as large as 214, and all the
towers of a variable are processed sequentially, the delay
incurred from filling the pipeline is expected to be minimal.

Once the models were maximally pipelined, we identified
several large (64 by 64 bit) product blocks within our RingMul
Barret multiplication implementation [9, 10] as being the
slowest components, and re-implemented them as an expanded
multiplication model consisting of four parallel 32 by 32 bit
products, and a pipelined accumulation of partial sums. This
further increased the achievable clock speeds. We discovered
that adding additional pipelines of length four, both before and
after each resulting smaller product block further allowed the
Xilinx optimizer to break these product blocks into multiple
DSP48E multipliers in a distributed fashion. This allowed the
RingMul circuit to perform at speeds in excess of 350 MHz,
well in excess of our target 200 MHz.

Several of our circuits utilize lookup tables, both for storing
the moduli qi and for storing various twiddle table entries for
the CRT and inverse CRT. Our previous direct implementation
of the table lookup using the Simulink Lookup function block
maps the resulting ROM directly into gate circuitry. This can
increase the place and route drastically for very large tables,
and also can result in less efficient circuits. Mathworks
determined that by placing an additional delay line, with a
“ResetType = none” HDL block property let the Xilinx

tools map the table to block ram in the FPGA, which is a more
efficient utilization of resources on the chip.

B. FPGA Hardware Selection

Our FPGA selection was driven by the need for a large
number of hardware multipliers on the chip. Due to cost
constraints we wanted to use a commercial off-the-shelf FPGA
board for our experiments. Our selection of the Virtex 7
VC707 evaluation board was driven by the following sizing
requirements. Our target ring size of 214 requires 1110 DSP48
blocks for the CRT and the same number for the inverse CRT.
The VC707 has a Virtex 7 485T chip which contains 2800
such blocks, more than sufficient to implement our projected
set of FHE primitives. Additionally, we require on-board DDR
memory for storage of encrypted variables, and high speed
Ethernet and PCI interfaces to exchange data with the host
computer. All these are present on the VC707.

C. FPGA System Architecture

The design goal of our FPGA system was to be able to
operate as an attached processor to accelerate the FHE
primitive operations in way that allows one to chain together
several operations in order to minimize the overhead due to
data transfer. An attached processor design was developed in
which a software programmable microcontroller would
manage I/O communications with the host via Ethernet or PCI
memory map, manage on board data storage in the form of an
encrypted register file, and manage data transfer to and from
the FHE primitive modules in as efficient manner as possible.

We decided to use the Xilinx Platform Studio Microblaze
soft core processor and AXI4 interconnect architecture to
implement the attached FHE processor. Fig. 1 shows a system
block diagram of the resulting system. The Xilinx platform
studio enables us to implement our FHE primitives as
streaming co-processors on the AXI bus. An AXI4 lite bus is
used to set control parameters of our Ring operation circuits,
such as ring size, and tower size.

The main AXI4 interconnect is a 256 bit bus connecting the
DDR ram with the various FHE primitives. The I/O rate into
and out of DDR memory limits the overall processing speed of
the system. Our RingAdd, RingSub and RingMul primitives
each require two input streams and one output streams. Fig. 2
shows how we currently integrate our FHE primitives with the
AXI4 stream interconnect. Each of these three operations is
parallelized across ring elements as well as tower indices.
These data streams are implemented using a pair of AXI4
DMA controllers, each handling one input and one output.
Data is clocked in and out of the bus at 400 MHz, and streamed
via individual AXIS buses between the DMAs to the AXI
stream blocks where they are buffered with FIFOs and split
into eight parallel 64 bit input data streams, and four 64 bit
output data streams. Current implementations of these three
functions are clocked at 100 MHz, so four parallel
instantiations of each operation are used to keep the I/O
pipelines full. Future implementations of these primitives are
planned to be clocked at 200 MHz, and as such will only sup-
port two instantiations in parallel.

The forward and inverse CRT modules require slightly
different interfaces. CRT operations are parallelizable across
tower entry but not across ring index. Thus CRT’s cannot be
parallelized in the same way as the Ring operations. Currently
we have a single CRT or inverse CRT at a time operating at
100 MHz. Future implementations will run these two
operations at 200 MHz, but the multiplier resources required
for the planned ring size of 214 will prohibit mapping more than
one forward and one inverse CRT onto the 485T chip.

D. Microblaze Software Architecture

The Xilinx platform studio is used to implement a Micro-
blaze soft core processor. The system architecture is based on
the demo hardware self-test example that is provided with the
Xilinx board. The software architecture is based on the web-
service example provided with the Xilinx Virtex 6 ML605
evaluation kit, updated with the Xilinx SGMII 144 Ethernet
controller. The software controlling the system on the Micro-
blaze is written in C code. The PC “host” end of the software
interface is also written in C. The host interface currently is
implemented in two versions. The first is a stand-alone test
bench that can test and exercise the operation of the attached
FHE processor. The second version interfaces with Matlab via
a file interchange mechanism to support demonstration Ho-
momorphic Encryption application programs. The interfaces
use either Ethernet or PCI bus I/O based on compile flags.

The system software is multithreaded to allow the use of
Ethernet TCP/IP socket I/O. A network thread manages socket
level I/O between the host and the attached processor. Another
thread reads the incoming messages from the socket, parses the
commands received and dispatches execution to various sub-
routines. The PCI interface is written to emulate the buffer I/O
of the Ethernet interface, allowing the same software to be used
for both Ethernet and PCI operation.

The DDR3 ram is partitioned into a set of register data
structures, as well as a set of internal registers to store con-
stants used in our encryption schemes. Each register can hold
one encrypted bit in the form of a two dimensional vector of

64
64

64
64

64
64

64
64

64
64

64
64

CRT

Inverse
CRT

Round

Ring
AddRing

AddRing
AddRing

Add

256

Data from
AXI4

Streamers

64
64

64

64

256 64
64

64

64

Ring
AddRing

AddRing
AddRing
Subtract

64
64

64

64

Ring
AddRing

AddRing
AddRing
Multiply

64
64

64

64
64

64

64

64
64

64

64

64

64

64

64

64

64

256

64

64

64

64

64

256

Data from
AXI4

Streamers

Figure 2: Integration of FHE primitives with the AXI

stream data streams.

AXI4 Ethernet

Microblaze

1GB DDR3
Memory

AXI4 DDR3
Memory

Controller

AXI4
DMA

AXI4
Stream

FHE
Primitives

FHE Control
Registers

AXI4
Interconnect

AXI4 Lite
Interconnect

AXI4
DMA

AXI4
Stream

AXI4 PCI
Controller

Figure 1: System block diagram showing major com-

ponents and the AXI4 interconnect.

unsigned long longs that are allocated out of DDR ram. One
dimension (the fastest index) is the ring size N and is a
compiled constant. The other dimension, the tower size, varies
with the state of the register. Typically registers are loaded
into the FHE coprocessor with a fixed starting number of the
tower elements (up to MAX_TOWER_SIZE = 32 elements).
We eliminate the highest tower entries one by one as each
CEM operation is performed.

The registers are allocated out of heap in the DDR ram.
There are three flavors of registers: Input, Output and Scratch.
This design decision was made in order to allow us to later
segregate I/O and scratch registers into different memory
locations if that were to increase throughput (allowing simulta-
neous host access to the I/O registers while the FGPA was pro-
cessing with the Scratch registers. The quantity of each register
type is software defined at compile time but there is usually a
small numbers of Input and Output registers and as many
Scratch registers as will utilize all the available heap space.
Control structures mark the current tower size of each register,
and if the register is used or not. Registers are allocated so they
are aligned to 32 byte address boundaries in order to allow the
AXI4 DMA engines to move the register data into and out of
the FHE primitives. This format allows the contents of an
entire register (all used towers) to be streamed with only one
DMA transfer.

The communication protocol between the PC host and the
FPGA board is message based. The messages are in ASCII.
Messages can span multiple socket buffers; with multiple
socket calls made until enough text has been parsed to
complete a message (double cr/lf indicates the end of a
message). Each message can contain several instructions to the
processor, separated by cr/lf). Each processor instruction is
then parsed. The parsing test starts with a keyword that defines
the rest of the instruction format. The keywords are shown in
Table 1. The system’s assembly language has the syntax
shown in Table 2.

TABLE I. CONTROL PROTOCOL KEYWORDS

Key
word

Function

LOAD Transfer the contents of the message (ASCII) into a
particular Input register.

GET Request the contents of a particular output register to be
loaded into an ASCII message buffer and sent back to the host.

STATUS Generates a short report on the FPGA board console for
debugging showing the contents of all used registers, a listing
of the current program loaded.

PROG Loads a sequence of operations to be performed on the
register data, in a simple assembly language.

RUN Starts a software Finite State Machine to run the stored
program to completion.

CRT,

ICRT,

CEM

A single command that will LOAD two registers, perform
a forward CRT, inverse CRT or Composed EvalMult on them
and GET the resulting output. Used for accelerating
applications that only require these three operations.

RESET Resets the system to its original state.

TABLE II. AVALIABLE OPCODES FOR HOMOMORPHIC ENCRYPTED

PROGRAMS

Opcode Example Description

LOAD R1 = LOAD(In0) Moves data from an input register
to scratch register, all active tower
elements are moved.

STORE Out4 = STORE(R3) Moves data from a scratch register
to output register, all active tower
elements are moved.

RADD R2 = RADD(R3, R4) Sets up DMAs of the two input and
one output registers to the RingAdd
circuit. All active tower elements are
processed I one large data flow.

RSUB R2 = RSUB(R3, R4) Same as RingAdd, except the
RingSub circuit is the target/source of
the I/O DMAs.

RMUL R2 = RMUL(R3, R4) Same as RingAdd, except the
RingMul circuit is the target/source of
the I/O DMAs.

CRT R3= CRT(R1, R2) Same as RingAdd, except the input
and output registers are used as
endpoints for pairs of DMA transfers,
each moving one half of the ring data.
Note second input register is used as a
scratch register so is contents are
destroyed.

ICRT R2 = ICRT(R4, R5) Same as CRT except an inverse
CRT circuit is used.

EMULC R2 = EMULC(R3, R4) Executes a ComposedEvalMult, in
software which in turns executes several
Ring primitives (see below). Note that
output register is one tower smaller than
the input registers.

An example simple program in now given in Table 3. The
program first moves encrypted data from input register 0, to
scratch register 0, then repeats the process for a second input
variable to register 1. It then computes a RingAdd, RingSub
and RingMul using the two inputs, and storing the result in
scratch registers 2, 3 and 4 respectively. It then stores those
three results in output registers 0, 1 and 2 respectively.

Typical system operation would be for the user to execute
two LOAD commands to load the contents of input registers 0
and 1 with encrypted data (the encryption being done on the
secure host). The user then executes a RUN command to allow
the Homomorphic operations to be run on the unsecure FPGA
processor. Then subsequent calls to GET commands will

TABLE III. SAMPLE PROGRAM

R0 = LOAD(In0)

R1 = LOAD(In1)

R2 = RADD(R0,R1)

R3 = RSUB(R0,R1)

R4 = RMUL(R0,R1)

Out0 = STORE(R2)

Out1 = STORE(R3)

Out2 = STORE(R4)

transfer the resulting encrypted result data back to the host.
Finally decryption would be done on the secure host.

E. Microcode Implementation of ComposedEvalMult

As mentioned above, one of the new functions
implemented in our system is the ComposedEvalMult (CEM)
which is fully detailed in [4]. This function is implemented in
our software controller as a series of C function calls, all but
one of which are executed with previously existing primitives.
First, a RingMul operation performs the multiply. Next a key-
switch operation is performed consisting of another RingMul
of the product with a hint variable defined by the cryptosystem.
Then, a modulus reduction operation is performed on the single
highest tower entry of the result which consists of an inverse
CRT and a new Rounding operation.

This Rounding operation is implemented as a new
hardware function because it contains operations not available
in the other ring functions. Fig. 3 shows the Simulink Model
consisting of a modified EvalMult operation (using a modified
set of moduli qi), and a pair of operations selected by the range
of the result which ensure the output is bounded within an
appropriate range. The operations are performed in a pipelined
manner as well, to allow execution at 200 MHz.

The result of the rounding operation is a pair of new ring
vectors that are then in turn applied to each remaining tower
entry to reduce the noise accumulated by the initial product.
These vectors are first processed with a series of RingAdds,
RingSubs and a CRT using each of the corresponding ring
moduli. The end result is that the highest tower ring is
eliminated from the cipher text, and the overall noise of the
system remains at a usable (i.e. de-cryptable) level.

III. CURRENT RESULTS AND NEXT STEPS

Our presentation will include I/O timing, run-time and chip
utilization details of our attached processor performing the
suite of ring primitives on various ring sizes, based on the
implementation in our Virtex 7 VC707 evaluation board.

Future plans for our FPGA system include adding all Ring
primitives that will be required to accelerate the Bootstrapping
operation described in [4]. The CRT and inverse CRT
operations will be modified to allow the Number Theoretic
Transform (NTT) portion [7] to be combined into one circuit,
saving a large amount of FPGA multiplier resources.
Additionally, multiple ring sizes will be supported by
modifications to the NTT to support multiple power-of-two
ring sizes. This will allow us to support the Ring Reduction
operation in [4] for increased computational efficiency. Note
that all of the other primitives can at arbitrary ring sizes. The
final target ring size is 214, which will support relatively secure
computation.

ACKNOWLEDGMENT

We would like to acknowledge Christopher Peikert for all
his numerous invaluable contributions to the theoretical and
practical implementation aspects of this project.

REFERENCES

[1] C. Gentry and S. Halevi. Implementing Gentry’s Fully-Homomorphic
encryption scheme. In Kenneth Paterson, editor, Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, chapter 9, pages 129–148. Springer, 2011.

[2] D. Micciancio. A first glimpse of cryptography's Holy Grail. Comm.
ACM 53, 3 (March 2010), 96-96.

[3] V. Lyubashevsky, C. Peikert, and O. Regev. “On ideal lattices and
learning with errors over rings”. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, chapter 1, pages 1–23. Springer Berlin / Heidelberg,
Berlin.

[4] K. Rohloff, D. B. Cousins, “A Scalable Implementation of Fully
Homomorphic Encryption Built on NTRU.” 2nd Work-shop on Applied
Homomorphic Cryptography and Encrypted Computing (WAHC). Mar.
7, 2014.

[5] J. Alperin-Sheriff and C. Peikert. “Practical bootstrapping in quasilinear
time”. In Ran Canetti and JuanA. Garay, editors, Advances in
Cryptology CRYPTO 2013, volume 8042 of Lecture Notes in Computer
Science, pages 1–20. Springer Berlin Heidelberg, 2013.

[6] C. Gentry, S. Halevi, and N. Smart. “Homomorphic evaluation of the
AES circuit.” In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology CRYPTO 2012, volume 7417 of Lecture Notes

Figure 3: Simulink Model of Round Function.

in Computer Science, pages 850–867. Springer Berlin / Heidelberg,
2012.

[7] H. Cohen A Course in Computational Algebraic Number Theory. New
York: Springer-Verlag, 1993.

[8] D. Cousins, K. Rohloff, C. Peikert, R. Schantz “Scalable
Implementation of Primitives for Homomorphic EncRyption – FPGA
implementation using Simulink” 2011 High Perfor-mance Extreme
Computing Workshop Sep 21-22 2011, Lex-ington MA

[9] D. Cousins, K. Rohloff, C. Peikert, R. Schantz “An Update on SIPHER
(Scalable Implementation of Primitives for Ho-momorphic EncRyption)
– FPGA implementation using Simulink” 2012 IEEE Conference on
High Performance Ex-treme Computing (HPEC) Sep 10-12 2012,
Waltham MA

[10] M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster Interleaved
Modular Multiplication Based on Barrett and Montgomery Reduction
Methods”, IEEE Transactions on Computers, Vol. 59, No. 12, Dec 2010

