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Abstract

In this paper we report on our work to design, implement and evaluate a Fully Homomorphic
Encryption (FHE) scheme. Our FHE scheme is an NTRU-like cryptosystem, with additional support
for efficient key switching and modulus reduction operations to reduce the frequency of bootstrapping
operations. Ciphertexts in our scheme are represented as matrices of 64-bit integers. The basis of our
design is a layered software services stack to provide high-level FHE operations supported by lower-
level lattice-based primitive implementations running on a computing substrate. We implement
and evaluate our FHE scheme to run on a commodity CPU-based computing environment. We
implemented our FHE scheme to run in a compiled C environment and use parallelism to take
advantage of multi-core processors. We provide experimental results which show that our FHE
implementation provides at least an order of magnitude improvement in runtime as compared to
recent publicly known evaluation results of other FHE software implementations.

1 Introduction

Recent breakthroughs in Homomorphic Encryption have shown that it is theoretically possible to securely
run arbitrary computations over encrypted data without decrypting the data [10, 11]. There has been
recent work on designing and implementing variations of Somewhat Homomorphic Encryption (SHE) and
Fully Homomorphic Encryption (FHE) schemes [2, 6, 9, 12, 13, 15, 18, 23, 24, 28]. These implementations
have become increasingly practical with published results on both the runtime of isolated EvalAdd and
EvalMult operations for some implementation [12, 23, 24] and evaluations of composite functions like
AES [9, 15, 28].

Current approaches to design FHE schemes rely on bootstrapping to arbitrarily increase the size of
computation supported by an underlying SHE scheme. Many current implementations of SHE and FHE
schemes rely on the the manipulation of very large integers so that the schemes are both secure and
capable of supporting the evaluation of sufficiently large circuits. Prior SHE and FHE implementation
designs [12, 15, 23, 24], for the most part, rely on single-threaded execution on commodity CPU-type
hardware, partially due to the difficulty of or lack of native support for multi-threaded execution with
underlying software libraries [20, 25]. This, in addition to the inherent computational cost of secure
computing using known SHE and FHE schemes, prevented the practical use of SHE and FHE.
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In this paper we report on our work to design, implement and evaluate a scalable Fully Homomor-
phic Encryption (FHE) scheme which addresses the limitations for secure arbitrary computation. Our
implementation uses a variation of a not previously implemented bootstrapping scheme [1] simplified for
power-of-2 rings. We also use a “double-CRT” representation of ciphertexts which was also discussed
in [15]. With this double-CRT representation, we can select parameters so that ciphertexts are secure
when represented as matrices of 64-bit integers, but still support the secure execution of programs on
commodity computing device without expending unnecessary computational overhead manipulating large
multi-hundred-bit or even multi-thousand-bit integers.

We implement in software specialized lattice primitives such as Ring Addition, Ring Multiplication
and the Chinese Remainder Transform (CRT). We use our primitive implementations to construct the
FHE operations of Key Generation (KeyGen), Encryption (Enc), Decryption (Dec), Evaluation Addition
(EvalAdd), Evaluation Multiplication (EvalMult) and Bootstrapping (Boot). We use supporting Modu-
lus Reduction (ModReduce), Ring Reduction (RingReduce) and Key Switching (KeySwitch) operations
to augment the EvalMult operation and support larger depth computations without bootstrapping or
decreasing the security of our scheme.

We implemented this scheme to run in a compiled C environment and use parallelism to take ad-
vantage of multi-core processors. Taken together, our implementation of these concepts points the way
to a practical implementation of FHE with a more efficient (and less frequent) use of the bootstrapping
operation. We evaluate the performance of our software library as a set of compiled executables in a com-
modity CPU-based multi-core Linux environment. The evaluated performance of our library compares
favorably with evaluations of the reported experimental CPU-based evaluation results of other recent
SHE and FHE schemes implemented in software such as in [12, 23, 24].

This paper is organized as follows. In Section 2 we discuss how we represent ciphertexts in our
implementation. In Section 3 we define our NTRU-based FHE scheme. In Section 4 we discuss parameter
selection for our NTRU-based scheme to provide practical secure computing on commodity computing
hardware. In Section 5 we discuss our experimental results from our FHE scheme implemented in Matlab.
We conclude the paper with a discussion of our insights and next steps in Section 6. Data tables
experimental runtime results can be seen in Appendix A.

2 Double-CRT Ciphertext Representation

Previous SHE/FHE designs and implementations use two primary parameters to tune the security pro-
vided and the supported depth of homomorphic computation (without resorting to bootstrapping): the
ring dimension n and the ciphertext modulus q. With these parameters, fresh ciphertexts are typically
represented as n-element integer arrays, where each array element consists of at least log2(q) bits. In
previous implementations the ring dimension n typically ranged from 512 (29) to 16384 (214) and beyond,
while several hundred to several thousand bits was typically required to represent q. In the previous im-
plementations that use this “large-q” approach, the practicality challenge derives from the difficulty of
supporting both a large ring dimension n (which provides comparatively better security) and a large q
(which increases the depth of computation supported).

The requirement of a very large q is potentially problematic, because the number of clock cycles to
support mod-q operations using naive “big integer” arithmetic grows at least linearly (and often quadrat-
ically) with the number of bits used to represent q for even the simplest operations, e.g., modular addition
and multiplication. We use a variation of the double-CRT approach discussed in [15] to circumvent this
problem using the standard technique of a “residue number system” (based on the Chinese remainder
theorem over the integers) to represent ciphertexts as t length-n integer vectors of mod-qi values instead
of a single integer vector mod q where q = q1 ∗ · · · ∗ qt for pairwise coprime moduli qi. For our ciphertext
representation we use t length-n integer vectors of mod-qi values represented as a n × t integer matrix.
With our double-CRT approach, the number of moduli (t) grows to support the secure execution of
larger programs, but more bits are not required to represent the moduli q1, · · · , qt. Our implementation
supports the secure execution of depth t− 1 programs with t moduli.

The double-CRT representation is an extension of the Chinese Remainder Transform (CRT) [19]
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representation used in prior SHE and FHE implementations. Chinese remainder transforms are used
to convert ciphertexts from the natural “power basis” representation to the double-CRT representation.
This conversion can mathematically be represented as a multiplication by square n × n matrices, but
admits a fast, highly parallel evaluation procedure that is closely related to the Cooley-Tukey Fast
Fourier Transform (and others.)

As we discuss more in Section 4 below, each of the moduli q1, · · · , qt can be represented as 64-bit
integers and still support the secure execution of non-trivial programs. These 64-bit representations
greatly improve the practicality of our approach to SHE and FHE. By using 64-bit modular operations
to manipulate ciphertexts, keys, etc., we support faster low-level execution of the SHE operations on
commodity 64-bit (or even 32-bit) processors.

An advantage of our double-CRT NTRU approach is that the FHE operations can be highly paral-
lelized. Similar to the standard CRT representation, by using a double-CRT representation, the EvalAdd,
EvalMult operations and key sub-operations in Bootstrapping, Modulus Reduction, Ring Switching and
Key Switching can become t naively parallelized operations. This greatly simplifies the secure execution of
programs using our FHE implementation as compared to other, non-CRT representations of ciphertexts.

3 Cryptosystem

In this section we describe the somewhat homomorphic cryptosystem we use that is very similar to
the NTRU system [16], though it was not until recently that its homomorphic properties were noticed
independently by López-Alt et al. [18] and Gentry et al. [14].

For ease of implementation and design simplicity, we limit our description to power-of-2 cyclotomic
rings. For ring dimension n which is a power of 2, define the ring R = Z[x]/(xn + 1) (i.e., integer
polynomials modulo xn + 1). For a positive integer q, define the quotient ring Rq = R/qR (i.e., integer
polynomials modulo xn + 1, with coefficients from Zq = Z/qZ).

3.1 Basic NTRU-Type System

In this subsection we provide a mathematical description of a somewhat homomorphic NTRU-based
scheme. The message space is Rp for some integer p ≥ 2, and most arithmetic operations are performed
modulo some q ≫ p that is relatively prime with p. Fast addition and multiplication in Rq can be
performed by using the mod-q Chinese Remainder Transform (CRT) representation of elements. The
basic operations of the scheme are as follows:

• Gen: choose a short f ∈ R such that f = 1 mod p and f is invertible modulo q, and a short g ∈ R.
Output pk = h = g · f−1 mod q and sk = f .

Note that f is invertible modulo q if and only if each of its mod-q CRT coefficients is nonzero. The
CRT coefficients of f−1 (modulo q) are just the mod-q inverses of those of f .

Concretely, the short elements f and g can be chosen from discrete Gaussians. E.g., we can let
f = p ·f ′+1 for some Gaussian-distributed f ′. Note that such an f will have expectation (center) 1.
Using a zero-centered f can have some advantages, and may be chosen using a more sophisticated
sampling algorithm.

• Enc(pk = h, µ ∈ Rp): choose a short r ∈ R and a short m ∈ R such that m = µ mod p. Output
c = p · r · h+m mod q.

Concretely, m can naively be chosen as m = p · m′ + µ for a Gaussian-distributed m′, but again,
such an m is not zero-centered. It is typically better to choose m as a zero-centered random variable
congruent to µ modulo p.

• Dec(sk = f, c ∈ Rq): compute b̄ = f · c mod q, and lift it to the integer polynomial b ∈ R with
coefficients in [−q/2, q/2). Output µ = b mod p.

The homomorphic operations are defined as follows:
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• EvalAdd(c0, c1): output c = c0 + c1 mod q.

• EvalMult(c0, c1): output c = c0 · c1 mod q.

With the use of EvalMult, the decryption procedure needs to be modified. Define the “degree” of
ciphertexts as follows: a freshly generated ciphertext has degree 1, and the degree of c = EvalMult(c0, c1)
is the sum of the degrees of c0 and c1. Then decryption of a ciphertext c of degree at most d is the same
as above, except that we instead compute b̄ = fd · c mod q.

3.2 Key Switching

Key switching converts a ciphertext of degree at most d, encrypted under a secret key f1, into a degree-1
ciphertext c2 encrypted under a secret key f2 (which may or may not be the same as f1). This requires
publishing a “hint”

a1→2 = m · fd
1 · f−1

2 mod q,

for a short m ∈ R congruent to 1 modulo p. (Concretely, we can choose m = p · e + 1 for a Gaussian-
distributed e, though a zero-centered m is better.)

• KeySwitch(c1, a1→2): output c2 = a1→2 · c1 mod q.

Note that a1→2, c1, c2 can all be stored and operated upon in CRT form, so key switching is very effi-
cient: the hint is just one ring element, and the procedure involves just one coordinate-wise multiplication
of the CRT vectors. This compares quite favorably to key-switching procedures for other cryptosystems,
which typically require decomposing a ciphertext into several short ring elements and performing several
ring multiplications.

3.3 Ring Reduction

Ring reduction maps a ciphertext from ring n to smaller ring n′ = n/2a, where typically a = 1. Although
we describe a ring reduction operation for power-of-2 rings, more general ring switching approaches exist
and can be obtained from simple generalizations of the approach we describe here.

The basic ring switching operation is a Decompose algorithm, which maps a dimension n ring to
dimension n′ elements. Decompose(c) works as follows:

• Let c = (c0, ..., cn−1) be in the power basis and let w = n/n′.

• We output ciphertexts c′i for each i = 0, ..., w− 1 where c′i = (ci, cw+i, c2w+i, ..., c(m′−1)w+i). I.e., c
′

i

just consists of those entries of c whose indices are i mod w.

Before applying Decompose we first key-switch the ciphertext to one which can be decrypted by a
“sparse” secret key sk, whose only nonzero entries in the power basis are at indices equal to 0 mod w.
We perform the ring-switching on a ciphertext c, by performing key-switching on c to get cp (encrypted
under sk), then call Decompose(cp) to get the /c′i/. The ciphertext c should only have plaintext data
only in its indices 0 mod w. Otherwise, this data is lost during the ring reduction operation.

3.4 Modulus Reduction

Modulus reduction, initially proposed in [3], converts a ciphertext from modulus q to a smaller modulus
(q/q′), where q′ divides q (and so is also relatively prime with p), while also reducing the underlying noise
by about a q′ factor.

The basic description is as follows: given a ciphertext c ∈ Rq, we add to it a small integer multiple
of p that is congruent to −c mod q′. This ensures that the underlying noise remains small, the plaintext
remains unchanged, and the resulting ciphertext is divisible by q′. Then we can divide both the ciphertext
and modulus by q′, which reduces the underlying noise term by a q′ factor as well.
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Note that the final step (of dividing by q′) implicitly multiplies the underlying message by (q′)−1 mod
p. We can either keep track of these extra factors as part of the ciphertext and correct for them as the
final step of decryption, or we can just ensure that q′ = 1 mod p, so that division by q′ does not affect
the underlying message.

The following formal procedure uses the fixed (ciphertext-independent) value v = (q′)−1 mod p, which
can be computed in advance and stored.

• ModReduce(c, q, q′):

1. compute a short d ∈ R such that d = c mod q′.

2. compute a short ∆ ∈ R such that ∆ = (vq′−1)·d mod (pq′). E.g., all of ∆’s integer coefficients
can be in the range [−pq′/2, pq′/2).

3. let d′ = c+∆ mod q. By construction, d′ is divisible by q′.

4. output (d′/q′) ∈ R(q/q′).

Following [15], the above is most efficient to implement when q = q1 · · · qt is the product of several
small, pairwise relatively prime moduli; when q′ is one of those moduli (say, q′ = qt without loss of
generality); and when c is represented in “double-CRT” form, i.e., each of c’s mod-q CRT coefficients is
itself represented in (integer) CRT form as a vector of mod-qi values, one for each i. Then the above
steps can be computed as follows:

1. Computing d is done by inverting the mod-qt CRT on the vector of mod-qt components of c (leaving
the other mod-qi components unused), and interpreting the resulting coefficients as integers in
[−qt/2, qt/2).

2. Computing ∆ is done by multiplying the coefficients of d by the fixed scalar (vqt − 1) modulo pqt.

3. Adding ∆ to c is done by computing the double-CRT representation of ∆ (i.e., applying each mod-qi
CRT to ∆), and adding it entry-wise to c’s double-CRT representation.

Note that the mod-qt CRTs of ∆ and c are just the negations of each other (by construction), so
their sum is the all-zeros vector. Therefore, there is no need to explicitly compute the mod-qt CRT
of ∆.

4. Computing d′/qt is done by dropping the mod-qt components in the double-CRT representation
of d′ (which are all zero anyway), and multiplying every mod-qi component by the fixed scalar
q−1
t mod qi. (These scalars can be computed in advance and stored.)

3.5 Composed EvalMult

We use the Key Switching, Ring Reduction and Modulus Reduction operations as supporting functions
with EvalMult to improve noise management and enable more computation between calls to the Boot-
strapping operation. Taken together, we form a composite operation, which we call ComposedEvalMult,
from the sequential execution of an EvalMult, Key Switching and Modulus Reduction operation.

Ring Reduction is called during some ComposedEvalMult operations, depending on the level of se-
curity provided by a ciphertext resulting from the result of the Ring Reduction operation. As Modulus
Reduction operations are performed the security provided by a ciphertexts increases (as described in 4.)
Ring Reduction correspondingly reduces the level of security provided by a ciphertext. We implemented
our FHE library such that a minimum level of security δ′ is provided at all times, and this level of δ′ is
a parameter selectable by the library user. If a call to a Ring Reduction operation will result in a level
of security δ ≤ δ′, then the RingReduction is performed in the ComposedEvalMult operation.

Our conception is that due to the ModReduction and RingReduction component of ComposedE-
valMult, it is feasible to coordinate the choice of the original ciphertext width t and the scheduling of
ComposedEvalMult operations so that the final ciphertext resulting from secure circuit evaluation and
which needs to be decrypted is only one column wide with respect to a single modulus q1 and provides
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a level of security at least as great as the original ciphertexts resulting from the encryption operation.
More explicitly, if we need to support a depth t− 1 computation, the initial encryptions should only be
t columns wide to ensure that the final ciphertext is 1 column wide. Whereas the runtime of Encryp-
tion, EvalAdd, ComposedEvalMul depend on the ring dimension and depth of computation supported,
the Decryption operation would hence depend only on the final ring dimension after all ring switching
has been completed. If we need to decrypt a ciphertext that has multiple columns we our double-CRT
representation, we could perform multiple ModReduction operations to reduce this t > 1 ciphertext until
we are left with a single mod-q1 column.

3.6 Bootstrapping

The basis of our bootstrapping approach comes from a new approach to homomorphic rounding. This
approach to bootstrapping is described in detail in [1]. We provide a high-level overview of this operation
here, simplified for our restriction to power-of-2 rings. This operation has the following steps:

1. Round the ciphertext: For each entry v for residue i, we output round(v ∗ q/qi), where the inner
expression is rational, and ”round” means taking the nearest integer. Generally q = 2ℓ is chosen
experimentally, but as small as possible.

2. Convert the plaintext modulus: This is no-op under our simplifying assumptions.

3. Lift the ciphertext and plaintext moduli: This is also a no-op under our simplifying assumptions.

4. Scale the ciphertext: We scale up the ciphertext by a Q/q′ factor (rounding to nearest integers in
the power basis), and embed into dimension N (new ring dimension) as well. The plaintext modulus
is still q′.

5. Compute the homomorphic trace: The following steps are performed iteratively log2(N) times:

(a) ”Lift” the ciphertext modulus to 2Q, which has the effect of making the plaintext modulus 2q.

(b) Apply the automorphism from [1], with appropriate key switching to put the result into the
same key as the original ciphertext in the iteration.

(c) Sum the original and resulting ciphertexts.

(d) Divide the ciphertexts by 2.

6. Perform a homomorphic rounding: This operation is described in Appendix B of [1].

4 Parameter Selection

The selection of n and q1, . . . , qt depends heavily on the plaintext modulus p, the depth of computation
that needs to be supported, and the desired security level. We capture the primary concerns influencing
the selection of a ring dimension n and the moduli q1, . . . , qt at a high level as follows:

• The necessary ring arithmetic should be easily supported on the computation substrate – i.e., that
mod-qi operations (for i ∈ {1, . . . , t}) require few clock cycles.

• The moduli q1, . . . , qt are sufficiently large to enable sufficient noise shrinkage via modulus reduction.

• The ring dimension n and noise parameters are sufficiently large so the scheme provides adequate
security.

• The ring dimension n is not so large that it becomes overly time-consuming and memory-intensive
to manipulate the ciphertexts.

• The plaintext modulus p and any noise added to the ciphertext during encryption is sufficiently
small that we can evaluate reasonably sized circuits with correct decryption.
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Table 1: Dependence of bit lengths of moduli qi, as a function of ring dimension for p = 2.
Ring dimension n 512 1024 2048 4096 8192 16384
Bit length log2(qi) 44 45 47 48 50 51

We choose to add discrete Gaussian noise to the fresh ciphertexts where r = 6 represents the selected
probability distribution parameter. We have found theoretically that the smallest modulus q1 needs to
satisfy the expression

q1 > 4pr
√
nw (1)

in order to ensure successful decryption, where the parameter w ≈ 6 represents an “assurance” measure
for correct decryption (essentially, the probability of decryption failure is bounded by the probability that
a normally distributed variable is more than w

√
2π standard deviations from its mean), and p · r is the

Gaussian parameter of the noise used in fresh ciphertexts. (Hence r is the Gaussian parameter of the
underlying NTRU-like problem.)

After selecting q1, we select the remaining qi ∈ {q2, . . . , qt} such that

qi > 4p2r5n1.5w5, (2)

which ensures that modulus reduction by a factor of qi sufficiently reduces the noise after a ComposedE-
valMult operation. For implementation simplicity, we set q1 to be the smallest feasible solution to
q1 > 4p2r5n1.5w5. Consequently all qi are represented by log2(qt) bits, leading to simpler implementa-
tions.

Table 1 shows how many bits are required to represent q1, . . . , qt for varying ring dimensions for p = 2.
Note that all q1, . . . , qt can be represented in less than 64 bits.

Following [5, 17, 22, 26], we use the standard “root Hermite factor” δ as the primary measure of
concrete security for a set of parameters. The most recent experimental evidence [5] suggests that
δ = 1.007 would require roughly 240 core-years on recent Intel Xeon processors to break. Using the
estimates from [17, 22], we found that in order to achieve a security level δ for a depth of computation
d = t− 1 using the t moduli q1, . . . , qt, we need to ensure that

n ≥ lg(q1 · · · qt)/(4 lg(δ)). (3)

Table 2 shows how δ varies as a function of the ring dimension and depth of computation supported.
Based on our analysis, if we impose the requirement that δ ≤ 1.007, then we would need to use ring
dimension n = 16324 to support depth d = 13 computations.

Table 2: Security level δ, as a function of depth of computation supported and ring dimension for p = 2.
❳
❳

❳
❳
❳
❳

❳
❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 1.015 1.045 1.077 1.109 1.143 1.178 1.213 1.250 1.288 1.327
1024 1.007 1.023 1.038 1.054 1.070 1.087 1.104 1.121 1.138 1.155
2048 1.004 1.012 1.020 1.028 1.036 1.044 1.053 1.061 1.069 1.078
4096 1.002 1.006 1.010 1.014 1.018 1.022 1.026 1.030 1.035 1.039
8192 1.0011 1.003 1.005 1.007 1.009 1.011 1.013 1.016 1.018 1.020
16384 1.0005 1.0016 1.003 1.003 1.005 1.006 1.007 1.008 1.009 1.010

5 Evaluation Experiments

We implemented our scheme in the Mathworks Matlab environment and used the Matlab coder toolkit
[21] to generate an ANSI C representation of our implementation. We subsequently hand-modified our
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auto-generated ANSI C to incorporate the pthreads library [4] to leverage parallelism. We compiled
this ANSI C using gcc to run as an executable in a Linux environment. We believe that additional
performance improvements could be obtained by implementing our FHE scheme natively in C.

We chose to implement our scheme in Matlab because it provides an interpreted computation envi-
ronment for rapid prototyping with native support for vector and matrix manipulation which simplifies
implementation development. We found the Matlab syntax to be a natural fit for writing software to
support the primitive lattice operations needed for our double-CRT NTRU-based SHE design.

We wrote our Matlab implementation of our double-CRT NTRU SHE scheme using the Matlab
fixed-point toolbox. The Matlab fixed-point toolbox also provides a path toward generated HDL imple-
mentations of our design that can be deployed for practical use on highly parallel computing hardware
such as FPGAs. Part of our vision for the use of our SHE design is to develop an FPGA implementation
of FHE [7, 8].

We ran our compiled implementation on a 64core server with 2.1GHz Intel Xeon processors and 1TB
of RAM in a CentOS environment. Although we had access to many resources, we used at most 10 GB
of memory and 20 cores during the evaluation of our software implementation.

We collected data on the runtime of the Encryption, EvalAdd, ComposedEvalMult, Decryption and
Bootstrapping operations over selections of depth of computation supported and ring dimension. We
ran 100 iterations of this collection procedure for each combination of t and ring dimension. We used
different randomly selected key sets, plaintexts and encryption noise on every iteration to mitigate minor
variations in performance that may arise due to these experimental random variables on every iteration.
Tables of the raw mean runtime results can be seen in Tables 3 through 7 in Appendix A.

We collected data on the runtime of the Encryption, EvalAdd and ComposedEvalMult operations
for settings of t ∈ {2, 4, 6, ..., 20} and for ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 16384}. We
collected data on the runtime of the Decryption operation of final ciphertexts, for computations with
fresh (input) ciphertexts with ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 16384} and depth of com-
putation t − 1 for t ∈ {2, 4, 6, ..., 20}. Note that due to ring switching, decryption runtime is dependent
only on the dimension of the final ciphertext, which is a function of the initial ciphertext and depth
of computation. We collected data on the runtime of the Bootstrapping operation for settings of the
“maximum” ring dimensions n ∈ {512, 1024, 2048, 4096, 8192, 16384} ciphertexts are expressed in where
the resulting ciphertext supports a depth one computation before another bootstrapping operations is
required. As discussed in [1], the depth of computation required for bootstrapping is logarithmic in
the ring dimension. We are currently exploring practical trade-offs associated with the impacts on the
scheduling of bootstrapping to enable more computation between bootstrapping calls.

Our experimental results shows that run times grow linearly with ring dimension n and the ciphertext
width t where t− 1 is the depth of computation supported before bootstrapping or decryption could still
be performed and have a high probability of recovering a correctly decrypted ciphertext. This makes intu-
itive sense because as we double either the ring dimension or the ciphertext width, we roughly double the
amount of computation that needs to be performed with every Encryption, EvalAdd and ComposedE-
valMult operation. Similar results hold for Decryption (Table 6) which shows a linear dependence of
runtime on ring dimension, but under the assumption that decryption occurs after t− 1 ModReduction
operations, including ModReduction operations bundled in ComposedEvalMult operations. Our initial
results show that Bootstrapping runtime is similarly linear with respect to the maximum ring dimen-
sion. As compared to the results reported in [12, 23, 24], our FHE software implementation provides
order-of-magnitude improvements in the runtime of the FHE operations.

6 Discussion and Looking Forward

Our FHE implementation is part of our long-term vision to support a general, practical and secure
computing capability through a layered services architecture. Part of our vision is to provide software
interfaces in our design for our highly optimized implementations of the basic FHE operations (KeyGen,
Encrypt, EvalAdd, EvalMult, Decrypt) for users to construct general applications that require secure
computation on encrypted data with automated calls to supporting operations such as Ring Switching,
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Key Switching, Modulus Reduction and Bootstrapping. Inherent to this architecture vision is our FHE
implementation of lattice-based computational primitives which form a lower layer of our envisioned
architecture. We use these primitives such as ring addition, ring multiplication, modulus operations and
the Chinese Remainder Transforms to run on commodity computing devices such as CPUs and FPGAs.
We designed this modular approach to the implementation of the SHE operations and the underlying
core primitives which allows us to 1) augment these operations with additional operations such as a
bootstrapping operation (which enables FHE), or 2) replace the implementations of a subset of the
operations or primitives as implementation advances are made.

A further aspect of our layered architecture vision is our ability to mix-and-match a computing sub-
strate at lower levels of our architecture. Although not an immediate focus of the results reported here,
the double-CRT representation, coupled with the 64-bit integer representation, simplifies parallelization
of our FHE scheme for easier porting to other, high-performance and low-cost parallel computing environ-
ments such as FPGAs [7, 8] and possibly even GPUs [27]. If ported to a dedicated FPGA co-processor,
the runtime of our underlying SHE/FHE implementation can be greatly improved upon as compared to
the runtime of the corresponding interpreted CPU-only implementation which we discuss herein.

Taken together, we see our design and experimentation with our NTRU-based FHE scheme as a
stepping-stone to a practical implementation of FHE through our layered architecture vision. Our pri-
mary path forward is to increasingly leverage the inherent parallelism of our design at multiple levels of
our implementation. At a low level we are working to port our lattice-based primitives to operate on
commodity FPGAs. This higher level parallelism offers the possibility of more practical SHE and FHE
on both multi-core CPUs or multiple parallel FPGAs operating as “FHE co-processors”.
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A Experimental Results

Table 3: Encryption Runtime (ms) vs. Depth of Computation Supported and Ring Dimension for p = 2.
❳
❳

❳
❳
❳
❳

❳
❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 2.32 2.83 2.86 3.27 3.39 3.25 4.38 4.64 5.35 5.66
1024 3.87 5.33 5.17 5.98 5.68 5.63 6.94 8.40 9.04 9.20
2048 6.26 6.48 7.01 7.47 7.94 8.78 12.70 13.03 13.05 14.52
4096 12.08 12.27 13.04 14.87 17.38 17.65 20.73 17.46 21.57 22.13
8192 24.53 25.18 26.13 29.07 30.81 32.15 34.43 32.46 36.16 37.90
16384 52.30 55.02 58.05 59.71 60.29 61.98 63.44 64.99 69.96 72.89

Table 4: EvalAdd Runtime (ms) vs. Depth of Computation Supported and Ring Dimension for p = 2.
❳
❳
❳

❳
❳
❳
❳

❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 0.21 0.32 0.42 0.54 0.64 0.73 1.26 2.11 2.90 3.12
1024 0.30 1.04 0.47 0.57 0.72 0.74 1.40 2.72 2.85 2.93
2048 0.37 0.45 0.55 0.67 0.80 1.00 1.97 3.00 3.04 3.24
4096 0.56 0.65 0.74 0.91 1.92 2.07 2.25 2.43 3.73 3.54
8192 0.89 1.01 1.20 1.36 2.46 2.70 3.69 3.23 5.05 5.44
16384 1.58 1.82 2.12 2.39 3.99 4.19 4.27 4.77 7.16 7.29

Table 5: ComposedEvalMult Runtime (ms) vs. Depth of Computation and Ring Dim. for p = 2.
❳
❳

❳
❳
❳
❳

❳
❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 16.03 22.73 23.32 22.65 22.87 22.96 24.35 25.24 25.37 25.78
1024 29.15 37.85 39.05 39.11 38.79 39.24 39.49 39.59 39.52 39.68
2048 49.17 66.31 66.77 67.41 67.15 68.38 68.22 69.27 69.45 71.09
4096 99.56 140.42 140.71 141.42 141.26 142.75 143.52 145.51 144.61 148.31
8192 196.83 279.37 280.42 284.40 283.98 285.69 289.59 286.55 292.69 295.69
16384 463.92 623.19 622.74 628.87 630.43 633.37 639.52 642.80 651.20 659.88
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Table 6: Decryption Runtime (ms) vs. Depth of Computation Supported and Initial Ring Dim. for p = 2.
❳
❳
❳

❳
❳
❳
❳

❳
❳
❳

Dim.
Depth

1 3 5 7 9 11 13 15 17 19

512 0.40 0.26 0.13 0.14 0.10 0.10 0.06 0.06 0.06 0.06
1024 0.87 0.38 0.18 0.11 0.11 0.11 0.11 0.11 0.05 0.05
2048 1.92 0.84 0.38 0.38 0.22 0.22 0.22 0.22 0.12 0.12
4096 3.36 1.70 0.84 0.86 0.37 0.39 0.38 0.22 0.22 0.21
8192 7.22 3.43 1.67 1.72 0.85 0.87 0.86 0.87 0.39 0.40
16384 15.36 7.18 3.37 3.37 1.67 1.67 1.67 1.73 0.87 0.85

Table 7: Bootstrapping Runtime (s) vs. Ring Dimension for p = 2.
Ring Dimension 512 1024 2048 4096 8192 16384
Runtime (s) 5.8 13 26 60 125 275
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