Privacy-Preserving Data Exfiltration Monitoring
Using Homomorphic Encryption

Kurt Rohloff
Department of Computer Science
New Jersey Institute of Technology
Newark, New Jersey 07102
Email: rohloff@njit.edu

Abstract—Monitoring and encryption are essential to secure
today’s computer networks. Monitoring network traffic data
can be especially useful to protect against data exfiltration
by detecting signatures in file metadata to identify especially
sensitive files that should not be publicly released. Encryption
is also a useful data protection tool by reducing access to file
to users with the correct decryption keys. However, encryption
restricts the visibility of signatures, but this may be needed
because some signatures used to protect against data exfiltration
may themselves be sensitive, as knowledge of signatures could
help adversaries circumvent monitoring. We present the design
and experimental results on a practical exfiltration guard to
securely and privately monitor flows of encrypted information
for encrypted signatures without requiring the decryption of
the data flows or the signatures or the sharing of decryption
keys. The basis from our approach comes from recent advances
in the design and implementation of homomorphic encryption
which enables secure computing on encrypted data. We show
experimental results from applying our exfiltration monitoring
protocol with a prototype proof-of-concept encrypted data guard
running on a commodity computing hardware. These designs
point to possible future advances driven by ongoing homomorphic
encryption improvements to compute on encrypted data for more
advanced and secure filtering and exfiltration protection schemes.

I. INTRODUCTION

Monitoring and encryption are essential to secure today’s
computer networks. As identified in analyses of recent cyber-
attacks, broader application of practical exfiltration monitoring
technologies could aid to better protect sensitive information
[1] from being stolen from sensitive data stores. For example,
the perpetrators of the APT1 attacks exfiltrated vast amounts
of sensitive information and there were few safe-guards in
place to prevent this exfiltration once adversaries obtained
inside control of their target networks. Strong encryption
technologies could partially address data exfiltration concerns
by preventing adversaries from being able to use any exfiltrated
encrypted information. However, strong encryption is not a
panacea and encryption could be used as a cover to prevent
the practical monitoring of information flows [2]. Monitoring
requires visibility into data, while encryption restricts visibility.

We present an approach that enables data to be encrypted
using a secure post-quantum scheme, but allows data leaving a
network to be monitored for the presence of signatures which
indicate that data is approved to be exported (or not.) Until
now there has been relatively limited ability to monitor and
identify the exfiltration of encrypted data, particularly with

respect to situations when the signatures themselves might be
sensitive, as knowledge of signatures could help adversaries
circumvent monitoring. Sensitive signatures are difficult to
use securely without risk of leakage on host-based systems.
Recent advances in functional encryption [3] have suggested
approaches to evaluate the presence of signatures in encrypted
data, resulting in a decrypted output that determines whether
the evaluated encrypted data is safe to release. However, there
has been limited progress in implementing usable functional
encryption.

We apply recent implementation results that demonstrate
practical Somewhat Homomorphic Encryption (SHE) [4], [5],
[6]. Such an exfiltration data guard would be useful to support
Multi-Level Security (MLS) systems where sensitive informa-
tion needs to be shared between security domains and the
sensitive exfiltration signatures need to be regularly updated
[7], [8]. In particular, our approach enables more secure use
of cloud technologies to host sensitive data by reducing the
risk of exfiltration.

The contribution of our research is in identifying how to
encrypt data for encrypted signature identification, devising a
protocol to protect and use sensitive signatures with encryption
and provide experimental results on the effectiveness of the
approach. Although we focus on bit-string-based signatures
comparisons (such as keyword exact-matches in data files’
metadata), our approach is generalizable to use signatures
to search over malware, text files and audio streams to
securely detect these signatures in corresponding data files.
These generalized approaches address additional challenges
of signature encoding and algorithms design for encrypted
signature detection.

An additional novelty of this research is the early ap-
plication of practical homomorphic encryption technologies.
The current state of SHE (and the more general Fully Homo-
morphic encryption (FHE)) research has primarily focused on
either designing new encryption protocols or new tailored SHE
and FHE implementations for efficiency improvements. There
has been less public discussions integrating homomorphic
encryption technologies into broader information ecosystems
to provide improved security. Research focusing on how to
design algorithms that operate on homomorphic encrypted data
has been limited, and similarly few explorations into data
structures that would make the integration of homomorphic
encryption implementations more effective.

This paper is organized as follows. Section II discusses

Policy
Authority

\E E
Encrypted& [Decrypted
Evaluations Evaluations

_ Encrypted Data

Xiﬁo\r‘t\@ueﬂi : i> Encrypted Data
{1\ — Exports

i

Data Servers

Data Guard

Encrypted | |
Signatures

Fig. 1. Encrypted Data Guard Concept of Operations

the overall architecture of our encrypted data guard capability.
Section III discusses the security model we address. In Section
IV we discuss the salient features of homomorphic encryption.
In Section V we discuss the design of the homomorphic
encryption signature comparison method. In Section VI we
describe the implementation of the filter, concrete parameter
selection and experimental evaluation. Section VII discusses
related encrypted computing activities and applications. We
close the paper in Section VIII which discusses the results,
ongoing work and conclusions.

II. GUARD ARCHITECTURE

Our overall, high-level data flows for the encrypted exfil-
tration monitor and private signature detection can be seen in
Figure 1 and an interaction diagram can be seen in Figure 2.

The encrypted data guard architecture consists of a) a
protected data center b) the encrypted data guard, c) a policy
authority and d) a data recipient.

Prior to use for encrypted data filtering, several offline
operations occur:

e The policy authority generates a public key and secret
key pair. The public key is widely distributed while
the secret key is held by the policy authority. Data
can be encrypted with the public key, but can only be
decrypted with the secret key.

e The policy authority identifies a set of signatures
of interest which should not be found in data files
released outside of the protected data center. The
policy authority (or approved proxies) encrypt these
signatures using the public key and upload the en-
crypted signatures to the data guard.

e Users of the data center encrypt file data using the
public key.

After initialization, the data guard operates as follows as
seen in Figure 2:

1) A user requesting to export data submits a request
to the data guard with an encryption of data to be
exported.

2) The data guard runs our encrypted signature testing
mechanism on the encrypted data to test for the

Data Servers Data Guard Policy Authority

| 1
Encrypted Data :
Export Request 1

Encrypted Sig. |
Evaluation

Data Recipient

|_Decrypted Sig.
[~ Evaluation

Encrypted Data
Export

Fig. 2. Encrypted Data Guard Interaction Diagram

presence of the encrypted signature. The data guard
does not have access to the secret key and does not
perform any decryption.

3) The data guard outputs the result of the encrypted
signature testing mechanism for each signature. Each
of these outputs is an encryption of a single bit which
indicates the presence of a signature in the data file.

4) The encrypted bit is sent to the policy authority.

5) The policy authority decrypts the bit. If the decrypted
bit indicates the signature is not in the file, the policy
authority sends back a single bit to the guard to
approve data export.

In this paper we focus on the novelty of encrypted sig-
nature testing with homomorphic encryption to assess either
encrypted or unencrypted data flowing across a guard for the
presence of encrypted signatures. We do not discuss data in-
tegrity, authentication or other supporting security technologies
because it is possible to augment the encrypted data guard with
these additional security features using standard techniques
such as hashing methods to sign the communications between
the participants, encrypting the communication from the policy
authority to the guard and so on.

III. SECURITY MODEL

The security goals of the architecture are to prevent the:

e Prohibited export of encrypted data.

e Data guard from having unencrypted access to en-
crypted data and signatures.

e Policy authority from having access to the encrypted
data and signatures.

We allow the data guard and policy authority to have an
honest-but curious security model. As such, the data guard
follows the directives of the policy authority but has no
visibility into the encrypted data exfiltration requests or the
signatures. Similarly, the policy authority has no access to
the encrypted data exfiltration requests or the signatures, but
correctly decrypts the encrypted evaluations and shares the
evaluations with the data guard. This honest-but-curious secu-
rity model protects against eavesdroppers on communication
paths, and information loss if any single entity becomes fully
compromised.

We admit the possibility that collusion between the data
guard and policy authority could allow these participants to
gain information about the signatures and the data exfiltration
requests. We can limit the practicality of this vulnerability in

practice by limiting communication between the guard and
authority.

An important feature of our approach is that the en-
cryption scheme we use is probabilistic. It is possible to
use deterministic encryption schemes to evaluate signature
comparisons, but deterministic encryption schemes open our
approach to a wider array of chosen plaintext attack which
would allow eavesdroppers to diagnose past data exfiltration
requests by matching new requests to old ones. Because we use
a probabilistic encryption scheme, plaintext does not always
encrypt to the same ciphertext and we are protected from
chosen plaintext attacks and provides much more security than
if deterministic encryption methods are used. An important
feature of our homomorphic encryption based approach is
that even though we focus on exact signature matching, our
approach generalizes to support inexact matching such as
export approvals based on edit distance from a signature [9].

There is also some likelihood that the data guard or an
eavesdropping adversary may be able to infer signatures based
on observations of approved and denied exfiltration requests.
This is in some sense an unavoidable aspect of the use of
data guards - some data will be released and other data will
not. Whomever makes data exfiltration requests, or receives
the output of data exfiltration requests will be able to observe
the success of requests. However, in practical scenarios where
data exfiltration requests are made in bulk, and where most
requests should be approved due to the lack of pervasive sys-
tem compromise, adversarial requesters that generate rejected
requests are highly likely to be identified and have their data
access rights downgraded.

IV. HOMOMORPHIC ENCRYPTION

By definition, homomorphic encryption enables computing
on encrypted data without decrypting. This would allow, for
example, the use of encryption of sensitive signatures by host-
based systems to perform data guard operations. For example,
using a homomorphic encryption scheme, if we have a set
of plaintexts pi,ps,--- ,Pn, We can securely out-source the
evaluation of a function f(p1,po, - ,pn) by:

1) Encrypting p1,p2,...,p, into ¢; = Enc(p;, pk) for
all i € {1,...,n} where Enc is an encryption
function and pk is a public key.

2) Converting the function f(-) evaluated over plaintext
into a function F'(-) evaluated over ciphertext.

3) Evaluating ¢ = F(ci, e, ,¢n) =
F(Enc(p1,pk), - ,Enc(pn, pk)).

4) Decrypting p’ = Dec(c, sk) =
Dec(F(Enc(p1, pk),--- , Enc(pn, pk)), sk).

With a homomorphic encryption scheme, if
p= f(p1,p2, - ,Pn), then p = p’. Homomorphic encryption
is more formally defined in [10], [11].

Figure 3 shows the high-level data flow when using the
most general form of HE, called public-key Fully Homo-
morphic Encryption (FHE) to support arbitrary computing
on encrypted data. An FHE client shown at upper left runs
on a trusted host and generates public and private key pairs
consisting of a public key pk and secret key sk. The public
key is shared with a data source (top-right) that encrypts data

FHE Client Pk
Public Encryption Key

Encrypted
= Result

Encrypted FHE Computation Host performs
computation on encrypted data without keys

Encrypted Data

Sk (=
Secret
Decryption

Key
Decrypted

Result

Fig. 3. Fully Homomorphic Encryption

using that public key to generate the encrypted data ciphertexts.
The encrypted data is sent to an encrypted FHE computation
host, notionally a cloud computing environment, but other host
systems, such as embedded devices as hosts are possible. The
computation hosts executes a program on the encrypted data
without accessing any encryption keys or needing unencrypted
data access. The result of this computation is another cipher-
text, which we designate as the Encrypted Result in Figure 3.
The encrypted result is sent to the FHE client, who decrypts
the result using the secret key sk to obtain the plaintext final
output.

In our data guard architecture a policy authority hosts
the secret key to decrypt ciphertext so the guard does not
gain access to decryption keys. Hence, the data guard runs
computations on the encrypted data. The output of the guard’s
encrypted computation is shared with the policy authority who
has a decryption key. When the authority uses the decryption
key to decrypt the encrypted output, the resulting decrypted
data is the same result as if the computation run by the
guard had been run on the original data without decryption
at the host. Because the result of the string comparison is only
available to the guard in an encrypted form, our protocol sends
the encrypted result back to the client, where it is decrypted to
reveal whether the message should be sent. Thus, our prototype
assumes an honest sender and requires an extra round-trip
between client and server.

A primary challenge of using homomorphic encryption
is the difficulty of translating an arbitrary computation on
unencrypted data f(-) into an efficient computation on en-
crypted data F'(-). The primary challenge is that a function f(-)
needs to be translated into a function evaluation of a limited
set up operations [12], including the EvalMult and EvalAdd
operations. If plaintext p; and ps each encode a bit, and c;
and co are respectively encryptions of these plaintext, then
¢ = EvalMult(cy, ¢2) is an encryption of the logical AND of
p1 and po, and ¢’ = EvalAdd(cy, ¢2) is an encryption of the
logical XOR of p; and ps. Futher, if we know ps is an encoding
of the bit 1, then ¢* = EvalAdd(cq, ¢z) is an encryption of the
logical NOT of p;.

A. Homomorphic Encryption Scheme and Security Proof

Although recently discovered HE schemes can support
arbitrary computations on encrypted data, many computations
are impractically slow [13], but recent very positive results
indicate HE designs [14] and implementations [5], [15], [16],
[17] are becoming increasingly practical. We show how to
use the LTV scheme introduced in [14] to support signature
evaluation.

We build on the scheme presented in [5] which is a sim-
plification of the scheme shown in [14]. The basic operations
of the scheme are as follows:

e KeyGen: choose a short f € R such that f =1 mod p
and f is invertible modulo ¢, and a short ¢ € R.
Output pk=h =g - f~! mod q and sk = f.

e Enc(pk = h,p € Rp): choose a short » € R and a
short m € R such that m = p mod p. Output ¢ =
p-r-h+mmodq.

e Dec(sk = f,c € R,): compute b = f - c mod ¢, and
lift it to the integer polynomial b € R with coefficients
in [—¢/2,q/2). Output & = b mod p.

The security proof of this scheme is derivative of the proof
given in [14], so we omit it here for the sake of brevity.

V. HOMOMORPHIC ENCRYPTION FILTER

To design our data guard operation, we translate a plaintext
“exact-match” signature comparison operation into a homo-
morphic evaluation function that performs the same operation
on ciphertext. That is, for a signature represented as a set of bits

S =[b1,ba,...,bs] and a bit-string of data D = [b], b}, ..., V)]

to be compared to S, we say the signature matches the data if
N\ (bi @ 8) (1)
i=1

where @ if the logical XOR operation. More informally, we
test to see if all pairs of bits between the signature and the
data are logically equivalent.

We convert Equation 1 into a homomorphic
encryption equivalent as follows. The plaintext
[p1,D2, -+, Ps, P}, Dy, - - -, L] can each be represented as lists
of length-n integers mod p where n and p are configuration
parameters. We assign the plaintext p; = {b;,0,0,...,0},
p. = {b,0,0,...,0} and p' = {1,0,0,...,0} for
all ¢« € {1,...,t}. We then assign ¢; = Enc(b;,pk),
¢, = Enc(b},pk) and ¢! = Enc(p!,pk) for all i € {1,...,t}.
We pre-compute the set of ciphertext ¢;' = EvalAdd(c;, c!).

For a given a,b where d is chosen such that d — a is the
largest power of 2 possible as long as d < b, we then define
the ciphertext ¢(*?) recursively as follows:

EvalMult(c(®@® 49y if b > q
ifb=a 2)
ifb<a

cad) — e

)

Equation 2 recursively defines an algorithm to perform a
tree EvalMult operation over the list of ciphertext [cq, . ..,).

Hence, if [cq,...,cp] all represent encryptions of bits, then
c(@?) represent an encryption of the logical AND of all
of the bits. Further, the evaluation of c¢(®® induced by
the definition is a binary tree evaluation. If we define
¢/ = EvalMult(c},c;), then ¢ is the encrypted evalua-
tion of whether b; and b, are equivalent. We use the eval-
uation ¢’(%?) to define the output of the function ¢* =
EvalCompare(cy, ¢a, ..., s, 1, Ch, ..., C) Where ¢* is an en-
cryption of a single bit which represents whether all pairs
(b;, b)) are logically equivalent. Algorithm 1 can be used to
compute ¢* = EvalCompare(cy,ca,...,¢s, ¢, 65, ...,).

input : Two arrays of ciphertexts
{1,609, ... csb{ch, ey, iyl
output: A ciphertext c*
for i <~ 1 to s do
¢; = EvalAdd(c;, ct);
¢/ = EvalAdd(c}, ¢;);
end

o = C//(1 ,t) :

Algorithm 1: EvalCompare() Evaluation Algorithm

As a result of these definitions,
EvalCompare(cy, ca, ..., Csy 1, Chy ooy Ch) represents
whether the signature S matches the data D. An important
feature of EvalCompare(cy,ca,...,cs,¢),¢h,...,c.) for
parameterizing the libraries is the depth of the computation
of EvalCompare(cy,ca, ... cs,¢5,¢h, ..., c,). The depth of
computation is how many stages of recursive computations
need to be performed in the evaluation of ¢* = ¢”(I), Thus

d = [log,(t)] is the depth of computation needed.

A. Generalizing the Design

Our approach to encrypted exfiltration protection with
exact signature matching generalizes beyond exact signature
matching. For example, there is a trivial generalization to use
the EvalCompare() to search for encrypted strings in corpi
of encrypted data. An algorithm for this approach can be
seen in Algorithm 2 where a signature string ({c1,ca,...,¢s})
is search for in an encrypted corpus ({c},ch,...,c}}) by
iteratively performing the EvalCompare() operation over the
encrypted corpus.

input : Two arrays of ciphertexts

{c1,¢9, ... cs b {ch, by e}
output: A ciphertext c*
=l
for i< 1tot—sdo
c/,/ =
3
EvalCompare({c1,...,cs}.{ci, ..., Ciig_1}):

c; = EVaIAdd(C(L‘/) Cl);
¢ = EvalMult(c*, ¢;);
end
¢* = EvalAdd(c#, ct);
Algorithm 2: EvalCompare() Evaluation Algorithm

A slightly more application-specific generalization arises
from the problem of searching for foreign words transliterated

into English. This challenge is especially problematic when
searching for transliterated Arabic words where there are
multiple mappings from Arabic text to English text based
on dialect, accent and even the person or codebook used to
perform the transliteration. This problem becomes an issue
especially when there are multiple data sources used. This
induces a string search optimization that allows for limited
wild-cards, such as searching for signatures that allow for the
encoding of either “k” or “q” interchangeably, or allow the
interchange of encodings of “g” and “j”. We can allow this
by comparing both of these options in a generalization of
Algorithm 1, and then using an inverse of an EvalMult to join
the outputs of these results as a kind of homomorphic logical
“OR” operation and avoid doing a full signature comparison.

More general than our signature approaches is to use
edit distance computations which is also an area of ongoing
research in software FHE implementations [9] which we could
also use. For example, in the case of mis-spellings, we would
be able to filter for approximate matches of words.

VI. IMPLEMENTATION AND EXPERIMENTATION

We implemented our EvalCompare() design in multiple ho-
momorphic encryption libraries and evaluated performance at
multiple parameter settings. We implemented three variations
of lattice encryption libraries which all support the LTV SHE
encryption scheme. These versions were implemented using
three different approaches, including:

1) A version implemented in Matlab which runs in the
Matlab interpreter.

2) A compiled C/C++ version of the library.

3) A version of the library ported to support acceleration
with a Xilinx Virtex 7 FPGA co-processor.

Our designs of these library variants align with the implemen-
tations provided in [4], [5], [6].

One of our research goals is to explore the data struc-
ture and algorithm needs to support signature matching on
encrypted data, hence we do not focus discussion on the low-
level implementation details of the homomorphic encryption
libraries. However, as a point of comparison, we ran the
encrypted string matching algorithm on all three of the homo-
morphic encryption libraries with a baseline of performance
comparison for the parameter settings of n = 16384 and
p = 2, over a range of signature lengths ¢. The results of the
performance comparison can be seen in Figure 4 which shows
that our FPGA-accelerated implementation is multiple orders
of magnitude faster than the other libraries. As a result of these
performance benefits, we focus our design and experimental
analyses on the results of using this library.

Following [18], [19], [20], [21], we use the “root Hermite
factor” § as the primary measure of concrete security for a set
of parameters. The recent experimental evidence [18] suggests
that § = 1.007 would require roughly 2° core-years on recent
Intel Xeon processors to break. Using the estimates from [5],
[19], [20], Table I shows how the minimal ring dimension
needed varies as a function of the depth of computation needed.

As a result of the analysis of Table I, we decided to simplify
our implementation and use a maximum ring dimension of
n = 16384 for all computations to support § < 1.007 and

TABLE 1. RING DIMENSION 7, AS A FUNCTION OF DEPTH OF

COMPUTATION SUPPORTED FOR p = 2.

[Depth -1 7T 3 15 7 9 [11
[Min. Ring Dimension n “ 1024 [4096 [8192 [8192 [16384 [16384]

evaluating matches with signatures of at most 56 bits. With
this parameter selection we securely represent ciphertexts as
matrices of 64-bit integers, to still execute efficiently in all of
our implementations.

We ran further experiments to evaluate the runtime of the
EvalCompare operation running on the FPGA implementation
to see how the runtime varies for various signature bit lengths
for various ring dimensions. The results of these experiments
can be seen in Figure 5 which shows this data in a log-log plot.
We chose the range of the number of bits in the signature to
correspond to the number of bits required to encode ASCII
text with 1 to 8 characters. We can see from this plot that
runtime grows roughly linearly with the number of bits in the
signature across all of the ring dimensions we tested.

As a point of comparison, we also ran experiments to
evaluate how runtime is affected by ring dimension. The results
of these experiments for the FPGA accelerated hardware can
be seen in Figure 6 which shows that how runtime depends
on ring dimension when evaluating EvalCompare for various
settings of the signature sizes. We see from the graph that
performance is super-linear with ring dimension, as would be
expected, but less than quadratic asymptotic behavior.

VII. RELATED WORK

Our data guard technique can be thought of as a publish-
subscribe system with policy rules to manage subscriptions.
This context-aware approach to publish-subscribe systems has
an established literature [22], but we focus on a different
set of problems where both the subscription policies (i.e.,
the limitations of exfiltration) and the data flows should be
protected [2].

Up to now there have been few feasible approaches to
monitor and detect the infiltration or exfiltration with sensitive
signatures without requiring visibility into data [2]. There have
been prior approaches for Multi-level security management
[23]. Some recent practically relevant and applied results
in this area include [7], [8], but these prior results do not
provide capabilities for encrypted monitoring. In terms of
recent research, there have been results that discuss encrypted
filtering, [24], [25], [26], [27] and filtering encrypted network
traffic [28], [29], but these prior results are not as extensible
to more general filtering methods as with the homomorphic
encryption capabilities.

VIII. DISCUSSION AND CONCLUSION

We found experimentally that the encoded representation
of data can have a very large impact on the runtime of
FHE function evaluation in practice. Some early homomor-
phic systems relied on encoding a single bit of plaintext in
each ciphertext. EvalAdd and EvalMult operations were thus
simplified into Boolean XOR and AND operations, but offered
no computation parallelism. Ciphertext-to-plaintext expansion
in such systems is quite large: in one early example of ours,

Runtime of Encrypted Signature Comparison

10*

vs # of Bits in Signature (n=16384)

Interpreted Matlab on CPU
Compiled C on CPU
FPGA Co-Processor Accelerated

Runtime (s)
[=
o o
N w

=

o
[
T

[y

(@]
=}
T

10t

Fig. 4. Encrypted Signature Comparison Runtime vs.

10 15 20 25 30 35 40 455055
Bits in Signature

Signature Length for Various Computation Devices

Runtime of Encrypted Signature Comparison

vs Bit Length of Signature for FPGA-Accelerated Guard

=

°
H
T

n=16384
n=8192
n=4096
n=2048
n=1024
n=512
n=256
n=128

Runtime (s)

=

o
%
T

103

Fig. 5. Encrypted Signature Comparison Runtime vs.

10t 102
Bit Length of Signature

Signature Length for Various Ring Dimensions

Runtime of Encrypted Signature Comparison
vs Ring Dimension for FPGA-Accelerated Guard

10t

[y

(@)
=}
T

56 Bit Signature
49 Bit Signature
42 Bit Signature
35 Bit Signature
28 Bit Signature
21 Bit Signature
14 Bit Signature
7 Bit Signature

Runtime (s)
=
o

103

Fig. 6. Encrypted Signature Comparison Runtime vs.

102 10° 10*
Ring Dimension

Ring Dimension for Various Signature Lengths

the ciphertext expansion ratio was 223. In contrast, modern
FHE system encrypts mod p integers (p > 2) instead of
single bits, and we can leverage Single-Instruction, Multiple
Data (SIMD) approaches to pack multiple mod p integers into
each ciphertext, thus computing parallel operations on these
packed integers. The design of data structures and programs
for FHE remains a challenging aspect of applying these tech-
nologies. Besides the ciphertext expansion issues, the primitive
computation operations, EvalAdd and EvalMult, have uneven
performance tradeoffs with EvalAdd operations generally an
order of magnitude faster than EvalMult operations.

An important aspect of the scalability of this scheme
is that only an encrypted bit is sent to the trusted policy
authority. This encrypted bit sharing approach is much more
efficient than sending all encrypted data to a policy authority
for approval. By computing the encrypted AND of multiple
such signature evaluations, we can assess and share the testing
for multiple signatures on data files. This reduces bandwidth
consumption and prevents the policy authority from having to
inspect all data files and only encryptions of single bits need
to be communicated.

There are several topics worthy of further exploration in
follow-on work. This includes researching how we design a)
algorithms and data structures for the challenges of signature
comparison testing, b) signature encodings that are efficient on
commodity cloud computing hardware like x86-64 compute
architectures. c¢) implementing FHE data structure and algo-
rithms in commodity computing environments and integrate
these building blocks into a prototype capability.

IX. ACKNOWLEDGMENT

Partially sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Lab-
oratory (AFRL) under Contract No. FA8750-11-C-0098. The
views expressed are those of the authors and do not necessarily
reflect the official policy or position of the Department of
Defense or the U.S. Government. Distribution Statement “A”
(Approved for Public Release, Distribution Unlimited.)

REFERENCES

[1] M. L. Center, “Aptl: Exposing one of chinas cyber espionage units,”
Mandian. com, 2013.

[2] D. Parr, “Securing the cloud,” Journal of Information Warfare, vol. 13,
no. 1, pp. 56-69, 2014.

[3] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in Theory of Cryptography. Springer, 2011, pp. 253—
273.

[4] E. Oztiirk, Y. Dordz, B. Sunar, and E. Savag, “Accelerating somewhat
homomorphic evaluation using fpgas,” Cryptology ePrint Archive, Re-
port 2015/294, Tech. Rep., 2015.

[5] K. Rohloff and D. B. Cousins, “A scalable implementation of fully
homomorphic encryption built on NTRU,” in Proceedings of the 2nd
Workshop on Applied Homomorphic Cryptography (WAHC), 2014.

[6] S.S.Roy, K. Jarvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede,
“Modular hardware architecture for somewhat homomorphic function
evaluation.”

[71 T.D. Nguyen, M. A. Gondree, D. J. Shifflett, J. Khosalim, T. E. Levin,
and C. E. Irvine, “A cloud-oriented cross-domain security architecture,”
in MILITARY COMMUNICATIONS CONFERENCE, 2010-MILCOM
2010. 1IEEE, 2010, pp. 441-447.

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

K. Wrona and G. Hallingstad, “Controlled information sharing in nato
operations,” in MILITARY COMMUNICATIONS CONFERENCE, 2011-
MILCOM 2011. 1IEEE, 2011, pp. 1285-1290.

J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic computation of
edit distance,” IACR Cryptology ePrint Archive, 2015: 132, 2015. To
appear in WAHC, Tech. Rep., 2015.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, Stanford, CA, USA, 2009, aAI3382729.

——, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st annual ACM symposium on Theory of
computing, ser. STOC *09. New York, NY, USA: ACM, 2009, pp. 169—
178. [Online]. Available: http://doi.acm.org/10.1145/1536414.1536440

S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in
Cryptology—CRYPTO 2014. Springer, 2014, pp. 554-571.

C. Gentry and S. Halevi, “Implementing Gentry’s fully homomorphic
encryption scheme,” in Advances in Cryptology, EUROCRYPT 2011,
ser. Lecture Notes in Computer Science, K. Paterson, Ed. Springer
Berlin / Heidelberg, 2011, vol. 6632, pp. 129-148.

A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proceedings of the forty-fourth annual ACM symposium on Theory
of computing. ACM, 2012, pp. 1219-1234.

Y. Dordz, Y. Hu, and B. Sunar, “Homomorphic aes evaluation using
ntru.” JACR Cryptology ePrint Archive, vol. 2014, p. 39, 2014.

L. Ducas and D. Micciancio, “Fhew: Bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology—
EUROCRYPT 2015. Springer, 2015, pp. 617-640.

C. Gentry and S. Halevi, “HElib,” https://github.com/shaih/HElib, 2014.

Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,”
in ASIACRYPT, ser. Lecture Notes in Computer Science, vol. 7073.
Springer, 2011, pp. 1-20.

R. Lindner and C. Peikert, “Better key sizes (and attacks) for LWE-
based encryption,” in CT-RSA, 2011, pp. 319-339.

D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post
Quantum Cryptography. Springer, February 2009, pp. 147-191.

J. van de Pol, “Quantifying the security of lattice-based cryptosystems
in practice,” in Mathematical and Statistical Aspects of Cryptography,
2012.

M. Nabeel, S. Appel, E. Bertino, and A. Buchmann, “Privacy preserving
context aware publish subscribe systems,” in Network and System
Security. Springer, 2013, pp. 465-478.

D. E. R. Denning, Information warfare and security. Addison-Wesley
Reading, MA, 1999, vol. 4.

H. Hacigiimiis, B. Hore, B. Iyer, and S. Mehrotra, “Search on en-
crypted data,” Secure Data Management in Decentralized Systems, ser.
Advances in Information Security, vol. 33, pp. 383—425, 2007.

R. C. Jammalamadaka, R. Gamboni, S. Mehrotra, K. E. Seamons,
and N. Venkatasubramanian, “idataguard: Middleware providing a
secure network drive interface to untrusted internet data storage,”
in Proceedings of the 11th International Conference on Extending
Database Technology: Advances in Database Technology, ser. EDBT
’08. New York, NY, USA: ACM, 2008, pp. 710-714. [Online].
Available: http://doi.acm.org/10.1145/1353343.1353432

G. Miklau and D. Suciu, “Controlling access to published data
using cryptography,” in Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29, ser. VLDB
’03. VLDB Endowment, 2003, pp. 898-909. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1315451.1315528

R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
protecting confidentiality with encrypted query processing,” in Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 2011, pp. 85-100.

T. Fawcett, “Exfild: A tool for the detection of data exfiltration using
entropy and encryption characteristics of network traffic,” Ph.D. disser-
tation, University of Delaware, 2010.

G. Silowash, T. Lewellen, J. Burns, and D. Costa, “Detecting and
preventing data exfiltration through encrypted web sessions via traffic
inspection,” Citeseer, Tech. Rep., 2013.

