
22 January/February 2015 Copublished by the IEEE Computer and Reliability Societies 1540-7993/15/$31.00 © 2015 IEEE

TRENDS IN CRYPTOGRAPHY

David W. Archer | Galois
Kurt Rohlo� | New Jersey Institute of Technology

Two new cryptographic methods—linear secret sharing (LSS) and fully homomorphic encryption
(FHE)—allow computing on sensitive data without decrypting it. LSS and FHE di� er in speed, ease of use,
computational primitives, and cost.

U sers o� en don’t trust computing environments
such as shared clouds to perform computation on

sensitive data. Only recently has it become possible to
address this trust concern with general-purpose compu-
tation on encrypted data. In this article, we discuss two
forms of such computation: linear secret sharing (LSS)1

and fully homomorphic encryption (FHE).2
In LSS, a user or group of users, each with pri-

vate data, encrypts the data and sends it to a group of
untrusted servers. � ese servers share the computation
without decrypting the data and return still-encrypted
results. In FHE, a user encrypts data and sends it to a
single untrusted server, which computes an encrypted
answer and returns it to the user.

Computation time for both approaches is many
orders of magnitude slower than computation “in the
clear.” In addition, LSS requires multiple servers to per-
form computation and signi� cant communication band-
width among them. FHE typically imposes signi� cant
expansion in ciphertext size relative to plaintext, which
a� ects both memory utilization and network bandwidth.

We created prototypes including LSS- and homomor-
phic encryption (HE)–based variations of voice-over-IP
(VoIP) teleconferencing systems using Amazon Elastic

Cloud nodes to mix encrypted voice streams from iPhone
handsets, an LSS-based email guard using regular expres-
sion search to determine which messages to transmit, and
an FHE-based email guard using string comparison to � l-
ter email.

Protocols, Adversary Models,
and Security Guarantees
Here, we describe our secure computation systems
as well as applicable adversary models and security
guarantees.

Linear Secret Sharing
In LSS, multiple proxies collaboratively compute a
function on behalf of one or more clients.1 Each client
distributes to each proxy a share of its secret input. Each
share is essentially random—a � xed linear function of
the secret input and random values selected by the cli-
ent. � us, no proxies learn anything about the input.
LSS works because its systems exhibit homomorphisms
to mathematical structures of interest such as the inte-
gers, allowing parties holding shares to compute func-
tions of secrets by arithmetically manipulating only
their shares of those secrets.

Computing with Data Privacy:
Steps toward Realization

www.computer.org/security� 23

As a simple example, suppose clients Alice and Bob
agree to add secret inputs X and Y that they respectively
hold. Assume X and Y are in [0 … 2n - 1] for natural
number n. Alice computes three shares of X by choosing
random X1 and X2 from [0 … 2n - 1], and then choos-
ing X3 such that X = (X1 + X2 + X3) mod 2n. Alice then
distributes these three shares to the proxies over secure
channels, such that each proxy holds one distinct share.
Bob does the same for Y. The proxies add their shares,
resulting in each proxy holding one of X1 + Y1, X2 + Y2,
or X3 + Y3. Note that none of these result shares reveal
anything about X + Y to the proxies that hold them. The
proxies send these result shares to Alice or Bob over
secure channels. Bob or Alice then adds them together
to obtain X + Y.

While communication from clients to proxies in typ-
ical LSS systems is direct, we found that having mobile
clients distribute shares directly to each proxy resulted
in substantial loading of client Wi-Fi channels. To
address such Wi-Fi overload, we extended our applica-
tions’ communication model to introduce an untrusted
coordination server. Clients cryptographically combine
all three shares they compute into a single metashare
that’s sent to the coordination server. This server, which
we locate in a richer bandwidth environment along with
the proxies, distributes the metashare to all three prox-
ies, which compute their own shares from the metashare
and preshared key material.

The core of our LSS system, ShareMonad, consists of
a Haskell-embedded (www.haskell.org) domain-specific
language (DSL) for expressing LSS computation, a

compiler to transform ShareMonad code into abstract
syntax trees suitable for interpretation, and a three-proxy
LSS interpreter. Each proxy in a ShareMonad application
runs this interpreter. Clients and coordination servers
run application code that interoperates with the proxy
code. Thus, each of our LSS applications consists of a
composition of code running on clients, coordination
server code, and ShareMonad code running on proxies.

Our LSS DSL provides operations including addi-
tion, subtraction, multiplication, unsigned division, com-
parisons, bitwise shift right, conversion between [0 …
2n - 1] and bit vector representations, table lookups, and
operations on bit vectors. ShareMonad protocols cur-
rently assume an honest but curious adversary: proxies
are assumed to compute and communicate as agreed but
might observe attached channels and local computations.

As Figure 1 shows, our LSS protocols typically pro-
ceed in several steps:

1.	 Each client encrypts its input with three cipher
streams, producing a metashare.

2.	 Each client transmits its metashare to the coordi-
nation server (not shown) over a secure channel,
which in turn distributes these metashares to the
three proxies.

3.	 Each proxy computes its share from each metashare
by decrypting the metashare using one cipher stream
(that it and the client providing the metashare both
know), and then performs the desired computa-
tion, communicating with other proxies as needed
over secure channels.

Figure 1. Our linear secret sharing (LSS) protocol. Each client encrypts its input with three cipher streams, producing a
metashare (step 1). Each client transmits its metashare to the coordination server (not shown) over a secure channel,
which in turn distributes these metashares to the three proxies (step 2). Each proxy computes its share from each
metashare by decrypting the metashare using one cipher stream (that it and the client providing the metashare both
know), and then performs the desired computation, communicating with other proxies as needed over secure channels
(step 3). Each proxy encrypts its result share using a distinct cipher stream it shares with the client, and then sends it to the
coordination server, which computes the XOR of all result shares into a result metashare and forwards this to clients (step
4). Each client decrypts the metashare to obtain the computation result (step 5).

2

4

5 Assemble result
from result shares

1 Divide data
into shares 2

Distribute shares to
computer servers

3

Cooperatively compute
and communicate

4

Return result shares

1

5

24	 IEEE Security & Privacy� January/February 2015

TRENDS IN CRYPTOGRAPHY

4.	 Each proxy encrypts its result share using a distinct
cipher stream it shares with the client, and then
sends it to the coordination server, which computes
the XOR of all result shares into a result metashare
and forwards this to clients.

5.	 Each client decrypts the metashare to obtain the
computation result.

We compute metashares and shares as follows. We
distribute in advance a cryptographic key between
each client CL and each proxy A, B, and C. This key
seeds stream ciphers used to form metashares from
input data. To compute the metashare Xm of secret X,
a stream cipher is used to generate a random value RA
that undergoes bitwise XOR with X. CL repeats this
process with the cryptographic key it shares with B and
C, obtaining Xm = X XOR RA XOR RB XOR RC, which
it sends to the coordination server to be forwarded to
all three proxies. A uses the key it shares with CL to
compute RA, which it uses to compute its share of X, X1
= Xm XOR XA = X XOR RB XOR RC. B and C similarly
compute their shares X2 and X3, respectively. Note that
X can trivially be recovered from these shares: X = X1
XOR X2 XOR X3.

Once shares are computed, computation of the
desired function proceeds on the proxies. In the case of
addition, no communication among proxies is required:
A computes result share R1 = X1 + Y1, B computes R2 =
X2 + Y2, and C computes R3 = X3 + Y3. Once computa­
tion is complete, A, B, and C send R1, R2, and R3, respec­
tively, to the coordination server, which computes the
values’ bitwise XOR, and forwards this single meta­
result to the clients for final decryption.

Note that naively following this return transmission
protocol would reveal all shares of the computation
result to the untrusted coordination server. We avoid
this security lapse by having A, B, and C encrypt R1, R2,
and R3, respectively, using keys shared between A, B, C,
and the client to enable decryption by the client.

Some computations, such as X × Y, require communi­
cation among proxies. X × Y = (X1 + X2 + X3) × (Y1 + Y2 +
Y3) involves not only locally computable terms such as X1
× Y1 but also terms such as X2 × Y3. These terms require
that each proxy communicate its share to one other
proxy. We follow the method that Dan Bogdanov and his
colleagues described: sharing among proxies occurs in
symmetric rounds, and each proxy adds new entropy to
its share before sending that share to a neighbor.5 Thus,
even though proxies communicate their shares to other
proxies, the communicated values don’t allow those prox­
ies to gain any knowledge of the original secret.

We ensure privacy in each portion of our protocol
in Figure 1, except those that execute on the trusted
client platforms:

■■ Passphrase sharing prior to computation is handled
by well-known asymmetric cryptographic (public-
key infrastructure) protocols. The Advanced Encryp­
tion Standard (AES) and the National Institute of
Standards and Technology SP 800-90 standard pro­
vide cryptographically secure random numbers for
creating shares.

■■ Transmission of metashares Xm from client to
coordination server and onward to proxies is pro­
tected by the entropy added during creation of Xm.

■■ Local computation on the proxies is protected from
observation because it’s performed only on crypto­
graphic shares. We prevent accumulation of too many
shares on a single proxy by introducing additional
entropy during the sharing process, as we described.

■■ Transmission from proxies to the coordination server
is protected by encryption of result shares introduced
by the proxies, which prevents the server from com­
bining result shares to obtain the result in the clear.
Transmission from the coordination server to the cli­
ents is also protected by this encryption.

Homomorphic Encryption
Like all secure encryption schemes, secure HE schemes
make it intractable, under certain computational
hardness assumptions, to recover information about
plaintext from its encrypted ciphertext.2,3 We use a
representative approach to HE that employs a multi­
dimensional lattice over a finite field. We use a vector
basis to represent the lattice. Each plaintext input to
the computation is encrypted to a ciphertext encoded
as a vector—represented as a large matrix—not in the
lattice. Security is based on the closest-vector problem: a
known hard problem of finding the lattice vector with
the least distance to a given vector—in our case, the
ciphertext vector.

Computation on encrypted data proceeds by manip­
ulating ciphertext matrix representations. However,
encryption embeds noise into these representations.
As computation proceeds, this noise grows. If too much
noise accrues, decryption might identify the wrong
lattice vector and thus return the wrong plaintext. We
can decrease ciphertext noise by increasing the dimen­
sionality of the ciphertext’s matrix while maintaining
security. Increasing the dimensionality of the matrix
allows for more computation to be performed before
too much noise accumulates but also results in compu­
tationally difficult manipulations of large matrices. Even
with such noise reduction, noise still accumulates, ulti­
mately limiting the depth of the computation available.
FHE systems such as ours avoid this limitation by boot-
strapping—periodically performing a cryptographic
operation that resets the noise level without compro­
mising security. Craig Gentry described an early form

www.computer.org/security� 25

of bootstrapping and the resulting capability to perform
arbitrary-depth secure computation.2

Figure 2 shows our FHE system’s high-level data-
flow. The key infrastructure on the upper left runs on a
trusted host and uses the NTRU4 public-key approach
to generate key pairs consisting of a public key Pk and
secret key Sk. The Pk is shared with a data source (on the
right) that encodes plaintext messages as mod p integers
and then encrypts the data using that key to generate
the initial ciphertext. A program source (on the lower
right) provides a program, implemented as a Boolean
circuit, to be evaluated over the encrypted data. The
initial ciphertext, a public-key encryption of the corre-
sponding Sk, and the program are sent to a computation
host (shown as a cloud, on the lower right). The result-
ing final ciphertext is sent to the client (on the lower
left) that decrypts it using Sk to obtain the plaintext
result. The protocols we use are secure against “honest
but curious” adversaries such as an untrusted host per-
forming the computation honestly while seeking to dis-
cover secret inputs.

Our FHE programs comprise two computational
primitives: EvalAdd (addition) and EvalMult (multi-
plication). We use these primitives to construct opera-
tions for encryption, decryption, and bootstrapping.
We implement modulus reduction, ring reduction,
and key-switching operations to enable larger depth of

computation before bootstrapping, without decreasing
security. (In this article, the term ring refers to a math-
ematical ring over the integers.) We also implement
specialized primitives, such as ring addition, ring mul-
tiplication, and Chinese Remainder Theorem (CRT),
because manipulating ciphertexts in CRT representation
is more efficient than in power basis representations.

Some early homomorphic systems relied on encod-
ing a single bit of plaintext in each ciphertext. EvalAdd
and EvalMult operations were thus simplified into Bool-
ean XOR and AND operations but offered no compu-
tation parallelism. Ciphertext-to-plaintext expansion in
such systems is quite large: in one of our early examples,
the ciphertext expansion ratio was 223. In contrast, our
system encrypts mod p integers (p > 2) instead of single
bits, and we leverage single-instruction, multiple data
(SIMD) approaches to pack multiple mod p integers
into each ciphertext, thus computing parallel operations
on these packed integers. Although this approach offers
more efficiency, leveraging its inherent parallelism can
make algorithm design challenging.

We use a variation of the double-CRT approach along
with a residue number system (based on the CRT over
the integers) to circumvent the problem of large cipher-
text moduli and correspondingly large ciphertext size. For
ring dimension n, each ciphertext is represented by an n ×
t matrix of t length–n integer vectors of mod qi values for

Figure 2. Dataflow in our fully homomorphic encryption (FHE) system. The key infrastructure (upper left) runs on a
trusted host and uses the NTRU public-key approach to generate key pairs public key (Pk) and secret key (Sk). Pk is shared
with a data source (on the right) that encodes plaintext messages as mod p integers and then encrypts the data using
that key. A program source (lower right) provides a program, implemented as a Boolean circuit, to be evaluated over the
encrypted data. The ciphertext, a public-key encryption of Sk, and the program are sent to a computation host (cloud,
lower right). The result ciphertext is sent to the client (lower left) that decrypts it using Sk to obtain the plaintext result.

Key generation
Hosted by client or trusted party

Decryption
Decrypts final ciphertext

Encryption
Encrypts source data

using public key

Evaluation
Possibly untrusted host
supports computation

Plaintext

Ciphertext

Pk
Public key

Sk
Secret key

Plaintext final output
Equivalent to running program

over unencrypted data

Final ciphertext
Encryption of running

program over data

Arbitrary program
Composed of EvalAdd, EvalMult, and

supporting operations such as
bootstrapping to manage noise

26	 IEEE Security & Privacy� January/February 2015

TRENDS IN CRYPTOGRAPHY

pairwise coprime moduli qi. This contrasts with some pre-
vious FHE systems that represent ciphertexts as a single
integer vector mod Q, where Q = q1 * • • • * qt. In our sys-
tem, the number of moduli, t, grows to support the secure
execution of larger programs, but the number of moduli
q1, … , qt does not. With this representation, we securely
represent ciphertexts as matrices of 64-bit integers yet still
execute efficiently on commodity computing hardware
that would make computation over the multihundred-bit
or multithousand-bit single-vector integer representations
used in previous systems infeasible.

The security level of lattice-based homomorphic
encryption systems isn’t often expressed in terms of
the work factor used to describe security in typical
cryptosystems. Instead, security is typically expressed
as the root Hermite factor δ, a representation of the
hardness of the closest-vector problem. A lattice-
based encryption system becomes more secure as δ
approaches 1. We selected the value δ = 1.007 for our
work, which corresponds roughly to the work factor
required to crack AES 128-bit encryption.

The maximum depth of computation d that can be
supported between bootstraps and the ring dimension
n, which correlates directly to the length of ciphertext
vectors, significantly impacts both δ and performance.
We have found that with n = 1,6384 and d = 16, we
achieve δ = 1.007 while supporting significant compu-
tation, such as searching several pages of encrypted text
for an encrypted keyword, between bootstraps. With
n = 16,384 and efficient packing of ciphertexts, each
ciphertext expands to between 103 and 106 times larger
than the corresponding plaintext.

Our system runs in a compiled C environment
auto-generated from Matlab implementations (www.
mathworks.com/products/matlab). We use parallel-
ism to take advantage of multicore processors in a Linux
environment. At δ = 1.007, we encrypt ciphertexts in
less than 100 milliseconds in such environments and
decrypt in approximately 1 millisecond. EvalAdd on
ciphertexts takes several milliseconds, whereas Eval-
Mult takes approximately 500 milliseconds and boot-
strapping takes approximately five minutes.

Real-World Potential for FHE
and LSS Implementations
Here, we present our prototype applications and their
limitations.

VoIP Teleconferencing
Typical VoIP implementations don’t provide end-to-end
encryption. Instead, they rely on a trusted server to receive
content from clients, decrypt that content, reencrypt it,
and then distribute it to other clients. This trusted server
is a weak point in securing VoIP communication.

Our teams independently developed LSS and FHE
VoIP audio conferencing approaches that provide end-
to-end security with performance suitable for three or
more simultaneous users and high-quality audio. No
prior work has demonstrated the application of these
technologies to streaming applications such as VoIP.
Both our prototypes use Apple iPhone 5s handsets,
Amazon cloud-based virtual servers, and suitably modi-
fied open source VoIP client and server code.

LSS-based VoIP. Figure 3 shows our LSS VoIP architec-
ture. Each iPhone runs a version of the Mumble VoIP
client application (http://mumble.sourceforge.net)
with the following modifications: Mumble audio pro-
cessing samples the microphone at 16 Kbps and loga-
rithmically compresses this to a standard 8-bit μ-LAW
floating-point representation.6 We added encryption
for turning each sample into a metashare by computing
XOR of each sample with elements drawn from three
AES 128-bit counter-mode cipher streams seeded from
pre-placed passphrases. The network interface packs
1,440 sample metashares (90 milliseconds of audio
data) into each transmitted network packet.

As Figure 3 shows, each client creates and then sends
each metashare packet via Wi-Fi (802.11ac) to an Apple
Airport Extreme wireless access point, which forwards
it to a virtualized coordination server in the Amazon
Elastic Cloud Service (ECS). This virtual machine runs
a modified version of uMurmur (https://code.google.
com/p/umurmur) to handle user session manage-
ment and audio stream routing. Our uMurmur variant
distributes each client audio packet to each of three
proxies, gathers result share packets from those prox-
ies after computation, computes XOR on the result
shares together sample-wise, and sends the resulting
metashare to clients for decryption.

Our proxies, which are also virtual machines hosted
in the Amazon ECS, run our ShareMonad audio pro-
cessing application. Each proxy recreates one of the
three entropy streams and uses this to compute its share
of each sample from the received metashares. Collec-
tively, the proxies obliviously decode each logarith-
mically compressed audio stream to a linear, integer
representation; mix all decoded audio streams together;
clip the resulting audio signal; and recompress the result
for distribution.

This computation repeats for each participating cli-
ent, omitting that client’s audio stream so users don’t
hear their own voices. Each audio stream result share is
sent back to the coordination server, where it undergoes
XOR with shares from other proxies and is then sent to
client handsets for decryption and playback.

A hand-optimized approach required 12 seconds
of processing per 1,440-sample block for four users,

www.computer.org/security� 27

exceeding the 90-millisecond limit required to maintain
processing at streaming rates. Applying an LSS index
lookup over a public table7 of precomputed results for
the decode-mix-clip-encode function let us reduce this
delay to 25 milliseconds, allowing sufficient time to
meet the 90-millisecond goal and compensate for net-
work delays between handsets and servers. With this
optimization, we achieved streaming throughput for up
to four voices at 16 Kbps audio rates, enabling users to
communicate clearly.

We used 16-core (C3 size) Amazon cloud servers as
proxies, resulting in roughly 80 percent CPU utilization.
In contrast, plaintext processing at this performance
level requires only a small portion of a single CPU core.
Memory use was small and not a constraining factor.
Network bandwidth available in our Amazon cloud
instances was sufficient with no special optimization.

In the absence of collusion among the proxies, our
solution provides two layers of AES 128-bit security at
each proxy. Each proxy receives metashares encrypted
with three AES 128-bit counter-mode cipher streams
yet has access to only one of these cipher streams. Thus,
adversaries observing from any one proxy can learn noth-
ing of the plaintext audio samples used as input. Adver-
saries observing from the coordination server can learn

nothing about the input from the metashares it conveys,
because that server holds none of the cipher streams used
for encryption and decryption. Because each proxy adds
new layers of encryption (using cipher streams to which
the coordination server has no access) to the result shares
it sends back to the coordination server, that server simi-
larly can learn nothing of the computation result.

FHE-based VoIP. We developed an FHE-based approach
to secure VoIP teleconferencing that requires only a sin-
gle proxy. This advance is built on a vocoder technology
that takes voice samples from each client as input and
encodes those samples as vectors of integers that are
then encrypted. This vocoder is linear and can be used
with an additive HE scheme to provide an encrypted
VoIP teleconferencing capability. Encoded voice sam-
ples are encrypted at each iPhone client with the client’s
public key, using the additive HE scheme.

For our prototype, all clients use the same key,
because our focus is on demonstrating the practical
feasibility of an FHE computation rather than on well-
understood security concerns. The resulting cipher-
texts are sent to a VoIP mixer that queues and adds the
ciphertext from the clients without decrypting the data
or sharing keys. The resulting added ciphertext is sent

Figure 3. LSS-based voice-over-IP (VoIP) system architecture. iPhone 5s VoIP clients sample audio input at 16 Kbps, encode
samples to a standard 8-bit μ-LAW floating-point representation, and encrypt the resulting encoded samples using three
Advanced Encryption Standard 128-bit counter-mode cipher streams. Clients send packets of 1,440 encrypted samples (90
ms of audio) over Wi-Fi 802.11ac and through the Internet to proxy servers in the Amazon Elastic Cloud that decode, add,
and clip the sample streams without decrypting them. The resulting combined audio stream is reencrypted and sent back
to the clients for decryption and playback.

VoIP proxies

1 VolP client encodes
and encrypts voice

VolP
client

2
Client sends

encrypted voice data
to coordinator

VolP coordinator

6
Coordinator

sends encrypted
result to client

7
Client decrypts

result for
playback to user

3
Coordinator

sends encrypted
data to proxies

Amazon Elastic Cloud

5
Proxies return

encrypted results
to coordinator

4 Proxies decode, mix, clip, and reencode encrypted voice data

Additional VolP clients

28	 IEEE Security & Privacy� January/February 2015

TRENDS IN CRYPTOGRAPHY

back to the clients. When decrypted with the clients’
private key using the additive homomorphic decryp-
tion scheme, decoded using our decoding scheme, and
played back to the clients, the resulting audio is a mix of
all the clients’ audio streams.

Our FHE-based VoIP uses a prototype architecture
similar to the LSS-based VoIP teleconferencing capa-
bility, but with lower end-to-end latency. When we
ran this system with a server in Virginia and clients in
Massachusetts, the total latency was on the order of 80
milliseconds, with the latency roughly split among com-
munication, encryption, and decryption. The mixing
latency was nearly trivial, taking less than 1 millisecond.

With our FHE-based approach, no keys are stored
on the teleconference server, so privacy is preserved
even if adversaries view all communication links and
server operations. Trust in the communication links
or teleconference server isn’t required to provide pri-
vacy. The security level provided in the current demo
is roughly at the level of AES 128-bit encryption, but
parallels between the security levels of our encryption
scheme and other current standards aren’t exact. We
can increase our teleconference capability’s security
level arbitrarily at the expense of bandwidth require-
ments or voice quality by modifying the sampling rate
and dynamic range of the sampled voice data.

Email Border Guards
Providing privacy using email encryption and achiev-
ing information security using trusted-party email fil-
tering at network boundaries are mutually exclusive
goals. Either email must be decrypted to verify com-
pliance to InfoSec policies (compromising privacy), or
those policies must be enforced by each user prior to
message encryption (compromising trust in filtering).
We explored solutions to this problem by studying
applications in which transaction throughput is impor-
tant. In our solutions, users encrypt email messages
on their trusted computer. The messages are sent to an
untrusted mail server for forwarding to a destination.
This mail server also acts as a border guard, checking
each email message for certain content and passing it
on to its destination only if that content is absent. The
border guard performs this content checking without
decrypting the messages.

LSS-based regular expression search email guard. We use
the Claws email client and a typical email server, along
with plug-ins to each via standard APIs, to search each
outbound encrypted email for occurrences of text that
match a set of prespecified regular expressions, for-
warding messages that do not include such matches and
rejecting those that do.

Figure 4 shows our system architecture. In the LSS
version, the mail server connects to three proxies that
perform the LSS computation (not shown in the figure).
When a user sends a message, a plug-in to the Claws cli-
ent computes the message’s metashare using key mate-
rial shared a priori with the proxies. The email client
sends the metashare to the mail server, where a Milter
(www.milter.org) plug-in distributes it to the proxies,
each of which derives its share. The regular expression
set is compiled into a Boolean circuit and distributed
to the proxies in advance. The proxies collectively com-
pute the regular expression search on the message, using
an adaptation of a mechanism that transforms regular
expressions into finite automata.8 Each server produces
one share of the Boolean indication of whether any
regular expressions match against any portion of the
encrypted message corpus. Our Milter plug-in com-
bines these shares to obtain a plaintext Boolean answer,
which it passes to the mail server. The mail server then
accepts and forwards the message, or it drops the mes-
sage and informs the sender’s client, as appropriate.

We performed several experiments on this system,
optimizing the resulting Boolean circuit to consider dif-
ferent numbers of regular expression characters. Pro-
cessing 16 message characters at a time was the point of
diminishing returns. For a typical 1-Kbyte email ASCII
message and a set of regular expressions that roughly
represents classification markings that might be used in

Figure 4. Email border guard system architecture. In the LSS version of the border
guard, the mail server connects to three proxies (not shown in the figure). An
email client plug-in computes a sent message’s metashare using key material
shared a priori with the proxies and sends the metashare to the mail server,
which distributes it to the proxies. The proxies collectively search the encrypted
message, producing shares of a Boolean indication of a regular expression
match. In the FHE version, the client homomorphically encrypts the message
and sends it to a single proxy that searches the encrypted message for matches
with a predefined set of strings, also producing a Boolean indication of a match.
The mail server (in the LSS case) or the client (in the FHE case) receives the
computation result and uses it to determine whether to forward the message.

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Address: > go

@@

Internet Zone

Back Forward Stop Refresh Print MailHome

Email sender

Intended email receiver

Keyword filter policy authority

FHE mail server

Encrypted email

Encrypted keywords

Encrypted
filter result

Encrypted
email

www.computer.org/security� 29

a government setting, checking an email message took
approximately 90 seconds using quad-core, 3-GHz Intel
architecture blade servers as proxies. CPU utilization
averaged approximately 90 percent during processing,
and memory utilization was minimal.

FHE-based encrypted keyword search email guard. We
developed a prototype FHE application that searches
for encrypted keywords in encrypted text. This method
relies on a homomorphic string comparison operation
that’s repeated for all keywords in all locations of an
encrypted message. As in the LSS method, we imported
this technology into an email guard–type scenario to
provide outsourced email filtering based on email cli-
ents’ keywords of interest. Because the result of the
string comparison is only available to the mail server
in encrypted form, our protocol sends the encrypted
result back to the client, where it’s decrypted to reveal
whether the message should be sent. Thus, our proto-
type assumes an honest sender and requires an extra
round-trip between client and server. Figure 4 shows a
sketch of this technology.

We’re currently running this implementation at a
low security level (δ = 1.08) to enable the email system
to be interactive with fast response times. Our initial
implementation uses a ring dimension of n = 512 and
encrypts emails with a supported depth of computation
d = 12. This results in an effective ciphertext modulus
q represented with 430 bits. With these parameter con-
figurations, we can sort over encrypted paragraph-long
emails with five- to six-character words in less than a
minute. Result decryption runs in a matter of seconds.

We could tune this FHE-based email guard to an
extremely secure setting (δ = 1.0055 or less) using our
current implementation with a similar depth of com-
putation. We would choose a ring dimension of 16,384
and an effective ciphertext modulus Q represented with
521 bits. Encryption runtime at these settings is on the
order of minutes, encrypted message filtering would
take hours on a nonparallelized server, and decryption
would take a matter of seconds.

I n a world in which Bob and Alice need to work
together but are no longer comfortable sharing their

secrets, or where Alice needs Charlie’s help to process
data but feels uncomfortable with Charlie (or the ever-
lurking Eve) seeing the data, secure computation holds
promise. However, secure computation methods differ;
each has its distinct tradeoffs, security models, and cave-
ats. Our experiments show that some practical applica-
tions are emerging, but substantive work remains to be
done to make secure computation practical for broad
classes of applications.

Acknowledgments
We greatly appreciate the contributions of Drew Dean of SRI
International in editing and reviewing this manuscript. The
Defense Advanced Research Projects Agency (DARPA), the
Air Force Research Laboratory (AFRL), and the Office of
Naval Research (ONR) under contracts FA8750-11-C-0098
and N00014-11-C-0333 sponsored this work. The views
expressed are those of the authors and do not necessarily
reflect the official policy or position of the US Department
of Defense or the US government. Distribution statement “A”
(approved for public release, distribution unlimited).

References
1.	 R. Cramer, I. Damgard, and U. Maurer, “General Secure

Multi-party Computation from Any Linear Secret-Shar-
ing Scheme,” Proc. 19th Int’l Conf. EuroCrypt, 2000, pp.
316–334.

2.	 C. Gentry, “Fully Homomorphic Encryption Using Ideal
Lattices,” Proc. 41st Ann. ACM Symp. Theory of Computing
(STOC 09), 2009, pp. 169–178.

3.	 Z. Brakerski and V. Vaikuntanathan, “Fully Homomor-
phic Encryption from Ring-LWE and Security for Key
Dependent Messages,” Proc. 31st Ann. Conf. Advances in
Cryptology, 2011, pp. 505–524.

4.	 J. Hoffstein, J. Pipher, and J. Silverman, “NTRU: A Ring-
Based Public-Key Cryptosystem,” Proc. 3rd Int’l Symp.
Algorithmic Number Theory, LNCS 1423, Springer, 1998,
pp. 267–288.

5.	 D. Bogdanov et al., “High-Performance Secure Multi-
party Computation for Data Mining Applications,” Int’l
J. Information Security, vol. 11, no. 6, 2012, pp. 403–418.

6.	 Pulse Code Modulation (PCM) of Voice Frequencies, Int’l
Telecommunication Union, ITU-T Recommendation
G.711, 1993.

7.	 J. Launchbury et al., “Application-Scale Secure Multiparty
Computation,” Proc. 23rd Ann. European Symp. Program-
ming, LNCS 8410, 2014, pp. 8–26.

8.	 S. Fischer, F. Huch, and T. Wilke, “A Play on Regular
Expressions: Functional Pearl,” ACM SIGPLAN Notices,
vol. 45, no. 9, 2010, pp. 357–368.

David W. Archer is a research lead at Galois. His research
interests include information provenance and trust-
worthiness, and information assurance. Archer re-
ceived a PhD in computer science from Portland State
University. Contact him at dwa@galois.com.

Kurt Rohloff is an associate professor of computer sci-
ence at the New Jersey Institute of Technology. His
research interests include homomorphic encryption,
large-scale distributed computing, and secure com-
putation. Rohloff received a PhD in electrical engi-
neering and computer science from the University of
Michigan. Contact him at kurt.rohloff@njit.edu.

